31 research outputs found

    Real-time scheduling in multicore : time- and space-partitioned architectures

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2014The evolution of computing systems to address size, weight and power consumption (SWaP) has led to the trend of integrating functions (otherwise provided by separate systems) as subsystems of a single system. To cope with the added complexity of developing and validating such a system, these functions are maintained and analyzed as components with clear boundaries and interfaces. In the case of real-time systems, the adopted component-based approach should maintain the timeliness properties of the function inside each individual component, regardless of the remaining components. One approach to this issue is time and space partitioning (TSP)—enforcing strict separation between components in the time and space domains. This allows heterogeneous components (different real-time requirements, criticality, developed by different teams and/or with different technologies) to safely coexist. The concepts of TSP have been adopted in the civil aviation, aerospace, and (to some extent) automotive industries. These industries are also embracing multiprocessor (or multicore) platforms, either with identical or nonidentical processors, but are not taking full advantage thereof because of a lack of support in terms of verification and certification. Furthermore, due to the use of the TSP in those domains, compatibility between TSP and multiprocessor is highly desired. This is not the present case, as the reference TSP-related specifications in the aforementioned industries show limited support to multiprocessor. In this dissertation, we defend that the active exploitation of multiple (possibly non-identical) processor cores can augment the processing capacity of the time- and space-partitioned (TSP) systems, while maintaining a compromise with size, weight and power consumption (SWaP), and open room for supporting self-adaptive behavior. To allow applying our results to a more general class of systems, we analyze TSP systems as a special case of hierarchical scheduling and adopt a compositional analysis methodology.Fundação para a Ciência e a Tecnologia (FCT, SFRH/BD/60193/2009, programa PESSOA, projeto SAPIENT); the European Space Agency Innovation (ESA) Triangle Initiative program through ESTEC Contract 21217/07/NL/CB, Project AIR-II; the European Commission Seventh Framework Programme (FP7) through project KARYON (IST-FP7-STREP-288195)

    Time-Aware Dynamic Binary Instrumentation

    Get PDF
    The complexity of modern software systems has been rapidly increasing. Program debugging and testing are essential to ensure the correctness of such systems. Program analysis is critical for understanding system’s behavior and analyzing performance. Many program analysis tools use instrumentation to extract required information at run time. Instrumentation naturally alters a program’s timing properties and causes perturbation to the program under analysis. Soft real-time systems must fulfill timing constraints. Missing deadlines in a soft real-time system causes performance degradation. Thus, time-sensitive systems require specialized program analysis tools. Time-aware instrumentation preserves the logical correctness of a program and respects its timing constraints. Current approaches for time-aware instrumentation rely on static source-code instrumentation techniques. While these approaches are sound and effective, the need for running worst-case execution time (WCET) analysis pre- and post-instrumentation reduces the applicability to only hard real-time systems where WCET analysis is common. They become impractical beyond microcontroller code for instrumenting large programs along with all their library dependencies. In this thesis, we introduce theory, method, and tools for time-aware dynamic instrumentation realized in DIME tool. DIME is a time-aware dynamic binary instrumentation framework that adds an adjustable bound on the timing overhead to the program under analysis. DIME also attempts to increase instrumentation coverage by ignoring redundant tracing information. We study parameter tuning of DIME to minimize runtime overhead and maximize instrumentation coverage. Finally, we propose a method and a tool to instrument software systems with quality of service (QoS) requirements. In this case, DIME collects QoS feedback from the system under analysis to respect user-defined performance constraints. As a tool for instrumenting soft real-time applications, DIME is practical, scalable, and supports multi-threaded applications. We present several case studies of DIME instrumenting large and complex applications such as web servers, media players, control applications, and database management systems. DIME limits the instrumentation overhead of dynamic instrumentation while achieving a high instrumentation coverage

    Performance assessment of real-time data management on wireless sensor networks

    Get PDF
    Technological advances in recent years have allowed the maturity of Wireless Sensor Networks (WSNs), which aim at performing environmental monitoring and data collection. This sort of network is composed of hundreds, thousands or probably even millions of tiny smart computers known as wireless sensor nodes, which may be battery powered, equipped with sensors, a radio transceiver, a Central Processing Unit (CPU) and some memory. However due to the small size and the requirements of low-cost nodes, these sensor node resources such as processing power, storage and especially energy are very limited. Once the sensors perform their measurements from the environment, the problem of data storing and querying arises. In fact, the sensors have restricted storage capacity and the on-going interaction between sensors and environment results huge amounts of data. Techniques for data storage and query in WSN can be based on either external storage or local storage. The external storage, called warehousing approach, is a centralized system on which the data gathered by the sensors are periodically sent to a central database server where user queries are processed. The local storage, in the other hand called distributed approach, exploits the capabilities of sensors calculation and the sensors act as local databases. The data is stored in a central database server and in the devices themselves, enabling one to query both. The WSNs are used in a wide variety of applications, which may perform certain operations on collected sensor data. However, for certain applications, such as real-time applications, the sensor data must closely reflect the current state of the targeted environment. However, the environment changes constantly and the data is collected in discreet moments of time. As such, the collected data has a temporal validity, and as time advances, it becomes less accurate, until it does not reflect the state of the environment any longer. Thus, these applications must query and analyze the data in a bounded time in order to make decisions and to react efficiently, such as industrial automation, aviation, sensors network, and so on. In this context, the design of efficient real-time data management solutions is necessary to deal with both time constraints and energy consumption. This thesis studies the real-time data management techniques for WSNs. It particularly it focuses on the study of the challenges in handling real-time data storage and query for WSNs and on the efficient real-time data management solutions for WSNs. First, the main specifications of real-time data management are identified and the available real-time data management solutions for WSNs in the literature are presented. Secondly, in order to provide an energy-efficient real-time data management solution, the techniques used to manage data and queries in WSNs based on the distributed paradigm are deeply studied. In fact, many research works argue that the distributed approach is the most energy-efficient way of managing data and queries in WSNs, instead of performing the warehousing. In addition, this approach can provide quasi real-time query processing because the most current data will be retrieved from the network. Thirdly, based on these two studies and considering the complexity of developing, testing, and debugging this kind of complex system, a model for a simulation framework of the real-time databases management on WSN that uses a distributed approach and its implementation are proposed. This will help to explore various solutions of real-time database techniques on WSNs before deployment for economizing money and time. Moreover, one may improve the proposed model by adding the simulation of protocols or place part of this simulator on another available simulator. For validating the model, a case study considering real-time constraints as well as energy constraints is discussed. Fourth, a new architecture that combines statistical modeling techniques with the distributed approach and a query processing algorithm to optimize the real-time user query processing are proposed. This combination allows performing a query processing algorithm based on admission control that uses the error tolerance and the probabilistic confidence interval as admission parameters. The experiments based on real world data sets as well as synthetic data sets demonstrate that the proposed solution optimizes the real-time query processing to save more energy while meeting low latency.Fundação para a Ciência e Tecnologi

    Ordonnancement hybride des applications flots de données sur des systèmes embarqués multi-coeurs

    Get PDF
    Les systèmes embarqués sont de plus en plus présents dans l'industrie comme dans la vie quotidienne. Une grande partie de ces systèmes comprend des applications effectuant du traitement intensif des données: elles utilisent de nombreux filtres numériques, où les opérations sur les données sont répétitives et ont un contrôle limité. Les graphes "flots de données", grâce à leur déterminisme fonctionnel inhérent, sont très répandus pour modéliser les systèmes embarqués connus sous le nom de "data-driven". L'ordonnancement statique et périodique des graphes flot de données a été largement étudié, surtout pour deux modèles particuliers: SDF et CSDF. Dans cette thèse, on s'intéresse plus particulièrement à l'ordonnancement périodique des graphes CSDF. Le problème consiste à identifier des séquences périodiques infinies d'actionnement des acteurs qui aboutissent à des exécutions complètes à buffers bornés. L'objectif est de pouvoir aborder ce problème sous des angles différents : maximisation de débit, minimisation de la latence et minimisation de la capacité des buffers. La plupart des travaux existants proposent des solutions pour l'optimisation du débit et négligent le problème d'optimisation de la latence et propose même dans certains cas des ordonnancements qui ont un impact négatif sur elle afin de conserver les propriétés de périodicité. On propose dans cette thèse un ordonnancement hybride, nommé Self-Timed Périodique (STP), qui peut conserver les propriétés d'un ordonnancement périodique et à la fois améliorer considérablement sa performance en terme de latence.One of the most important aspects of parallel computing is its close relation to the underlying hardware and programming models. In this PhD thesis, we take dataflow as the basic model of computation, as it fits the streaming application domain. Cyclo-Static Dataflow (CSDF) is particularly interesting because this variant is one of the most expressive dataflow models while still being analyzable at design time. Describing the system at higher levels of abstraction is not sufficient, e.g. dataflow have no direct means to optimize communication channels generally based on shared buffers. Therefore, we need to link the dataflow MoCs used for performance analysis of the programs, the real time task models used for timing analysis and the low-level model used to derive communication times. This thesis proposes a design flow that meets these challenges, while enabling features such as temporal isolation and taking into account other challenges such as predictability and ease of validation. To this end, we propose a new scheduling policy noted Self-Timed Periodic (STP), which is an execution model combining Self-Timed Scheduling (STS) with periodic scheduling. In STP scheduling, actors are no longer strictly periodic but self-timed assigned to periodic levels: the period of each actor under periodic scheduling is replaced by its worst-case execution time. Then, STP retains some of the performance and flexibility of self-timed schedule, in which execution times of actors need only be estimates, and at the same time makes use of the fact that with a periodic schedule we can derive a tight estimation of the required performance metrics

    Developing Learning System in Pesantren The Role of ICT

    Get PDF
    According to Krashen's affective filter hypothesis, students who are highly motivated have a strong sense of self, enter a learning context with a low level of anxiety, and are much more likely to become successful language acquirers than those who do not. Affective factors, such as motivation, attitude, and anxiety, have a direct impact on foreign language acquisition. Horwitz et al. (1986) mentioned that many language learners feel anxious when learning foreign languages. Thus, this study recruits 100 college students to fill out the Foreign Language Classroom Anxiety Scale (FLCAS) to investigate language learning anxiety. Then, this study designs and develops an affective tutoring system (ATS) to conduct an empirical study. The study aims to improve students’ learning interest by recognizing their emotional states during their learning processes and provide adequate feedback. It is expected to enhance learners' motivation and interest via affective instructional design and then improve their learning performance

    An Energy-Efficient and Reliable Data Transmission Scheme for Transmitter-based Energy Harvesting Networks

    Get PDF
    Energy harvesting technology has been studied to overcome a limited power resource problem for a sensor network. This paper proposes a new data transmission period control and reliable data transmission algorithm for energy harvesting based sensor networks. Although previous studies proposed a communication protocol for energy harvesting based sensor networks, it still needs additional discussion. Proposed algorithm control a data transmission period and the number of data transmission dynamically based on environment information. Through this, energy consumption is reduced and transmission reliability is improved. The simulation result shows that the proposed algorithm is more efficient when compared with previous energy harvesting based communication standard, Enocean in terms of transmission success rate and residual energy.This research was supported by Basic Science Research Program through the National Research Foundation by Korea (NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A3012227)

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Cache Related Pre-emption Delays in Embedded Real-Time Systems

    Get PDF
    Real-time systems are subject to stringent deadlines which make their temporal behaviour just as important as their functional behaviour. In multi-tasking real-time systems, the execution time of each task must be determined, and then combined together with information about the scheduling policy to ensure that there are enough resources to schedule all of the tasks. This is usually achieved by performing timing analysis on the individual tasks, and then schedulability analysis on the system as a whole. In systems with cache, multiple tasks can share this common resource which can lead to cache-related pre-emption delays (CRPD) being introduced. CRPD is the additional cost incurred from resuming a pre-empted task that no longer has the instructions or data it was using in cache, because the pre-empting task(s) evicted them from cache. It is therefore important to be able to account for CRPD when performing schedulability analysis. This thesis focuses on the effects of CRPD on a single processor system, further expanding our understanding of CRPD and ability to analyse and optimise for it. We present new CRPD analysis for Earliest Deadline First (EDF) scheduling that significantly outperforms existing analysis, and then perform the first comparison between Fixed Priority (FP) and EDF accounting for CRPD. In this comparison, we explore the effects of CRPD across a wide range of system and taskset parameters. We introduce a new task layout optimisation technique that maximises system schedulability via reduced CRPD. Finally, we extend CRPD analysis to hierarchical systems, allowing the effects of cache when scheduling multiple independent applications on a single processor to be analysed
    corecore