6,890 research outputs found

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Joint Learning of Intrinsic Images and Semantic Segmentation

    Get PDF
    Semantic segmentation of outdoor scenes is problematic when there are variations in imaging conditions. It is known that albedo (reflectance) is invariant to all kinds of illumination effects. Thus, using reflectance images for semantic segmentation task can be favorable. Additionally, not only segmentation may benefit from reflectance, but also segmentation may be useful for reflectance computation. Therefore, in this paper, the tasks of semantic segmentation and intrinsic image decomposition are considered as a combined process by exploring their mutual relationship in a joint fashion. To that end, we propose a supervised end-to-end CNN architecture to jointly learn intrinsic image decomposition and semantic segmentation. We analyze the gains of addressing those two problems jointly. Moreover, new cascade CNN architectures for intrinsic-for-segmentation and segmentation-for-intrinsic are proposed as single tasks. Furthermore, a dataset of 35K synthetic images of natural environments is created with corresponding albedo and shading (intrinsics), as well as semantic labels (segmentation) assigned to each object/scene. The experiments show that joint learning of intrinsic image decomposition and semantic segmentation is beneficial for both tasks for natural scenes. Dataset and models are available at: https://ivi.fnwi.uva.nl/cv/intrinsegComment: ECCV 201

    Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    Get PDF
    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images

    Automatic plant features recognition using stereo vision for crop monitoring

    Get PDF
    Machine vision and robotic technologies have potential to accurately monitor plant parameters which reflect plant stress and water requirements, for use in farm management decisions. However, autonomous identification of individual plant leaves on a growing plant under natural conditions is a challenging task for vision-guided agricultural robots, due to the complexity of data relating to various stage of growth and ambient environmental conditions. There are numerous machine vision studies that are concerned with describing the shape of leaves that are individually-presented to a camera. The purpose of these studies is to identify plant species, or for the autonomous detection of multiple leaves from small seedlings under greenhouse conditions. Machine vision-based detection of individual leaves and challenges presented by overlapping leaves on a developed plant canopy using depth perception properties under natural outdoor conditions is yet to be reported. Stereo vision has recently emerged for use in a variety of agricultural applications and is expected to provide an accurate method for plant segmentation and identification which can benefit from depth properties and robustness. This thesis presents a plant leaf extraction algorithm using a stereo vision sensor. This algorithm is used on multiple leaf segmentation and overlapping leaves separation using a combination of image features, specifically colour, shape and depth. The separation between the connected and the overlapping leaves relies on the measurement of the discontinuity in depth gradient for the disparity maps. Two techniques have been developed to implement this task based on global and local measurement. A geometrical plane from each segmented leaf can be extracted and used to parameterise a 3D model of the plant image and to measure the inclination angle of each individual leaf. The stem and branch segmentation and counting method was developed based on the vesselness measure and Hough transform technique. Furthermore, a method for reconstructing the segmented parts of hibiscus plants is presented and a 2.5D model is generated for the plant. Experimental tests were conducted with two different selected plants: cotton of different sizes, and hibiscus, in an outdoor environment under varying light conditions. The proposed algorithm was evaluated using 272 cotton and hibiscus plant images. The results show an observed enhancement in leaf detection when utilising depth features, where many leaves in various positions and shapes (single, touching and overlapping) were detected successfully. Depth properties were more effective in separating between occluded and overlapping leaves with a high separation rate of 84% and these can be detected automatically without adding any artificial tags on the leaf boundaries. The results exhibit an acceptable segmentation rate of 78% for individual plant leaves thereby differentiating the leaves from their complex backgrounds and from each other. The results present almost identical performance for both species under various lighting and environmental conditions. For the stem and branch detection algorithm, experimental tests were conducted on 64 colour images of both species under different environmental conditions. The results show higher stem and branch segmentation rates for hibiscus indoor images (82%) compared to hibiscus outdoor images (49.5%) and cotton images (21%). The segmentation and counting of plant features could provide accurate estimation about plant growth parameters which can be beneficial for many agricultural tasks and applications

    3D machine vision system for robotic weeding and plant phenotyping

    Get PDF
    The need for chemical free food is increasing and so is the demand for a larger supply to feed the growing global population. An autonomous weeding system should be capable of differentiating crop plants and weeds to avoid contaminating crops with herbicide or damaging them with mechanical tools. For the plant genetics industry, automated high-throughput phenotyping technology is critical to profiling seedlings at a large scale to facilitate genomic research. This research applied 2D and 3D imaging techniques to develop an innovative crop plant recognition system and a 3D holographic plant phenotyping system. A 3D time-of-flight (ToF) camera was used to develop a crop plant recognition system for broccoli and soybean plants. The developed system overcame the previously unsolved problems caused by occluded canopy and illumination variation. Both 2D and 3D features were extracted and utilized for the plant recognition task. Broccoli and soybean recognition algorithms were developed based on the characteristics of the plants. At field experiments, detection rates of over 88.3% and 91.2% were achieved for broccoli and soybean plants, respectively. The detection algorithm also reached a speed over 30 frame per second (fps), making it applicable for robotic weeding operations. Apart from applying 3D vision for plant recognition, a 3D reconstruction based phenotyping system was also developed for holographic 3D reconstruction and physical trait parameter estimation for corn plants. In this application, precise alignment of multiple 3D views is critical to the 3D reconstruction of a plant. Previously published research highlighted the need for high-throughput, high-accuracy, and low-cost 3D phenotyping systems capable of holographic plant reconstruction and plant morphology related trait characterization. This research contributed to the realization of such a system by integrating a low-cost 2D camera, a low-cost 3D ToF camera, and a chessboard-pattern beacon array to track the 3D camera\u27s position and attitude, thus accomplishing precise 3D point cloud registration from multiple views. Specifically, algorithms of beacon target detection, camera pose tracking, and spatial relationship calibration between 2D and 3D cameras were developed. The phenotypic data obtained by this novel 3D reconstruction based phenotyping system were validated by the experimental data generated by the instrument and manual measurements, showing that the system has achieved measurement accuracy of more than 90% for most cases under an average of less than five seconds processing time per plant

    Segmentation and 3D reconstruction of rose plants from stereoscopic images

    Get PDF
    The method proposed in this paper is part of the vision module of a garden robot capable of navigating towards rose bushes and clip them according to a set of pruning rules. The method is responsible for performing the segmentation of the branches and recovering their morphology in 3D. The obtained reconstruction allows the manipulator of the robot to select the candidate branches to be pruned. This method first obtains a stereo pair of images and calculates the disparity image using block matching and the segmentation of the branches using a Fully Convolutional Neuronal Network modified to return a map with the probability at the pixel level of the presence of a branch. A post-processing step combines the segmentation and the disparity in order to improve the results. Then, the skeleton of the plant and the branching structure are calculated, and finally, the 3D reconstruction is obtained. The proposed approach is evaluated with five different datasets, three of them compiled by the authors and two from the state of the art, including indoor and outdoor scenes with uncontrolled environments. The different steps of the proposed pipeline are evaluated and compared with other state-of-the-art methods, showing that the accuracy of the segmentation improves other methods for this task, even with variable lighting, and also that the skeletonization and the reconstruction processes obtain robust results.This work was funded by the European Horizon 2020 program, under the project TrimBot2020 (Grant No. 688007)

    Automatic Plant Annotation Using 3D Computer Vision

    Get PDF
    • …
    corecore