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Abstract

Machine vision and robotic technologies have potential to accurately monitor plant

parameters which reflect plant stress and water requirements, for use in farm man-

agement decisions. However, autonomous identification of individual plant leaves on

a growing plant under natural conditions is a challenging task for vision-guided agri-

cultural robots, due to the complexity of data relating to various stage of growth and

ambient environmental conditions. There are numerous machine vision studies that

are concerned with describing the shape of leaves that are individually-presented

to a camera. The purpose of these studies is to identify plant species, or for the

autonomous detection of multiple leaves from small seedlings under greenhouse

conditions. Machine vision-based detection of individual leaves and challenges pre-

sented by overlapping leaves on a developed plant canopy using depth perception

properties under natural outdoor conditions is yet to be reported. Stereo vision has

recently emerged for use in a variety of agricultural applications and is expected

to provide an accurate method for plant segmentation and identification which can

benefit from depth properties and robustness.

This thesis presents a plant leaf extraction algorithm using a stereo vision sen-

sor. This algorithm is used on multiple leaf segmentation and overlapping leaves

separation using a combination of image features, specifically colour, shape and

depth. The separation between the connected and the overlapping leaves relies on



ii

the measurement of the discontinuity in depth gradient for the disparity maps. Two

techniques have been developed to implement this task based on global and local

measurement. A geometrical plane from each segmented leaf can be extracted and

used to parameterise a 3D model of the plant image and to measure the inclina-

tion angle of each individual leaf. The stem and branch segmentation and counting

method was developed based on the vesselness measure and Hough transform tech-

nique. Furthermore, a method for reconstructing the segmented parts of hibiscus

plants is presented and a 2.5D model is generated for the plant. Experimental tests

were conducted with two different selected plants: cotton of different sizes, and

hibiscus, in an outdoor environment under varying light conditions. The proposed

algorithm was evaluated using 272 cotton and hibiscus plant images. The results

show an observed enhancement in leaf detection when utilising depth features, where

many leaves in various positions and shapes (single, touching and overlapping) were

detected successfully.

Depth properties were more effective in separating between occluded and overlap-

ping leaves with a high separation rate of 84% and these can be detected auto-

matically without adding any artificial tags on the leaf boundaries. The results

exhibit an acceptable segmentation rate of 78% for individual plant leaves thereby

differentiating the leaves from their complex backgrounds and from each other. The

results present almost identical performance for both species under various lighting

and environmental conditions. For the stem and branch detection algorithm, ex-

perimental tests were conducted on 64 colour images of both species under different

environmental conditions. The results show higher stem and branch segmentation

rates for hibiscus indoor images (82%) compared to hibiscus outdoor images (49.5%)

and cotton images (21%). The segmentation and counting of plant features could

provide accurate estimation about plant growth parameters which can be beneficial

for many agricultural tasks and applications.
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Chapter 1

Introduction

1.1 Motivation

Agriculture is one of the main resources that supplies humans with fundamental

life requirements, whilst at the same time supporting the economic growth of most

countries. Typically, conventional agricultural work is carried out manually by

farmers and skilled workers. Advancements in technology seek to convert manual

and intensive agricultural tasks into automated tasks, relying on mobile robots and

machine vision. These autonomous vehicles provide continuous monitoring of the

agricultural environment, autonomously acquiring the information and performing

the associated tasks (Cheein and Carelli, 2013; Zecha et al., 2013). To accomplish

these tasks, these autonomous vehicles require a sufficient number of intelligence

sensors to accurately monitor plants and provide relevant data accordingly. This

information is then analysed and used in crop management strategies which aim

to reduce input resources (water, fertiliser), reduce the chemical stress on humans,

and improve farm management efficiencies (Zhang et al., 2002).



1.1 Motivation 2

Plants usually display a variety of visual parameters which reflect their condition,

stress, and survival requirements. Monitoring plant parameters such as vegetative

growth, plant height and volume using human vision alone is labour intensive for

farmers and agronomists and prone to human weaknesses due to variable eyesight

and the results are skewed by lighting, weather conditions and other external factors.

Machine vision systems attempt to replicate human vision systems by using visual

sensors and image analysis techniques. These intelligence systems can potentially

automate the visual assessment of plant conditions in order to provide the required

sensing information for many field practices (McCarthy, 2009).

A variety of plant image segmentation issues were solved using 2D image features

such as colour, shape, and texture. These features are widely used; however they

may vary depending on growth stage, season and image acquisition (Yanikoglu et al.,

2014), or they are difficult to detect or identify under different ambient conditions,

or for complex plant canopies (Xia et al., 2013). The geometrical analysis of 2D

image features is a commonly applied approach for plant parameter estimation.

The accuracy of plants’ parameter estimation can be affected by image position,

overlapping canopy, and the similarities between canopy architectures (Lati et al.,

2013).

To overcome these problems that affected the estimation of plant parameters, 3D

imaging sensors were introduced for their ability to add another feature specifi-

cally depth, to the other already known features such as colour, shape and texture.

Recently stereo vision techniques have been widely and successfully used for fruit

harvesting in robot applications, and therefore, they are also expected to be equally

beneficial for plant segmentation and identification. With the rapid advance in

computational power, 3D modelling using stereo vision becomes an attractive al-

ternative to providing adequate details about plant canopies. The reconstruction of
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plant canopies in 3D models offers great prospects, where the information on plant

canopies with accurate parameters estimation can be acquired (Lati et al., 2013).

Plant identification is a major concern for the vision-based guiding system in preci-

sion agriculture applications. Most of the research concentrates on plant identifica-

tion using a leaf as the main feature with a controlled background. The detection

of multiple plant leaves under natural conditions (which may contain interference

and overlapping leaves for non-simple plant structure), is a crucial and challenging

task for vision-guided agriculture robots (Xia et al., 2013).

Depth information has been widely and successfully used for plant feature identifi-

cation in indoor (laboratory conditions), (Andersen et al., 2005), or greenhouse ap-

plications (Xia et al., 2015). The promising results of plant identification obtained

from these indoor and greenhouse applications using depth information, indicate

that the field of outdoor study has potential for more challenges and further inves-

tigation. The greenhouse environment could present the same effects of outdoor

lighting conditions but still there is an advantage over outdoor experimentation as

outdoor images can be affected by wind. The wind can cause the plant to oscil-

late which can result in blurred and poor quality of images. This will affect plant

segmentation and identification processes.

The above challenges provide the motivation to develop an image analysis system

using a stereo vision sensor which can be used on a robot platform, to identify

important plant features and perform automatic monitoring of plant parameters.

The proposed system will be capable of segmenting and counting plants’ important

features (leaves, stem and branches), which can assist plant growth and crop man-

agement, therefore it is relevant to review some aspects of that technology. One

of these aspects is a mobile robot platform. The recent developments in that field



1.2 Mobile robot platform in agriculture 4

include some of the commercially available robots used in certain agricultural ap-

plications. The following sections illustrate the importance and benefits of using

autonomous technology in agricultural applications, and some potential applica-

tions for mobile robot platforms and machine vision which could be compatible for

this research study.

1.2 Mobile robot platform in agriculture

Automatic crop monitoring could be enhanced with a mobile robot platform that

can continuously inspect the crop. It is hard to adapt a robot for different agri-

cultural tasks in an outdoor environment and this is mainly due to the agricul-

tural environment being less structured than an indoor manufacturing environment

(Armada et al., 2005). The earliest attempts to develop driverless vehicles in agri-

culture began seriously in the 1960s (Fountas et al., 2007). Machine vision based

guidance system technology was introduced in the 1980s, by the potential to com-

bine computers with image sensors (Yaghoubi et al., 2013). Since then, the au-

tonomous agricultural robot has experienced promising developments which open

the field for potential autonomous agricultural operations. These robots have been

involved in both indoor (greenhouse) and outdoor agricultural applications. Agri-

cultural robots have the ability to implement potentially high-risk and repetitive

agricultural functions previously undertaken by one or more people. Examples in-

clude crop monitoring and picking in physically awkward circumstances, high speed

harvesting and pesticide spraying.

Fruit and vegetable harvesting is both time consuming and tiring work and most

researchers have devoted their work to this research area (Billingsley et al., 2006).

The results of this research show the use of autonomous vehicles in harvesting
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applications can reduce labor costs, enhance operational safety and application ac-

curacy, and increase productivity (Plebe and Grasso, 2001; Yang et al., 2007; Yuan

et al., 2010; Si et al., 2015). Furthermore, the autonomous vehicles can provide con-

tinuous monitoring of the agricultural environments and supply the farmer with up-

to-date and precise information to assist with infield management decisions (Zecha

et al., 2013). For example, two types of robotics have been recently developed and

launched for the first trial; SwagBot and Ladybird. A SwagBot2 robot was intro-

duced and used for herding and monitoring cattle on a farm (Jukan et al., 2017).

This research can be adopted and applied in autonomous farm activities including

plant monitoring. The intended adopters of the autonomous farm activities are

farmers, where the autonomous sensing is expected to be integrated with existing

on-farm operations. The Ladybird robot is a lightweight multi-directional electric

vehicle which has been developed to monitor and harvest vegetables (low height

crop) in a broad field. This type of robot is equipped with intelligent software

which enables it to conduct autonomous farm sensing and manipulation tasks such

as mapping, detection, classification, weeding, and harvesting for various vegetable

crops (Funnell, 2015). The proposed outcomes intended to be develop in this study

could become a potential application for the new agricultural robots which have

been recently developed.

1.3 Machine vision in agriculture

A machine vision system becomes an essential tool in precision agriculture appli-

cations. Machine vision utilises image analysis to extract useful information for

different applications, such as fruit detection and recognition for automatic picking

and harvesting machines, which saves labour costs and increases productivity (Plebe
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and Grasso, 2001; Van Henten et al., 2002; Zhao et al., 2005; Yang et al., 2007; Wachs

et al., 2010; Bulanon et al., 2010; Hayashi et al., 2010; Ji et al., 2012; Bakhshipour

et al., 2012; Si et al., 2015; Wang et al., 2016). Precision agriculture intends to

monitor plants’ characteristics using non-destructive inspection methods for de-

termining product properties. The rapid advancement in sensor technology, data

acquisition systems and computer analysis theories have provided important de-

velopments in the field of autonomous operations in agriculture. Machine vision

uses perception sensors to detect potential plant features and provides continuous

monitoring of agricultural environments. Machine vision accords the opportunity

to analyse information both within or outside the visible electromagnetic spec-

trum such as ultraviolet or infrared regions, which the human eye cannot recognise

(Cubero et al., 2011).

A machine vision system can be useful also for yield estimation operation. Yield

estimation at an early plant growth stage has multiple potential benefits for growers

such as, adjusting specific management to increase yield, planning for the harvest

method, predicting future market price and crop-load estimation (Okamoto and Lee,

2009; Kurtulmus et al., 2011; Linker et al., 2012; Zhou et al., 2012; Wang et al., 2012;

Payne et al., 2013; Gongal et al., 2016). With this in mind, autonomous vehicles

have become an important research tool in modern agriculture. For example, an

automated image-based detection system for precision weed spot spraying is also

a potential technology for preserving crops, minimising weed effects and reducing

herbicide usage (Rees et al., 2009). In addition, an autonomous vision guidance of

farm vehicles for crop row detection has multiple benefits for farmers such as saving

labour costs and time, and enhancing operational safety and efficiency using video

camera images (Billingsley and Schoenfisch, 1997), monocular vision (English et al.,

2014), or using stereo vision techniques (Rovira-Más et al., 2004; Kise et al., 2005).
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Furthermore, machine vision can perform an important role in plant part recognition

and identification. Plant identification is a major challenge in the field for a vision

based guidance system due to the multiple number of features which need to be

identified and due to the complexity of the background (Nesaratnam and BalaMu-

rugan, 2015). Analysing leaf and flower images has provided benefits for agronomy

and biology for plant species identification (Valliammal and Geethalakshmi, 2011)

and also for leaf classification and recognition (Kadir et al., 2013; Wu et al., 2007; Hu

et al., 2012). The autonomous inspection and 3D measurement of plant canopies us-

ing stereo vision can provide detailed information about plant health, disease propa-

gation path way and autonomous spray treatments (Xia et al., 2009; Li et al., 2009)

and drought stress by measuring the leaf inclination angle (Biskup et al., 2007).

In this study, an image segmentation algorithm using a stereo vision sensor has

been developed to segment important plant features (leaf, stem) for the purpose

of monitoring plant growth, disease inspection and early indication of plant stress.

Monitoring plant growth using stereo vision technology has the potential to increase

plant productivity in farms and to support the continuous growth of the global

population.

1.4 Plant monitoring systems

Plant monitoring is an essential task to investigate the growth of the crop and

react accordingly if some factor such as water shortage and nutrient stress, plant

illness or insect attack is detected. The automated monitoring of plants is a promis-

ing process and should be capable of providing accurate and sufficient information

about growth development to reflect the true physiological state of plants (Kacira

and Ling, 2001). This task can be performed by monitoring and analysing a va-
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riety of plant features. The existing technology in this field offers some typical

types of measurement sensors which include destructive (contact with the plant)

and non-destructive techniques. Some of destructive approaches can be very time

consuming and poorly representative of plant canopies. For the sake of convenience

and time efficiency, non-destructive methods have been developed and become more

prominent in recent times (Meyer and Davison, 1987; Zhao et al., 2012).

The literature reports many approaches to recording plant status measurements

using different indicators. For example, plant water status can be measured and

estimated by leaf water potential (Huck and Klepper, 1977). This index can be

indirectly measured via some plant properties such as leaf thickness change, leaf

temperature and growth rate (Lu and Neumann, 1999). The manual observation

for leaf angle is another indirect measurement for visible leaf wilting which can re-

flect plant water stress (Meyer and Walker, 1981; Ehleringer and Hammond, 1987).

The development of an image analysis system that can replace some of those mea-

surement tools may be a promising advancement for this field. For example, leaf

angle is a good indicator of visible leaf drought stress and wilting which could be

measured by the change in the zenith leaflet angle distribution (Biskup et al., 2007).

The estimation of crop canopy properties and measurement such as plant height,

width, volume, and growth stage, can provide an applicable tool for crop manage-

ment decisions (precise fertilizer, pesticide application), according to the crop yield

prediction. The structure of the canopy can be characterised by size, shape position

and orientation of vegetative elements (Ross, 2012; Weiss et al., 2004). It is not

easy to define a canopy structure due to the large amount of information required.

Therefore, a canopy structure can be described with only a few variables such as

leaf inclination distribution function and leaf area density (Weiss et al., 2004). The

Leaf Area Density (LAD) is the portion of one-sided leaf area within a reference
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volume, which is defined as a key index for characterising the vertical and horizontal

plant canopy structure (Oshio et al., 2015).

Another approach used to estimate foliage density is Leaf Area Index (LAI). The

concept of LAI was introduced for the first time by Watson (1947) to describe the

relationship of plant growth capabilities and light interception. LAI corresponds

to the one-side leaf area per unit ground surface area. LAI can be calculated by

integrating the leaf area density over the canopy height (Weiss et al., 2004). The

literature reports numerous approaches developed for quantifying LAI including

destructive and non-destructive methods (Bréda, 2003; Jonckheere et al., 2004).

Due to the considerations of cost, efficiency and convenience, the estimation of

LAI using a digital camera has been widely adopted in recent years (Sakamoto

et al., 2012). The importance of measuring LAD and LAI is to estimate plant

vegetative growth and to measure the relation to interception of light for maximum

growth respectively (Weiss et al., 2004; Wolf et al., 1972).

It has been demonstrated that stereo vision technology can offer great prospects

to implement an image-based 3D reconstruction model of a plant canopy and an

estimation of its growth parameters (Andersen et al., 2005; Lati et al., 2013). The

3D reconstruction model may offer the required information regarding measurement

of plant canopies thereby indicating more accurate hight, width, leaf area and mass

volume measurement (He et al., 2003). In this context, the development of image

processing algorithms that can segment and count the leaves of a plant canopy using

stereo vision techniques could be useful for estimating LAD or calculating LAI.
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1.5 Research scope

This study will focus on segmentation of important plant features such as leaves,

stem and branches, using colour and depth properties. The specific focus of the

study is the detection of multiple leaves for non-simple plant canopy in a semi-

structured outdoor environment under a variety of sunlight conditions (sunny, shady

and cloudy). To implement this task, the depth data from stereo vision sensors,

combined with colour information, will be used to develop an image processing

algorithm to segment plant images and to solve problems presented by overlapping

leaves.

The term semi-structured was employed for the experiment conditions because,

images of single plants in pots at outdoor conditions were captured without the

complexities of other plants from the same type in the foreground and background.

In addition, the images were taken from different directions and angles which might

be unobtainable in real field conditions. In contrast, the indoor plants have a more

structured environment and there is a greater ability to modify this environment

to suit imaging requirements to be more controllable compared with the outdoor

environment and real field conditions.

The experiments carried out for this study involve two types of plant (with different

structures), namely cotton (Gossypium hirsutum L.) and hibiscus (Hibiscus rosa-

sinensis L.) (Figure 1.1). Hibiscus plants have clearly separated stems, branches,

and leaves with adequate space between them. There is no heavy overlapping

between stem, branches, and leaves. As such, hibiscus plants have been chosen at

the commencement of this study to develop leaf, stem and branches segmentation

algorithms. The cotton plant was chosen because it is a major crop in Australia,

grown mainly for its fibre and seed oil and planted extensively in Queensland and
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(a) Cotton plant

(b) Hibiscus plant

Figure 1.1: Cotton and Hibiscus plants.

New South Wales. According to Queensland Farmers’ Federation (QFF, 2012), the

cotton industry adds more than $2.5 billion in value to the Australian economy

annually. The growing of cotton consumes large amounts of water, so monitoring

cotton plant features in order to indicate plant growth stages can improve water

use and efficiency. Therefore, this research focus is more on cotton than hibiscus

to develop the leaf segmentation algorithm regarding to the importance of cotton

crop. Compared with other major field crops, cotton has perhaps the most complex

growth habit, due to its indeterminate growth (Oosterhuis, 2001). This is because

the fruiting-to-vegetative growth balance is critical in cotton due to the continuing

vegetative growth even after fruiting is initiated. This balance can be affected by

crop management (water, fertiliser) and environment (Oosterhuis, 2001). As such,
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more than one parameter is used to monitor cotton growth such as; vegetative

growth, stem internode length and fruit abscission. The continuous monitoring of

plant features, stress and requirements can detect any imbalance between fruiting

and vegetative growth which can, in turn, improve management decisions. In that

sense, monitoring these parameters using image analysis could be more complicated

compared to other plants which have fewer parameters that indicate their growth.

Presently, there are no similar reported studies for cotton and it is expected that

this study may be applicable to other plants displaying a similar structure.

1.6 Research questions

1. Which important plant features (leaves, stem and branches) can be segmented

accurately using vision sensors, to help inform plant characteristics of various

growth stages to enhance crop management practices?

2. How does the combination of image features such as colour and depth, assist

plant image segmentation under varying outdoor lighting conditions, and how

do depth gradient properties enhance plant segmentation and which plant part

can benefit more from depth segmentation?

3. How do the outdoor varied illumination conditions such as sunny, shady and

cloudy affect the performance of plant segmentation techniques and can stereo

vision aid segmentation in these conditions?
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1.7 Research aim and objectives

The aim of this research is to develop an image analysis system using colour and

depth information captured by a stereo vision camera to recognise the important

features of cotton plants (leaves, stems). This system must be capable of segment-

ing and counting multiple plants’ leaves and performing the separation between

overlapped leaves using colour and depth properties. The system must also be able

to reconstruct the segmented plant parts for the purpose of generating a structural

plant model appropriate to various growth stages at different outdoor conditions,

to enhance precision of agricultural operations. The structural plant model can be

used to monitor plant characteristics for various growth stages at different outdoor

conditions, to enhance precision of agricultural operation.

The specific objectives of this study are:

1. Develop an image analysis algorithm which can detect and count multiple

plant leaves from the collected images, using image preprocessing techniques

with the aid of depth and colour information.

2. Develop an image analysis method capable of separating between overlapping

leaves of plant canopies using depth gradient properties.

3. Evaluate the performance of the developed algorithms for leaf segmentation

and overlapping separation, mainly using cotton plants images (at different

growth stages) and some images of hibiscus plants at a semi-structured out-

door environments under varying light conditions.

4. Develop an image analysis algorithm which can segment and count plant stems

and branches.
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5. Demonstrate how the developed algorithms can be used to reconstruct seg-

mented plant parts for the purpose of generating a structural plant model and

localising leaves and stem in the x, y, z, coordinates.

In this study, a stereo vision camera is used as the primary sensor to produce colour

and depth information. Stereo vision cameras use reliable sensors which work in

an outdoor environment under a variety of illumination conditions to produce high

resolution depth and colour information (Gai et al., 2016).

1.8 Original research contribution

The principal contributions of this research are as follows:

1. Collection of a detailed data set of cotton plant images at different growth

stages under semi-structured outdoor environment and varying light condi-

tions. These data sets have been used for the development of the image

analysis algorithm for this research study. These data sets can be added to

the plant images data sets and could be beneficial for other research studies.

2. Development of an image analysis algorithm that can segment a plant canopy

from non-simple background, under semi-structured outdoor environments

and varying sunlight conditions (sunny, cloudy and shady).

3. Development of a new technique which can differentiate between overlapping

leaves’ boundaries, depending on the depth gradient of the disparity map data.

This technique can calculate the discontinuity in depth values in a global man-

ner and separate the overlapping items accordingly. This technique can work

faster than edge detection techniques which need to calculate the gradient for

each pixel in the image and follows another step for leaves’ separation.
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4. The proposed algorithm depends on the stereo vision sensor images without

adding any artificial tags on the leaves. A calibration process is required

only once for initial parameter settings. Afterwards, the developed algorithm

works adaptively for all data sets under different outdoor conditions.

5. A comprehensive evaluation of the algorithm’s performance on cotton plant

datasets under a variety of outdoor lighting conditions reveals both the ad-

vantages and limitations of the algorithm.

6. Development of an additional algorithm which segments, classifies and counts

stems and branches of plants automatically using a vesselness measure tech-

nique under direct sunlight.

7. The separation of overlapped (occluded) leaves using depth discontinuity

properties under direct sunlight conditions has not yet been reported in the

literature.
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1.9 Thesis outline

This dissertation is organised as follows:

Chapter 2 contains the literature review of the related research published in the

same area of this study and discusses the critical art studies. Plant feature extrac-

tion using 2D and 3D image sensors, leaf and stem detection and multiple leaves

segmentation and occlusion separation are the key elements of the related work for

this study.

Chapter 3 describes the fundamental idea and the essential processes of stereo

vision techniques including camera calibration and rectification, triangulation and

stereo corresponding process. The chapter also explains the characteristics, proper-

ties and limitations of the depth sensor used in this study. A focus on the evaluation

of the disparity map in producing an adequate depth information for the plant parts

is also presented in this chapter, and a wide range of disparity map parameters was

tested and evaluated for optimal combination.

Chapter 4 illustrates the development process of the proposed leaf segmentation

and counting algorithm. The chapter describes in detail the main steps of the

developed pre-processing segmentation using colour, depth and shape properties.

In addition the chapter presents the development of other segmentation techniques

to solve problems presented by overlapping leaves based on gradient discontinuity.

A method that extracts a plane from leaf vertices using x, y, z coordinates of depth

image is also presented in this chapter.

Chapter 5 presents the evaluation of the performance of the leaf segmentation

and counting algorithm under different outdoor illumination conditions. The im-

ages’ main issues are presented which significantly affected the performance of the



1.9 Thesis outline 17

developed algorithm. The chapter also presents the overall results of the algorithm

in segmenting two types of plant leaves which revealed the algorithm’s capability

and limitations.

Chapter 6 deals with the automatic branch segmentation algorithm. The chapter

presents the experimental tests used to verify the performance of the developed algo-

rithm. The algorithm performance was evaluated for hibiscus in indoor and outdoor

conditions and for cotton plants at different outdoor illumination conditions.

Chapter 7 demonstrates the overall conclusions of this study with respect to the

accomplishment of the research objectives. Suggestions for the potential applica-

tions of this research and future work recommendations are also presented in this

chapter.



Chapter 2

Literature review

There are several factors that could inform the design of machine vision systems to

detect important plant features, including leaves, stems and fruit. This task can be

achieved using a range of sensors to acquire information from the environment and

to detect potential features such as colour, shape, texture and depth. Monocular

(2D) vision sensors are normally used to segment non-green fruit from other plant

parts and an unwanted background. Green fruit and plant leaves need spatial

sensors that will work with properties other than colour and shape.

There is a multitude of literature studies concerning green fruit detection in a

green leaf environment (Lee, 2006; Kane and Lee, 2007; Okamoto and Lee, 2009)

which use spectral and 2D shape properties. Spectral analysis is usually used to

segment green fruit from trees which have different spectral characteristics from

leaves or to segment small weed seedlings from a soil background (Franz, 1989; Franz

et al., 1991b). The spectral analysis can be affected by many variables such as plant

health, leaf age and illumination conditions therefore, spectral analysis cannot be

the basis for individual leaf segmentation.
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The intended application of this study is the segmentation of individual leaves from

each other, where leaves have quite similar spectral characteristics and 3D shape

properties. Recently, depth sensors have been used in autonomous agricultural

applications to segment plant parts and give precise positioning data. Many liter-

ature studies exist which report important plant feature extraction in a glasshouse

environment. The focus of this thesis is on colour and depth sensing to segment

important plant features such as leaves and stems at semi-structured outdoor en-

vironments under varying sunlight conditions. This chapter reports an overview of

the literature studies relevant to the field of this PhD research study. The main

research topics are: image analysis for fruit and plant detection using 2D image

features, depth sensing in indoor and outdoor conditions, image analysis for plant

part detection (leaf, stem), and the detection of multiple leaves. Figure 2.1 shows

the main research area related to this study. A brief conclusion and the research

problem are also presented at the end of this chapter.

Machine vision application in 

plant and fruit recognition

   2D image features
    1. Colour

2. Shape 

3. Texture

  Image features of 3D sensor

1. Colour

2. Shape 

3. Texture

4. Depth

Fruit 

segmentation

Plant feature 

extraction Fruit 

localization

Leaf 

detection

Stem 

detection

Plant modelling & 

reconstruction

Plant 

 localization

Figure 2.1: Main research areas related to this study
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2.1 Image analysis using 2D image features

The use of image segmentation techniques depends on image sensors and on appli-

cation requirements. Various methods of image segmentation techniques have been

investigated to extract the important features of plant and fruit. Researchers have

often combined two or more image segmentation methods to segment fruit and plant

parts accurately. In general, segmentation techniques can be classified according to

the 2D colour image sensors (monocular image) which depend on colour, texture,

and shape attributes or 3D image sensors which can benefit from depth features.

2.1.1 Fruit detection

Colour image segmentation is a popular approach used to identify the region of

interest according to its colour. It is widely used in fruit and plant detection for

indoor (greenhouse) and outdoor applications. For example, the method based on

colour subtraction (G-R) and (G-B) was used by Wang, Zhu and Ji (2008) to recog-

nise cotton for an automatic cotton harvesting robot. Zhou et al. (2012) used other

colour indices to detect and count red and green apples for early yield prediction.

The red minus blue channel (R-B) was used for green apple detection, while the

difference between red and green channel (R-G) was more effective to detect red

apples. This method showed a potential yield prediction method; however, the

method cannot discriminate between a single apple and a cluster of apples. The

apple count depended on the number of pixels in the cluster.

The disadvantages of using the colour feature as a solo feature are: colour feature

is influenced by the ambient light conditions, and it has limited capability to detect

an individual fruit and to deal with complex surrounding plant structures. The
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researchers tried to support colour by the use of other features such as shape (Wang

et al., 2012; Si et al., 2015) and texture (Zhao et al., 2005; Linker et al., 2012) to

overcome this problem.

Wang et al. (2012) presented an automated crop yield estimation method based on

the integration between colour and shape features to segment red and green apples

in an orchard. The red and green apples were segmented using hue, saturation and

values in the Hue Saturation Value (HSV) colour space. Hue channel information

is adaptive for discriminating objects of different colour (Lin et al., 2005). The hue

values of the red apple pixels were distributed in two ranges from 0◦ to 9◦, and from

349◦ to 360◦ while the hue values of green apples ranged from 49◦ to 75◦. Apple

pixels have stronger green than leaf pixels, therefore, a suitable threshold value for

the saturation channel was used to differentiate the green apple pixels from the

green leaves. The centres of green apples were removed and they could not be

detected using saturation segmentation. This is because they have high brightness

and low saturation due to the camera flash effect. For that reason, shape features

combined with geometrical analysis were used to complete the shape of segmented

apple and to detect individual apples in the image. This method performed well

for both types of apple; however one limitation remained. The method was only

performed at night using artificial light, therefore no results are reported under

daylight illumination conditions.

Combining colour, shape and texture features can enhance apple segmentation and

improve detection reliability. For example, Linker et al. (2012) proposed another

method to discriminate between apples and other objects and to estimate the num-

ber of green apples in the plant images depending on colour, shape (contour and

arc analysis) and texture (smoothness criteria) properties. Although the method

showed high segmentation results when compared to other methods proposed for



2.1 Image analysis using 2D image features 22

instance by Wang et al. (2012) and Zhou et al. (2012), direct sunlight and colour

saturation were the main problems with this detection method. The detection ac-

curacy can be enhanced when plant images are captured under controlled lighting

conditions (diffuse light).

Studies have been reported on fruit segmentation methods that use colour, edge,

image threshold and morphological operational techniques to segment fruit from

the tree and background (Plebe and Grasso, 2001; Chen and Yang, 2013; Xiang

et al., 2014; Luo et al., 2016). The coverage of the fruits by the leaves is one of

the most important problems in fruit detection, therefore these methods introduce

another feature of depth, to localise the fruit position in the tree for fruit harvesting

robot applications. More details about depth sensing and related segmentation

techniques are explained in Section 2.2.

2.1.2 Plant detection

The image processing techniques used to segment plant attributes depend on dif-

ferent factors such as: the scale of plant measurement which ranged from small

seedling, plant parts (e.g. leaf, stem) to the dense canopy, the measurement envi-

ronment (e.g laboratory, greenhouse or field condition), and the applied application

(e.g. yield prediction, plant monitoring and species identification). The segmen-

tation process of plant images becomes more complicated due to the complexity

of plant structure and the similarity in colour between the plant and the foliage

background. With this in mind, the complexities of the outdoor agriculture envi-

ronment, including a variety of ambient light conditions and the occlusion between

plant parts and their neighbours, make plant image segmentation a challenging

task. Machine vision technology offers the potential to identify plant features using
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colour, shape and texture (Meyer et al., 1998-b; Tillett et al., 2001).

2.1.2.1 Colour feature

Colour can be an effective feature used to segment foliage from background soil for

top view image of small seedling crop (Tian and Slaughter, 1998). It is also used to

reduce the illumination effect on the scene of the plant image (Perez et al., 2000).

Since RGB colour images contain information in red (R), green (G) and blue (B)

channels, the image can be segmented according to these channels. Most of the

plant image information is found in the green channel. Among several approaches

developed for separating green from the image, Woebbecke et al. (1995) found

that the modified hue (2G − R − B) or Excess Green index (ExG), was the

most effective approach for separating plant from background soil. This is be-

cause (ExG) produced near binary images and provided a clear contrast between

plant parts and background soil (Hamuda et al., 2016). ExG index was widely used

later to enhance plant parts segmentation (leaves, stem) and perform effective dis-

crimination between green and unwanted background (Meyer et al., 1998-a; Lamm

et al., 2002; McCarthy, 2009; Guijarro et al., 2011).

Another colour index called Excess Red (ExR) or (1.3R − G) was proposed by

Meyer et al. (1998-a) to segment the leaf region from the background but it was

not as accurate as (ExG). Afterwards, Meyer et al. (2004) combined the two colour

indices (ExG) and (ExR) to produce another effective colour index called (EXGR)

or (ExG − ExR). This method applied the two colour indices simultaneously

where (ExG) index was used to separate plants region while the background residue

was eliminated using (ExR) criterion (Neto, Meyer and Jones, 2006; Tang et al.,

2009). Meyer and Neto (2008) reported that (EXGR) colour index demonstrated
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superior segmentation results over the (ExG) for plant images taken under different

environments (greenhouse or actual field) and various backgrounds (soil or plant

residue).

2.1.2.2 Shape feature

The use of colour as a solo feature to segment plant image is seldom used when plant

images are complicated and more than one image feature needs to be extracted to

identify plants. The researcher combined other features such as edge, shape and

geometrical analysis information to segment plant image. Shape is the most obvious

feature used to discriminate between crop leaf and weed (Guyer et al., 1986; Perez

et al., 2000). It is also the most heritable feature which is least affected by environ-

mental conditions such as mean annual temperature and mean annual precipitation

(Li et al., 2015). Furthermore, it possesses considerable information that describes

the morphological characteristics of plant leaves. Franz et al. (1991a) identified

plant species based on individual leaf shape using the Fourier-Mellin correlation

method. Chi et al. (2003) fitted Bezier curves to different leaf boundaries to drive

the geometric description of the leaf shape. Contour segmentation methods includ-

ing the length histogram of contour segment and centroid-contour distance were

used by Yahiaoui et al. (2006) and Wang et al. (2000) respectively to extract the

shape feature of plant leaf for an image retrieval system. Other segmentation meth-

ods used Elliptic Fourier analysis which provides complete and accurate descriptions

of leaf complex boundary (McLellan and Endler, 1998; Neto, Meyer, Jones and

Samal, 2006; Lexer et al., 2009). The geometrical analysis including various sim-

ple leaf geometric features such as length, width, area, diameter, aspect ratio and

convex area ratio were also used for leaf segmentation (Wu et al., 2007; Pauwels

et al., 2009; Kadir et al., 2011a; Söderkvist, 2001; Kaur and Kaur, 2012; Lee and
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Hong, 2013).

2.1.2.3 Texture feature

Leaf identification using both colour and shape features is still a challenging task

due to the fact that leaves of the same plant may vary in terms of shape and

colour, depending on plant condition, season and image acquisition (Yanikoglu

et al., 2014). As such, adding a texture attribute may provide botanical infor-

mation about leaf such as leaf pubescence, leaf venation, and also leaf disease or

insect damage (Meyer, 2011). Texture feature is normally used to identify vari-

ous species of grass or broadleaf which need to consider leaf venation, colours and

additional canopy structure (Meyer et al., 1998-a). Textural analysis based on

Gabor wavelets analysis has been widely suggested for segmenting weeds embed-

ded in canopies and for classifying plant species (Strickland and Hahn, 1997; Tang

et al., 2003; Lin et al., 2008). The combination between colour, shape and texture

approach was tested by Zhang and Chaisattapagon (1995) for detecting weeds in

wheat fields. The results show that the leaf surface coarseness indices determined

by Fourier spectra may be effective in discriminating wheat from broadleaf weed

species.

The plant leaf texture can be identified also by extracting leaf venation indices.

Park et al. (2008) used Curvature Scale Space (CSS) corner detection algorithm

for extracting leaf venation characteristics for the purpose of plant classification.

Leaf venation features can also be extracted from grey images using morphological

operations. Kadir et al. (2011b) used an opening morphological operation to identify

vein feature beside colour index and Polar Fourier Transform analysis for foliage

plant retrieval. The major problems for leaf texture analysis are leaf orientation or
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rotation, image resolution, image illumination (e.g. shadow or background lighting),

and the bidirectional reflectance of leaf surfaces (Meyer, 2011) which can result

in incorrect classification of plant species. Texture and shape analysis are more

effective for horizontal orientation of leaf images taken with balance defusing light

conditions.

The 2D image features such as colour, shape, and texture in combination perform

a variety of image segmentations. The combination of 2D image features are the

most relevant attributes for simple plant identification applications. Adding another

image feature or depth has become a promising attribute for identifying complex

plant structures.

2.2 Image analysis using depth sensing

Depth is another feature which can be used to enhance the recognition and local-

isation of plant and fruit parts. The selection of a depth sensor depends on the

application task (e.g. fruit picking or plant sensing) and application environment

(e.g in the field, a greenhouse or indoor laboratory applications). Studies in the liter-

ature report that a binocular stereo vision system is considered an effective method

of depth sensing for outdoor agricultural applications, since it is robust enough to

deal with the various ambient illumination conditions (Kazmi et al., 2014). The

system involves using two cameras from different views in parallel or alternatively

positioned at specified angles, thus the distance between the object and the camera

can be calculated.

Other depth sensors such as Microsoft Kinect (Corporation, Redmond, WA USA)

and time-of-flight (TOF) cameras can produce accurate depth information pertain-

ing to plant parts. Microsoft Kinect and TOF cameras are active (emitter) sensors
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which rely on infrared radiation (IR). These sensors could work in outdoor condi-

tions with some constraints. For example, the Microsoft Kinect sensors can work

at night or under a hood shaded from direct sunlight (Nakarmi and Tang, 2012).

They are unreliable to produce high quality results under sunlight due to the inter-

ference of the infrared spectrum of the sun (Popovic et al., 2017). Some types of

TOF cameras can work outdoors in sunlight but they have lower resolution. The

estimation of depth is dependent on the traveling time of light that is reflected by

the detected leaves however, some light is partially absorbed or transmitted by the

leaf surface. Ideally, higher reflectance results in better estimation of depth, yet the

sensor could be saturated due to strong reflections which can affect sensor efficiency

(Kazmi et al., 2014)

The working limitation of these sensors results in a real challenge when using depth

sensing for plant feature extractions under a variety of sunlight conditions. This

section reports on the literature which uses depth sensing in fruit and plant detection

under outdoor or controlled environmental conditions.

2.2.1 Depth sensing in the outdoor field condition

Depth sensing using a stereo vision technique has been applied in a variety of agri-

cultural applications and tasks. Automated guidance has become an important

ingredient of modern agriculture. A stereo vision system has been used to develop

navigation algorithms for an automated guidance tractor following crop rows in the

field (Rovira-Más et al., 2004; Kise et al., 2005; Hanawa et al., 2012). These studies

have used stereo disparity information to determine the position of the crop rows,

and to find the central path for the tractor with a target point. Using a stereo

vision sensor in an automated guidance system has limitations because the maxi-
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mum depth and precision measured by the stereo vision system is limited by the

baseline between the cameras. As depth increases, the quality of the distance values

decreases rapidly (Weiss and Biber, 2011). To overcome this problem, Rovira-Más

et al. (2008) combined the information captured by a stereo camera, a localisation

sensor (GPS) and an inertial measurement unit to create 3D terrain maps of agri-

cultural fields. Adding another localisation sensor and an inertial measurement unit

was important to enhance the performance of the stereo vision system to create a

3D terrain map.

The literature reports some studies deals with the structural measurement of plants

that have been done at outdoor conditions using stereo vision. For example, (Ivanov

et al., 1995) find the structural parameters of maize plants such as leaf position, leaf

area distribution and leaf orientation for reconstructing a 3D model of plant canopy.

The method used top down stereo images and performing destructive analysis of

the plant to view the inner leaves, however the properties of the 3D model were

not promising. Biskup et al. (2007) introduce a method for measuring leaf angle

for soyabeen plant under field conditions. The method can track leaf diurnal and

nocturnal movements and measuring leaf inclination angle by fitting a plane to the

reconstructed 3D leaf surface.

In recent decades, some studies have been performed with fruit harvesting robots

using stereo vision techniques, for example: Orange (Plebe and Grasso, 2001);

tomato (Yang et al., 2007; Xiang et al., 2014); apple (Si et al., 2015) and grape (Luo

et al., 2016). These studies integrated depth with other features such as colour,

edge and shape to identify and segment fruit from other parts of the tree. The

fruit location in 3D coordinates was measured by using stereo matching techniques.

The image segmentation was performed using a variety of colour transformations

such as: Hue-Saturation-Value (HSV) color space projection and classification to
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segment orange (Plebe and Grasso, 2001); colour difference (R − G) and colour

difference ratio (R − G)/(G − B) to recognise Fuji apple (Si et al., 2015); and

YCbCr, HSV, HSI, L*a*b components as an effective indicator of grape colour (Luo

et al., 2016). Image post-processing techniques were used to eliminate noise and

to prepare images for the feature extraction stage including: image thresholding;

morphological operation (image dilation, opening and closing operations); labelling

image regions according to the area to remove small noise; and filled image holes.

A tree normally includes objects such as leaves and branches which obscure fruits

in most situations. In addition, overlapping between fruit is a difficult problem

in the research field of machine vision. Therefore, more than one image analysis

method is required to segment the important feature of individual fruit for harvest-

ing applications. For spherical fruits, shape detection algorithms and geometrical

analysis have normally been used to extract the circular feature. For example, the

circular shape feature of an apple was extracted from the fruit contour image using

the random ring method (Si et al., 2015). Edge curvature analysis and geometrical

analysis of radius measurements were used by Plebe and Grasso (2001) and Xiang

et al. (2014) to extract the circular features from orange and tomato images. In

addition, Plebe and Grasso (2001) used a circular fitting method to recognise the

overlapping citruses. Similarly, the geometric information of the grape clusters and

other image features such as edge detection (Canny, 1986) and a Hough line detec-

tion (Matas et al., 2000) was applied by Luo et al. (2016) to determine the contour

boundary, the centre, and the cutting points of grape berries respectively.

Then, stereo matching process was applied to recognise the 3D positions of the

individual fruit (Si et al., 2015; Plebe and Grasso, 2001) and to extract the 3D

coordinates of the cutting point on the peduncle and the centre of grape berries (Luo

et al., 2016). The results of these proposed methods show that a stereo matching
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technique provides accurate results of 3D localisation of fruit. These techniques

use depth to determine the distance between the fruit centre and robot gripper for

harvesting applications. They rely more on colour, edge, and geometrical analysis

to detect an individual fruit. The depth feature can potentially solve occlusion

problems as it can differentiate between the objects according to depth values.

Xiang et al. (2014) benefited from the depth feature by using depth information

to enhance fruit cluster segmentation as well as measuring fruit location in 3D co-

ordinates. Each cluster of tomatoes was classified as adhered or overlapped type

based on the difference in depth between the individual fruit included. Then, edge

curvature analysis was used for colour image to segment the adhering region, while

edge curvature analysis was used for colour image and depth map to detect differ-

ent parts of overlapping regions. This method shows a good segmentation rate of

87.9%, to detect individual tomatoes from the cluster under different illumination

conditions.

2.2.2 Depth sensing in a controlled environment

Depth sensing has been widely introduced in many applications for plant part detec-

tion under controlled environments. A controlled environment can include indoor

laboratories, greenhouses and outdoor areas with diffused sunlight or even at night

(using artificial light). These sensing techniques can be implemented using Mi-

crosoft Kinect sensors, TOF cameras and binocular vision sensors. Most of these

applications are devoted to 3D plant modelling and phenotyping. A part of these

applications is ranged to deal with simple plant structure recognition, inter-plant

distance measurements and to sensing of complex plant canopies.
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As an example of using depth for simple plant recognition in a laboratory environ-

ment, two methods of applying pesticide were used with the automated guidance

of a pesticide spraying robot. Li et al. (2009) used stereo vision technique to detect

and to calculate the 3D pest position on the plant leaf. This method used colour

transformation to segment pest from the leaf. Then, depth information was utilised

to calculate pest position for automatic pesticide robot application.

In the work presented by Xia et al. (2009), depth sensing was used for leaf seg-

mentation as well as for calculating the centre position of each leaf. The dispar-

ity map was calculated using Birchfield stereo matching algorithm (Birchfield and

Tomasi, 1999). Then, different processes were applied, such as smoothing, depth

histogram and thresholding to filter and to segment the disparity map into sev-

eral areas depending on depth values. Afterwards, shape and size attributes were

used to confirm the segmentation for each leaf. The depth value of each leaf was

measured by calculating the mean value of depth for the leaf area. The geometry

centre of each segmented leaf area presented the 3D position of that leaf where the

automatic spray system could project and perform the task. Figure 2.2 1 presents

the plant segmentation steps.

In these two methods, depth information was used to segment simple structured

plants in a laboratory environment. Various techniques need to be investigated and

applied to deal with complex plant structure, where leaves are overlapping each

other. Depth sensing could enhance the segmentation process by adding depth

information. The literature reports two methods for multiple leaf detection us-

ing depth sensing (Wallenberg et al., 2011; Xia et al., 2015). These methods are

discussed in more detail in Section 2.3.2.

1 c©[2009] IEEE. Reprinted, with permission, from [(Xia et al., 2009), ”A stereo vision based

method for autonomous spray of pesticides to plant leaves”, Industrial Electronics, July 2009
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(a) (b) (c)

Figure 2.2: Depth image segmentation, (a) original image, (b) disparity map, and (c)

disparity map after noise filtering and segmentation (Xia et al., 2009)

Depth sensing is also used for other agricultural applications. The literature reports

two studies that use depth sensors to measure row spacing and inter plant distance

under a controlled field environment for the purpose of final yield management. In

the first study, Nakarmi and Tang (2012) utilised a TOF of light camera (3D sensor)

to measure inter-plant spacing sensing for corn plants in controlled conditions. This

system can detect the corn stem accurately when the imaging area is covered prop-

erly and the camera is protected from direct sunlight. Nakarmi and Tang (2013)

used the same sensor to develop a non-invasive machine vision system to detect

cotton plant stems. This method produced good results for stem profile detection

from images captured at night time in low weed infestation field conditions.

The 3D models of plants can provide detailed structural information about plant

growth. The literature reports various studies that have been developed using dif-

ferent depth sensors, for example Chapron et al. (1993) and Takizawa et al. (2005)

used stereo vision technique for constructing 3D models of plants canopies at indoor

conditions. The plant model was useful to extract some information such as leaf

area, leaf shape and plant height. Other indoor applications, such as wilt detection,

have been successfully implemented by (Mizuno et al., 2007) using stereo vision and

phenotyping analysis techniques using low cost depth cameras (Microsoft Kinect)
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(Chéné et al., 2012) or Laser Range Finder (LRF) (Kaminuma et al., 2004). The

corn plant space sensing in indoor and outdoor conditions has been demonstrated

by (Jin and Tang, 2009) using stereo vision from top view images. The method was

effectively capable for updating the plant skeleton structures, recognising individual

corn plants and detecting their centre positions. The 3D models of plants can pro-

vide promising results to interpret plant growth and the plants’ structural analysis,

however most of these methods are limited to the controlled environment (indoor,

greenhouse). Therefore, this research area needs more study and development in

order to make it more applicable for outdoor applications.

2.3 Image analysis techniques for leaf and stem

detection

The identification of plant parts such as leaves, stems and branches is important for

assessing plant growth. The literature reports a variety of studies dealing with plant

parts, segmentation using different techniques. Many of these studies are devoted

to single leaf segmentation, while some of these studies have analysed the skeleton

structure of the plant (i.e. stem, branch). Detection of multiple leaves from one

image is a critical issue in real field environments, however there are some studies

reported with this focus. The following articles describe plants with a single feature

(i.e. one leaf or stem), whilst others analyse multiple leaf detection techniques.
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2.3.1 Leaf detection

A proper investigation of leaf status is essential for in-field crop management. It

is a fundamental process to support crop cultivation, and to monitor plant growth,

stress and disease attack (Chaudhary et al., 2012; Arivazhagan et al., 2013; Ws-

panialy and Moussa, 2016). The literature reports numerous studies dealing with

single leaf segmentation for different applications. They were largely motivated

on identifying leaves for the purpose of species identification. Typically this type

of segmentation relies on having one leaf in the image. (Wu et al., 2007; Kadir

et al., 2013; Hu et al., 2012; Cerutti et al., 2013; Yanikoglu et al., 2014; Kaly-

oncu and Toygar, 2015; Rojas-Hern et al., 2016; Rojanamontien et al., 2016; Husin

et al., 2012). Their segmentation task was based on the assumption that there were

no overlapping leaves. These studies need to implement two tasks: leaf segmenta-

tion and leaf classification. The segmentation tasks were performed using the image

processing techniques previously presented in Section 2.1.2 including colour, shape,

edge, geometrical and morphological operations. The classification task dealt with

identifying shape and texture features. Those features were fed as training data for

the classifier part to implement matching and identification processes. The classifi-

cation process is one of the machine learning applications that can be implemented

using several of the machine learning techniques such as Neural Networks (NN),

Artificial Neural Networks (ANN), Support Vector Machine (SVM), and Genetic

algorithms. The classification process is another wide research area; and, as such,

it will not be included in this research study. The detection of multiple leaves is

the specific focus of this study, therefore this review will focus on multiple leaf

extraction techniques including small seedling and dense plant canopies.
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2.3.2 Detection of multiple leaves

The automatic detection of individual leaves is a crucial task for different practices

in precision agriculture such as plant inspection, micro-spraying and de-leafing (Xia

et al., 2013). Leaves on the same plant share the same features, such as colour,

shape and texture. With this in mind, multiple leaf segmentation is a challenging

task for many reasons including: colour similarities between leaf and background

foliage, similar characteristics between leaves on the same plant, plant structure

complexity, and leaf occlusion. Therefore, the multiple leaf detection technique

needs to address the colour similarity between neighbouring leaves and the different

perceived shapes of leaves, and to present different leaf sizes within one image. The

presence of different leaf sizes within one image becomes a problem when applying

pre-processing techniques, for example the use of morphological operations such

as erosion and dilation operators. The erosion and dilation operators require a

different structural element to be defined for each different shape and size object in

the image. In addition, applying these techniques could remove some of the small

leaf sizes from the image, by using an erosion process and other large leaves could

be connected to each other by using a dilation process. Therefore, further image

analysis techniques are required to implement this task.

The literature reports different techniques for identifying an individual leaf, using

a variety of vision sensors. These techniques are based on two main steps: back-

ground removal and individual leaf identification. The image analysis techniques

used to implement each task depend on some factors such as: image acquisition

method (e.g. from top or side view), which can offer a variety of leaf orientation

(horizontal or vertical), and also depend on the assumption that leaves are occluded

or not. Top view images can offer a horizontal orientation for plant leaves which

are completely visible or partially occluded. Different leaf orientations can be seen
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from side view images. Although some studies have been reported that deal with

multiple leaf detection techniques, most of them are concerned with small seedling

or non-complex plant canopies. In general these studies can form two categories:

2D segmentation approach, and 3D segmentation approach.

2.3.2.1 2D segmentation approach

This type of image segmentation relies on the 2D image features such as colour,

shape and edge. The first step of segmentation is background removal. Typically

this step of segmentation relies on removing a distinct soil background for top

view images using traditional pre-processing and segmentation techniques including:

colour indices and transformation, image enhancement, thresholding, edge detection

and thinning operations. In some studies, the infrared wave band was used to

remove the background area since it can provide the best contrast between plant

vegetative parts and soil background (Franz et al., 1991a; Franz et al., 1995).

After removing the background part, each individual leaf needs to be identified us-

ing internal leaf features. One of the most obvious features is leaf shape. As the

images are taken from the top, which provides a complete view for leaf boundaries,

the curvature characteristic of leaves can provide an adequate description about

each leaf. The literature reports varied techniques for extracting curvature func-

tion and recognising leaf boundaries. For example, Franz et al. (1991a) proposed a

shape based method for detecting different types of small seedling leaves which are

completely visible or partially occluded. The method used Fourier-Mellin correla-

tion procedure (Mitchell and Grogan, 1984) for identifying curvature function. The

performance of the Fourier-Mellin correlation algorithm was successful with com-

pletely visible leaves but inadequate for describing leaf shape that has relatively
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small curvatures or have featureless leaf margin.

Another shape based algorithm was presented by Franz et al. (1995) for identifying

completely visible and partially occluded leaf boundaries. The method was based

on Sobel edge detection technique (Sobel and Feldman, 1968) for computing the

intensity gradient of each pixel. Then, the segmented edge was linked together based

on gradient criteria to form a closed and complete leaf boundary for segmenting

plant vegetation parts from soil background. The areas of overlapping leaves could

be partitioned to multiple regions so each leaf could be identified. User intervention

was required at various steps in the process.

Some leaf shapes are quite similar to an ellipse shape, therefore ellipse criteria can be

a suitable description of the leaves’ curvature function. This criteria inspired Chien

and Lin (2002) to propose a method for measuring leaf area, position and orientation

of four types of small seedling plant from top view image using elliptical Hough

transform technique (Duda and Hart, 1972). The method showed good results

for identifying complete and partially occluded leaves for horizontal orientation;

however, the method was not adequate for identifying oblique leaves. This method

was developed later by adding two side view images and applying the convex hull

image processing algorithm (Chien and Lin, 2005). The side view images offered

the information missing from top view images. The leaf skeleton information was

used to correct leaf area measured by top view image for better estimation.

A variety of machine learning approaches were used for identifying multiple leaves

in the plant image. For example, genetic algorithm (Neto, Meyer and Jones, 2006)

and NN technique (Pan and He, 2008) demonstrated high performance for extract-

ing individual leaves from canopy images and detecting vegetation pixels from the

ground respectively. The use of watershed-based leaf segmentation algorithm is re-
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ported in (Lee and Slaughter, 2004; Wang, Huang, Du, Xu and Heutte, 2008; Tang

et al., 2009; Nesaratnam and BalaMurugan, 2015), which efficiently extracts plant

leaves from a complicated background. However, their segmentation was not based

on identifying leaves from occlusion or solving the problem of overlapping leaves.

In order to deal with detecting partially occluded plant leaves, models including

a priori knowledge on leaf shapes are required to segment the individual leaves.

Franz et al. (1991a) used an ideal leaf model, which is oriented randomly, as a pri-

ori knowledge to identify a complete or partially occluded leaf using cross correlation

matching method. The method was able to identify leaves with horizontal and non-

horizontal orientations. Parametric deformable models including a priori knowledge

on leaf shapes was presented to segment the individual weed leaves from the compli-

cated background (Manh et al., 2001). Afterwards, the Active Shape Model (ASM)

was used to segment occluded leaves in field conditions (Manh et al., 2001).

A deformable model containing a priori knowledge about leaf shapes was also devel-

oped by Xia et al. (2013) to detect damaged and occluded pepper leaves in green-

houses. The quadratic Bezier curve fitting was applied to segment image edges

into partial leaf boundaries. Then, the Multilayer Perceptron Classifier (MLP) was

used to classify partial boundaries as leaf boundaries or veins. Afterwards, multiple

leaf shape models were built using a priori knowledge. A modified ASM was used

to implement the matching and identification process. This method was able to

identify single, occluded and overlapping leaves and benefit from the advantages of

using machine learning techniques such as MLP and ASM. The images were taken

from the top side of the plant which offers semi-complete horizontal orientation for

leaves facing the camera with a simplified background.

Although good segmentation rates were presented from the methods based on build
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leaf models containing a priori knowledge, there were some limitations for applying

these methods to other plants which exhibit different leaf shapes rather than com-

putation time cost. Furthermore, Xia et al. (2013) reported that the method was

designed to work with complete leaf shape, or at least one edge boundary needed

to be in the top view of the leaf image (Figure 2.3a and 2.3b)2. As such, some side

views and very small leaves (with non-clear curvature boundary) were not detected

using this method (Figure 2.3b ).

A

(a)

BB
B

(b)

C

(c)

Figure 2.3: Multiple leaf detection of (a) and (b) using MLP-ASM method (Xia et al.,

2013). (a) Top view image of pepper leaves, (b) side view image of paprika leaves. (c)

Segmentation of individual leaves using depth sensor (Xia et al., 2015)

It is obvious from the above review that extracting shape features was the common

motivation to identify plant leaves. This is because shape can provide a distinct

feature for plant leaves and can identify complete and partially occluded leaves.

Good results can be obtained for images captured from a suitable view which could

offer a complete leaf shape of simple plant canopy. Shape feature might not be

beneficial for irregular leaf shape, very complicated leaf shape (cannot be identified

by curvature functions) or for dense plant canopies.

2Figure 2.3a and 2.3b are reprinted from Biosystems Engineering, Vol 116, (Xia et al., 2013),

Plant leaf detection using modified active shape models, Page No. 32, c©[2013], with permission

from Elsevier.
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2.3.2.2 3D segmentation approach

The limitation of the shape based method could be addressed by using another

feature, or depth for more flexible leaf segmentation method. Xia et al. (2015)

proposed another method for segmenting the occluded leaves in a greenhouse envi-

ronment. Firstly, the plant was extracted from the background using the mean shift

clustering algorithm for depth image (Comaneci and Shift, 2002). The gradient vec-

tor field was calculated on the depth image. Based on gradient vector field value,

the center of divergence was calculated which was used for automatic initialisation

of the Active Contour Model (ACM). The occluded boundaries of the overlapping

leaves in the depth image were identified using ACM (Xu and Prince, 1998).

The method shows a high segmentation rate for single and occluded leaves (Fig-

ure 2.3c 3). The figure also shows that the images were taken from the side view

of plant with front dominant leaves’ direction. This view offers a quite complete

leaf shape with vertical leaf orientation which is necessary for the segmentation

process. By contrast, side view leaves (have image plane larger than 60◦ angle)

which have a small visible area were not detected properly. They might have over

segmentation using ACM method. In addition, due to the hardware limitation

of Microsoft Kinect sensor, the small size leaves were also ignored. Furthermore,

the method cannot segment the occluded leaves showing tiny differences in depth.

This is because the method depends on calculating the gradient vector field which

depends on the significant difference in depth between boundaries of leaves. The

3This article is an open access article by Xia, C.; Wang, L.; Chung, B.-K.; Lee, J.-M. ”In Situ 3D

Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation”.

Sensors 2015, 15, (http://www.mdpi.com/1424-8220/15/8/20463/htm), used under the terms

and conditions of the Creative Commons Attribution license (http://creativecommons.org/

licenses/by/4.0/)

http://www.mdpi.com/1424-8220/15/8/20463/htm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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boundary of occluded leaves with smooth difference in depth cannot be detected by

this technique. In addition, these methods were applied under controlled environ-

mental (greenhouse) conditions. More challenges are expected for detecting leaves

in outdoor (uncontrolled) environments and for mature plant canopies.

For dense plant canopies, an active contour model would not be beneficial where

plant images present different leaf orientations with irregular shapes. Another

method was presented by Wallenberg et al. (2011) to segment leaves from a dense

plant canopy. The superparamagnetic clustering algorithm (Blatt et al., 1996) was

used to segment plant leaves from the colour and depth images, captured by a Mi-

crosoft Kinect sensor. The method was based on the fusion of colour and depth gra-

dient values using a channel representation technique (Zemel et al., 1998; Granlund,

1999). The proposed method used three types of segmentation based on one feature

each time: colour, depth, and colour fused within depth gradient values. The results

show that the simultaneous use of both colour and depth fusion is more effective

and useful than using only one or the other. The method shows good segmentation

performance but low detection rate within serious occlusion areas. However, results

were limited to a greenhouse environment and indoor using Microsoft Kinect sensor

with a limited working depth range (Mozos et al., 2012). Moreover, this method re-

quired a supervisor to adjust the depth channel against the colour channel weighting

parameters.

2.3.3 Stem and branch detection

Plant stem detection is a potential method for plant growth sensing and plant row

spacing measurement. Measuring row spacing and inter plant distance is useful for

final yield management, while stem and branch segmentations are used for plant
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modelling and plant parts reconstruction. For row spacing and inter-plant distance,

two methods were reported from the literature using different techniques:

The first technique was presented by Nakarmi and Tang (2012) to measure inter-

plant spacing of corn using a TOF sensor. A skeleton centroid and orientation is

determined using a parallel thinning algorithm based on 8-connectivity (Rosenfeld,

1975). This system can detect corn stems accurately when plants are inclined ±15◦

from the vertical axis under a controlled field environment. In that case, the imaging

area needs to be covered properly to protect the camera from direct sunlight.

The second technique for row spacing and inter plant distance was also proposed by

Nakarmi and Tang (2012). This technique was developed to overcome the limitation

of the first technique (Nakarmi and Tang, 2012), where stems cannot be identified

precisely for double or triple plants. This is because plant branches normally have

a curvilinear structure with more than ±15◦ inclination angle from the vertical

axis. For that reason, Nakarmi and Tang (2012) enhanced their work using the

vesselness measure technique (Frangi et al., 1998). The vesselness measure is based

on detecting a typical line profile of reflected light on the colour image (Steger, 1996).

This technique was first developed by Frangi et al. (1998) to extract vessels from

medical images. A vesselness measure of the Hessian matrix (Frangi et al., 1998)

and Hough transform (Duda and Hart, 1972) techniques were used to detect the

plant stem profile for different applications. Nakarmi and Tang (2013) used these

techniques to measure row spacing and inter plant distance for cotton. The method

shows high results for stem profile detection from images captured at night in low

weed infestation field conditions.

Stem detection is also useful for measuring nodes and internode length as an indica-

tion for vigor, growth and plant stress. The internode length is largely affected by
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environment stresses such as water and temperature (Oosterhuis and Kerby, 2008).

The distance between main stem nodes indicates several types of plant stresses

which are mainly used for water stress that potentially indicates stunted growth.

The internode length in cotton can also indicate the amount of vegetative growth

(McCarthy, 2009). A short cotton internode length (shorter than 50 mm) could in-

dicate moisture stress while an internode greater than 70 mm can indicate excessive

vegetative growth (McKenzie, 1998).

Previous work in cotton was implemented by McCarthy (2009) for cotton plant

stem detection for the purpose of water stress sensing. The method used vesselness

measures and Hough transform techniques for monocular plant image analysis. The

distance between nodes on the cotton main stem was used as a significant indicator

of plant water stress and irrigation crop management. The vesselness measure has

important advantages comparing with the technique proposed by Nakarmi and Tang

(2012). For example, there is no limitation for stem inclination angle from vertical

axes as previously mentioned. Therefore, this method is more suitable to extract

plant skeleton features that have stems and branches. This work was done under

field conditions, however some level of lighting control was achieved by the camera

apparatus used.

In addition to indicating water stress, there is an additional benefit from stem

internode measurement. Internode length was used as an indication for tomato plant

vigor and growth, and presents the salient effects of environmental stresses on the

plant (Yamamoto et al., 2016). Recently, a new method for internode detection was

presented by Yamamoto et al. (2016). In this method, a tree-based segmentation

model (Guo et al., 2013) was used to segment tomato seedlings based on pixel colour

classification and a regression tree classifier (Breiman et al., 1984). The classifier

pre-training includes manual labeling of the training images into three classes: stem;
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leaves; and background. Afterwards, thinning (Zhang and Suen, 1984), and branch

cross-point detection (Sarfraz, 2005) techniques were applied to the generated image

of the stem. Also, the pixels of candidate nodes were extracted. The method was

developed under a glasshouse environment with a clear background behind three

types of seedling plants.

In a new study presented by Ji et al. (2016) for branch detection, apple tree branches

were identified as obstacles in the navigation of a picking mobile robot. This method

showed another approach of threshold segmentation which was based on Contrast

Limited Adaptive Histogram Equalization (CLAHE). This method was applied to

distinguish between the small grey intensity difference levels. Subsequently, the

iterative threshold segmentation was used to extract branches from the image. The

result shows high rate of apple branch segmentation (94%) compared to other ap-

proaches (Otsu and histogram). Nevertheless, the method has a slower segmenta-

tion rate when compared to the histogram method. This technique is effective for

branch segmentation because it depends on the image subtraction of apples from

the total plant image; whereas apples have different grey levels to branches and

leaves.

2.4 Conclusion

Several autonomous segmentation algorithms for plant parts have been developed in

recent years and have been introduced in different applications. The main goals of

these studies has been to increase productivity and to reduce crop input resources.

The selection of the desired sensor and segmentation approach depends on the spe-

cific agricultural applications and plant features that need to be extracted for that

application. From the reviewed literature, the selection of the suitable sensor and
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the segmentation approach for different application can be summarised as follows:

1. Vision sensors have been considered the most promising and common sensors

used for plant and fruit feature extraction. The published studies use different

types of vision sensors to acquire plant and fruit images which need different

types of image segmentation. The colour based segmentation method using

RGB colour transformation and colour subtraction techniques is very popular

for image analysis algorithms and it is more beneficial for non-green fruit

detection (Wang, Zhu and Ji, 2008; Zhou et al., 2012).

2. HSV, HSI, L*a*b,YCbCr colour transformations were also used as a common

and effective colour segmentation approach which can adaptively discriminate

fruits with different colour (Lin et al., 2005). Among several approaches devel-

oped for separating interested green area from plant images, ExG and EXGR

indices were found to be more effective in segmenting foliage from background

soil for top view images (Woebbecke et al., 1995; Meyer et al., 2004). Colour

features have low reliability under different lighting conditions such as changes

in atmosphere, season and sunlight. Therefore, supporting colour by other

image segmentation features such as shape and texture is important for an

accurate plants identification process.

3. Plant and tree images are typically complicated. Therefore, more than one

image feature is required to implement segmentation tasks such as: colour,

shape, edge or texture. Shape is the most relevant attribute of leaves, as colour

is not sufficient to be used alone in plant identification applications. The lit-

erature reports some effective techniques used for segmenting leaf boundaries

such as Bezier curves (Chi et al., 2003), Elliptic Fourier analysis (Neto, Meyer,

Jones and Samal, 2006) and leaf geometrical analysis including length, width,
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area, diameter, aspect ratio and convex area ratio (Wu et al., 2007; Kadir

et al., 2011a).

4. Combining texture attributes with colour and shape is also required for some

instances when the shape varies due to the plant condition and image acquisi-

tion. Texture analysis considering leaf pubescence and leaf venation is useful

to inform plant condition and notify leaf disease and insect damage. Texture

analysis based on known techniques such as Gabor wavelets and Polar Fourier

Transform were used as effective approaches for plant species classification.

The species classification based on texture analysis can be affected by leaf

orientation or rotation, image resolution, illumination and the bidirectional

reflectance of leaf surfaces (Meyer, 2011).

5. Although the 2D image attributes have an important role in the plants’ image

segmentation and species classification, nevertheless, most of these application

deal with small plant seedlings or one leaf segmentation. The 2D image fea-

tures might not be sufficient for recognising features of dense plant canopies.

In that sense, another image feature or depth needs to be introduced.

6. Depth sensing using a stereo vision technique has been applied in a variety of

indoor and outdoor agricultural applications. A stereo vision system has been

used to develop navigation algorithms to determine the position of the crop

rows, and to find the central path for the an automated guidance tractor.

However, the maximum depth and precision measured by the stereo vision

system is limited by the baseline between the cameras. As depth increases,

the quality of the distance values decreases rapidly (Weiss and Biber, 2011).

Therefore, resorting to alternative sensors (such as GPS and an inertial mea-

surement unit ), is more reliable especially in localisation, navigation and 3D

map row detection (Rovira-Más et al., 2008).
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7. Stereo vision is more applicable for narrow distance applications such as fruit

harvesting robots. These studies successfully identified different types of fruit

and measured 3D location in trees such as orange (Plebe and Grasso, 2001),

tomato (Yang et al., 2007), apple (Si et al., 2015) and grape (Luo et al., 2016).

Shape attributes, edge detection and geometrical analysis were used in these

studies for identifying individual fruit, finding fruit locations and solving the

fruit occlusion problem. Depth difference information was used to enhance

the detection of occluded fruits (Xiang et al., 2014). Therefore, further studies

are required that focus on the recognition of overlapping and occluded clusters

of fruits using depth.

8. Depth sensing, using different depth sensors, is also used for other plant

applications in a controlled environment such as plant part detection (Li

et al., 2009; Xia et al., 2009), row spacing and inter plant distance (Nakarmi

and Tang, 2012; Nakarmi and Tang, 2013), 3D modelling and plant phenotyp-

ing (Takizawa et al., 2005; Chéné et al., 2012; Kaminuma et al., 2004). The

research using depth sensing for extracting plant structures is mostly limited

to controlled environmental conditions. However, there are some studies pay-

ing considerable attention to the use of stereo vision for plant parameter iden-

tification and 3D modelling at outdoor conditions (Ivanov et al., 1995; Biskup

et al., 2007). These studies show an acceptable result which opens the field

for further studies focusing on using depth for outdoor plant applications.

Therefore, more studies need to be devoted to this research area.

9. For detection of other plant parts, such as stem and leaf, the literature reports

some methods for stem profile detection. These methods are implemented

using different sensors under controlled environments. The techniques report

different accuracy rates with some limitations such as stem detection with
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specified inclination angles (Nakarmi and Tang, 2012). The vesselness measure

technique was used to extract stem profiles without this limitation, as it was

used for curvilinear structure detection (McCarthy, 2009; Nakarmi and Tang,

2012). This method looks promising for stem and branches detection for the

purpose of plant 3D modelling and plant parts reconstruction.

10. The literature reports some studies paid considerable attention to multiple

leaf segmentation under controlled outdoor and indoor conditions. The focus

of these studies is to detect multiple leaves for small seedling plants using

2D segmentation approaches such as Fourier-Mellin correlation (Franz et al.,

1991a), Sobel edge detection (Franz et al., 1995) and a modified active shape

model (ASM) (Xia et al., 2013). These approaches rely on detecting the

curvature characteristic of leaves from top view images which offer a horizontal

leaf orientation with complete leaf shape.

11. For mature plant canopies from side view images, the 2D segmentation ap-

proaches relying on shape attributes become non beneficial where shape fea-

ture is inconsistent for all leaves. In that case, depth feature is becoming a

promising attribute. There are some studies focusing on the detection of mul-

tiple leaves using different approaches such as colour and depth fusion method

(Wallenberg et al., 2011), and active contour model for front dominant leaves’

images (Xia et al., 2015). These studies show good segmentation results how-

ever they were implemented under controlled illumination conditions. The

segmentation of multiple leaves for the plant canopy, under a variety of out-

door illumination conditions using depth, is not reported in the literature.

The related studies in the literature have been reviewed and summarised to assign

and highlight the research problem in the following section.
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2.5 Research problem

In agriculture automation, the analysis of 2D image features has addressed a variety

of machine vision applications in outdoor conditions, ranging from large scale anal-

ysis (weeds) or to dealing with simpler plant structures (small seedlings) (Åstrand

and Baerveldt, 2004). The 3D imaging has been commonly applied to indoor appli-

cations, for example, plant phenotyping (Chéné et al., 2012; Golbach et al., 2016)

and image based plant modelling (Quan et al., 2006). The 3D imaging using stereo

vision techniques is also used for outdoor applications such as: fruit picking with

harvesting robot applications, crop row detection systems and in field navigation

(Kise et al., 2005; Kise and Zhang, 2008; Hanawa et al., 2012). Therefore, additional

research and studies need to be undertaken to investigate plant parts detection in

outdoor conditions.

The limitation of using 3D imaging sensors in outdoor applications, is due to a large

variation in outdoor lighting conditions and most of the 3D imaging technology

sensors being designed for indoor applications which limits the use of these sensors

for outdoor applications. Therefore using these sensors at outdoor applications

may limit the scope or make the system very complex for practical implementation

(Kazmi et al., 2014).

Although 2D imaging has addressed some of the assortment of problems in precision

agriculture ranging from disease detection (Chaudhary et al., 2012; Arivazhagan

et al., 2013; Wspanialy and Moussa, 2016), weed control (Slaughter et al., 2008),

and crop estimation (Gongal et al., 2016), most of these tasks tend to deal with

a simple plant structure (small seedling) at an early growth stage or large scale

analysis (weed). However, 2D images are not robust enough to address the problem

of complex structure plant canopies or the occlusion problem of overlapping leaves.
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To overcome this problem, 3D imaging technology has been introduced for analysing

3D properties of plants.

The literature reports many articles dealing with image analysis of leaves for the

purpose of species identification using shape, texture and colour properties (Sec-

tions 2.1.2 and 2.3.1). The segmentation and counting of individual leaves remains

challenging when leaves are overlapping (Scharr et al., 2016). Studies in the lit-

erature have developed some autonomous methods for multiple leaf detection and

leaf occlusion separation using the colour and depth fusion method (Wallenberg

et al., 2011), colour and active shape model (Xia et al., 2013), and colour, depth

and shape properties (Xia et al., 2015); however, all these trials were under green-

house or indoor conditions which invite the need for development of a plant leaf

detection algorithm for outdoor conditions.

Outdoor lighting conditions are a big challenge for precision agriculture applica-

tions. Segmentation using colour features is widely used in outdoor agricultural

applications. Colour features have limiting disadvantages under outdoor varying

ambient lighting conditions. This limitation makes adding other features such as

texture, shape or depth necessary for plant image segmentation. Since plants are

3D objects, introducing depth has the potential to isolate a plant from the image

background and also for the segmentation within the foreground objects.

The identification of plant growth parameters is important for monitoring plant

growth and assessing crop management practices. A multiple leaf segmentation

and counting process using a stereo vision sensor for measuring plant canopies

under a variety of outdoor lighting conditions, as a growth estimation indicator, is

not heavily researched in the literature which indicates a new gap in the current

research area. This study intends to use the combination of 3D image information



2.5 Research problem 51

(colour, depth) for identifying plant parts (leaf, stem) and to solve leaf occlusion

problems. Depth information will also be used for plant parts localisation and for

reconstructing plant segmented parts in a 2.5D model.



Chapter 3

Evaluation of the stereo vision

system

3.1 Introduction

The information gathered by the 2D image sensors are useful for identifying small

plants’ parameters for those that have limited depth (e.g. weeds), and with a known

position (e.g. on the ground) (Chien and Lin, 2002; Meyer and Neto, 2008). Stereo

vision techniques enhance 2D image features to obtain more accurate localisation of

fruit and plant structures. Recently stereo vision techniques have been successfully

used through the application of harvesting robots for this purpose. Depth infor-

mation was used to enhance the detection of adhered or overlapped fruits (Xiang

et al., 2014), therefore, it is expected that depth information can also be used to

enhance the detection of plants’ overlapping leaves.

This chapter presents the fundamental idea and the essential processes of stereo

vision techniques including camera calibration and rectification, triangulation and
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stereo corresponding process. The chapter also explains the characteristics of the

depth sensor used in this study including disparity maps and their parameters

to produce the required depth information for the plant parts. A wide range of

disparity map parameters was tested and evaluated for optimal combination. The

evaluation presents the influence of these parameters on producing an accurate

disparity map that can match the desired criteria.

3.2 Stereo vision technique

The basic idea of stereo vision is to monitor the same points in a scene by two cam-

eras separated only in the x direction by known distance or baseline, to produce 3D

structural information of these points (e.g. range and depth information) (Trucco

and Verri, 1998). This process can be implemented by finding the correspondence

between the points that are seen in the left image and the same points as seen

in right image. The two images have a lot of similarities and a small number of

differences (Hamzah et al., 2010). When the baseline between the two cameras

is known with the correspondences of these points, the 3D location of the points

can be calculated. The stereo vision systems have frequently been used to provide

3D information from 2D views, without requiring a large number of views (Xia

et al., 2009). In general the stereo imaging process that uses two cameras has four

steps: Starting by removing image distortion and camera calibration, image rectifi-

cation, feature correspondences (stereo matching) and reprojection or triangulation

processes. (Bradski and Kaehler, 2008).
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3.2.1 Triangulation

Figure 3.1a shows the geometry of a binocular stereo model which consists of two

identical cameras separated by a baseline distance b. This model of stereo geometry

presents coplanar image planes whereby every feature point in one image will lie

on the same row in the second image. The plane passing through the feature point

in the scene P , and the camera centers, is called the epipolar plane (Figure 3.1b).

The epipolar line can be defined as the intersection of the epipolar plane with the

image plane. Point P in the 3D world is viewed as Pl and Pr at different positions

in the image plane by the two cameras (Figure 3.1a). The displacement between

the locations of Pl and Pr in the image plane is called the disparity. The disparity is

measured along the x direction only however, it might be a vertical disparity due to

misregistration of the epipolar lines in practice. The vertical disparity is assumed

to be zero for many formulations of binocular stereo algorithms (Jain et al., 1995).

Figure 3.1b presents an undistorted, aligned and measured stereo camera system

which has an exact coplanar image plane and parallel optical axes. The focal

length f of the two lenses represents the distance between the image planes and the

centres of each lens (Cl, Cr). The disparity images can be defined as the horizontal

position deviations of an object in the image captured by the left and right lenses

of the stereo vision camera (Rovira-Más et al., 2004). The disparity between the

projection points (Pl, Pr) on the image planes is defined by d = xl−xr, where xl and

xr are the left and right deviation in the image planes. By comparing the similar

triangles PMCl, PlLCl, PNCr and PrRCr of Figure 3.1b the following relation can

be obtained:

X

Z
=
xl
f

(3.1)
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X − b
Z

=
xr
f

(3.2)
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Figure 3.1: (a) The geometry of a binocular stereo model, and (b) an undistorted, aligned

and measured stereo camera system.
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Then, the depth value can be obtained by combining these equations and solving

for Z:

Z =
b · f
xl − xr

=
b · f
d

(3.3)

3.2.2 Camera calibration

The 2D camera calibration is a process used to calculate the geometry model of

the camera and the distortion model of the lens. It is an essential process to

improve detection accuracy and to minimize lens distortion. This process calculates

the camera parameters including intrinsic and extrinsic parameters. The intrinsic

parameters are the internal parameters of the camera which include: optical centre,

skew coefficient and focal length, while extrinsic parameters present the position

and orientation of the camera relative to the world coordinates. For the pinhole

camera model (Figure 3.2), the geometric relationship between a 3D point in the

world p0 and its 2D corresponding projection pi onto the image plane, can be defined

by the following equation (Hartley and Zisserman, 2003):

pi = A

[
R t

]
p0, with A =


fx sc x0

0 fy y0

0 0 1

 (3.4)

where R and t present the (3×3) rotation matrix and the (3×1) translation vec-

tor respectively for the extrinsic parameters. These parameters map the 3D world

coordinates system into the camera coordinates system and then, the image is

transfered from camera coordinates into the image plane using camera intrinsic pa-

rameters A. Where fx and fy present the focal length parameters, x0 and y0 present

the optical center in the image plane and sc presents skew coefficient (Hartley and
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Zisserman, 2003). Typically, the chessboard pattern is recommended for the camera

calibration process, as it has a calibrated image pattern and it is easy to detect its

corners.

Figure 3.2: Word point mapped into the image plane using Intrinsic and Extrinsic matrix

parameters in pinhole camera model.

The stereo calibration process computes the geometrical relationship model between

the two cameras in the space. This is dependent on calculating the rotation matrix

Rs and translation vector Ts between the two camera. In the calibration of a 2D

camera, the process of calibration produces a list of rotation matrices and transla-

tion vectors between the camera and the chessboard pattern. In the stereo camera

calibration, the process should result in a single rotation matrix and translation

vector that relates the right camera to the left camera. The calibration of a pinhole

camera model can be applied on the stereo calibration to put any 3D world point P

in the left Pl = RlP +Tl and right Pr = RrP +Tr camera coordinates respectively

(Bradski and Kaehler, 2008), where Rl, Rr, Tl, and Tr are the rotation matrix and

the translation vector for the left and right cameras respectively. The two views of

the point P from the two cameras are related by Pl = RT
s (Pr − Ts) (Bradski and

Kaehler, 2008). By solving these three relations above for rotation and translation
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separately, this will produce the following relations (Bradski and Kaehler, 2008):

Rs = Rr(Rl)
T (3.5)

Ts = Tr − RTl (3.6)

The process of stereo calibration puts the right camera in the same plane with

the left camera by applying the rotation matrix. It means the two image planes

are coplanar but not row-aligned which is required for the stereo matching process.

This task can be implemented by the stereo rectification process in the next section.

3.2.3 Stereo rectification

In a real stereo vision system, it is rare to find two cameras aligned perfectly with

row aligned imaging planes. Stereo rectification is the process of reprojecting the

image planes of the two cameras, to be exactly coplanar and row-aligned. The result

of an image rectification process are two parallel epipolar lines which horizontally

align along the new image planes (Kamencay et al., 2012). The stereo matching re-

liability and computational efficiency is then enhanced by having a one-dimensional

search along horizontal lines rather than having a two-dimensional search. The re-

sults of aligning the two image planes for each camera are a distortion vector, a

rotation matrix, rectified and unrectified camera matrices. From these terms, a

new rectified image can be created using an interpolation process from the original

image (Bradski and Kaehler, 2008). The stereo rectification step is important for a

more reliable stereo matching process presented in the next section.
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3.2.4 Stereo correspondence

The correspondence process (matching or detecting conjugate pairs) finds the cor-

responding point in the right image for each point in the left image. This process is

required to determine two points (one in each image) by measuring the similarity of

the points. The conjugate pair is two points represented by the projections of the

same point in the scene, into two different images. It is necessary to assign match-

able features before applying a stereo matching process. Region and edge features

are usually used in stereo matching techniques (Jain et al., 1995). The epipolar

line constraint can significantly limit the search space to find the conjugate pairs

which means, for any pixel in the left image, there is a corresponding point in the

right image that lies on the same horizontal lines (the epipolar line) (Kuhl, 2005).

However, some errors in the matching point may occur due to the camera position

and orientation. In this case, it is necessary to search in a small neighbourhood of

the epipolar lines (Jain et al., 1995). These neighbourhood pixels can then form a

block surrounding the middle pixel to be matched to the best corresponding block

in the second image.

The literature reports several matching techniques based on various algorithms.

These algorithms are divided on two types of matching techniques: area or region

based matching, and feature based matching (Lazaros et al., 2008). The feature-

based matching algorithms are based on matching intensity edges or contours be-

tween two images excluding occluded and poorly textured areas (Veksler, 2002; Vek-

sler, 2003). These types of algorithms are faster because only a small portion from

the left and right images is used for matching, however they produce semi-dense

or sparse disparity maps. They are useful for some applications where fast depth

computation is required and the whole image details are not required.
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Other types of matching algorithms are area (region) based matching. These al-

gorithms produce dense disparity maps which have high demand from the most

contemporary applications. Each of these algorithms has to be implemented using

a matching cost function between two pixels from the left and right images (Lazaros

et al., 2008). The cost function finds out the distinct features between two images

which could be colour, intensity features or other structural features such as edge

and gradients across the image (Patil et al., 2013). The cost matching functions

could be pixel-based or window-based and the cost is usually aggregated over a win-

dow with a fixed or adaptive size (Lazaros et al., 2008; Patil et al., 2013). The most

common ones from cost functions are: Sum of Absolute Differences (SAD), Sum of

Squared Differences (SSD) and Normalized Cross Correlation (NCC) as presented

in the following equations (Lazaros et al., 2008):

SAD(x, y, d) =
∑

(x,y)∈W

|IL(x, y)− IR(x, y − d)| (3.7)

SSD(x, y, d) =
∑

(x,y)∈W

(IL(x, y)− IR(x, y − d))2 (3.8)

NCC(x, y, d) =

∑
(x,y)∈W IL(x, y) · IR(x, y − d)√∑

(x,y)∈W I2L(x, y) ·
∑

(x,y)∈W I2R(x, y − d)
(3.9)

where IL and IR are pixel intensity values of the right and left images, (x, y) are

the pixel’s coordinates, W is the aggregated window (mask) that surrounds the

centre pixel at position (x, y), and d is the disparity value in the x direction. The

window W is centred on a left pixel IL. This window from the left image is matched

with a window from the right image by shifting the left window over the searching

area of pixels in the right image. The cost functions aggregate the intensities of
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all surrounding pixels in the neighbourhood for the center pixel in the left image.

Then, the difference between the aggregated window of the left image pixels and the

aggregated window of the right image pixels is calculated. The minimum difference

over the row in the right image is selected to be the optimal matching pixel. Then,

the disparity map is determined as the actual difference of the horizontal pixels.

The disparity map can be an inverse function of depth, whereas, the pixel closer to

the camera has a larger disparity (Van den Heuvel et al., 2003). The window size

W can affect the quality of 3D disparity. A bigger window size can offer a great

probability of accurate pixel disparity computed from matched points, however a

bigger window will slow the process of calculation which requires more pixels to be

matched.

The calculation of intensity difference between the pixels of the left and right image

is the principal step for SAD and SSD cost functions. The difference between

them is: SAD calculates the absolute difference of intensity while SSD squares the

intensity difference instead of calculating the absolute value. The implementation

time of the SSD algorithm is nearly double that of the SAD algorithm due to higher

computational complexity (Kuhl, 2005; Patil et al., 2013). The square operations

are implemented as a multiplication process inside the computer which takes more

time compared with the calculation of absolute values. The disparity map result

from applying SSD, is quite similar to the disparity map results from implementing

SAD algorithm (Kuhl, 2005).

The NCC method is robust to the linear variation in brightness and produces good

results with smaller aggregated windows compared with SAD and SSD which usu-

ally give good results with larger windows which add computational time (Patil

et al., 2013). However, NCC method (Equation 3.9) still costs more computa-

tional time compared to SAD and SSD due to the complex calculation of divi-
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sion, multiplication and square root. Furthermore, the NCC cost function tends

to produce blur depth discontinuities more than other cost functions due to high

errors of the outliers (Hirschmuller and Scharstein, 2007). Hence, SAD function was

adopted in this study as one of the simple and fast standard cost functions (Lazaros

et al., 2008; Kamencay et al., 2012), to consider computation cost and to avoid the

blurred in depth discontinuities as will be discussed further in the disparity image

criteria (Section 3.5).

The process of stereo vision mapping is very sensitive to error, when collapsing

the data from 3D to 2D (Murray and Little, 2000). The collapsing of the 3D data

encourages errors in the form of “spikes” that are propagated into the disparity map.

Spikes are features of mismatches in the correspondence process of stereo vision

(Kelly, 2006). Spike regions have unique attributes such as: they are stable but not

large and they have discontinuities and sharp disparity at all borders (Murray and

Little, 2000). Surface segmentation is a method introduced by Murray and Little

(2000) to validate the disparity maps’ regions based on an assumption that they

belong to a true physical surface in the disparity image, to overcome the problem

of spike noise. The proposed method segments the image into continuous disparity

surfaces, and according to the surface size, the algorithm can decide whether this

segment is a physical 3D surface or a noise artifact (Murray and Little, 2000).

The correspondence process can be enhanced using additional techniques to vali-

date the conjugate pair pixels from stereo images. Texture validation is another

technique which can be used to determine whether disparity values are valid based

on levels of texture in the correlation mask (PointGray, 2012). This is dependent

on the amount of texture for the image patch and can be examined by the local

sum of the Laplacian of Gaussian of the image (Murray and Little, 2000). The low

textured area provides a low score sum, thus the pixel will be rejected from the
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matching process due to the ambiguity and unreliable results.

3.3 Stereo vision specification

A stereo vision camera was selected to obtain colour and disparity images for this

study. The selection of the stereo vision technique was based on its proven perfor-

mance to work under natural sunlight conditions, and to deliver the depth informa-

tion for the field view from two pairs of images (Plebe and Grasso, 2001; Yang

et al., 2007; Biskup et al., 2007; Lati et al., 2013; Xiang et al., 2014; Kazmi

et al., 2014; Si et al., 2015; Luo et al., 2016). The stereo vision camera has an

advantage over Microsoft Kinect and TOF cameras (active sensors), because it can

work without emitting any radiation. This advantage allows stereo vision cam-

era to work under direct sunlight which cannot be confused by the radiation of

sunlight. However, the camera has disadvantages whereby the quality resolution

of depth map produced from stereo matching algorithm depends on the texture

of the scenes. High-resolution depth maps can be produced from well textured

scenes using stereo matching algorithms, while weak textured scenes can result in

low resolution depth map. In contrast, range sensors (Microsoft Kinect and TOF

camera) produce dense depth map information regardless of textured or textureless

scenes but they cannot work effectively under direct sunlight conditions (Hansard

et al., 2012; Kazmi et al., 2014).

The Bumblebee2 stereo vision camera (designed by Point Grey Research Company,

Canada) is used to capture plant images. The camera was chosen due to its ability

to produce disparity maps and work in outdoor conditions. This packaged system

has two digital CCD cameras locked in a fixed assembly, that are pre-calibrated for

both stereo rig and lens distortion. Disparities are calculated only in the horizontal



3.3 Stereo vision specification 64

direction (PointGray, 2012). The focal length (f) is equal for both cameras (2.5

mm), and they are separated by a 12 cm baseline (b) distance. The camera pixel

resolution is 640×480 at 48 frames per second (FPS) or 1024×768 at 20 FPS. The

Bumblebee2 camera produces raw colour images, left and right calibrated and rec-

tified colour images, disparity images/maps and 3D point cloud data. Appendix A

presents more detailed about the Bumblebee2 camera specifications.

The disparity map can be rendered as a greyscale image which presents the output

of stereo matching between the left and right images. The disparity map’s pixels

have grey level values, i.e. the darker value points are further away from the camera

than the lighter points. It is expected that plant parts can be segmented according

to the different intensity values in the disparity image (i.e. different depth). The

disparity map produced by the Bumblebee2 camera has been optimised for effi-

ciency through a number of validation steps (Kazmi et al., 2014). The accuracy of

the disparity map can vary depending on the surface and texture correspondence

algorithm (Murray and Little, 2000). The Bumblebee2 stereo vision camera offers

some optional parameters that can be used to enhance the accuracy of the dispar-

ity map. The stereo and validation parameters’ functions and specifications are

presented in listings 3.1 and 3.2 4:

4The technical information about camera parameters, function and setting are collected from

Point Gray website, documents, Triclops software development kit (SDK) and Flycapture appli-

cation programming interface (API) references.
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Listing 3.1 Bumblebee2 Stereo parameters

1. Stereo mask (matching window): is a square mask (or the aggregated

window W that surrounds the centre pixel at position x, y, (Equations 3.7, 3.8,

and 3.9)) from the neighbourhood pixels used to perform the matching be-

tween the stereo images. The size of the mask is specified by the user. Large

mask size produces dense and smooth depth maps but the depth disconti-

nuity’s position is not precise. Small masks produce sparser and more noisy

depth images, but better localization of depth discontinuities. The mask sizes

must be odd numbers (PointGray, 2012).

2. Edge mask: is an optional filter used to generate the edge images from the

rectified images which are used for pixel matching. Then, the stereo matching

is performed on the change in the brightness rather than the absolute values

of the pixels.

3. Minimum and maximum disparity: These parameters are defined as

depth of field of the stereo image, where only disparity values between the

minimum and maximum disparity will be processed. Minimum and maxi-

mum disparity define the range of pixels that the stereo algorithm searches

to find the best match. A disparity of zero assigns an infinitely far away ob-

ject. Maximum disparity defines the closest position of an object that can be

measured.
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Listing 3.2 Bumblebee2 Validation parameters

1. Texture validation: Determines whether there is enough texture to make

the match between a bunch of pixels from the two images. The threshold of

this parameter allows matching algorithm to tune the texture based rejection

pixels.

2. Surface validation size: This parameter is used to set the minimum number

of pixels that a surface can be covered and still be considered valid. It works

as a filter to remove spikes caused by feature mismatches between the left and

right images. The size of removed spikes depends on the value that is set to

this parameter.

3. Surface validation difference: This parameter sets the maximum dispar-

ity difference between two adjacent pixels, that allows the two pixels to be

considered as a part of the same surface.

4. Back and forth: Verifies the match chosen in one image which should be

identical regardless of whether the left or right image is used as the reference

image.
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3.4 Cotton plants experiment setup

An experiment to capture the colour and disparity images of 16 cotton plants was

implemented. The purpose of this experiment was to create a database of cot-

ton plant images (colour/ disparity) from a stereo vision sensor at different growth

stages and semi-structured outdoor environments under varying light conditions

(sunny, cloudy, and shady). These images can be used to enhance automatic seg-

mentation of the plant parts using depth properties.

(a) (b)

Figure 3.3: (a) Stereo vision camera during image capture. (b) Cotton plants at an early

growth stage

Cotton plants were planted in April 2014 in the greenhouse. Eight data sets of

images were captured during the winter and early spring of 2014 for different growth

stages at outdoor environments of varying illumination conditions. The images were

captured from two labeled sides of the plant (to offer different leaf orientation) and

from a distance of between 0.85 - 1.25 m depending on the plants’ height and size.

For each growth stage of cotton plants, two image sets were taken under different

illumination conditions. The main illumination conditions considered in this study

are sunny (four data sets), shady (three data sets) and cloudy (one data sets). The

images were captured with 600×800 pixels to offer more details about plant parts.

The Triclops software development kit (SDK) and FlyCapture (API) programming
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functions were developed under Microsoft Visual C++ to capture the data sets of

plant images using an 8-bit RGB colour stereo vision camera.

3.5 Evaluation of disparity maps for a wide range

of parameters

The disparity maps were evaluated for their ability to produce in depth information

for plant parts. The purpose of this evaluation was to find the optimal combination

of disparity map parameters that can fulfill the following criteria:

1. An accurate and smooth depth information for the region of interest of plant

parts that focuses especially on leaves.

2. Minimisation of noise in the disparity images.

3. Resulting in a disparity map that has smooth depth information about plants

parts and at the same time has an accurate depth discontinuity of leaves’

boundaries. A trade-off between increasing the window size of matching func-

tion and using other stereo and validation parameters (Listing 3.1 and listing

3.2) is required.

The quality of disparity map depends on the setting of stereo and validation param-

eters. These parameters need to be adjusted for the best combination of values to

produce good quality disparity images that coincide with all desired image criteria.

Therefore, the evaluation of the disparity map is a qualitative evaluation, meaning

it depends on the user requirements and it is not dependent on a constant metric.
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There are a wide range of stereo and validation parameters. Different settings of

these parameters produce different qualities of disparity images. Table 3.1 shows

the ranges of these parameters. The ranges of these parameters were considered

during the cotton plant experimentation. The disparity images for a wide range of

parameters were captured. Following image capture, the disparity maps were in-

spected for parameters selection and to narrow their range for optimal combinations

based on qualitative evaluation for disparity images.

The setting of disparity range is inversely proportional to the distance from the

camera to the objects of interest. In that sense, the objects that are closer to the

camera have a larger disparity range. Through inspection, it is found that keeping

the minimum disparity at 0 and increasing the maximum disparity to 240, produced

the required result to cover the region of interest between the camera and the plants

thereby allowing for disparity in differing values.

Table 3.1: Stereo and Validation parameter ranges for the Bumblebee2 camera.

Parameter Type Parameter name Range values Step of increment

Validation Surface difference 0.0 - 3.0 1.0

parameters Surface size 0 - 400 100

Texture validation 0.0 - 4.0 1.0

Stereo Stereo mask 1 - 23 2

parameters Edge mask 1 - 11 2

The next step is to set the stereo mask parameter. The setting of this parameter

controls the size of the sliding SAD window used to find matching points between

the left and right images. The stereo mask was incremented by two values in

each step which is ranged from 1 to 23. The small window size produces sparse

and noisy disparity images but better localization of depth discontinuities. Larger

window sizes smooth over small gaps in the disparity image but will also smear
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object boundaries (Figure 3.4d). Figure 3.4 presents disparity images with different

stereo mask settings. It was observed that a stereo mask of size 7 (Figure 3.4b), is a

good compromise for this parameter which produced disparity maps with adequate

details. A stereo mask greater than 7, can cause blurred images with inaccurate leaf

boundaries (Figure 3.4c and 3.4d). The block based matching method produced

a “speckles” area near and behind the boundary of the plant (Figure 3.4) as the

matching window catches the foreground (plant) on one side and the background

(soil, grass) on the other side (Bradski and Kaehler, 2008).

(a) Colour image

Spikes’ areas 

(b) Stereo mask= 7

Speckles’ areas 

(c) Stereo mask= 11

Speckles’ areas 

(d) Stereo mask= 17

Figure 3.4: Presents different settings for the stereo mask parameter. (b) The disparity

map has noise “spikes” in the background and an accurate depth discontinuity for leaves’

boundaries. (c) and (d) have smooth depth and less spike areas in the background, but

blur depth discontinuity for leaves’ boundaries. All disparities have a “speckles” area

behind the plants.
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The use of validation parameters such as surface and texture validation can enhance

the accuracy of the disparity maps. The validation parameters have been adjusted

in parallel with stereo mask parameter. A preliminary test was implemented to

select suitable values of validation parameters including surface and texture. The

surface validation is a method used to validate regions of disparity maps based on

an assumption that they belong to a physical surface in the image. Two parameters

were assigned to implement this task: Surface difference and surface size. The value

of surface difference is used to assign the maximum value of disparity difference

between two adjacent pixels, that can allow them to be considered as a part of

the same surface. The size of the resulting segmented region depends thus on this

difference. Larger differences produces larger regions. The value of this parameter

should be greater than zero and range from 0.0 to 3.0 (PointGray, 2012). The setting

of value zero can produce a blank disparity image, while an acceptable result can

be observed with values ranging from 1.0 to 3.0.

The surface size parameter is used to remove noise from the disparity image by

segmenting the disparity image into the connected regions according to the threshold

value assigned to this parameter. The surface size works as a filter to reject spikes

noise, in which any region less than the threshold value is suspected and removed

from the disparity image (PointGray, 2012). A large threshold value means fewer

regions will be accepted and the lower the threshold, the more surface will be

accepted. The threshold values range between 0 and 400 pixels (Table 3.1).

Similarly, texture validation parameter determines whether there is enough texture

for the best correlation between a bunch of pixels from the two images, which filters

areas without enough texture for reliable matching. The threshold of this parameter

allows tuning the texture-based rejection of pixels. The values range from 0.0 (no

rejection) to 4.0 (complete rejection) but a good operating range is between 0.0 and
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2.0 (PointGray, 2012). High texture threshold values may result in a blank disparity

map. The default value of this parameter is equal to 1.0 (PointGray, 2012).

Figure 3.5 presents the disparity map for different settings of surface size parameter

for one cotton plant image. Figure 3.5b illustrates the disparity map with stereo

mask = 7, surface difference = 1.0, surface size = 0.0, and texture validation = 1.0.

It is found that from the images, a small value of stereo mask produced a mismatch

area as spikes noise. This noise can be reduced by increasing the values of stereo

mask (from 7 to 9) and the threshold of surface size parameter (from 0.0 to 100) as

shown in Figure 3.5c. Keeping the value of stereo mask equal to 9 and increasing

the threshold value of surface size from 100 to 200, can improve the image and

remove more spikes noise as shown in Figure 3.5d. It is observed that increasing

the value of surface size more than 200 can eliminate more details from the image,

therefore this parameter was set to 200 for the rest of the plants’ disparity images.

Afterwards, the value of surface difference parameters was examined. Figure 3.6

shows different threshold values of surface difference parameters which were set to

1.0 in Figure 3.6a and to 2.0 in Figure 3.6b. Other parameters were set as follows:

Stereo mask = 11, surface size = 200, and texture validation = 1.0. The figure

shows there is no significant difference between the two images. Larger values

of these parameters (larger than 2.0) were not considered as they eliminate the

small details of leaves, as larger differences produced larger regions. Therefore, this

parameter was set to 1.0.

Figure 3.6c and Figure 3.6d present the effects of increasing texture validation values

from 1.0 to 2.0, whereas the image of Figure 3.6c has more details about the leaves

boundaries. The other parameters were set as: stereo mask= 13, surface validation

=1 and surface size = 200. It was observed that some of leaf details start to disap-
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(a) Colour image (b) Surface size = 0.0

(c) Surface size = 100 (d) Surface size = 200

Figure 3.5: Shows different settings for surface size parameters for the disparity images

while the images have the same setting for surface difference =1.0 and texture validation

=1.0. Stereo mask = 7 for (b). Stereo mask = 9 for (c) and (d).

pear when the threshold value of this parameter increased to 3.0. A high texture

validation threshold might produce a blank disparity image because this parameter

rejects any pixel to have texture below the threshold set value. Therefore, texture

validation parameter was set to 1.0 to minimise the rejected pixels and accept more

pixels in the disparity image. The backgrounds can affect the calibration of texture

validation parameter. Different backgrounds mean different textures therefore, the

setting of this parameter will need to be re-calibrated depending on the background

of the images.
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(a) Surface difference = 1.0 (b) Surface difference = 2.0

(c) Texture validation = 1.0 (d) Texture validation = 2.0

Figure 3.6: (a) and (b), present different settings for surface difference parameter. Both

images have the same setting for surface size =200, texture validation =1.0 and Stereo

mask = 11. (c) and (d), show different settings for texture validation parameter for the

disparity images and have the same settings for surface size =200, surface validation=1

and Stereo mask = 13.

Figures 3.4, 3.5 and 3.6 present how the disparity maps were significantly enhanced

by increasing the value of stereo mask. As stereo mask value increased, the mis-

match area decreased. The disparity maps resulting from this setting have smooth

and dense depth information but the boundaries of objects are inaccurate. As the

proposed criteria relies more on accuracy of depth information rather than the dense

of depth, edge mask parameters were introduced to improve the results. Edge de-

tection is generally beneficial to stereo matching, although it introduces processing

cost. Improvements can be evaluated for instance for different values of edge mask

parameters in terms of number of valid disparities and matching with ground truth
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(PointGray, 2012).

The edge mask was also examined to improve the accuracy of the disparity maps.

The use of edge mask results in a smooth and an accurate depth information for

the region of interest of plant parts, as matching processes were implemented in the

brightness of pixels rather than the absolute values of image pixels. This parame-

ter was tuned to narrow its range for a better combination with other parameter

values. The edge mask was incremented by two for each step ranging from 1 to 11

(Table 3.1).

Figures 3.7 shows disparity maps with different settings of edge mask parameter.

The setting of parameters were: Surface difference = 1.0, surface size = 200, texture

validation = 1.0 and stereo mask =7. The illustrations of Figures 3.7b, 3.7c and

3.7d present the effect of incrementing edge mask values with a fixed value of stereo

mask. The images show edge mask equal to 7 can provide an acceptable result and

there is no great difference between the images when this parameter was increased

to 9 value. The disparity images of Figures 3.7 exhibit gaps in the leaves’ areas.

These gaps can be smoothed as the value of the stereo mask increased.

The stereo mask parameter was already examined, without turning on the edge

mask, and it was found that increasing the value of this parameter (greater than

7) can blur leaves’ boundaries. This parameter was examined again when the edge

mask parameter was introduced with a combination of other parameters. It was

observed, keeping the value of edge mask constant at 7 and increasing the value of

stereo mask, has more impact on the images. Figure 3.8 illustrates the effectiveness

of increasing the value of stereo mask on disparity images. Increasing the value of

stereo mask smooths over small gaps of the disparity image and removes the spikes

result from mismatched areas. However, a stereo mask greater than 17 can also
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(a) Colour image

Gaps

(b) Edge mask=5, Stereo mask=7

(c) Edge mask=7, Stereo mask=7 (d) Edge mask=9, Stereo mask=7

Figure 3.7: Present the effects of different settings of the stereo and edge mask parameters

on the accuracy of the disparity maps.

smear leaf boundaries. On the other hand, the use of an edge mask also has a

significant effect to enhance matching and remove the “speckles” area around the

objects’ boundaries.

Figures 3.4 to 3.8 and their corresponding explanations present the logical order

for selecting different setting values of stereo and validation parameters. Disparity

maps with a wide range of these parameters have been captured to cover all the

possible combinations. Then, the wide range of these parameters has been narrowed

for optimal combination. To implement this task, six colour images of cotton plants

(with their disparity maps) from different backgrounds and different illumination

conditions were chosen. For each colour image, there are 32 disparity maps with
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different settings of parameters. Thus, 32×6 = 192 disparity maps were tested.

The 32 disparity maps consist of: twelve disparity maps that have different values of

stereo mask; five disparity maps that have different values of surface size parameter

and have the same value of stereo mask parameter; four disparity maps that have

different values of surface difference parameter and share the same values of stereo

mask and surface size parameters; five disparity maps that have different values of

texture validation parameter and share the same value of stereo mask, surface size

and surface difference parameters; six disparity maps that have different values of

edge mask and share the same values of stereo mask, surface size, surface difference

and texture validation parameters.

The first 32 disparity maps (of the first colour image) i.e. 32 from 192 maps were

used to set the preliminary values of stereo and validation parameters. The remain-

ing disparity maps (160 disparity maps) were used for performance assessment and

cross validation. From all these disparity maps, a disparity map with an optimal

combination of stereo and validation parameters was selected. The optimal combi-

nation of these parameters was applied for all disparity maps used to develop the

proposed leaf segmentation algorithm.

It can be concluded that, after the qualitative evaluation of the stereo and vali-

dation parameters, there are three important and critical parameters that could

significantly affect the quality of the disparity images which are: Stereo mask, edge

mask and texture validation. The setting of other validation parameters is also

required for better quality disparity images. The trade-off between these param-

eters is important for optimal combination. Table 3.2 shows different settings of

stereo and validation parameters and their representative figures. The parameter

combination shown in Figure 3.8f presents an optimal combination setting for all
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camera parameters. The set of these parameters can produce disparity maps which

have: accurate and smooth depth values for the region of interest of plant parts

(leaves), minimum spikes, and accurate depth discontinuity for leaves’ boundaries.

The setting of these parameters can fulfill the proposed criteria of the disparity

images, therefore the setting of Figure 3.8f parameters was adopted for all cotton

plant image data sets.

Table 3.2: The effect of changing the stereo and validation parameters on the disparity

maps with their representative figures.

Stereo mask Edge mask Surface validation Surface size Texture validation Presented by

7 0 1.0 0 1.0 Figures 3.4b & 3.5b

11 0 1.0 100 1.0 Figure 3.4c

17 0 1.0 200 1.0 Figure 3.4d

9 0 1.0 100 1.0 Figure 3.5c

9 0 1.0 200 1.0 Figure 3.5d

11 0 1.0 200 1.0 Figure 3.6a

11 0 3.0 200 1.0 Figure 3.6b

13 0 1.0 200 1.0 Figure 3.6c

13 0 1.0 200 2.0 Figure 3.6d

7 5 1.0 200 1.0 Figure 3.7b

7 7 1.0 200 1.0 Figure 3.7c

7 9 1.0 200 1.0 Figure 3.7d

9 7 1.0 200 1.0 Figure 3.8b

11 7 1.0 200 1.0 Figure 3.8c

13 7 1.0 200 1.0 Figures 3.8d

15 7 1.0 200 1.0 Figures 3.8e

17 7 1.0 200 1.0 Figures 3.8f
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(a) colour image

Gaps

(b) Stereo mask=9, Edge mask=7

Gaps

(c) Stereo mask=11, Edge mask=7

Gaps

(d) Stereo mask=13, Edge mask=7

Small gaps

(e) Stereo mask=15, Edge mask=7 (f) Stereo mask=17, Edge mask=7

Figure 3.8: The effects of different settings of the stereo and edge mask parameters on

the accuracy of the disparity maps. As the value of stereo mask increased the gaps’ areas

decreased.
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3.6 Chapter summary

The fundamental idea and the essential processes of stereo vision techniques in-

cluding camera calibration and rectification, triangulation and stereo correspond-

ing processes have been presented in this chapter. The performance evaluation of a

stereo vision sensor for producing depth information for plant parts, has been pre-

sented. The characteristics of the stereo vision sensor are explained and reflect the

sensor’s ability to produce depth information about plant parts in outdoor condi-

tions. The disparity maps are very prone to error due to correspondence mismatch

which can produce “spikes” and “speckles” noises. These noises could be eliminated

using stereo and validation parameters. The cotton plants experiment setup and

details has been illustrated and a wide range of disparity maps parameters were

investigated. The specific functions of these parameters were explained. The effects

of using these parameters to improve the accuracy of the disparity images were

presented.

The disparity maps were evaluated in different settings of stereo and validation

parameters. There were 32 disparity maps which were used to set the preliminary

values of stereo and validation parameters and there were 160 disparity maps were

utilised for performance assessment and cross validation. The best combination of

these parameters was selected based on the qualitative evaluation of the examined

disparity images. The optimal values of these parameters were applied for all dispar-

ity maps used to develop the proposed algorithms in this study. It was found that

stereo mask, edge mask and texture validation are the most important parameters

which could significantly affect the quality of the disparity images. The trade-off

between these parameters is important for optimal combination. It was determined

that, the setting of surface difference = 1.0, surface size = 200, texture validation
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= 1.0, stereo mask =17 and edge mask = 7, provided the optimal combination

which produced the desired outcomes for the disparity maps. The use of validation

parameters and edge mask is optional and it depends on the applications’ require-

ments. The evaluation of the disparity map was based on a qualitative evaluation

and it was not based on a constant metric.



Chapter 4

Leaf segmentation and counting

algorithm
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4.1 Introduction

In this chapter, an algorithm has been developed to implement two tasks: seg-

menting cotton and hibiscus plant leaves from background foliage using image pre-

processing and enhancement techniques, and counting and separating between the

boundaries of overlapping leaves using depth discontinuity criteria. The algorithm

uses depth, colour and shape properties to address the similarity in colour between

neighbouring leaves, different perceived shapes of leaves (due to varying leaf ori-

entations) and the presence of small leaves as well as older, larger leaves within

the one image. The algorithm also addresses the additional complexity of larger

leaves being non-coplanar. Larger leaves form a 3D structure with distinct depths

across different lobes on the same leaf, compared to small leaves which are typically

planar.

This chapter is organised as follows: the initial inspection of cotton and hibiscus

plant images is illustrated in Section 4.2. The segmentation process designs are

illustrated in Section 4.3. An image pre-processing stage was developed and ap-

plied to segment plants from foliage background and other parts of the plant and

presented in Section 4.4. An segmentation method called Depth Discontinuity Seg-

mentation (DDS) was developed based on depth difference in order to segment some

complex images with touching or overlapping leaves (described in Section 4.5). The

DDS applies three main techniques: beginning with the removal of noise pixels

from the disparity map in Section 4.5.1; Then, two techniques which segment leaf

area depending on global and local discontinuity in depth gradient are presented in

Sections 4.5.2, and 4.5.3 respectively. A method that extracts a geometrical plane

from the segmented leaf and presented in Section 4.6.
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4.2 Initial image inspection and evaluation

From the visual inspection of the plant images, hibiscus has a clear structure where

the number of branches and leaves can be visually counted. By contrast, the cotton

plant images have a more compact structure in which individual leaves are not

as clearly discernible. Plants’ images with developing canopies consist of leaves

that overlapped with other leaves, with a greater number of occlusions occurring

on plants with denser canopies. This problem is increased with the late growth

stage of plant. In addition, plant images exhibit different leaf size. Small leaves are

difficult to distinguish by visual inspection, while large leaves exhibit characteristics

that include bending around each lobe of the leaf. Furthermore, leaf orientation

affects the perceived shape of the leaf which can provide the adequate information

for a positive leaf identification. Other issues such as overexposure, shadow and

low illumination phenomena were observed for some images captured under natural

environments at direct sunlight, shade and sunset conditions respectively.

The focus of this study is on segmenting leaves from the plant image, and detecting

overlapping leaves in plant canopies as it affects the identification of leaf parts.

Therefore, the developed algorithm is concerned with leaf overlapping issues and

benefits from depth information to assist segmentation. Solving other issues such

as eliminating the effects of the ambient illumination conditions on the segmented

images, are beyond the scope of this study. The developed algorithm is applied first

to selected cotton and hibiscus plants. Six images from cotton plants and two from

hibiscus plants were chosen to show the algorithm development process. The cotton

images were all captured outdoors in both sunny and shadow conditions, whilst

the two hibiscus plant images were chosen in both indoor and outdoor conditions.

Figure 4.1 shows the six cotton plants and two hibiscus plants selected.
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(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Plant 5 side 2 (f) Plant 6 side 1

(g) Hibiscus plant/ Indoor (h) Hibiscus plant/ outdoor

Figure 4.1: Sample of cotton and hibiscus plants. (a), (b), (c) and (d) cotton plants in

sunny positions. (e) and (f) cotton plants in shadow conditions. (g) and (h) Hibiscus

plants in indoor (g) and outdoor (sunny) positions (h).
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4.3 Algorithm design process

Figure 4.2 describes the main steps in the segmentation algorithm. The algorithm

starts by receiving colour and disparity images from the stereo vision sensor. The

first step of the algorithm is conducted in the image pre-processing stage to segment

leaves from the background foliage and other parts of the plant using depth, colour,

shape, and image enhancement. The segmentation of the plant from the back-

ground was implemented using depth information and RGB colour transformation.

Subsequently, HSV colour transformation is used to isolate green pixels from other

plant pixels. Image enhancement and the geometrical analysis of leaf shapes were

used to filter and analyse the ROI. Ellipse shape criteria were used to effectively

segment leaves from other parts of the plant. The segmented images resulting from

this algorithm consist of plant leaves that are segmented from the background and

from other unwanted plant parts such as stem and branches. However, there are

still some leaves that are connected or overlapped to each other.

Some standard image processing techniques were applied to separate between the

overlapping leaves such as erosion and dilation operators (Sonka, 1993). The out-

put resulting from these techniques was far from the desired requirement due to

the working principles for both techniques. Erosion shrinks image objects while

dilation expands them. In addition, erosion and dilation operators require a dif-

ferent structural element to be defined for each different shape and size object in

the image. As the proposed algorithm aims to segment and separate between the

overlapping leaves from different sizes, the application of these techniques could

work for some leaves, but small leaves were removed by the erosion operator and

other leaves were connected by the dilation operator. Furthermore, these operators

might deform leaf shape and some of geometrical information could be missed also.



4.3 Algorithm design process 87

Hence, these techniques are not useful for such applications and their results were

not considered. With this in mind, another segmentation method has been devel-

oped named Depth Discontinuity Segmentation(DDS) to implement segmentation

tasks. This method has been developed based on depth discontinuity and gradient

criteria, and applied on image results from the image pre-processing stage to detect

and separate touching and overlapping leaves. Figure 4.2 illustrates the main steps

of the proposed segmentation algorithm.

Background removal process using depth and 

colour attributes

Use HSV colour space to segment green pixels 

from colour images

Apply image enhancement filters & ellipse 

criteria to remove unwanted parts

Use result image to find corresponding disparity 

image 

Apply DDS segmentation

Gather all new segmented leaves with old leaves 

in a final vector array

Present final segmented leaves overlay with 

colour image and show leaf numbers

Colour & disparity images from stereo vision 

sensor

Image            

pre-processing 

stage        

(section 4.4)

These steps to 

target depth 

discontinuity 

segmentation 

(DDS)       

(section 4.5)

Figure 4.2: Leaf segmentation and counting algorithm.
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4.4 Image pre-processing stage

The first stage of a plant segmentation algorithm is carried out using three segmen-

tation steps including: Background removal using colour and depth information;

image segmentation based in hue distribution; image enhancement and shape geo-

metrical analysis. The following sections illustrate the algorithm steps and method-

ology.

4.4.1 Background removal process using depth and colour

attributes

A disparity map to detect the plant Regions of Interest (ROI) from the background

is used to formulate the algorithm in this instance. The disparity map obtained

from the stereo vision camera presents foreground and a wide range of background

objects such as foliage, sky, buildings, etc, as shown in Figure 4.3. To segment the

foreground area from the background area, the following steps need to be applied:

1. A specific range of depth5 was assigned as a threshold value and used as

a mask to segment ROI from the original disparity map to produce a new

disparity map as presented in Figure 4.4;

2. The R, G, and B colour channels were extracted from the colour image of

Figure 4.1.

5The specific range means there are two values of depth threshold: minimum threshold, and

maximum threshold, as the plant parts have different depth values with respect to the camera.

These values of threshold were set only once because the images were captured from a constant

distance between the camera and the plants (Section 3.4). The minimum threshold represents the

closest parts of the plant while the maximum threshold presents the furthest parts.
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3. The new disparity map was used as a mask for each R, G and B channel to

segment the colour image from the background, the ROI of the colour image

was found as shown in Figure 4.5.

After these steps, the procedures of background removal are completed. Another

step is then implemented to segment plants which are presented in the following

sections using colour, shape and depth properties.
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(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Hibiscus plant/ Indoor (f) Hibiscus plant/ outdoor

Figure 4.3: Disparity map for the six selected cotton and hibiscus plants. (a), (b), (c) and

(d) cotton plants in sunny condition. (e) and (f) Hibiscus plant in indoor and outdoor

(sunny) conditions.
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(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Hibiscus plant/ Indoor (f) Hibiscus plant/ outdoor

Figure 4.4: Filtered disparity map for the six selected cotton and hibiscus plants of

Figure 4.1.
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(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Hibiscus plant/ Indoor (f) Hibiscus plant/ outdoor

Figure 4.5: Colour image after depth mask for each of the R, G, and B colour channels

for the six selected cotton and hibiscus plants of Figure 4.1.
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4.4.2 Image segmentation based on hue distribution

The colour images resulting from the depth mask are shown in Figure 4.5. The

images show plant leaves, stem, branches, soil and pot. The HSV (Hue, Saturation,

Value) colour space transformation was used to segment green from the images. The

hue channel represents the colour, the Saturation channel represents the dominance

of that colour and the Value channel represents the brightness (the darkness or

the lightness) (Meskaldji et al., 2009). The HSV colour space is less affected by

the ambient illumination at outdoor conditions compared to the RGB colour space

and can retain the colour information despite differences in illumination conditions

(Bjurstrøm and Svensson, 2002).

Green leaves under outdoor conditions can exhibit different illumination which can

result in different hues (ranges) of green colour (light and dark green). Since HSV

colour transformation can separate out the luminance from the colour information

(chromaticity) (Sural et al., 2002), the Hue channel was used (from the three HSV

channels) to pickup the greenness of leaves under a variety of outdoor illumination

conditions and phenomena such as overexpose and shadow. The Saturation and

Value channels were not used to accept different hues (ranges) of green. The dis-

tribution of green pixels can be calculated by applying image histogram method

on the hue channel (Figure 4.7). Hue distribution values were used to segment the

ROI of green by using the following method:

Listing 4.1 Image segmentation using hue distribution

Step 1 Plot Hue distribution chart.

Step 2 Calculate mean and standard deviation values.

Step 3 Calculate upper and lower hue threshold values for green pixels.

Step 4 Select the pixels from the hue channel between these threshold values.
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Figure 4.6a presents the hue channel of HSV colour space. Figure 4.6b shows the

histogram of normalised Hue values distribution for plant 1, side 1 as implemented

in Step 1. The figure also shows the maximum bins of the histogram distribution

are within the range of green in the hue channel. The normalised hue means the

scale of the hue distribution chart is normalised from 360 to 1 value. Figure 4.7

shows the histogram of the normalised hue value distribution for all six selected

plants in Figure 4.1.

(a) The hue channel of HSV colour space

Normalized Hue values

N
u

m
b

er
 o

f 
b

in
s

Maximum bins 

of green pixels

(b) The histogram of hue values

Figure 4.6: HSV colour Transformation for Plant1 side 1 of Figure 4.5

The mean (µ) and standard deviation (σh) values of the the normalised hue distri-

bution are determined. These values would vary from image to image depending

on the histogram distribution of the hue. The calculated µ and σh are used to

determine the upper and lower threshold value of the hue for green pixels using the

developed equations, Equation 4.1 and Equation 4.2 (Step 3, Listing 4.1).

LH =


µ+ κ1 ∗ σh if µ ≥ τ.

µ− κ1 ∗ σh Otherwise.

(4.1)

UH = µ + κ2 ∗ σh (4.2)
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where; LH and UH are the upper and lower threshold values of the hue distribution

for green pixels, and κ1, κ2 and τ are the initialisation parameters used to calibrate

equations. The initialisation parameters need to be adjusted only once, as an initial

setting for the algorithm. Prior to initialisation of these parameters, the upper and

the lower threshold values of multiple hue distributions of plant images selected

randomly from different data sets, were visually inspected and measured to be

within the range of green in the hue channel. From this prior measurement, it was

observed that values of κ1 = 0.25, κ2 = 3 and τ = 0.19 can effectively isolate foliage

pixels as shown in Figure 4.8. With current settings for these values, only green

objects will be identified whereas, the assumption was to segment green leaves from

the cotton plant as the main focus of this research.

After the initial calibration of Equation 4.1 and Equation 4.2 parameters. The

mean, standard deviation and the upper and the lower threshold values were adap-

tively calculated for each single plant image. Then, the pixels between the upper

and lower threshold values of the hue distribution were selected to isolate the leaves

pixels from other parts of the plant pixels. Equation 4.1 and Equation 4.2 were ap-

plied on eight sets of cotton plant images (252 images) under different illumination

and environmental conditions and 20 images of hibiscus plants under indoor and

outdoor conditions. The results shows the developed equations can reduce most

of the unwanted pixels of pots, stem and other elements of noise present in Fig-

ure 4.5. However, minor noise still exists in the green image of Figure 4.8, and this

is displayed more prominently in the binary image of Figure 4.9. Further steps are

required to enhance images and remove non-leaf objects which are presented in the

next section.
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(f) Hibiscus plant/ outdoor

Figure 4.7: Histogram distribution of the hue channel for the colour images of the six

selected cotton and hibiscus plants in Figure 4.1.
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(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Hibiscus plant/ indoor (f) Hibiscus plant/ outdoor

Figure 4.8: Result from HSV colour space & applying the developed equations for the six

selected cotton and hibiscus plants in Figure 4.1.
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(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Hibiscus plant/ indoor (f) Hibiscus plant/ outdoor

Figure 4.9: Binary image transformation for the six selected cotton and hibiscus plants

in Figure 4.1

.
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4.4.3 Image enhancement and shape geometrical analysis

Image enhancement processes can be implemented using different image processing

techniques such image filters, regions and shape properties. A Median filter, (Lim,

1990), was applied by convolution with a (3 × 3) kernel. This filter was employed

due to its capability to simultaneously reduce noise whilst maintaining image edges

(Nelikanti, 2014). The work principle of this filter is to calculate the median value

in the 3× 3 neighbourhood around the corresponding pixel in the input image for

each output pixel. Figure 4.10 shows the results images after using Median filter.

The images show that most of the unwanted pixels, of Figure 4.9, such as pots’

edges, stem and branch parts were filtered from the images.

The connected component and labeling algorithm, also known as the ’flood-fill

algorithm’ (Foley et al., 1982), was applied to detect the connected regions in a

binary image. The desired outcome of each connected area is corresponding to one

object or one leaf. This algorithm can also filter images from noise objects and

confirm leaf objects according to the objects size. A suitable threshold value was

assigned to the algorithm in order to accept leaf objects and remove the suspected

non-leaf objects. Prior to initialisation of the threshold value, multiple plant images

were selected randomly and inspected to discriminate between different leaf sizes.

According to that, a 200 pixels thresholds’ value was found to be an optimal value

to retain plant leaves for early growth stages (i.e. dataset 1, 2, 3 and 4), and a 300

threshold value was found to be an optimal value to segment plant leaves for other

growth stages (i.e. dataset 5, 6, 7 and 8). The objects below the threshold value

were removed from the images. The images results from applying this algorithm

are shown in Figure 4.11. The current number of objects presented by Figure 4.11

represents the initial estimation of leaf numbers in the image. Some images still have

other objects such as parts of plant stem and branches therefore, further steps are
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required to benefit from the geometrical analysis of leaf shape and region properties.

(a) Plant 1 side 1 (b) Plant 2 side 2

(c) Plant 3 side 2 (d) Plant 4 side 1

(e) Hibiscus plant/ indoor (f) Hibiscus plant/ outdoor

Figure 4.10: Median and size filter binary images for the six selected cotton and hibiscus

plants in Figure 4.1

.
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(a) Plant 1 side 1 has 5 objects (b) Plant 2 side 2 has 1 object

(c) Plant 3 side 2 has 7 objects (d) Plant 4 side 1 has 22 objects

(e) Hibiscus (indoor) has 19 objects (f) Hibiscus (outdoor) has 17 objects

Figure 4.11: Labeled leaves with different colours for the six selected cotton and hibiscus

plants in Figure 4.1

.



4.4 Image pre-processing stage 102

Shape is an important feature for characterising and identifying plant leaves in

many studies. Here, the main concern is to segment the leaf from other parts

of the plant even if the leaf is partially occluded or not facing the camera. Leaf

contours with ellipse shapes are the most common method currently used to extract

the important features of leaves (Valliammal and Geethalakshmi, 2011; Cerutti

et al., 2013). In this sense, the geometrical measurements could be applied on

plant leaves such as ellipse minor and major axis, and axis ratio (slimness)(Kadir

et al., 2013). Therefore, the steps described in Listing 4.2 will be applied for each

component (leaf/leaves) to segment the leaves from the stems.

Listing 4.2 Shape geometrical analysis based on ellipse criteria

• Step 1 Calculate leaf major axis and axis ratio
• Step 2 Apply threshold according to the major axis and axis ratio
• Step 3 Find the corresponding disparity map
• Step 4 Form a vector of multiple arrays, each array represents one leaf
• Step 5 Counts the number of leaves
• Step 6 Overlay the leaves with others and present the result

Prior to implementation of each step, an ellipse was fitted to each object result

from applying connected component labeling algorithm. Then, the minor axis,

major axis and axis ratio for each object in the image were measured. Following

this step, the measured values are saved and investigated to calculate the maximum

values of major axis and axis ratios for all plant leaves used in this study. These

measurements were used to assign threshold values to discriminate between leaf and

non-leaf objects using the following criteria:

MajorAxis ≤ Th1 (4.3)

and,
AxisRatio =

MajorAxis

MinorAxis
≤ Th2 (4.4)

It is found that, objects that have a major axis greater than 190 and axis ratio more
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than 5.5 can form a tall and very thin object. This object cannot be a leaf object. It

could be a part of stem or branch, therefore it was removed from the image. These

two values were assigned as threshold values for the developed criteria, meaning

Th1 = 190, and Th2 = 5.5. The threshold values need to be set only once as an

initial calibration. These values work effectively for all data used in this study in all

instances. These values might not work with other types of plants having different

leaf sizes (larger leaf sizes than cotton and hibiscus leaves). In that case, a new

calibration is required for Th1 and Th2 parameters.

Figure 4.12 shows an ellipse fitted to each object in the binary image, for an im-

age containing only leaf objects. Figure 4.13 shows the resulting binary images

after using ellipse criteria. By comparing the two figures, it can be seen that the

number of objects are the same for cotton plants and no object has been removed.

However two objects were removed from both hibiscus plant images. These objects

represented parts of a stem as shown in Figure 4.12.

The binary image resulting from ellipse criteria was used as a mask to implement

Step 3 (Listing 4.2) to find the corresponding pixels in the disparity image as pre-

sented in Figure 4.14. Each leaf in the new disparity image was separated into

a new array to form a new vector array involving all plant leaves (Step 4). The

algorithm counts the number of leaves and gives the result for each plant (Step 5).

Figure 4.15 presents each plant leaf in different colours overlying each other (to per-

form the first stage of the segmentation) as a result of Step 6. The figure also shows

the connected/overlapped leaf areas. Figure 4.16 illustrates segmenting leaves over-

laying the original colour image. From Figures 4.15 and 4.16, only Plant 1 Side

1 (image ‘a’ of each figure) displays 100% segmentation accuracy using the steps

developed thus far. By visual inspection, the other sample plants have a number of

leaves which are segmented incorrectly due to the leaves touching or overlapping.
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Hence, additional steps in the algorithm need to be developed to address touching

and overlapping leaves.

(a) Plant 1 side 1 has 5 objects (b) Plant 2 side 2 has 1 object

(c) Plant 3 side 2 has 7 objects (d) Plant 4 side 1 has 22 objects

Stem part

(e) Hibiscus (indoor) has 19 objects

Stem part

(f) Hibiscus (outdoor) has 17 objects

Figure 4.12: Ellipse fitted to each leaf (red outline) for the six selected cotton and hibiscus

plants in Figure 4.1

.



4.4 Image pre-processing stage 105

(a) Plant 1 side 1 has 5 objects (b) Plant 2 side 2 has 1 object

(c) Plant 3 side 2 has 7 objects (d) Plant 4 side 1 has 22 objects

(e) Hibiscus (indoor) has 18 objects (f) Hibiscus (outdoor) has 16 objects

Figure 4.13: Binary images after the application of ellipse criteria for the six selected

cotton and hibiscus plants in Figure 4.1. The number of objects for the hibiscus plant

was decreased due to ellipse-fitted criteria.
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(a) Plant 1 side 1 (b) Plant 1 side 2

(c) Plant 3 side 2 has 7 objects (d) Plant 4 side 1 has 22 objects

(e) Hibiscus (indoor) has 18 objects (f) Hibiscus (outdoor) has 16 objects

Figure 4.14: The equivalent disparity images after application of ellipse criteria for the

six selected cotton and hibiscus plants in Figure 4.1

.
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(a) Plant 1 side 1 has 5 objects

Connected 
area 1

Connected 
area 2

(b) Plant 1 side 2 has 1 objects

overlapped 
area 2

Connected 
area 1

Connected 
area 3

(c) Plant 3 side 2 has 7 objects

Connected 
area 5

Connected 
area 1 & 2

Connected 
area 4

Connected 
area 3

(d) Plant 4 side 1 has 22 objects

Connected area 1 
& area 2

(e) Hibiscus (indoor) has 18 objects

Connected 
area 1

(f) Hibiscus (outdoor) has 16 objects

Figure 4.15: Plant leaves segmented in different colours after using ellipse criteria for the

six selected cotton and hibiscus plants in Figure 4.1

.
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(a) Plant 1 side 1 has 5 objects (b) Plant 1 side 2 has 1 object

(c) Plant 3 side 2 has 7 objects

False positive 
objects

(d) Plant 4 side 1 has 22 objects

(e) Hibiscus (indoor) has 18 objects (f) Hibiscus (outdoor) has 16 objects

Figure 4.16: Plant leaves overlaying colour images for the six selected cotton and hibiscus

plants in Figure 4.1

.
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4.5 Depth Discontinuity Segmentation (DDS)

In this section, a segmentation method has been developed and presented to sepa-

rate the overlapped leaves based on depth discontinuity criteria. The plant image in

Figure 4.1a has low complexity for analysis purposes due to the absence of touching

or overlapping leaves. The other plant images of the same figure have more compli-

cated images due to touching and overlapping leaves. To segment these leaves from

each other, additional steps in the segmentation process are required. Figure 4.15

shows the segmentation results after applying the image pre-processing stage (Sec-

tion 4.4). The figure also presents plant images that have touching or overlapping

leaf areas.

It is required to investigate the possibility of having more than one leaf in each

segmented leaf (results from the pre-processing stage). The significant local change

in image intensity can assign an edge in an image which is usually associated with

a discontinuity in either the image intensity or the first derivative of the image

intensity (Jain et al., 1995). The difference in pixel intensity (or the discontinuity

of pixel values) can assign the existence of two or more leaves in the image. Typi-

cally, this difference must be obvious to be detected by the standard segmentation

techniques such as edge finding correlation techniques. Therefore, some of the edge

correlation finding techniques were investigated by Sobel and Feldman (1968) and

Canny (1986) to solve overlap issues. It was observed that these techniques provide

distinct edges for leaf boundaries but they are unable to recognise the internal dis-

continuity in depth values within the overlapped leaves. These unrecognised values

were examined properly and the following findings were assessed: The variance in

depth intensity between two overlapping regions is not distinctive enough to be

recognised by edge detection techniques (also with low threshold setting) compared
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with the variance in depth intensity between leaves and the background. It was

noted that the smooth gradient in depth is assigned to one leaf in the image, while

a depth gradient larger than three pixel values presents two different leaves. From

here, it was important to measure the gradient in depth for each object (leaf) in

the images and segment the images accordingly. Measuring depth gradient can

be implemented by calculating the increment between the disparity map elements.

Measuring depth gradient can also indicate the discontinuity in depth values for the

segmented leaves. The measurement of depth discontinuity can be implemented in

two different ways: global measure, and local measure. Local measure uses a direct

comparison between each pixel and its neighbourhood. The value ‘global measure’

calculates the discontinuity in depth without the need to examine each pixel in the

image. Both of these measurement techniques were considered in the developed

algorithm which consists of three main techniques: disparity map denoising as well

as global and local discontinuity segmentation. The global measure was applied

first to consider the computation cost.

In order to understand the concept behind the algorithm it is important to inves-

tigate the disparity map for the intended leaf. Plant 3 side 2 (Figure 4.16c) was

selected as an example to show the detailed process when applying the techniques

of the depth discontinuity segmentation algorithm. Commencing in the connected

area 1 of Figure 4.17, the algorithm techniques were applied sequentially to each

object as in the following sections (Section 4.5.1 - Section 4.5.3).

4.5.1 Disparity Map Denoising technique (DMD)

This technique can be considered as pre-processing for the images that need to be

separated by filtering the noise pixels in the disparity map. Figure 4.18a presents
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1
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2

connected area

connected area

overlapped area

Figure 4.17: Plant 3 side 2 colour segmentation showing connected areas 1 and 3 and

overlapped area 2.

the connected area (area 1) of Plant 3 side 2 of Figure 4.1c. Figure 4.18b shows

one example of separation using the DMD technique. The values of disparity map’s

pixels ranged from 138 to 140 and presented two segmented and overlapped leaves

in the disparity map. The values of these pixels are dependent on the distance

between the camera and the plant parts. Larger values of disparity pixels present

the furthest leaves.

The pixels valued 0 present the blank or empty area in the image. Other values

ranged from 138 to 140 (Figure 4.18) are proportional to the depth values in the

image. The pixels valued 1 are far from the range of depth values and they do

not present the blank area as well. Therefore, those pixels are suspected to have

incorrect values of depth due to an error that occurs during the calculation process

of the disparity map. Errors are caused by a mismatching process due to many

reasons such as overlapping, or insufficient light, shadow or overexposure. As such

those pixels are considered as noise pixels.
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The DMD technique was applied to change the value of noise pixels from 1 to 0.

Figure 4.18b shows the disparity map after converting pixels from ones to zeros.

The figure also presents a colour image of the intended leaves before and after

separation. There are other connected leaves, in the already separated leaves (light

blue area). This area can be separated using another technique from the DDS

algorithm. Connected area 2 of plant 9 side 1 (Figure 4.15d) was also separated

using the DMD technique as shown in Figure 4.19.
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Figure 4.18: Connected leaves of area 1 for Plant 3. Colour image and disparity map (a)

before separation; (b) after separation
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Connected 
area 1 & 2

Figure 4.19: Plant 4 side 1 showing two connected areas 2 separated using the DMD

technique

4.5.2 Global Discontinuity Segmentation technique (GDS)

In this section, the segmentation based on global discontinuity in depth is imple-

mented. The process begins by measuring the gradient in depth over the whole

area of an examined image. For example, Figure 4.20 shows two leaves overlap-

ping in a small area indicated by number 2 (yellow circle). The figure also shows

a partial disparity map for the same specified overlapping area. The disparity map

shows a distinct difference between the neighbouring pixels, ranging between 8-10.

The difference indicates that there are two leaves in the examined area based on

the assigned threshold. The threshold was assigned by inspecting a wide range of

disparity maps with overlapping and non-overlapping leaves. The inspection shows

that the smooth increment in depth between the neighbouring pixels (i.e. one or two

pixel increments) in the disparity maps, assigns one small or medium leaf with a flat

pose. A difference in depth equal to three pixels and more, indicates the existence

of two overlapped leaves having small or medium size, or one large leaf with distinct
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depths across different lobes. The gradient in depth could be measured without the

need to find the difference between each contiguous pixel in the examined object.

To implement this task the global discontinuity segmentation (GDS) technique has

been developed to benefit from the unique property. The unique property is a

method of finding the unique values in an array (MATLAB, 2015). This property

was used to find the unique pixel values in the disparity map and to generate the

unique vector U . The method comprises the following steps (Listing 4.3) and is

explained in Equation 4.5. Figure 4.20 and Equation 4.6 show an example of two

overlapping leaves which were successfully separated using GDS technique.
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Figure 4.20: Two overlapping leaves (area 2 of Plant 3) and their separation process

using GDS technique. The top image shows the overlapping leaves. The disparity map

declares the distinct difference between pixels. The lower images present the results after

separation.
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Listing 4.3 Global Discontinuity Segmentation technique

Step 1 The unique disparity values for a single component are sorted into ascend-

ing order and stored in a vector which is called unique vector U (Equation 4.5)

Step 2 The difference between each contiguous pixels of U vector is calculated

Step 3 The vector is divided into smaller vectors, U1 and U2, U3, ....... Um accord-

ing to the difference value (i.e. difference value > threshold value (thresh-

old=3)). The number of small vectors indicates the number of overlapping

leaves

Step 3 The component is split into a group of smaller components where each

component contains only those disparity values corresponding to a single vec-

tor

U =



u1

u2

u3

u4

u5

u6

u7

u8

u9
...

...

un



= U1


u1

u2

u3

 ‖ U2


u4

u5

u6

 ‖ U3

u7
u8

 ‖ . . . . . . Um


u9
...

...

un


(4.5)
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Equation 4.6 below represents an example of a unique vector which has two over-

lapped leaves.

U =



142

143

144

145

. . .

148

149

150

151

152

153

154



= U1



142

143

144

145


‖ U2



148

149

150

151

152

153

154



(4.6)
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Figure 4.21 shows Plant 4 side 1 a cotton plant and hibiscus plant (indoor condi-

tions) with connected areas which have been separated using the GDS technique.

This technique has an advantage over edge detection techniques because it mea-

sures the discontinuity in depth gradient without the need to examine each pixel,

which makes it faster however, both of them are targeting the discontinuity of pixel

values. In some cases, the unique vector indicates smooth increments in depth be-

tween its elements but the colour image shows there are two overlapping leaves in

this particular area also confirmed by examining the disparity map. In this case,

there is a requirement to search depth discontinuity using a local technique, which

is developed in the next section.

Connected 
area 5

Connected 
area 3

(a) Plant 4 side 1, connected area 3

Connected area 
1 & area 2

(b) Hibiscus plant at indoor condition

Figure 4.21: Cotton and hibiscus plants with connected areas which have been separated

using the GDS technique.
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4.5.3 Local discontinuity segmentation–Eight Neighbours

Difference technique (ENBD)

This technique has been developed for certain cases where the unique vector U

(Listing 4.3, Equation 4.5) presents a smooth increment in depth, i.e. only one

value increment exists between the elements of U vector, but the disparity map

contains more than one leaf and a large difference in depth was observed between

the neighbouring pixels on the disparity map.

Figure 4.22 illustrates an example of a disparity map with a smooth unique vector

U (Equation 4.7), while a sharp gradient in depth was observed in the disparity

map. The vector shows a smooth increment between elements. A sharp gradient

means the difference between the neighbouring pixels in the intended area of the

disparity map exceeded threshold value (threshold = 3).

U =

[
141 142 143 144 145 146 147 148

]
(4.7)

The pixel values of 141 to 142 are presented by the green area while the red area

contains pixel values from 145 to 147 (Figure 4.22). As the difference between

the neighbouring pixels is greater than three, each area represents one leaf. The

Eight Neighbours Difference technique (ENBD) was developed for targeting and

separating those different areas based on the local discontinuity in depth. The idea

of this technique is to measure the difference in depth between the centre pixel and

its neighbouring pixels as described by the steps of Listing 4.4.
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Figure 4.22: A disparity map showing a big difference in neighbouring pixels while Equa-

tion 4.7 indicates a smooth increment in unique vector U .

Listing 4.4 Eight Neighbours Difference technique

Step 1 A window of nine pixels is moved across the disparity map.

Step 2 The centre pixel is considered a reference pixel.

Step 3 The absolute difference between the centre pixel and the other eight neigh-

bours pixels is calculated sequentially.

Step 4 When the absolute difference between the centre pixel and any of neighbour

pixels is equal to or greater than the threshold value, the value of the neighbour

pixel is set to zero.

Step 5 When the absolute difference between the centre pixel and any of neighbour

pixel is equal to zero, this value is ignored and no change is made.

Step 6 The zero valued centre pixels are skipped and no change is made.

Step 7 Subsequently, the nine pixel window is shifted to the right and takes

another column each time.
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Figures 4.23 and 4.24, illustrate the process of nine pixel windows moving over the

two connected areas of the disparity map presented in Figure 4.22. They represent

the state of the matrix from an arbitrary start. The replacement of pixel values

was implemented in the same matrix of the disparity map. The zero valued centre

pixels were skipped because the absolute difference in depth between the centre pixel

and any of the neighbouring pixels is equal to the values of the neighbouring pixel

itself. In this case, no change can be made otherwise, all pixels become zeros in the

disparity map. The process continues until the two connected areas are separated

from each other. Two new areas are produced with each area representing one

leaf. All changed pixels are coloured red to declare their position after using this

segmentation method as shown in Figure 4.24f. The connected component and

labeling algorithm (Foley et al., 1982) (Section 4.4.3), was applied to verify the

separation of the connected areas. In some instances when the separation between

the connected areas was not verified, another technique was applied as in the next

section.
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Figure 4.23: Leaves segmented using (ENBD) technique, the red pixel presents the centre

of the window, yellow pixels present the eight neighbouring pixels, the blue pixel presents

the changed pixel after the application of this technique.
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Figure 4.24: Leaves segmented using (ENBD) technique, the red pixel presents the centre

of the window, yellow pixels present the eight neighbouring pixels, the blue pixel presents

the changed pixel after applying this technique
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4.5.3.1 Zero Neighbours Counting technique (ZNC)

The zero neighbours counting technique (ZNC) needs to be applied after ENBD

in instances where connected leaves did not separate after applying ENBD. These

areas in the disparity map are still connected by a few pixels, because the difference

in depth is less than the threshold value. In such instances the ZNC technique

has been developed and applied by counting the zero neighbours around the centre

pixel on the nine window pixels. When the centre pixel is surrounded by three zeros

or more, the value of the centre pixel is converted to zero in order to separate the

two connected areas. Figure 4.25 shows two leaves of plant 3 (area 3) which were

connected by small amounts of pixels and illustrates the corresponding disparity

map of the same two leaves. The ZNC technique is outlined in Listing 4.5.
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Figure 4.25: Two areas of plant 3 connected by small pixels and the disparity map of the

same connected area.
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Listing 4.5 Zero Neighbours Counting technique

Step 1 The technique starts to work in two loops. The first loop takes the first

column of the non-zero pixel from the disparity map and the second loop takes

all rows sequentially.

Step 2 A window of nine pixels was moved over the current row and first column.

Step 3 The centre pixel is set as a reference pixel.

Step 4 When the centre pixel has three zero neighbours or more, the value of the

centre pixel is set to zero.

Step 5 Subsequently, the algorithm takes the next column to complete loop one.

Step 6 The connected component algorithm is applied after each column’s loop

to verify the segmentation process.

Step 7 If the separation is not accrued, the process will continue and the window

will move over to the next row until the separation process is completed and

the process ends.

Figure 4.26 shows the algorithm process. When the algorithm loops reach the region

of interest (connected leaf areas), the number of zero neighbours for each pixel

was calculated and the required action then applied. The connected component

and labeling algorithm (Foley et al., 1982) (Section 4.4.3), was applied to confirm

segmentation when the window was moved over all columns for each row. When the

segmentation is confirmed and the separated leaves are labeled using the connected

algorithm, the process will stop and there is no need to examine all elements of

the disparity map. This step is important to preserve most of the disparity map

data and leaf shape to develop another algorithm which extracts a plane from each

segmented leaf. The ZNC technique cannot be applied unless the discontinuity

in depth is detected by the ENBD technique but the separation process was not

completely implemented.
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Figure 4.26: Disparity map of area 3 connected leaves, (a) sequence of the ZNC technique,

(b) disparity map after the separation of the two connected areas using the ZNC technique.
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Figures 4.27 and 4.28 demonstrate the operation of the ENBD and ZNC techniques

to separate individual leaves. As per the labels in Figure 4.28, some components

were separated into individual leaves using only the ENBD technique and others

used both ENBD and then ZNC techniques where necessary.

The ENBD and ZNC techniques have an advantage over the erosion dilation opera-

tors as follows: The ENBD technique is able to recognise the internal discontinuity

in depth within an object and segment the connected area accordingly, while erosion

dilation operators shrink objects which might affect leaf shape, deleting some leaf

boundaries and losing depth information. In addition, erosion and dilation opera-

tors require a different structural element to be defined for each different shape and

size object in the image. Their working principles are not useful for images having

connected leaves of different sizes, which might need multiple interventions from

the user to set the structure parameters for each connected area in the image. The

result of applying the ZNC technique (only) might be similar to the erosion (oper-

ators for some images) where both try to separate connected objects, however the

working principles are different. In many cases there is no need to apply the ZNC

technique after the ENBD technique, as the connected area is separated already by

using ENBD or GDS techniques.



4.5 Depth Discontinuity Segmentation (DDS) 128

Connected 
area 3

(a) Plant 3 side 2

Connected 
area 1

Connected 
area 2

(b) Plant 2 side 2

Figure 4.27: (a) Colour image of area 3, plant 3 after separation using ENBD and ZNC

techniques, (b) Plant 2 final segmentation image after using DDS techniques.
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Connected area 5

Connected 
area 1 

Connected 
area 4

Connected 
area 3

Using ENBD technique

Using ENBD and ZNC 
techniques

Using ENBD 

technique

(a) Plant 4 side 1

Connected area 
1 & area 2

Using ENBD and 
ZNC techniques

(b) Indoor condition Hibiscus image

Using ENBD technique

Connected 
area 1

(c) Outdoor condition Hibiscus image

Figure 4.28: Cotton and hibiscus plants with connected areas separated using ENBD and

ZNC techniques.
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4.5.4 Final leaf segmentation

Figures 4.29 and 4.30 show the final plant leaf segmentations of all selected cotton

and hibiscus plants in Figure 4.1. Although some leaves are still missing from the

final segmentation results as shown in column two of both figures, the results have

been improved after using the developed DDS. The improvement can be recognised

by the difference between the numbers of leaves in relevant columns.

The missing leaves or false negative leaves are due to the poor illumination condi-

tions (shadow) and the brightness areas (overexposure). The indoor hibiscus plant

has one false negative leaf due to the poor illumination (Figure 4.30f). A false

negative leaf can also be observed in the outdoor hibiscus plant images due to the

overexposed area (Figure 4.30h). Moreover, three false positive leaves/objects can

be recognised in the segmentation results for Plant 4 side 1 (Figure 4.29h) and two

false positive objects in the results for Plant 6 side 1 (Figure 4.30d). The false

positive objects for these two plants were caused by the shadow appearing on the

pot’s edge.

These false negative and positive leaves are expected to be affected by lighting

conditions and other factors such as leaf direction and leaf size which will be fur-

ther explained in different data sets in the next chapter. Table 4.1 presents the

incremental increase in accuracy as the proposed technique was added to the leaf

segmentation algorithm for the 8 selected cotton and hibiscus plants in Figures 4.29

and 4.30, increasing from 72% to 91% accuracy with all techniques applied. Ta-

ble 4.1 also shows the number of leaves of each plant calculated from the visual

inspection of each image. Furthermore, the performance of the developed algo-

rithm will be evaluated further using an extended dataset in Chapter 5.
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Table 4.1: Final leaf segmentation results for the 8 selected cotton and hibiscus plants in

Figures 4.29 and 4.30.

Name Total leaf Total leaf False False Total true Accuracy%

of technique auto-count visual image

count

negative positive segments

Image pre-

processing

95 122 4 31 91 72

DMD 98 122 4 28 94 75

GDS 106 122 4 20 102 81

ENBD 112 122 5 15 107 84

ENBD+ZNC 120 122 5 7 115 91
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(a) Plant 1 side 1 has 5 leaves (b) Plant 1 side 1 has 5 leaves

(c) Plant 2 side 2 has 1 leaf (d) Plant 2 side 2 has 3 leaves

(e) Plant 3 side 2 has 7 leaves (f) Plant 3 side 2 has 10 leaves

False positive 
objects

(g) Plant 4 side 1 has 22 leaves
Plant9-S1_Fina

False positive 
leaf/objects

(h) Plant 4 side 1 has 29 leaves

Figure 4.29: Final leaf segmentations. Column 1 presents results after using the image

pre-processing algorithm, column 2 shows result after using DDS.
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(a) Plant 5 side 2 has 11 leaves (b) Plant 5 side 2 has 15 leaves

(c) Plant 6 side 1 has 11 leaves

False positive 
objects

(d) Plant 6 side 1 has 16 leaves

False negative 
leaf

(e) Hibicus (indoor) has 18 leaves

False negative 
leaf

(f) Hibicus (indoor) has 20 leaves

(g) Hibicus (outdoor) has 16 leaves (h) Hibicus (outdoor) has 17 leaves

Figure 4.30: Final leaf segmentations. Column 1 presents results after using image pre-

processing algorithm, column 2 shows result after using DDS.
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4.6 Leaf plane extraction

In this section, a method that extracts a geometrical plane from leaf vertices using

x, y, z coordinates of leaf depth image is presented. The purpose of extracting a

plane from a plant leaf (in this study) is to measure the inclination angle of each

leaf from the plane equation, that can inform plant drought stress or can be used to

parameterise a 3D model of the imaged plant. A leaf is a three dimensional object

in the space which would be more accurately presented using a curve or multiple

planes with different angles. Although a plane might not be the best method for

representing or modelling a leaf, however a plane can provide adequate information

to measure the inclination angle of each segmented leaf which is required for this

stage of the research study. Modelling plant leaves using curves or multiple planes

with different angles is beyond the scope of this study.

4.6.1 Definition of a plane

In mathematics, a plane is a flat, two-dimensional surface spanned by two linear

independent vectors. A plane can be defined in space in several different ways.

For example, three non-collinear points (points which are not contained by a single

line) can define a plane surface. Any line and a point not on that line can similarly

define a plane surface. A plane can also be defined by two parallel lines or two

intersecting lines. Planes in a three dimensional space have a natural description

using a point in the plane and a vector (the normal vector) to indicate its inclination.

The rectangular equation of a plane containing a point r0(x0, y0, z0) with a normal

vector nv = (a, b, c) is:

a(x− x0) + b(y − y0) + c(z − z0) + d = 0 (4.8)
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(a)
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Figure 4.31: Two types of plane (a) A 3 points plane with a normal vector (b) Two

parallel lines plane

A suitable normal vector nv is given by the cross product of two vectors:

nv =
−−→
P1P2 ×

−−→
P1P3 (4.9)

where
−−→
P1P2 = (P1− P2) and

−−→
P3P2 = (P3− P2), and P1(x1, y1, z1), P2(x2, y2, z2) and

P3(x3, y3, z3) are any three given points in the space. Point r0 may be equal to any

of the given points P1, P2 or P3.

The normal vector can be calculated by using a Third-Order Determinant (Kreyszig,

2010) where D is equal to the determinant of a 3×3 matrix.

D =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11

a22 a23

a32 a33

− a21
a12 a13

a32 a33

+ a31

a12 a13

a22 a23

 (4.10)

The geometric definition of a plane will be used to calculate plane equations for

leaves extracted by using automatic image analysis.
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4.6.2 Leaf plane extraction method

After segmenting leaves from each other by using image preprocessing analysis, a

plane can be extracted from a leaf plane by implementing the following steps:

Listing 4.6 Plane extraction steps

Step 1 Find the minimum and maximum leaf boundary values in x and y coordi-

nates of the 2D disparity image.

Step 2 From these values a complete four point set can be calculated where, P1=

(Min x, y), P2= (Max x, y), P3= (x, Max y) and P4= (x, Min y) as illustrated

in Figure 4.32a. These four points represent the four main extremities of the

leaf in the image plane.

Step 3 From these point, a polygon around the leaf can be drawn as shown in

Figure 4.32a.

Step 4 The corresponding z value for each point of the polygon can be calculated

to plot a flat plane over a 3D disparity leaf image as shown in Figure 4.32b,

where the plane surface is overlapping with the leaf surface.

Step 5 From these four points of the polygon, three points can be chosen to drive

the plane equation (Equation 4.8).

Step 6 Since the plane equation is obtained from only three points, an inter-

polation process is required to find the other points of the plane. This is

implemented by submitting the x and y coordinates of the disparity map in

the plane equation to find the corresponding z coordinate values of the plane.

A range from minimum x, y to the maximum x, y coordinate values will be taken

to cover the entire leaf area. Figure 4.32c illustrates the four points plane. The

upper three points are chosen to drive the plane equation. This process results in

a rectangular shape image of the plane with full interpolated (x, y, z) points.
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P4 (x, Min y)

P1 (Min x, y)

P3 (x, Max y)

P2 (Max x, y)

(a) Leaf with 4 points polygon (b) 4 points plane overlapping with 3D disparity image

(c) 4 points extracted plane, the 3 upper points are used to drive plane equation

Figure 4.32: Plane extraction process for plant leaf

4.6.3 Error measurement

The new interpolated plane meets the leaf plane at the three points of the equation

indicated. The method that evaluates the interpolated plane depth values by calcu-

lating the error between the interpolated plane and the leaf plane is demonstrated

in Listing 4.7. All depth points of the interpolated plane are involved in the cal-
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culation of error including the three extremities leaf points that used to drive the

plane equation. This method measured the error by selecting which automatically-

detected leaf vertices yielded the least error and verified most of the leaf plane

points.

Listing 4.7 Error measurement algorithm

Step 1 The difference in depth between the interpolated plane and leaf plane

can be measured by subtracting the interpolated plane image from the leaf

disparity image to produce a difference image (Equation 4.11).

Step 2 The error can be measured by taking the Root Mean Square error (RMS)

(Equation 4.12) for the difference image. The output of this step is a vector

of error values with respect to the image columns.

Step 3 By applying Equation 4.12 twice on the difference image (DifImg), a vector

of error values can be represented by one value named RMS2 error.

Step 4 To minimise RMS2 error of the interpolated plane, four different plane

equations can be examined from the four polygon points by choosing three

points at each time alternately.

Step 5 The minimum value of RMS2 error can be chosen to optimise the plane

equation which gives minimum error and verifies more points from the leaf

image.

Figure 4.33a presents the error image using different shades of grey. The variance

in grey interprets the contrast in value of error from negative values (dark grey) to

the positive values (light grey). The difference in images can be measured by the

following equation:

DifImg = LeafImg − PlaneImg (4.11)
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Figure 4.33b shows RMS error vector with respect to the image column. The RMS

error is defined by the equation bellow:

ERMS =

√√√√ 1

n.m

n,m∑
i=1:j=1

(Zleaf (i, j)− Zplane(i, j))2 (4.12)

where (Zleaf and Zplane) are equal to the depth value for the leaf and the interpolated

plane respectively, i and j are the dimensions of the leaf and plane images and n

and m are the number of rows and columns for both images respectively.

(a) Difference image (b) RMS error for the difference image

Figure 4.33: The error in depth between the leaf plane and interpolated plane

Figure 4.34c presents plant 1 side 1 with 5 segmented leaves and 5 extracted planes

from each leaf. Figure 4.34a shows four values of RMS2 error for four interpolated

planes for each leaf of Figure 4.34c calculated from different equations by choosing

three polygon points at each time alternately (Step 3, Listing 4.7). Figure 4.34b

presents minimum RMS2 error values for each leaf interpolated plane. The min-

imum RMS2 error can be fulfilled when the interpolated plane points involve the

majority of leaf plane points. Minimum RMS2 error indicates that, the interpolated

plane points are verifying most of the leaf depth values.
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(a) RMS2 error from 4 equations (b) Minimum RMS2 error values

(c) plant 1 side1 with 5 planes

Figure 4.34: Plant 1 side 1 in Figure 4.1 with 5 extracted plane and error analysis

The accuracy of fitting the plane might be increased if the plane were not con-

strained to fit the extremities of the extracted leaf shape. Sophisticated 3D mod-

elling of cotton leaf shapes and orientation using multiple planes can be achieved

using computer aided geometric design (Alarcon and Sassenrath, 2011). As this

thesis addresses leaf segmentation and plant modelling, such detailed modelling

of individual leaves as described in (Alarcon and Sassenrath, 2011) is beyond the

scope of this thesis. However, this chapter serves to demonstrate that leaf vertices

extracted by automatic image analysis can be used for geometric description of indi-

vidual leaves, and potentially in more sophisticated modelling with multiple planes.
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4.7 Chapter summary

This chapter demonstrates a new leaf segmentation and counting algorithm. The

utilisation of colour, shape and depth properties enhanced the leaves’ detection and

occlusion separation. The performance of the algorithm was tested with different

plant structures of cotton and hibiscus. Although hibiscus plants have simpler

structures in comparison to cotton plants, the leaf segmentation techniques were

applied sequentially on hibiscus plant images to solve leaf occlusion problems.

The algorithm used depth information in two stages: Firstly as an effective method

to isolate the foreground plant from other foliage, sky and buildings; and secondly

to solve connecting and overlapping leaf problems at the final stage of the algorithm.

The HSV colour space with two developed equations were used to distinguish green

leaves from other plant part colours. Image noise was filtered using Median filter

and image region properties. Leaf shape was tested using the fitted ellipse criteria

technique.

Another algorithm to segment the connecting and overlapping leaves from each

other was presented. The algorithm uses three techniques that depend on the depth

gradient discontinuity values. The algorithm techniques addressed three different

types of touching and overlapping leaves. DMD was used to targeting the leaves that

were connected by the noise pixels, while GDS was utilised to separate leaves with

distinct differences in depth using a global search by calculating the unique vector

of the disparity map. Subsequently, the ENBD technique was used to discriminate

between two connected leaves which have a smooth increment in unique vector,

where a sharp depth gradient was observed between neighbouring pixels. The ZNC

technique was applied for leaves which were isolated in space with the exception of

one small region connected to a neighbouring leaf.
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A method that extracted a geometrical plane from leaf vertices was demonstrated.

The RMS error between leaf plain and the interpolated plane was calculated. A

method that optimises a minimum error equation was proposed. This work was

developed for the purposes of calculating the inclination angle of each individual

leaf.



Chapter 5

Evaluation of automatic leaf

segmentation and counting

algorithm
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5.1 Introduction

The automatic leaf segmentation and counting algorithm was evaluated on both

cotton and hibiscus plant images. The data sets were collected with varying light-

ing and environmental conditions. This chapter presents the evaluation of the

algorithm’s performance under a range of conditions. The evaluation shows the al-

gorithm’s strength and its ability to work under varied illumination conditions and

also addresses some current limitations of algorithm performance in some situations.

This chapter is organised as follows: the data collection protocol is presented in

Section 5.2. The algorithm performance and accuracy rates are discussed in Sec-

tion 5.3. This section also presents some algorithm limitations due to image issues

and other leaf factors that affected the performance of the developed algorithm.

5.2 Data collection

A stereo vision camera was used to collect all data sets of images for both cotton

and hibiscus plants as explained in Chapter 3. The images were captured from two

labeled sides of a plant pot. For each cotton plant, eight data sets of images were

captured at different growth rates and under different environmental and illumina-

tion conditions. The cotton plants were planted in April 2014 in two different pot

sizes resulting in two different growth rates: big cotton (350 mm pot diameter);

and small cotton (250 mm pot diameter). Each data set contained 16 cotton plants

(4 big cotton and 12 small cotton), except dataset 1 and dataset 2 which had 15

plants each (4 big cotton and 11 small cotton). In total, the algorithm was applied

to 252 images of cotton and to 20 images of hibiscus plants. The details of the data

collection for different data sets are listed in Table 5.1.
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Table 5.1: Cotton plants data set collection. The images were collected during Winter

and early Spring of 2014.

Data sets Image condition Sun direction Solar energy

(Watts/ m2)

Dataset 1 Sunny Multiple 178–640

(July 13, 12–4 pm) Some overexposed and

partial shading of leaves

From left, right and be-

hind the camera

Dataset 2 Shady N/A N/A

(July 14, 10 am– 2 pm) Low illumination

Dataset 3 Sunny Single 273–714

(August 8, 12–4 pm) Overexposed leaves From right side of the

camera only

Dataset 4 Shady N/A N/A

(August 9, 11 am– 2 pm) Low illumination

Dataset 5 Sunny Single 285–780

(August 28, 1–4 pm) Wind and some bluer

image

From behind the cam-

era only

Dataset 6 Cloudy N/A 77–183

(August 26, 12–3 pm) Complete cloud cover

Dataset 7 Sunny Single 253–892

(September 19, 11 am –3 pm) Some overexposed and

partial shading of leaves

From left side of the

camera only

Dataset 8 Shady N/A N/A

(September 19, 3-6 pm) Low illumination

The algorithm was developed initially using six selected cotton and two hibiscus

plant images. The algorithm was subsequently applied to the other images to target

the general problems with all images. The algorithm was tweaked to gain the major

applicability for implementing a general fix for general fauls for all images. Further

development for the algorithm was applied in order to cope with all images from

different conditions. Table 5.1 shows the three main illumination conditions and
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the solar energy values at these days for cotton plant data sets at: ‘sunny’ for clear

sky; ‘shady’ for sun shade; and ‘cloudy’ for complete cloud cover. These three

illumination conditions were used to examine the algorithm’s reliability under a

variety of situations. From the table, it can be concluded that for each grouping of

sunny and shady conditions there were different cases for each data set. The same

illumination conditions were used for hibiscus plant images. Hibiscus plant images

were captured during Autumn 2013. The developed leaf segmentation and counting

algorithm was applied on hibiscus images to evaluate the ability of the algorithm

to work with plants other than cotton.

The results were subdivided according to plant size: big cotton; and small cotton

for each data set. The performance of the developed algorithm was evaluated for

segmenting and counting leaves and for separating occluded and overlapped leaves.

The segmentation results were calculated using evaluation metrics which are defined

as follows:

1. True Positive (TP): Refers to a true plant leaf correctly identified by the

developed algorithm.

2. False Negative (FN): Presents a plant leaf incorrectly identified as a non-plant

leaf.

3. False Positive (FP): Represents a non-plant leaf incorrectly identified as a true

plant leaf, or a large and bent leaf identified twice.

4. True Negative (TN): Refers to a non-plant leaf correctly identified as non-

plant leaf. This metric was not considered during accuracy calculation due to

the uncountable number of objects in the image that are truly identified as

non-leaf objects.
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For each data set, the sensitivity (recall), precision and accuracy were calculated

using Eqs. ( 5.1– 5.3) respectively (Zhu et al., 2010; Liu et al., 2017):

Sensitivity =
TP

TP + FN
(5.1)

Precision =
TP

TP + FP
(5.2)

Accuracy =
TP + TN

TP + FN + TN + FP
(5.3)

5.3 Leaf counting accuracy - results and discus-

sion

The segmentation of leaves from their background using the image pre-processing

stage was conducted prior to the separation of overlapping leaves using Depth Dis-

continuity Segmentation method (DDS), (Section 4.4.1). The DDS method was

applied to solve the issue of connected and overlapping leaves and relies on the

depth feature. The main challenge was the segmentation of multiple leaves under

outdoor conditions. The complex structure of cotton and the connection between

leaves with many occlusion boundaries add additional challenges to the performance

of the algorithms. In addition the illumination in outdoor conditions identified some

issues, such as partial shadow and overexposed areas caused by sunlight reflecting

from leaf surfaces. Plant leaves were efficiently segmented from the natural back-

ground according to their colour, shape and depth properties.

The accuracy of the leaf segmenting and counting algorithm was evaluated by the

comparison between the number of leaves produced from automatic segmentation,

and the number obtained from visual counting from plant images. The tested
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data sets had 272 image pairs (colour image and disparity map) with 2453 cotton

and hibiscus leaves in total. The use of developed segmentation algorithm including

image pre-processing and the DDS stages was able to successfully detect 1910 leaves.

The separation of occluded leaves was carried out using the proposed DDS algorithm

with a high separation rate of 84%, where 484 leaves could be separated successfully

from 578 connecting and overlapping leaves.

Table 5.2 below shows the overall detection rates of cotton and hibiscus plants

under different illumination conditions. It can be observed from the table that,

the developed segmentation algorithm shows approximately the same performance

for both plants in all conditions, and there is no significant difference between the

results of small and big cotton plants.

Some example images are shown in Figures 4.29 and 4.30, where many leaves

in various positions and shapes (single, touching and overlapping) were detected

successfully. These figures show the capability of the developed segmentation algo-

rithm to cope with a variety of growth stages and illumination conditions. The use

of the depth feature with the combination of other image features such as colour and

shape, can improve the performance of the proposed algorithm; however outdoor

images have many challenges and difficulties.

Table 5.2: Total segmentation rates of developed algorithm for cotton and hibiscus plants

under all conditions.

Condition All environmental & lighting conditions

Plant size No. of images Accuracy% Sensitivity% Precision%

Big cotton 64 70 80 86

Small cotton 188 69 76 89

Hibiscus 20 73 78 92

Overall rates 272 71 78 89
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Table 5.2 also demonstrates the performance of the algorithm in indoor and outdoor

image conditions, for hibiscus plants. The accuracy, sensitivity and precision rates

for hibiscus plants were slightly higher than for cotton. The higher results were

expected due to the difference in structure between cotton and hibiscus plants and

due to the fact that some images were taken in indoor conditions.

Table 5.3 illustrates cotton plant segmentation rates for different lighting and en-

vironmental conditions. From the table, it can be observed that shady and cloudy

conditions reported good segmentation rates compared to sunny conditions. This is

due to the images being overexposed by sun conditions or affected by partial shadow

issues. However, some images taken in shady conditions presented false negative

and false positive leaves due to insufficient light coverage and low illumination in

the shade.

Table 5.3: Average segmentation rates for cotton plants under different illumination con-

ditions where, A = Accuracy, S = Sensitivity and P = Precision.

Pot size Big cotton Small cotton

Lighting No. of image A% S% P% No. of image A% S% P%

Sunny 32 69 76 87 94 67 73 91

Shady 24 71 84 84 70 68 79 85

Cloudy 08 71 83 83 24 73 80 90

Small cotton plants report very similar accuracy rates (68%) for both sunny and

shady conditions, but report a higher accuracy rate for cloudy conditions (73%). In

total, the segmentation rate of both cotton sizes was adequate; however the images

were affected by outdoor environment issues such as direct sunlight and distant

trees.

Similarly, the algorithm recorded different segmentation rates for hibiscus plant

depending on the image capture condition. Although the sample size of hibiscus
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plant images was not large like for cotton as the hibiscus plant was not the main

focus of this study, high rates of accuracy were observed for indoor (80%) and shady

(79%) conditions while medium rates of accuracy were recognised for sunny (67%)

and cloudy (65%) conditions.

The results of the segmented images show that some images were affected by illu-

mination issues such as leaf under shadow, low illumination or overexposure. Other

images present the effects of other factors such as touching and overlapping leaves,

leaf size and orientation. The effects of illumination conditions and other leaf fac-

tors on the segmented images are illustrated and discussed in the following sections:

5.3.1 Effect of lighting

The algorithm was tested under sunny, shady and cloudy conditions. For each

data set, a certain test was conducted to examine one illumination condition. Cer-

tain images from different data sets had insufficient light coverage such as partial

shadow or low light conditions, whereas other images exhibited overexposed ar-

eas. The following subsections will analyse the impact of lighting conditions on the

segmentation results.

5.3.1.1 Image under partial shadow

Partial shadow affected the performance of the proposed algorithm because it partly

obscured the image. For sunny condition data sets, partial shadow was caused

by sunlight coming from the left or right side with respect to the camera and

plant, brightening the leaves facing the sunlight and shading on the opposite side.
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The inspection of the disparity map shows that one leaf with two different areas

(shaded, unshaded) could produce incorrect depth information, which could possi-

bly be recognised as two leaves or one leaf with missing information. This is because

the edge mask has been used to produce the disparity map which depends on the

correlation between brightness pixels of the edge image rather than the absolute

values. The inaccurate depth information from the shaded part can affect the seg-

mentation process using depth properties. The shaded leaf might have inadequate

information for a positive leaf identification.

The shaded area can also affect colour segmentation using colour properties in

which shady areas could include leaves, stem, soil and pot edges that could appear

as dark areas in the image. This darkness can effect the HSV colour transformation

of the hue channel, where it is hard to differentiate between a leaf or non-leaf

object according to its colour. Since a stereo vision camera produces disparity

map information for these shaded regions, they are within the threshold value of

depth that segments the plant from the background. Therefore, the image analysis

algorithm may count shaded regions as a real leaf causing false positive leaf issues.

When sunlight came from the back of the camera facing the plant, shadows were

cast behind the plant. In these instances, no shady areas were recognised in the

colour image. This case was considered an outstanding example of capturing images

under sunny conditions, however images were captured from different directions

(left, right) with respect to the camera as plants can exhibit different sun direction

during the day. Front sunlight direction caused camera overexposure therefore, the

image analysis of front sun direction was not considered or evaluated.

Figure 5.1 shows three plants with different sun directions and shadow areas to the

left and the right of the plants. Left-sun-direction is presented by Figure 5.1a for
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small cotton with two small shaded leaves. The result image shows all the leaves

are segmented correctly by the algorithm including leaves under shadow.

Figures 5.1c and 5.1e presents plant with back-sun-direction and right-sun-direction

respectively. The plant with back-sun-direction presents higher segmentation results

except one false positive leaf presents part of stem incorrectly identified as a true

leaf. The plant with right-sun-direction also presents good segmentation rates in-

cluding one overexposed leaf. The result image also shows one false positive leaf on

the shaded soil area.

The result images of Figure 5.1 present good segmentation rates for the algorithm

which can cope with leaves under shadow (Figure 5.1a) and overexposure (Fig-

ures 5.1e). This is because the colour of these leaves is still within the green area

of the hue channel despite the difference in illumination between the leaves under

shadow and the leaves under overexpose as the HSV transformation can separate

out the luminance from the colour information (Section 4.4.2).

The segmentation results of these plants show the capability of the algorithm to

segment leaves having different sun direction and illumination issues. Other images

of sunny conditions exhibited the same illumination issues (shadow, overexposure)

with different segmentation effects. For some overexposed images when leaves show

more yellow rather than green, the algorithm may not segment these images prop-

erly which results in false negative leaf issues.
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Shadow area

(a) Colour image (left-sun-direction)

Leaves under shadow

(b) Result image (left-sun-direction)

(c) Colour image (back-sun-direction)

False positive leaf,
 stem parts

(d) Result image (left-sun-direction)

Overexposed leaf

(e) Colour image (right-sun-direction)

False positive leaf 
shadow area

(f) Result image (back-sun-direction)

Figure 5.1: Three selected plants from dataset 1 with different sun directions.

5.3.1.2 Image under overexposed conditions

Overexposed areas are another problem for sunny condition images. Overexposed

areas occur when the upper surface of the leaf reflects sunlight towards the camera

sensors. Since the proposed segmentation algorithm depends on the HSV colour
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space transformation to segment a green leaf from other parts of the plant, leaves

which are overexposed show yellow rather than green. Therefore, these leaves are

not segmented properly; however depth information is available for overexposed

areas. Figure 5.2 presents two cotton plants with overexposed lighting issues.

(a) Plant 8 side 1 (colour image)

 False negative 
leaves

 False positive 
leaves

(b) Plant 8 side 1 (result image)

Leaves under 
shadow

 3 False negative 
leaves

(c) Plant 3 side 2 (colour image)

 3 False negative 
leaves

Leaves under 
shadow

(d) Plant 3 side 2 (result image)

Figure 5.2: Two selected plants from dataset 3 (small cotton) and dataset 5 (big cotton)

with overexposed conditions.

The overexposed lighting issue was investigated for the plant of Figures 5.2c which

has three false negative leaves as shown in Figures 5.2d. Figure 5.3 shows the steps of

segmentation for this plant. The disparity map and the RGB colour transformation

(Section 4.4.1) present these overexposed leaves as shown in Figure 5.3a and 5.3b

respectively. The majority of the plant’s leaves show yellow rather than green

as they were overexposed. The histogram distribution shows that the maximum

number of bins are within the yellow area of hue channel (Figure 5.3c). Other
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histogram bins

Overexposed 
leaves

(a) Disparity map

Overexposed 
leaves

(b) RGB color transformation

(c) Hue distribution & bins’ values

 Leaf fragments

(d) HSV colour transformation

Missing leaves 

(e) Final segmentation

 3 False negative 
leaves

Leaves under 
shadow

(f) Final segmentation (colour image)

Figure 5.3: Steps of segmentation for Plant 3 side 2 from dataset 5 (big cotton) with

overexposed and partial shadow conditions.

distribute on green and red areas. The developed segmentation algorithm, based

on HSV color transformation (Section 4.4.2)), thresholds the hue channel for green

only which eliminates yellow and preserves green areas of the plant’s leaves. These
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leaves appear as small fragments of green area as shown in Figure 5.3d. These small

areas were removed when applying image enhancement processes (Section 4.4.3), as

shown in the segmentation results of Figures 5.3e and 5.3f. Addressing this issue

thereby changing the calibration’s parameters of Equations 4.1 and 4.2 to accept

yellow pixels from hue with green pixels caused another issue whereas non-leaf

objects (stem, branches, pots’ edges) can also be identified as true leaves.

The plant of Figure 5.3 shows a mix of leaves with two issues, overexposure and

partial shadow. Overexposure caused false negative leaves, whilst shadow produced

false positive leaves for non-leaf objects such as soil and pot edges in some instances

as shown in Figure 5.2b. Leaves under shadow were segmented properly for the plant

of Figure 5.3, however some leaves’ parts were missing due to the shadow issue that

may partially cover leaf area as discussed in Section 5.3.1.1. Overexposure issue

was observed in most of the sunny condition images, hence these images exhibited

the issue of false negative leaves. Overexposure is a challenging issue for machine

vision at outdoor conditions which invites more studies and analysis to solve this

critical problem.

5.3.1.3 Image under low illumination conditions

Low illumination conditions were observed in two cases for sunny and shady con-

ditions:

1. Case 1: In sunny conditions, low illumination conditions were observed when

the image was captured at sunset (Figures 5.4a and 5.5a);

2. Case 2: In shady conditions, these conditions occurred when the plant was

placed in the shade, while the camera was set between the shady source and
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the plant (facing the plant). In this instance, two illumination conditions can

be observed in the image: dark illumination for the plant; and overexposure

for the background (Figures 5.4b and 5.5b).

A different examples of the two cases explained above is shown in Figure 5.4 and

Figure 5.5. From the visual inspection of the colour images for both figures, it is hard

to recognise all the leaves in these images. With this in mind, a high segmentation

rate could be observed for Figure 5.4 which presents two plants’ images taken in low

illumination conditions at sunset (Figure 5.4a) and under shadow at morning time

(Figure 5.4b). In contrast, Figure 5.5 illustrates low segmentation rates for the other

two plant images taken in the same conditions as Figure 5.4. These contradictory

results require an analysis for the colour images and the disparity maps.

By comparing the colour images and the disparity maps of Figure 5.4, it is clear

that most of the plants’ leaves were produced by the stereo vision system, while

many of the plant’s leaves are missing from the disparity maps of Figure 5.5. The

reason for that is another factor that can affect leaf segmentation process called

leaf orientation (i.e. the direction of leaf with respect to the camera). The images

of Figure 5.4 present leaves with front dominant direction while Figure 5.5 shows

back or obscure direction for the majority of the plants’ leaves. The leaf direction

can affect the correspondence process of stereo matching to produce the disparity

maps. Front dominant leaf direction can preserve a complete leaf shape and offer the

required leaf texture for calculating accurate and dense depth values. In contrast,

the depth values might compute for a few points for the low textured object (Bradski

and Kaehler, 2008). A variety of types of leaves’ orientation and their effects on

segmentation rate are discussed and presented in the next section.
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(a) Colour image (b) Colour image

(c) Disparity map (d) Disparity map

(e) Segmentation result (f) Segmentation result

Figure 5.4: Two selected plants from different data sets with low lighting conditions and

high segmentation rates, (a) Plant 11 side 2 dataset 6 presents Case 1, (b) Plant 3 side 1

dataset 2 presents Case 2.

The analysis of the effect of lighting on the segmentation result can strongly support

the argument for the reliability of stereo vision system to produce depth information

under different outdoor illumination conditions and environments and also shows

the limitation of this system to work with a low textured scene.
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(a) Colour image (b) Colour image

(c) Disparity map (d) Disparity map

(e) Segmentation result (f) Segmentation result

Figure 5.5: Two selected plants from different data sets with low lighting condition and

low segmentation rates, (a) Plant 1 side 2 dataset 6 presents Case 1 (sunset), (b) Plant 1

side 1 dataset 2 presents Case 2 (images under shade).
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5.3.2 Effect of leaf orientation

During data collection, images from both sides of each plant were captured to

enable the effect of leaf orientation on leaf count accuracy to be quantified. The

experimental setup was designed to take the images from two sides of the plant.

Each side was labeled using a fixed tag on the pot edge. Ideally, side 1 was supposed

to be the front or the upper side of the leaves, when all leaf upper surfaces faced the

camera. Side 2 was the opposite side when all leaf lower surfaces face the camera.

Typically, these two ideal cases were observed for some plants. For the majority of

images, the view was mixed between front, side and back leaves.

The impact of leaf orientation on the algorithm’s performance was investigated be-

cause leaf orientation affects the perceived shape of the leaf. In some images the leaf

appears as a thin line, similar to a stem or branch, which is potentially insufficient

information for a positive leaf identification. Leaf orientation is an important factor

to provide the sufficient leaf texture for an accurate stereo matching process.

Table 5.4 presents leaf segmentation rates with respect to the leaf orientation for

all cotton plants. The front dominant leaf orientation presents higher segmentation

rates compared with the orientation of other leaves. The reason for these results is

that front dominant leaf orientation can show a complete leaf shape with full texture

information, which can enhance stereo matching and the segmentation process.
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Table 5.4: All data sets segmentation results according to leaf orientation.

Plant size Big and small cotton

Leaf orientation No. of image Accuracy% Sensitivity% Precision%

Front dominant 35 79 86 91

Back dominant 11 70 77 89

Mix dominant 166 69 77 88

Obscure-leaf-orientation 40 65 73 85

Figures 5.6 shows four selected plants with different types of leaf orientation as

presented below:

1. Front dominant: Front dominant leaf orientation is shown by Figures 5.6a

and 5.6b). This orientation presents an ideal leaf orientation for plant leaves

and can result in high segmentation rates;

2. Back dominant: It is hard to detect this type of leaf with insufficient colour,

texture, shape and depth information being detected (Figures 5.6c and 5.6d);

3. Mixed dominant: All types of leaf orientation were found in mixed dominant

leaf image (Figures 5.6e and 5.6f). This type of image shows an adequate

percentage of segmentation rates, however; some leaves appeared as a thin

line, similar to a stem and branches, which could not be identified correctly

as a leaf when applying ellipse criteria (Section 4.4.3);

4. Obscure-leaf-orientation: Obscure orientation of the leaf can be caused by leaf

movement or leaf size at an early growth stage of the plant (Figures 5.6g and

5.6h). It is hard to recognise and segment this type of leaf due to the small

leaves area and they are touching each other. Leaf movement due to the wind

which can cause a blurred image with obscure leaf shape and orientation.
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(a) Front leaf (b) Front leaf

(c) Back leaf (d) Back leaf

(e) Mixed leaf (f) Mixed leaf

(g) Obscure leaf (h) Obscure leaf

Figure 5.6: Four selected plants with different dominant leaf orientations. Column one,

colour image. Column two, result image.
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5.3.3 Effect of leaf size

As a consequence of plant growth, different sized leaves could be observed on the

one plant image ranging from 1 to 10 cm. Small leaves are difficult to distinguish

between using visual inspection. Figure 5.7a shows a plant with four small leaves

which are incorrectly segmented as two leaves as it is hard to distinguish between

them by visual inspection (Figure 5.7b).

Larger leaves exhibit bending around each lobe of the leaf, causing distinct depth

differences (greater than 3 pixels in the disparity map) for different lobes of a single

leaf. The DDS segmentation method considered each lobe as an independent leaf.

This may cause incorrect leaf segmentation and can increase the number of false

positive leaves. Large and bending leaves were significantly noticeable in big cotton

plant images (more than 10 cm).

Figures 5.7d and 5.7f illustrate two plants from big cotton and the corresponding

disparity maps for their large leaves. From visual inspection of these maps, some

leaves are agglomerated in one part (Figure 5.7f), while others are already divided

into two parts (Figure 5.7d). The DDS segmentation method was applied on each

part of these leaves. Large leaves with different lobes and a flat pose can be precisely

identified as one leaf as shown by leaf 2 in Figures 5.7f. This type of leaf can be

segmented adequately by the algorithm. In contrast, large and bent leaves are a

critical segmentation issue as they are normally divided into two parts due to the

distinct difference in depth. These types of leaves are presented by leaf 1 and leaf

3 in Figure 5.7f.

From the overall algorithm performance for 252 cotton images, about 67 leaves were

visually assigned as large, bent and folded leaves. These leaves produced 26 objects
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as false positive leaves which is 10% from the total sum of false positive leaves. The

other source of false positive leaves consisted of the shady areas and other parts of

the plant such as stem, branches, soil and pot edges.
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(a) (b)

(c)

Large and 
bent leaf

Large and 
bent leaf

(d)

(e)

1

2

3

(f)

Figure 5.7: Plants with different leaf sizes (a) Small leaves; (c) Big cotton with 3 large

and bent leaves showing two parts disparity for each leaf; and (e) Big cotton with 3 large

and bent leaves showing one part disparity for each leaf.
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5.3.4 Effect of overlapped leaves

Typically, images of plants with developing canopies consist of leaves that occlude

other leaves, with a greater number of occlusions on plants with denser canopies.

This problem is increasingly noticed with the late growth stage of the plant. The

proposed algorithm was conducted with two stages of image pre-processing; and

Depth Discontinuity Segmentation (DDS), as discussed in Chapter 4. The first part

was conducted with leaf segmentation using colour, shape and depth properties;

whereas the second part dealt with occluded and overlapping leaves using newly

developed techniques.

Table 5.5 below shows the total number of connecting and overlapping leaves for

cotton and hibiscus plants. From 578 connecting leaves for 272 images of cotton

and hibiscus plants, the DDS segmentation successfully separated 484 leaves with

84% separation rate. The developed algorithm shows approximately the same per-

formance for cotton and hibiscus plants under various lighting and environmental

conditions. The similarity in performance can be interpreted as the ability of the

algorithm to work with different types of plant rather than just cotton.

Table 5.5: Separation rate of DDS algorithm for occluded and overlapping leaves for

cotton and hibiscus plants in all conditions.

Condition All environmental & lighting conditions

Plant type No. of No. of Segmented Overlapped Separated Separation

image leaf leaf leaves leaves rate%

Cotton 252 2025 1578 514 431 84 %

Hibiscus 20 428 323 64 53 83 %

Overall rates 272 2453 1910 578 484 84 %
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The connecting and overlapping leaves with flat poses are a critical segmentation

issue for the developed algorithm. Figure 5.8 presents two cases from that type of

occlusion with different segmentation results. Figure 5.8b illustrates big cotton hav-

ing two overlapping leaves with a flat pose. The figure also shows the corresponding

disparity map for these leaves. From visual inspection of the disparity map, a large

difference in depth (more than 3 pixels value) between the neighbouring pixels of

the candidate leaves can be recognised. These leaves can be correctly segmented to

two leaves using depth property.

Figure 5.8a presents small cotton with four connected leaves and their corresponding

disparity maps for each connected pair. The visual inspection of the disparity maps

shows a smooth change in depth values between the neighbouring pixels. Since the

difference between the neighbouring pixels is less than the threshold value (less than

3), these connected leaf areas were incorrectly identified as a single leaf for each pair.

In this instance, the depth feature would not be beneficial to segment this particular

type of occluded leaf. If the occluded and overlapping leaves cannot be separated

using depth property, the algorithm would need to be modified to extract other

features like certain shape attributes from the images. The leaf shape boundaries

could be beneficial to identify these types of leaves. This type of identification can

be implemented by training the leaf boundary classifier MLP (Xia et al., 2013)

about these types of leaves.
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Figure 5.8: Two selected plants with overlapping leaves in flat pose and their segmentation

results: (a) unseparated leaves; (b) separated leaves.
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5.4 Chapter summary

The performance of the potential algorithm for automatic leaf segmenting and leaf

occlusion separation, using colour, shape and depth properties was evaluated in

this chapter. Eight data sets of cotton plant images (252 images) and 20 images of

hibiscus plant were carried out to evaluate the performance of the algorithm. The

images of cotton and hibiscus plants were captured under a variety of growth rates

and environmental conditions. The results for the three labeled conditions (sunny,

shady and cloudy) were presented and analysed. The proposed algorithm presents

successful segmentation rates for each labeled condition.

The main image issues were demonstrated and the effects of these issues on the seg-

mented images were analysed and evaluated. Overexposure was the main lighting

issue affecting the performance of the algorithm. Partial shadow and low illumi-

nation were the other illumination issues that can affect the segmentation rate,

however the algorithm can cope with these issues and produce acceptable results.

Other issues such as leaf orientation, size and overlapping can also affect results in

different ways. Leaf orientation is another important factor which can preserve leaf

shape and texture for positive leaf identification. Large, bent and overlapping leaves

are a critical segmentation issue. Large and bent leaves are normally identified

as two parts due to the distinct difference in depth. The developed algorithm

addressed the leaves overlapping issue and benefited from depth information to

assist segmentation. Solving other issues such as elimination of the effect of the

illumination conditions on the segmented images or segmenting large and bent leaves

are beyond the scope of this study.



5.4 Chapter summary 170

The developed algorithm shows almost identical performance for both cotton and

hibiscus, which interprets the ability of the algorithm to work with different types

of plant other than cotton. The results show that it is possible to enhance results by

adding depth to the other properties (colour and shape), rather than using them in

isolation. Out of 2453 cotton and hibiscus plant leaves, 1910 leaves were detected

successfully using DDS algorithm. The segmented leaves had 578 occluded and

overlapping leaves, and DDS could separate 484 leaves successfully with a high

separation rate (84%). The overall accuracy, sensitivity and precision of detecting

and separating leaves were 71%, 78% and 89% respectively for all plant images

in different environmental and illumination conditions. These values are highly

dependent on illumination conditions, leaf orientation and on the density of the

leaves in the canopy.
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6.1 Introduction

In this chapter, a preliminary plant stem and branch segmentation algorithm is

implemented on a hibiscus nursery plant. A hibiscus plant represents a plant with

typical structure, with clearly discernible stem and branches. The proposed algo-

rithm is based on vesselness measure and Hough transform techniques. This chapter

is organised as follows: an overview of the main steps of stem and branches seg-

mentation algorithm is presented in Section 6.2. Prior to the development of the

proposed algorithm, two stranded edge detection techniques were investigated in

their applicability to segment stem and branches in Section 6.3. The extraction

process for plant stems and branches uses the vesselness measure and Hough trans-

form techniques, which are presented in Section 6.4. The results on the ability of

the algorithm to detect and count the branches automatically are shown in Sec-

tion 6.5, and an initial work for reconstructing plant segmented parts to develop a

structural model in 2.5D or 3D is presented in Section 6.6.

6.2 Stem and branches segmentation algorithm

overview

A stem and branches segmentation algorithm has been developed using a combina-

tion of techniques to extract stem plant features from the colour side view of the

image in both indoor and outdoor environments. Plant images were captured using

an 8-bit RGB colour stereo vision camera. The resolution of the images used was

384×512 pixels. The images were taken of a hibiscus nursery plant from a distance

of 100 cm in both indoor and outdoor conditions. The algorithm consists of three

main steps:
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1. Extract branches from colour plant images using the vesselness measure method.

2. Apply the Hough transform technique to detect the lines of the branches.

3. Classify those branches according to the Hough transform parameters and

count and uniquely label those branches.

6.3 Edge detection for stem and branch segmen-

tation

Prior to the development of stem and branch profile detection algorithm, it has

been important to investigate some of the standard edge detection techniques. The

desired outcome is to isolate stem and branch pixels from other plant parts and

background pixels. The significant local change in image intensity can assign an

edge in an image (Jain et al., 1995). The stems and branches can form a distinct

line in the image due to their smooth and curvilinear shape structure which can

potentially be detected by an edge detection technique. A line can be considered as a

type of edge where the pixel intensity changes from background intensity value to the

line intensity value and back to the background intensity value (McCarthy, 2009).

From the literature, the edge detection of Sobel and Feldman (1968) and Canny

(1986), have been demonstrated as an effective method for edge detection of plant

parts (Xia et al., 2013; Sosa et al., 2013). Figure 6.1 shows hibiscus plant (Fig-

ure 4.1g) image’s segmentation after applying edge detection techniques of Sobel

and Canny. It is clear that Sobel filter detects stem, branches and leaf boundaries,

while Canny filter detects stem, branches, leaf boundaries and veins. Canny’s algo-

rithm finds image edges by looking for local maxima of the gradient using a Gaus-

sian filter which assumes to have different intensity of image pixels (Canny, 1986).
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This algorithm uses two values of threshold (higher and lower) to detect strong and

weak edges. Some weak edges are also included if they connect to strong edges.

The value of higher (effective) threshold was determined using Otsu threshold seg-

mentation algorithm from the gray scale images (Otsu, 1975). This algorithm uses

the least squares method to calculate the high threshold based on the gradient

histogram which can effectively segment the foreground from the background (LI

et al., 2008; Wang and Li, 2015). The value of the Otsu threshold was assigned

as a higher threshold for Canny algorithm. By examining different samples of im-

ages, it was found that, the ratio of Canny lower threshold to higher threshold is

equal to: 1:2 or 1:3 and depends on the image intensity. The standard deviation

of the Gaussian filter sigma was examined with different values for the best image

segmentation. It was observed that sigma equal to one can provide the desired seg-

mentation outcomes for stem and branches using Canny edge detection. The value

of Otsu threshold (higher threshold) was also assigned for Sobel algorithm which

detects all edges that are stronger than the higher threshold.

Figure 6.1 shows the effective segmentation of leaf and stems edges with values

of 0.0239 and 0.0478 for lower and higher thresholds respectively of Canny edge

detection, and with a threshold value of 0.0478 for Sobel edge detection. Other

threshold values below and above these values were also examined in order to detect

a clear stem and branch profile. The threshold values determined by Otsu method

tried to achieve the clearest stem and branch images segmentation among the other

values, but they also extracted leaves as well. The results of edge detection operators

show that both leaf and branch edges revealed a strong response which limits the

suitability of edge detection operators for identifying stem and branches. Since the

current application is concerned with stem and branch detection, an investigation of

another segmentation technique was required which could be possibly more effective

for the desired application.
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(a) (b)

Figure 6.1: Hibiscus nursery plant (a) Sobel edge detection filter; and (b) Canny edge

detection filter.

6.4 Branch extraction using vesselness measure

In this section, an algorithm has been developed to extract stem and branch profiles

from plant colour images using a vesselness measure technique. The vesselness mea-

sure is based on detecting a typical line profile of reflected light on the colour image

(Steger, 1996). Stem and branch appear as significant vessel structures in colour

images (McCarthy et al. 2009; Nakarmi and Tang, 2013). The use of vesselness

properties is more favourable than colour properties to identify stem and branches

in the images, as stem and branch colours may range from green to brown. The

vesselness measure is so named because of its original development application to

extract vessels from medical images (Frangi et al., 1998). The vesselness measure

technique cannot be applied to the depth image because this technique is based

on detecting a typical line profile of reflected light, whereas depth image does not

exhibit a typical line profile.

The vesselness measure has been used to extract vessel structures (curvilinear struc-

ture) for stem and branch detection (McCarthy et al., 2009; Nakarmi and Tang,
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2013), and for complex vascular structure detection (Qian et al., 2009; Tankyevych

et al., 2009). The vesselness measure technique calculates the eigenvalues and eigen-

vectors of the Hessian matrix (H) to compute the likeness of an image region to

vessels, according to the method described by Frangi et al. (1998):

H =

Ixx Ixy

Ixy Iyy

 (6.1)

where, Iab = ∂2I
∂a∂b

for each image pixel, I is the pixel’s intensity value and a, b are the

pixel coordinates values (Magnus et al., 1995). The image second order derivatives

are calculated by convolving the image with derivatives of a Gaussian kernel with

standard deviation σs (Steger, 1996). Vessel structures and lines with different

widths can be extracted by varying the standard deviation of the smoothing filter

σs. Wider lines can be detected with a large value of σs. The present study is

concerned with the detection of stem and branches, which are not wide, thus a low

value of standard deviation σs was chosen to detect stem and branches correctly

and to eliminate leaf areas.

The eigenvalues of the Hessian matrix (H) are symbolised as λ1 and λ2 and can

be used to detect the vessel region (Frangi et al., 1998). The eigenvalues decide if

this pixel belongs to a tube-like or a blob-like structure. A small value of λ1 with

a large value of λ2 indicates that this pixel belongs to a tube-like structure. The

sign of eigenvalues indicates the brightness of the tube structure. The vesselness

is a measure of the probability of the pixel belonging to a blood vessel (Frangi

et al., 1998). In this special case the vesselness is a measure of the probability of

the pixel belonging to the plant stem and/or branch.
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The vesselness measure consists of two criteria: the ‘second order structure’ s;

and ‘blobness measure’ <β (Frangi et al., 1998). The ‘second order structure’ s is

calculated by using the expression: s = (λ1)
2 + (λ2)

2 for a 2D image which gives a

low response for low image contrast. The blobness <β is given by the ratio of the

Hessian matrix eigenvalues λ1 /λ2 and it has lower values for tube-like structures

than blob-like structures. The vesselness measure (ν◦) can be combined between

<β and s by the expression of Equation 6.2 where β and c are thresholds which

control the filter’s sensitivity to <β and s, respectively.

ν◦ =

exp(<β
2

2β2 )(1− exp(− s2

2c2
)) ifλ2 > 0;

0 otherwise

 (6.2)

Figure 6.2 shows a hibiscus nursery plant from an arbitrary side view under indoor

conditions with different output of vesselness measure results. The plant images

show different responses of the vesselness measure to the stem and branches with

varying values of standard deviation σs. By increasing the value of σs, the width of

the detection line increases and the detection of blob leaf areas can be recognised

and increased as the blobness <β increased. The brightness of detected branches can

be controlled by setting a suitable value to β and c (the parameters of Equation 6.2).

Prior to the selection of suitable values for σs and the threshold values of β and c,

a wide range of these parameters was investigated. It was found that the values

of (σs= 0.55, β = 0.5 and c = 7) can provide the optimal segmentation results for

stems and branches only, without including edges of leaves as shown Figure 6.2. The

calibration of these parameters as an initial setting is required only once during the

development of the algorithm. The same values of these parameters were applied

then for all plant images which produce satisfactory results.
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Figure 6.3 demonstrates the output of vesselness measure after applying a mor-

phological area opening operation. Applying the area opening operation based on

the area of the objects to eliminate unwanted parts, is important at this stage, in

order to remove most of the unwanted leaf parts from the image. Then the Hough

transform technique was applied for detecting stem and branch lines as applied

this technique before removing unwanted parts, could produce more false positive

lines for leaf edges, which could be similar to the small twigs. The area opening

operation works under the concept of the connected components algorithm, which

removes all connected components (objects) having an area fewer than the selected

xc pixels. The value of xc can be any integer value.

 
 

  

(a) (b)

(c) (d)

Figure 6.2: Hibiscus nursery plant (a) RGB image, (b), (c) and (d) illustrate output of

Frangi vesselness filter with standard deviation σs = 0.55, 2.55 and 4.55 respectively.
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By examining different values of xc it is recognised that, xc = 50 could produce an

optimal segmentation result to eliminate leaf areas and preserve stem and branches

areas. Figure 6.3 presents plant images when applying different values of xc. The

value of xc smaller than 50 could reveal unwanted parts of plant such as leaves’

edges, while xc greater than 50 can eliminate some stem and branch parts. The

setting of xc was required only once during the development of the algorithm. The

optimized value of xc was applied for the rest of the hibiscus plant images at indoor

and outdoor conditions which produced the desired outcomes.

The evaluation of vesselness measure technique was based on qualitative evaluation

as the technique deals with plant images. This technique includes several parame-

ters which need to be calibrated. The setting of these parameters is required only

once and therefore, not for every image. The optimised values of these parameters

were applied for the rest of the hibiscus plant images at indoor and outdoor condi-

tions which produced the desired outcomes. Therefore, these values of parameters

are expected to work with other types of plants that have several branches. The

theoretical optimization of the algorithms parameters would be the next topic to

be investigated.
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(a) (b)

(c) (d)

Figure 6.3: Different values of area opening operation xc for the image of Figure 6.2b, (a)

xc=10, (b) xc=30, (c) xc=50, and (d) xc=70 respectively.

6.4.1 Line fitting using Hough transform technique

To fit a line to the vesselness measure, the Hough transform technique (Duda and

Hart, 1972) was used to identify the main stem and branches of the plant. The

Hough transform uses a voting technique to identify points located on the same

line and performs well to detect the main stem and branches. Typical figures of

branch segmentation algorithm steps are shown in Figure 6.4. Figure 6.4d displays

excellent Hough transform lines overlay on a hibiscus plant, however, the Hough

transform lines were less visible on individual branches on outdoor plants under

variable lighting conditions.
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(a) (b)

(c)

(d) (e)

(f) (g)

Figure 6.4: Typical steps of the branch segmented algorithm: (a) RGB image; (b) ves-

selness measure output; (c) area opening operation xc=50; (d) Hough transform multiple

lines output; (e) single line for each branch; (f) assigning different colour for each line;

and (g) overlapping those lines with the RGB image.
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Figure 6.5 shows the output of the Hough transform accumulator. The small black

square points represent the values for each stem detected by the Hough transform

technique. There are five groups of points which represent the detection of five

branches. The Hough transform technique puts all these groups in one bin as

explained in stem and branch detection algorithm steps (Listing 6.1).

 Group of 

branch 5 

 Group of 

branch 2 

 Group of 

branch 1 
 

Group of 

branch 4 

 

Group of 

branch 3 

Figure 6.5: Hough transform Accumulator output for the images in Figure 6.6a and 6.6b.

The groups are numbered as branch numbers for the image in Figure 6.6a.

The Hough transform represents each branch by multiple lines as shown in Fig-

ure 6.4d The developed algorithm minimises multiple lines to one single line for

each branch as shown in Figures 6.4e to 6.4g following the steps in Listing 6.1:
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Listing 6.1 Stem and branch detection algorithm steps

1. Apply vesselness measure filter (Equation 6.2) on the gray scale image to

segment stem and branches.

2. Use morphological area opening operation to remove non-branch objects.

3. Apply Hough transform (lines) to find the segmented branches.

4. Use Hough transform parameters (ρ, θ) to classify detected lines and store

the lines which share the same parameters (or close values) in the same bin.

5. Count the number of branches by counting the numbers of bins.

6. Hough transform draws multiple lines for each segmented branch, the devel-

oped algorithm uses other parameters of the Hough transform (the values of

x and y coordinates for each line point) to arrange the points in ascending

order and draws a single line for each branch.

7. Validate the points of each line and delete any points greater than the allo-

cated threshold distance. The threshold distance was set where points from

the same line should have less than ±20◦ difference in θ.

8. Classify each branch and present it in a different colour. Figure 6.4 shows the

process steps of the developed algorithm

6.5 Results evaluation and discussion

6.5.1 Indoor results

The algorithm was applied on 12 images of hibiscus nursery plants. Figure 6.6

shows samples of these images and their results from different perspectives and

different indoor illumination conditions. Two indoor illumination conditions were

investigated: artificial light; and diffused sunlight through a glass window. Fig-
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ures 6.6a and 6.6b present plants under the first illumination condition (artificial

light). It can be seen that the stem and all branches are segmented successfully

by the developed algorithm. Figures 6.6c and 6.6d, show the hibiscus plant from

another aspect under diffuse sunlight conditions. The results for these images show

that there was one undetected branch due to a shadow being cast by other branch

leaves.

The same problem was observed for the images in Figures 6.6e and 6.6f, where

one or two branches were omitted from the segmented branches. Although those

branches can be perceived in the colour images, there is no typical reflected line

profile from the shaded branches to be detected by the vesselness measure technique.

As the vesselness measure technique is based on detecting a typical line profile of

reflected light on the colour image (Section 6.4), the vesselness measure was not

able to detect the line profile for these branches. Table 6.1 illustrates the results

of stem and branch segmentation algorithm for hibiscus plant images under indoor

illumination conditions. The table shows a dissimilar number of branches for each

image of the same plant. The number of branches changed according to the side

view of the image. From Table 6.1 it can be observed that images 1 and 12 show

an optimal result, where all branches are segmented successfully by the proposed

algorithm. There is a variance in the other results due to different indoor lighting

conditions.
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Figure 6.6: Image of hibiscus nursery plant from different aspects (Column one); the

results after stem and branch segmentation algorithm is applied (Column two). The

images were taken under indoor conditions, (a), (b), (e) and (f) with artificial light, (c),

and (b) with diffuse sunlight
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Table 6.1: Stem and branch segmentation results for 12 hibiscus plant images under

indoor conditions.

Image No. Branch no. Automatic count Light type Accuracy% Sensitivity% Precision%

Image 1 5 5 Artificial light 100 100 100

Image 2 8 7 Diffused sunlight 88 88 100

Image 3 4 3 Artificial light 75 75 100

Image 4 5 4 Diffused sunlight 80 80 100

Image 5 5 6 Diffused sunlight 83 100 83

Image 6 6 4 Diffused sunlight 67 67 100

Image 7 5 4 Diffused sunlight 80 80 100

Image 8 7 5 Artificial light 71 71 100

Image 9 5 4 Artificial light 80 80 100

Image 10 7 4 Artificial light 57 57 100

Image 11 5 4 Diffused sunlight 80 80 100

Image 12 5 5 Artificial light 100 100 100

6.5.2 Outdoor result

6.5.2.1 Hibiscus plant

The algorithm was applied to seven hibiscus plant images taken in sunny conditions

at midday, in the afternoon, and at sunset. In an outdoor environment, the resulting

images showed many unwanted lines due to extensive noise in the background.

Hence, an additional step was included which checked the values of the Hough

transform parameters (ρ, θ) and removed extra lines in the images not related to

plant branch and stem.
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Figure 6.7 presents three selected images with different responses to the algorithm.

The images were taken from different aspects of the plant at midday and in the

afternoon. Not all branches are shown clearly due to sunlight reflection and partial

shadow areas in the images. As the vesselness measure is affected by the illumination

conditions, the algorithm failed to detect branches under shadow or in overexposed

areas. An acceptable response was shown by the images in Figures 6.7b and 6.7d,

whereas a low response was indicated in Figure 6.7f.

The average accuracy, sensitivity and precision for the hibiscus plant in indoor and

outdoor conditions are illustrated in Table 6.2. High rate results were obtained

by the indoor plant images with 81%, 82%, 98.6% for accuracy, sensitivity and

precision respectively. In contrast, poor results were observed for the hibiscus plant

of outdoors.

Table 6.2: Final average of accuracy, sensitivity and precision for the hibiscus plant in

indoor and outdoor conditions.

Total Average of No. of images Accuracy % Sensitivity % Precision %

Hibiscus plant / indoor 12 81 82 98.6

Hibiscus plant / outdoor 7 49.5 49.5 100
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(a) Image 1

Non detected branch

(b) Image 1 result

(c) Image 2

Non detected branch

(d) Image 2 result

(e) Image 3

Non detected branches

(f) Image 3 result

Figure 6.7: Hibiscus nursery plant, (a), (c) and (e) RGB image; (b), (d) and (e) stem and

branch detection results.
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6.5.2.2 Cotton Plant

The stem and branch detection algorithm was applied to big pot cotton plant images

(350 mm pot diameter). Cotton plants are different from hibiscus plants in that

petioles (the stalk that joins a leaf to a stem) are more obvious on cotton plants

than they are on the hibiscus. The algorithm was applied to 48 images taken on

both sunny and shady days at different times: midday, afternoon, and sunset. The

results show that the stem was detected successfully for only 10/48 images, which

is a low segmentation rate (21%).

The low segmentation rate was expected to be due to leaves hiding the stem, there-

fore it is hard to detect a complete stem profile which is normally covered by leaves.

Partial shadow due to poor illumination conditions was another issue for certain

parts of the stem that faced the camera. Figure 6.8 presents four examples of cotton

plant images where stems were detected successfully.

Extra work and trials are discussed in Chapter 7 to cope with direct sunlight con-

ditions, however detecting the stem and branches under direct sunlight is a big

challenge using the vesselness measure technique. The literature reports two pre-

vious attempts to detect the stem using vesselness measure technique: Firstly, by

using camera enclosure to establish ideal light conditions for the plants facing the

camera (McCarthy et al., 2009); and secondly by using an active sensor at night

(Nakarmi and Tang, 2013). After segmenting important plant parts (leaf, stem,

branch), a method of reconstructing these parts in 2.5D model will be proposed in

the next section.
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(a)

(b) (c)

(d)

Figure 6.8: The result of stem detection for 4 big pot cotton plants (350 mm diameter)

in sunny conditions
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6.6 Reconstruction of plant segmented parts and

3D localisation

Depth information can enhance the process of plant parts reconstructing and mod-

elling by adding a third dimension, depth, to produce a 3D model. A reconstruction

plant model from 3D images has distinct advantages over a 2D image for quantify-

ing the structural information of plants such as leaf angle distribution and leaf area

(Lià et al., 2015). The 3D geometrical and accurate plant model can enhance accu-

racy measurements and modelling of biological processes, such as yield prediction,

plant growth modelling and photosynthesis (Golbach et al., 2016).

In this study, the results of leaf segmentation using depth imaging can be integrated

with the results of stem detection to reconstruct a plant model. The stem and

branch extraction method was implemented using 2D colour images. Then, x and

y coordinate values for stem and branches could be determined from the 2D colour

images. Afterwards, depth values were assigned to the stem and branches from the

disparity map. Similarly, depth values were assigned to the segmented leaves. Then,

a 2.5D model of the plant could be generated by integrating the plant segmented

leaves and plant extracted stem and branches in a 3D coordinate image. Figure 6.9

presents a 2.5D model reconstruction of two hibiscus plant images captured from

different aspects.
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Figure 6.9: Plant part reconstruction of two images of a hibiscus plant to generate a 2.5D

model

A 2.5D model obviously cannot present as much information as a full 3D model

because it is generated from one colour and one disparity image only. However, it

shows plant geometry in x, y, z image coordinates. This model can be extracted

from depth images while a real 3D model of the plant can be generated from the

dense point cloud data (Paulus et al., 2014). To generate a 3D model of a plant

which would more accurately describe plant parts and positions, further work needs
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to be undertaken with more than one image that needs to be taken from different

aspects of the plant. The method proposed in Chapter 4, which extracted leaf

plane from leaf vertices, can be used for geometric description of individual leaves.

This method can potentially measure individual leaf orientation for the purpose of

generating a 3D plant model. A point cloud library is another method which can

be used to implement a 3D model of the plant (Santos and Rodrigues, 2015). The

use of different sensors such as 3D laser scanner (Chaudhury et al., 2015), (Hétroy-

Wheeler et al., 2016) is usually the most common method of producing a 3D plant

model. Further work and more ideas that can be implemented in plant modelling

using the stereo vision techniques that are recommended in Chapter 7.

For plant part localization, the distance formula of Equation 6.3 will be applied on

the disparity image to find the position of each leaf in X, Y , Z world coordinates

and also to find the distance from each leaf to the camera

Zdepth =
b · f
ds

(6.3)

where, Zdepth = the distance along the camera’s Z axis in meters, b = the baseline

of the camera (in metres - 0.12 m for Bumblebee2), f = the focal length of the

lenses and ds = disparity (in pixels). The X and Y components of the Euclidean

coordinates can be determined by triangulation and could be calculated by the

Equations 6.4 and 6.5.

X =
x · Zdepth

f
(6.4)

Y =
y · Zdepth

f
(6.5)
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where x and y represent the image coordinates of the left point of a corresponding

pair of images.

6.7 Chapter Summary

The automatic detection and counting of the plant branches algorithm was demon-

strated. The detection of branches was achieved by applying the vesselness measure

and the Hough transform technique. The vesselness measure was more effective in

detecting branches than edge detection filters (Sobel, Canny) as edge detection fil-

ters detect all the details of plant structures such as leaves and leaf veins. Hibiscus

and cotton plants were used to evaluate the performance of the new algorithm.

An experimental test was conducted first on 12 colour images of a hibiscus plant

taken randomly from different aspects in indoor conditions. The results showed that

2 of 12 images were completely detected by the algorithm, 7 of 12 were detected

with one branch missing or an extra number of branches, while the remaining three

were presented with two or three undetected branches. Two parameters clearly

affected stem and branch segmenting results: a clear view of the plant from the

camera; and good illumination conditions. The average accuracy, sensitivity and

precision were 81%, 82% and 98.6% respectively in indoor environment.

Further work to enhance the algorithm was implemented to deal with outdoor

images and remove extra lines of background regions which are not related to plant

branch and stem. The algorithm was applied to 7 images of hibiscus plants taken at

different times on a sunny day and 48 images of cotton plants under different light

conditions. The outdoor images have a lower response to the algorithm than the

indoor images. The low response was due to both differing illumination conditions



6.7 Chapter Summary 195

and complex backgrounds. The average accuracy was 49.5% for hibiscus and 21%

for cotton with 100% precision rate for both plants in outdoor conditions. As the

indoor images have a much higher accuracy than the outdoor images, a shade hood

for the stereo vision camera and crop or nursery plants is a possible option to

increase the accuracy in outdoor environments.

Depth information can enhance the process by adding the third dimension to the

plant image and produce the a 2.5D model of the plant. A method for reconstructing

the segmented parts of hibiscus plants has been presented. The method can generate

a 2.5D model and present the 3D plant information. This model was generated by

integrating one colour image with disparity map information.



Chapter 7

Conclusions and Future work

The principal contribution of this research is the development of an image analysis

system using colour and depth information to segment, count and separate between

overlapping leaf boundaries using depth gradient discontinuity. This algorithm

can work in a semi-structured outdoor environments under a variety of sunlight

conditions (sunny, shady and cloudy). The developed system has the capability of

detecting, classifying and counting plant stems and branches automatically using

colour features and the vesselness measure techniques in both indoor and outdoor

conditions. This system is also able to reconstruct the segmented plant parts to

generate a 2.5D plant model which can be used to monitor plant characteristics for

various growth stages. The image analysis system presents a method to extract a

geometrical plane from each segmented leaf. This geometric plane can be used to

parameterise a 3D model of the plant image. Another contribution of this study

is the collection of a detailed data set of cotton plant images at different growth

stages under varying outdoor lighting conditions. These data sets could be added

to the plant image data sets to be beneficial for other research studies.
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This chapter presents the conclusions of this study with respect to the achievement

of the objectives listed in Section 1.7. It also provides suggestions for potential

future applications and recommendations for further development of the research.

7.1 Conclusions

This section provides an overview of the performance of the algorithms which have

been developed in this research study. Their evaluations are as follows:

1. Leaf detection and counting. A leaf segmentation process which has the

ability to segment plant leaves from both a complex background and other

parts of the plant was developed in Chapter 4. An effort was made to find the

best method of consistently segmenting leaves from different aspects of plant

images in a variety of outdoor environments. Depth information was effec-

tively used to segment the plant from background objects, while colour trans-

formation, image enhancement techniques and ellipse criteria were utilised to

isolate the leaf pixels from other plant part pixels. The developed process can

segment the individual leaf from the plant canopies; however, some leaves still

appear to be connected or overlapped. To address this problem, a method for

separating the overlapped leaf boundaries was presented in Chapter 4. This

method named Depth Discontinuity Segmentation (DDS), contains three main

techniques based on searching for discontinuity in depth using global and local

methods.

The capability of this method for separating the overlapping leaves was eval-

uated with two differently structured plants, cotton and hibiscus. The hibis-

cus plant has a simpler structure to cotton, however the leaf segmentation
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techniques were applied sequentially on hibiscus to solve the overlapping leaf

problem. The developed algorithm was applied on cotton plant images (252

images at different growth stages) and 20 images of hibiscus plant. The re-

sults for the three different illumination conditions (sunny, shade and cloudy)

were presented and analysed in Chapter 5. Certain issues affected leaf seg-

mentation accuracy such as overexposure, leaf orientation and the occlusion

between leaf boundaries. Other issues such as shadow, low illumination and

leaf size also affected the segmentation accuracy in different rates. These

issues were presented and analysed in detail in Chapter 5. In total, from

approximately 2453 leaves, 78% of these leaves were detected successfully by

the developed algorithm. The segmented leaves included 578 occluded and

overlapped leaves. There were 484 leaves separated successfully with a high

separation rate (84%). The results show, an enhancement in leaf detection

was observed when utilising a combination of image features such as colour,

shape and depth, rather than using each feature separately. The overall sen-

sitivity, precision and accuracy of detecting and separating leaves were 78%,

89% and 71% respectively for all plant images under different environmental

and illumination conditions.

2. Geometric plane extraction. A method has been developed that extracted

a geometrical plane from the vertices of each leaf. This geometric plane can

be used to parameterise a 3D model of the plant image. The purpose of this

work is to measure the inclination angle of each individual leaf. The measured

angles will be useful for reconstructing plant leaves in different orientations

to develop a 3D model of the plant.

3. Stem and branch detection. In this study, the automatic detection and

counting of a plant branch algorithm was developed (Chapter 6). A stem and
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branch detection algorithm was achieved by applying both vesselness measure

and Hough transform techniques. The proposed algorithm was reliant on

the colour feature to extract stem and branch profiles. Experimental tests

were conducted with 12 colour images of a hibiscus plant taken randomly

from different aspects in indoor conditions. Further work on enhancing the

algorithm was recently implemented with hibiscus and cotton plant images in

outdoor conditions. The stem and branch detection algorithm was evaluated

by its ability to extract these features in a plant using big cotton and hibiscus

plants. The outdoor images have a lower response to the algorithm than

the indoor images. The low response was caused by differing illumination

conditions and the complexity of the background. The average accuracy,

sensitivity and precision were 81%, 82% and 98.6% respectively for indoor

images. In outdoor conditions, both accuracy and sensitivity had the same

values, 49.5% for hibiscus and 21% for cotton, while the precision rate was

100% for both plants.

4. Reconstruction of plant parts. A method to reconstruct a 2.5D model

of a hibiscus plant was developed in Chapter 6. The results of the stem and

branch segmentation algorithm have be integrated with the results of the leaf

detection algorithm, to reconstruct plant parts in 3D coordinates and produce

a 2.5D model of the plant. This model of the plant does not represent a real

3D model because it only uses one colour image and disparity map information

(as illustrated in Chapter 4), however, the model presents the geometry data

of the plant in x, y, z image coordinates. This model can be used to monitor

plant characteristics for various growth stages.

For each objective, the research work was implemented under different lighting con-

ditions as working outdoors needs to consider different lighting and different plant
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aspects with respect to the sun. The algorithm was also applied to different growth

stages of plants in order to evaluate the performance of the algorithm with differ-

ent levels of plant complexity. From the overview of the algorithm’s performance

for each objective and the results obtained, the following can be concluded, which

adequately answers the research questions listed in Section 1.6:

1. The developed algorithms can extract plant stems, segment individual leaves

and count the number of leaves automatically. Each of these plant parts has

a different visual feature. For example, stem and branches have thin, straight

and vessel shapes which can be segmented using vesselness measure and line

detection techniques. Leaves have other distinct features such as colour, shape

and smoothness of depth change within themselves. The difference in depth

between leaf boundaries is another feature which can be beneficial to segment

overlapping leaves from each other. The developed algorithm can segment

each of these plant parts according to its visual feature using different im-

age analysing techniques. The results show, cotton leaves are more obvious

to be detected from plant images than stem, which is usually covered by

leaves. Therefore, leaves in cotton can be segmented more accurately than

stems. The detection and counting of leaves in cotton can help inform some

plant characteristics such as leaf density and vegetative growth information.

This information is useful for estimating growth stages and enhancing crop

management practices. The results also present each plant’s features includ-

ing stems, branches and leaves that can be segmented accurately for hibiscus

plants due to the structural difference of hibiscus plants from cotton plants.

The leaf segmentation results can be integrated with stem detection results to

reconstruct the plant model. This model could be useful to calculate further

information such as plant height, width and volume which could provide good
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estimations for plant growth. The estimation of plant growth could be bene-

ficial for many agricultural tasks such as yield estimation and input resource

optimisation to reduce costs and increase crop productivity.

2. The stereo vision system used in this research study can successfully extract

the important features of a plant (e.g. leaf, stem). A combination of image

features such as colour, shape and depth was used to implement plant seg-

mentation. The colour feature was used to distinguish between the green of

leaves and other parts of the plant. Shape elliptical property was useful to

detect leaves and eliminate unwanted objects from plant images. The depth

feature was used, in the first stage of the algorithm, to segment the plant

image from the complex background. The depth feature can also enhance

the leaf detection algorithm by targeting the occlusion in leaf boundaries and

separating them according to the discontinuity in depth gradient. As leaves

have 3D shape properties, they can benefit from depth property more than

other parts of a plant.

3. Overexposure, partial shadow and low illumination are the main ambient

lighting issues that affected the performance of the stereo vision sensor at

different rates. Overexposure was the main lighting issue affecting the per-

formance of the algorithm when leaves show yellow rather than green colour.

Overexposure caused false negative leaves, whilst shadow produced false posi-

tive leaves. The algorithm can cope with some images having these issues and

produces acceptable results. In some particular cases, it was hard to recognise

all the leaves in a plant image when the illumination condition was low with

obscure leaf orientation.

Leaf orientation, size and occlusion also affected results in different ways.

Small leaves are difficult to distinguish between using visual inspection. Larger
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leaves exhibit bending around each lobe causing distinct depth differences

for different lobes of a single leaf. The impact of leaf orientation on the

algorithm’s performance was investigated, which affects the perceived shape

of the leaf. Overlapped leaves may exist in most of the plant images. The

developed algorithm separated overlapped leaves relying on discontinuity in

depth gradient values. The developed algorithms could be applied to many

machine vision applications and could enhance the precision of agricultural

operations.

7.2 Potential application of the research work

The machine vision system developed in this study can be applied to several com-

mercial and scientific applications for the agricultural mobile robot as described

below:

7.2.1 Plant inspection and growth monitoring

As a routine agricultural task, plant inspection is normally undertaken by the farmer

in order to have up-to-date information about growing plants. Routine agricultural

tasks are usually repetitive operations which are highly labour intensive and con-

sume long hours. Mobile robots have the potential for compensating human inspec-

tion routines and being more robust to implement the potentially risky agricultural

operations currently undertaken by humans (de Oliveira Neris et al., 2007). In-

spection mobile robots should have intelligent machine vision systems to sense the

environment and complement different agricultural tasks.
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The stereo vision system used in this study (with the developed algorithms) can

recognise the important features of plants (leaf, stem, branches) which can help

monitoring plants of different agriculture practices. Plant leaf images can support

farmers with the required information needed to identify certain problems related to

plant growth and health, such as water stress, wilting, nitrogen deficiency, damage

and disease attack.

The stereo vision system can also analyse data, count the number of leaves and find

the position of each individual in X, Y, Z coordinates. From this information, fur-

ther information can be calculated such as plant height, width, and volume. More-

over, the distance between the camera and each individual leaf can be calculated.

As the distance between plant leaf and the stereo vision sensor can be calculated,

the mobile robot can position itself closer to the specified leaf and capture another

closer image. This closer image will more effectively examine leaf health and dis-

ease, leaf area, water stress, and nutrient deficiency. This image could also be used

for plant species identification.

7.2.2 Leaf inclination angle measurement

Leaf inclination angle distribution is an effective indicator of drought stress and leaf

wilt (Mizuno et al., 2007). Plant leaf orientation usually presents the response of

the plant to environmental change. Measuring individual leaf angle distributions

manually tends to be labour-intensive (Biskup et al., 2007). To overcome this

problem, the proposed algorithm uses a plane extraction method to find the most

accurate plane tailored with each leaf as explained in Section 4.6. When the plane

equations are known, the leaf inclination angle can be measured. The leaf inclination

angle will be useful to find the orientation of the leaf. Thus, the mobile robot arm
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can be projected to the particular leaf with the same angle of orientation and

perform specific functions.

Furthermore, leaf inclination angle measurement is important for plant water stress

indicators, and the automated irrigation of plants can be controlled by visual moni-

toring of the plant (Farkas, 2011). Another benefit of inclination angle measurement

is in finding the orientation of each leaf in order to implement the 3D model re-

construction of the plant canopy. The generation of 3D realistic-looking models

of plants from images is useful for simulating and analysing the silent response of

plants to the environmental effects, stresses, and climate changes.

7.3 Future work and recommendations

7.3.1 Development of leaf detection algorithm

The performance of a leaf detection algorithm could be enhanced by implementing

further recommended developments as follows:

1. Adding additional features such as leaf texture can enhance the recognition

capability of the leaf detection algorithm.

2. Developing an interactive or fused approach for colour and depth information

to isolate the foreground (ROI) from the background of plant image. This

method would require the use of both a disparity map and colour image used

in parallel to implement the segmentation. The fusion of the colour and the

depth data can be implemented using a neural network classifier with tuning

thresholds for colour and depth values to effectively isolate the plant pixels
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from background pixels.

3. Neural network technology could be investigated and trained for some plant

leaves’ irregular shapes and areas. As the algorithm detected plant leaves

with a variety of areas from different aspects and orientations, this training

will have the potential to distinguish between single leaves and clusters of

overlapping leaves, depending on the average leaf area.

7.3.2 Detection of large and bent leaves

The depth discontinuity segmentation algorithm (DDS) discussed in Chapter 4

was applied to a variety of leaf sizes and shapes. One of the limitations of this

algorithm is large leaf size and bent leaves as discussed in Chapter 5. The DDS

algorithm segments these types of leaves according to the depth gradient property

which produces two or more areas. A training leaf boundary classifier MLP (Xia

et al., 2013) could be investigated to overcome this problem, whereas leaf shape

boundaries could be used for training the classifier to identify these types of leaves.

7.3.3 Development of stem detection algorithm

The stem detection algorithm could be enhanced as follows:

1. Using a shade hood for the stereo vision camera and crop or nursery plants is

a possible option to increase the accuracy in outdoor environments.

2. For cotton plants, the stem position and height can be estimated using seg-

mented leaf information such as the distance between the boundary leaves
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on both sides of the plant. Suitable functions such as fitting line and curve

interpolation algorithms could be used to reconstruct the plant stem.

3. The new colour transformation method proposed by Ji et al. (2016) could

be investigated to enhance stem extraction from other parts of the plant and

background in outdoor conditions.

7.3.4 Development of 3D model reconstruction

The reconstruction of plant parts in 3D coordinates could be developed using a

different method as follows:

1. Leaf inclination angles can be calculated from the geometrical plane which is

extracted from each leaf by the method proposed in Chapter 4. The measured

angles, along with the leaf position information in 3D coordinates, can be

used to enhance the reconstruction of plant leaves with respect to the plant

stem and branch position. The values of these angles can be used to project

and model the missing petioles or small twigs between leaves and stems or

branches.

2. The reconstruction of plant parts in a 3D model can be enhanced by using

more than one image captured from different poses of plant position with the

aid of depth information. This method can be implemented by examining and

developing the fast 3D reconstruction method proposed by (Golbach et al.,

2016) for high-throughput seedling phenotyping.
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Yahiaoui, I., Hervé, N. and Boujemaa, N. (2006), Shape-based image retrieval in

botanical collections, in ‘Pacific-Rim Conference on Multimedia’, Springer,

pp. 357–364.

Yamamoto, K., Guo, W. and Ninomiya, S. (2016), ‘Node detection and internode

length estimation of tomato seedlings based on image analysis and machine

learning’, Sensors 16(7), 1044.



REFERENCES 231

Yang, L., Dickinson, J., Wu, Q. and Lang, S. (2007), A fruit recognition method for

automatic harvesting, in ‘Mechatronics and Machine Vision in Practice, 2007.

M2VIP 2007. 14th International Conference on’, Ieee, pp. 152–157.

Yanikoglu, B., Aptoula, E. and Tirkaz, C. (2014), ‘Automatic plant identification

from photographs’, Machine vision and applications 25(6), 1369–1383.

Yuan, T., Li, W., Feng, Q. and Zhang, J. (2010), Spectral imaging for greenhouse

cucumber fruit detection based on binocular stereovision, in ‘2010 Pittsburgh,

Pennsylvania, June 20-June 23, 2010’, American Society of Agricultural and

Biological Engineers, p. 1.

Zecha, C., Link, J. and Claupein, W. (2013), ‘Mobile sensor platforms: Categori-

sation and research applications in precision farming’, Journal of Sensors and

Sensor Systems 2(1), 51–72.

Zemel, R. S., Dayan, P. and Pouget, A. (1998), ‘Probabilistic interpretation of

population codes’, Neural computation 10(2), 403–430.

Zhang, C. and Chaisattapagon, N. (1995), ‘Effective criteria for weed identification

in wheat fields using machine vision’, Transactions of the ASAE 38(3), 965–

974.

Zhang, N., Wang, M. and Wang, N. (2002), ‘Precision agriculturea worldwide

overview’, Computers and electronics in agriculture 36(2), 113–132.

Zhang, T. and Suen, C. Y. (1984), ‘A fast parallel algorithm for thinning digital

patterns’, Communications of the ACM 27(3), 236–239.

Zhao, D., Xie, D., Zhou, H., Jiang, H. and An, S. (2012), ‘Estimation of leaf area

index and plant area index of a submerged macrophyte canopy using digital

photography’, PloS one 7(12), e51034.



REFERENCES 232

Zhao, J., Tow, J. and Katupitiya, J. (2005), On-tree fruit recognition using texture

properties and color data, in ‘Intelligent Robots and Systems, 2005.(IROS

2005). 2005 IEEE/RSJ International Conference on’, IEEE, pp. 263–268.

Zhou, R., Damerow, L., Sun, Y. and Blanke, M. (2012), ‘Using colour features of cv.

’gala’ apple fruits in an orchard in image processing to predict yield’, Precision

Agriculture pp. 1–13.

Zhu, W., Zeng, N., Wang, N. et al. (2010), ‘Sensitivity, specificity, accuracy, associ-

ated confidence interval and roc analysis with practical sas implementations’,

NESUG proceedings: health care and life sciences, Baltimore, Maryland 19.



Appendix A

Stereo vision camera and

specifications



A.1 Stereo vision camera 234

A.1 Stereo vision camera

The Bumblebee2 is pre-calibrated for lens distortions and camera misalignments.

The camera does not require in-field calibration, as this information is pre-loaded

on the camera. A stereo rig is used to calibrate the cameras. The images have to

be mapped using a pin-hole camera model. The resulting image is called ‘rectified’.

The camera synchronises by itself which is particularly useful for acquiring 3D data

from multiple points of view. The camera pixel resolution is 640×480 at 48 frames

per second (FPS) or 1024×768 at 20 FPS. The camera is pre-calibrated within 0.1

pixel RMS error, based on a stereo resolution of 640×480 and is valid for all camera

models. Calibration accuracy will vary from camera to camera.

When the camera produces the disparity image, two kinds of stereo errors can be

found: mismatch; and estimation. Mismatch error means the disparity map is

wrong, while estimation error interpolates that there are some errors in the esti-

mating of values for the position of the sub pixel disparity value and the correlation

match was correct. Validation was used to remove mismatch errors only. The Tex-

ture Validation and Surface Validation are the most effective combination to use

(PointGray, 2012).

A.2 Camera specifications

The following data sheets presents Bumblebee2 camera characteristics, design and

specifications:
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FLIRBUMBLEBEE®2 
1394a

FLIRBUMBLEBEE®XB3 
1394b

PRE-CALIBRATED AGAINST 
DISTORTION AND MISALIGNMENT
The Bumblebee®2 stereo vision camera provides a balance between 3D 

data quality, processing speed, size and price. Developed as a drop-in 

replacement for the original Bumblebee camera, the Bumblebee2 also 

features increased frame rate and a GPIO connector for external trigger 

and strobe functionality. 

PRE-CALIBRATED + MULTI-BASLINE + 3 SENSORS
The Bumblebee® XB3 is a 3-sensor multi-baseline IEEE-1394b 

(800Mb/s) stereo camera designed for improved flexibility and accuracy. 

It features 1.3 mega-pixel sensors and has two baselines available 

for stereo processing. The extended baseline and high resolution 

provide more precision at longer ranges, while the narrow baseline 

improves close range matching and minimum-range limitations. 

36 mm

157 mm47.4 mm

37 m
m

277 mm41.8 mm

REAR VIEW

12 PIN GPIO CONNECTOR IEEE 1394A CONNECTOR

2-M3x4 DEEP BOTTOM VIEW
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Specification                              BB2-03S2                                    BB2-08S2                                                                  BBX3

Sony® 1/3” progressive scan CCD

Image Sensor Type                    ICX424 (648x488 max pixels)            ICX204 (1032x776 max pixels)                                            ICX445 (1280x960 max pixels)  

                         7.4μm square pixels                              4.65μm square pixels                                                              3.75μm square pixels

Baseline                                                                      12 cm                                                                                                            12 cm and 24 cm

Focal Lengths 2.5mm with 97° HFOV (BB2 only) or 3.8mm with 66° HFOV or 6mm with 43° HFOV

Aperture f/2.0 (2.5mm and 3.8mm focal length), f/2.5 (6.0mm focal length)

A/D Converter 12-bit analog-to-digital converter

White Balance                                      Automatic / Manual (Color model)                                                                                         Manual (Color model)

Frame Rates                                    48 FPS                                                    20 FPS                                                                                     16 FPS

Interfaces                    6-pin IEEE-1394a for camera control and video data transmission                       2 x 9-pin IEEE-1394b for camera control and video data transmit
                           4 general-purpose digital input/output (GPIO) pins                                                  4 general-purpose digital input/output (GPIO) pins

Voltage Requirements 8-30V via IEEE-1394 interface or GPIO connector

Power Consumption                                                                  2.5W at 12V                                                                                                           4W at 12V

Gain    Automatic/Manual

Shutter Automatic/Manual, 0.01ms to 66.63ms at 15 FPS

Trigger Modes                                         DCAM v1.31 Trigger Modes 0, 1, 3, and 14                                                       DCAM v1.31 Trigger Modes 0, 1, 3, and 14

Signal To Noise Ratio                                                                      60dB                                                                                                                      54dB

Dimensions                                                          157 x 36 x 47.4mm                                                                                                277 x 37 x 41.8mm

Mass                                                                  342 grams                                                                                                              505 grams

Camera Specification IIDC 1394-based Digital Camera Specification v1.31

Lens mount                                                  2 x M12 microlens mount                                                                                      3 x M12 microlens mount

Emissions Compliance Complies with CE rules and Part 15 Class A of FCC Rules

Operating Temperature Commercial grade electronics rated from 0° to 45°C

Storage Temperature -30° to 60°C
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