49,853 research outputs found

    Influence of cutting process mechanics on surface integrity and electrochemical behavior of OFHC copper

    Get PDF
    The authors gratefully acknowledge the support received from IC ARTS and CEA ValducSuperfinishing machining has a particular impact on cutting mechanics, surface integrity and local electrochemical behavior. In fact, material removal during this process induces geometrical, mechanical and micro-structural modifications in the machined surface and sub-surface. However, a conventional 3D cutting process is still complex to study in terms of analytical/numerical modeling and experimental process monitoring. So, researchers are wondering if a less intricate configuration such as orthogonal cutting would be able to provide information about surface integrity as close as possible to that one generated by a 3D cutting process. For that reason, in the present paper, two different machining configurations were compared: face turning and orthogonal cutting. The work material is oxygen free high conductivity copper (OFHC) and the cutting tools are uncoated cemented carbide. The research work was performed in three steps. In the first step, the process mechanics of superfinishing machining of OFHC copper was performed. In the second step, the surface integrity and the chemical behavior of the machined samples were analyzed. Finally, in the third step, correlations between input parameters and output measures were conducted using statistical techniques. Results show that when applying low ratios between the uncut chip thickness and the cutting edge radius, the surface integrity and cutting energy are highly affected by the ploughing phenomenon. Otherwise, the most relevant cutting parameter is the feed. In order to compare face turning with orthogonal cutting, a new geometrical parameter was introduced, which has a strong effect in the electrochemical behavior of the machined surface

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    Two-Dimensional Phononic Crystals: Disorder Matters

    Get PDF
    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.Comment: 19 pages, 4 figures, final published version, Nano Letters, 201

    Fast Ultrahigh-Density Writing of Low Conductivity Patterns on Semiconducting Polymers

    Full text link
    The exceptional interest in improving the limitations of data storage, molecular electronics, and optoelectronics has promoted the development of an ever increasing number of techniques used to pattern polymers at micro and nanoscale. Most of them rely on Atomic Force Microscopy to thermally or electrostatically induce mass transport, thereby creating topographic features. Here we show that the mechanical interaction of the tip of the Atomic Force Microscope with the surface of a class of conjugate polymers produces a local increase of molecular disorder, inducing a localized lowering of the semiconductor conductivity, not associated to detectable modifications in the surface topography. This phenomenon allows for the swift production of low conductivity patterns on the polymer surface at an unprecedented speed exceeding 20 ÎŒms−1\mu m s^{-1}; paths have a resolution in the order of the tip size (20 nm) and are detected by a Conducting-Atomic Force Microscopy tip in the conductivity maps.Comment: 22 pages, 6 figures, published in Nature Communications as Article (8 pages

    Better 3D Inspection with Structured Illumination Part I: Signal Formation and Precision

    Full text link
    For quality control in the factory, 3D-metrology faces increasing demands for high precision and for more space-bandwidth-speed-product SBSP (number of 3D-points/sec). As a potential solution, we will discuss Structured-Illumination Microscopy (SIM). We distinguish optically smooth and rough surfaces and develop a theoretical model of the signal formation for both surface species. This model is exploited to investigate the physical limits of the precision and to give rules to optimize the sensor parameters for best precision or high speed. This knowledge can profitably be combined with fast scanning strategies, to maximize the SBSP, which will be discussed in paper part II.Comment: 7 pages, 5 figures, submitted to Applied Optics on April 17, 201
    • 

    corecore