42 research outputs found

    Adaptivity of 3D web content in web-based virtual museums : a quality of service and quality of experience perspective

    Get PDF
    The 3D Web emerged as an agglomeration of technologies that brought the third dimension to the World Wide Web. Its forms spanned from being systems with limited 3D capabilities to complete and complex Web-Based Virtual Worlds. The advent of the 3D Web provided great opportunities to museums by giving them an innovative medium to disseminate collections' information and associated interpretations in the form of digital artefacts, and virtual reconstructions thus leading to a new revolutionary way in cultural heritage curation, preservation and dissemination thereby reaching a wider audience. This audience consumes 3D Web material on a myriad of devices (mobile devices, tablets and personal computers) and network regimes (WiFi, 4G, 3G, etc.). Choreographing and presenting 3D Web components across all these heterogeneous platforms and network regimes present a significant challenge yet to overcome. The challenge is to achieve a good user Quality of Experience (QoE) across all these platforms. This means that different levels of fidelity of media may be appropriate. Therefore, servers hosting those media types need to adapt to the capabilities of a wide range of networks and devices. To achieve this, the research contributes the design and implementation of Hannibal, an adaptive QoS & QoE-aware engine that allows Web-Based Virtual Museums to deliver the best possible user experience across those platforms. In order to ensure effective adaptivity of 3D content, this research furthers the understanding of the 3D web in terms of Quality of Service (QoS) through empirical investigations studying how 3D Web components perform and what are their bottlenecks and in terms of QoE studying the subjective perception of fidelity of 3D Digital Heritage artefacts. Results of these experiments lead to the design and implementation of Hannibal

    An Information-Theoretic Framework for Consistency Maintenance in Distributed Interactive Applications

    Get PDF
    Distributed Interactive Applications (DIAs) enable geographically dispersed users to interact with each other in a virtual environment. A key factor to the success of a DIA is the maintenance of a consistent view of the shared virtual world for all the participants. However, maintaining consistent states in DIAs is difficult under real networks. State changes communicated by messages over such networks suffer latency leading to inconsistency across the application. Predictive Contract Mechanisms (PCMs) combat this problem through reducing the number of messages transmitted in return for perceptually tolerable inconsistency. This thesis examines the operation of PCMs using concepts and methods derived from information theory. This information theory perspective results in a novel information model of PCMs that quantifies and analyzes the efficiency of such methods in communicating the reduced state information, and a new adaptive multiple-model-based framework for improving consistency in DIAs. The first part of this thesis introduces information measurements of user behavior in DIAs and formalizes the information model for PCM operation. In presenting the information model, the statistical dependence in the entity state, which makes using extrapolation models to predict future user behavior possible, is evaluated. The efficiency of a PCM to exploit such predictability to reduce the amount of network resources required to maintain consistency is also investigated. It is demonstrated that from the information theory perspective, PCMs can be interpreted as a form of information reduction and compression. The second part of this thesis proposes an Information-Based Dynamic Extrapolation Model for dynamically selecting between extrapolation algorithms based on information evaluation and inferred network conditions. This model adapts PCM configurations to both user behavior and network conditions, and makes the most information-efficient use of the available network resources. In doing so, it improves PCM performance and consistency in DIAs

    Aesthetic potential of human-computer interaction in performing arts

    Get PDF
    Human-computer interaction (HCI) is a multidisciplinary area that studies the communication between users and computers. In this thesis, we want to examine if and how HCI when incorporated into staged performances can generate new possibilities for artistic expression on stage. We define and study four areas of technology-enhanced performance that were strongly influenced by HCI techniques: multimedia expression, body representation, body augmentation and interactive environments. We trace relevant artistic practices that contributed to the exploration of these topics and then present new forms of creative expression that emerged after the incorporation of HCI techniques. We present and discuss novel practices like: performer and the media as one responsive entity, real-time control of virtual characters, on-body projections, body augmentation through humanmachine systems and interactive stage design. The thesis concludes by showing some concrete examples of these novel practices implemented in performance pieces. We present and discuss technologyaugmented dance pieces developed during this master’s degree. We also present a software tool for aesthetic visualisation of movement data and discuss its application in video creation, staged performances and interactive installations

    Proceedings of the 2004 ONR Decision-Support Workshop Series: Interoperability

    Get PDF
    In August of 1998 the Collaborative Agent Design Research Center (CADRC) of the California Polytechnic State University in San Luis Obispo (Cal Poly), approached Dr. Phillip Abraham of the Office of Naval Research (ONR) with the proposal for an annual workshop focusing on emerging concepts in decision-support systems for military applications. The proposal was considered timely by the ONR Logistics Program Office for at least two reasons. First, rapid advances in information systems technology over the past decade had produced distributed collaborative computer-assistance capabilities with profound potential for providing meaningful support to military decision makers. Indeed, some systems based on these new capabilities such as the Integrated Marine Multi-Agent Command and Control System (IMMACCS) and the Integrated Computerized Deployment System (ICODES) had already reached the field-testing and final product stages, respectively. Second, over the past two decades the US Navy and Marine Corps had been increasingly challenged by missions demanding the rapid deployment of forces into hostile or devastate dterritories with minimum or non-existent indigenous support capabilities. Under these conditions Marine Corps forces had to rely mostly, if not entirely, on sea-based support and sustainment operations. Particularly today, operational strategies such as Operational Maneuver From The Sea (OMFTS) and Sea To Objective Maneuver (STOM) are very much in need of intelligent, near real-time and adaptive decision-support tools to assist military commanders and their staff under conditions of rapid change and overwhelming data loads. In the light of these developments the Logistics Program Office of ONR considered it timely to provide an annual forum for the interchange of ideas, needs and concepts that would address the decision-support requirements and opportunities in combined Navy and Marine Corps sea-based warfare and humanitarian relief operations. The first ONR Workshop was held April 20-22, 1999 at the Embassy Suites Hotel in San Luis Obispo, California. It focused on advances in technology with particular emphasis on an emerging family of powerful computer-based tools, and concluded that the most able members of this family of tools appear to be computer-based agents that are capable of communicating within a virtual environment of the real world. From 2001 onward the venue of the Workshop moved from the West Coast to Washington, and in 2003 the sponsorship was taken over by ONR’s Littoral Combat/Power Projection (FNC) Program Office (Program Manager: Mr. Barry Blumenthal). Themes and keynote speakers of past Workshops have included: 1999: ‘Collaborative Decision Making Tools’ Vadm Jerry Tuttle (USN Ret.); LtGen Paul Van Riper (USMC Ret.);Radm Leland Kollmorgen (USN Ret.); and, Dr. Gary Klein (KleinAssociates) 2000: ‘The Human-Computer Partnership in Decision-Support’ Dr. Ronald DeMarco (Associate Technical Director, ONR); Radm CharlesMunns; Col Robert Schmidle; and, Col Ray Cole (USMC Ret.) 2001: ‘Continuing the Revolution in Military Affairs’ Mr. Andrew Marshall (Director, Office of Net Assessment, OSD); and,Radm Jay M. Cohen (Chief of Naval Research, ONR) 2002: ‘Transformation ... ’ Vadm Jerry Tuttle (USN Ret.); and, Steve Cooper (CIO, Office ofHomeland Security) 2003: ‘Developing the New Infostructure’ Richard P. Lee (Assistant Deputy Under Secretary, OSD); and, MichaelO’Neil (Boeing) 2004: ‘Interoperability’ MajGen Bradley M. Lott (USMC), Deputy Commanding General, Marine Corps Combat Development Command; Donald Diggs, Director, C2 Policy, OASD (NII

    Designing Guided User Tasks in VR Embodied Experiences

    Get PDF
    International audienceVirtual reality (VR) offers extraordinary opportunities in user behavior research to study and observe how people interact in immersive 3D environments. A major challenge of designing these 3D experiences and user tasks, however, lies in bridging the inter-relational gaps of perception between the designer, the user, and the 3D scene. Based on Paul Dourish’s theory of embodiment, these gaps of perception are: ontology between the scene representation and the user and designer perception, intersubjectivity from designer to user in task communication, and intentionality from the user’s intentions to the designer’s interpretations.We present the GUsT-3D framework for designing Guided User Tasks in embodied VR experiences, i.e., tasks that require the user to carry out a series of interactions guided by the constraints of the 3D scene. GUsT-3D is implemented as a set of tools that support a 4-step workflow to (1) annotate entities in the scene with names, navigation, and interaction possibilities, (2) define user tasks with interactive and timing constraints, (3) manage scene changes, task progress, and user behavior logging in real-time, and (4) conduct post-scenario analysis through spatio-temporal queries using ontology definitions. To illustrate the diverse possibilities enabled by our framework, we present two case studies with an indoor scene and an outdoor scene, and conducted a formative evaluation involving 6 expert interviews to assess the framework and the implemented workflow. Analysis of the responses show that the GUsT-3D framework fits well into a designer’s creative process, providing a necessary workflow to create, manage, and understand VR embodied experiences of target users

    Actas do 12Âș Encontro PortuguĂȘs de Computação GrĂĄfica

    Get PDF
    Actas do 12Âș Encontro PortugĂȘs de Computação GrĂĄfica, Porto, 8-10 de Outubro de 2003O Encontro PortuguĂȘs de Computação GrĂĄfica teve lugar nesse ano 2003, naquela que foi a sua 12ÂȘ edição, no ISEP – Instituto Superior de Engenharia do Porto, entre os 8 a 10 de Outubro. O 12Âș Encontro PortuguĂȘs de Computação GrĂĄfica (12EPCG) veio no seguimento de encontros anteriores realizados anualmente e reuniu investigadores, docentes e profissionais nacionais e estrangeiros, que realizam trabalho ou utilizam a Computação GrĂĄfica, Realidade Virtual e MultimĂ©dia, assim como todas as suas ĂĄreas afins, no sentido de permitir a divulgação de projectos realizados ou em curso e fomentar a troca de experiĂȘncias e a discussĂŁo de questĂ”es relacionadas com a Computação GrĂĄfica em Portugal, entre as comunidades acadĂ©mica,industrial e a de utilizadores finais. Este Ă© o livro de actas do 12EPCG.Fundação IlĂ­dio PinhoFC

    PROCEEDING SEMINAR NASIONAL RISET TEKNOLOGI INFORMASI 2013

    Get PDF

    Enhancing the E-Commerce Experience through Haptic Feedback Interaction

    Get PDF
    The sense of touch is important in our everyday lives and its absence makes it difficult to explore and manipulate everyday objects. Existing online shopping practice lacks the opportunity for physical evaluation, that people often use and value when making product choices. However, with recent advances in haptic research and technology, it is possible to simulate various physical properties such as heaviness, softness, deformation, and temperature. The research described here investigates the use of haptic feedback interaction to enhance e-commerce product evaluation, particularly haptic weight and texture evaluation. While other properties are equally important, besides being fundamental to the shopping experience of many online products, weight and texture can be simulated using cost-effective devices. Two initial psychophysical experiments were conducted using free motion haptic exploration in order to more closely resemble conventional shopping. One experiment was to measure weight force thresholds and another to measure texture force thresholds. The measurements can provide better understanding of haptic device limitation for online shopping in terms of the availability of different stimuli to represent physical products. The outcomes of the initial psychophysical experimental studies were then used to produce various absolute stimuli that were used in a comparative experimental study to evaluate user experience of haptic product evaluation. Although free haptic exploration was exercised on both psychophysical experiments, results were relatively consistent with previous work on haptic discrimination. The threshold for weight force discrimination represented as downward forces was 10 percent. The threshold for texture force discrimination represented as friction forces was 14.1 percent, when using dynamic coefficient of friction at any level of static coefficient of friction. On the other hand, the comparative experimental study to evaluate user experience of haptic product information indicated that haptic product evaluation does not change user performance significantly. However, although there was an increase in the time taken to complete the task, the number of button click actions tended to decrease. The results showed that haptic product evaluation could significantly increase the confidence of shopping decision. Nevertheless, the availability of haptic product evaluation does not necessarily impose different product choices but it complements other selection criteria such as price and appearance. The research findings from this work are a first step towards exploring haptic-based environments in e-commerce environments. The findings not only lay the foundation for designing online haptic shopping but also provide empirical support to research in this direction
    corecore