160 research outputs found

    A Geovisual Analytics Approach for Mouse Movement Analysis

    Get PDF
    The use of Web maps has created opportunities and challenges for map generation and delivery. While volunteered geographic information has led to the development of accurate and inexpensive Web maps, the sheer volume of data generated has created spatial information overload. This results in difficulties identifying relevant map features. Geopersonalisation, which adapts map content based on user interests offers a solution to this. The technique is especially powerful when implicit indicators of interest are used as a basis for personalisation. This article describes the design and features of VizAnalysisTools, a suite of tools to visualise and interpret users’ implicit interactions with map content. While traditional data mining techniques can be used to identify trends and preferences, visual analytics, in particular Geovisual Analytics, which assists the human cognition process, has proven useful in detecting interesting patterns. By identifying salient trends, areas of interest on the map become apparent. This knowledge can be used to strengthen the algorithms used for Geopersonalisation

    Geomatics in physiognomic landscape research: A Dutch view

    Get PDF
    Geomatics is a technology and service sector focussing on the acquisition, storage, analysis and management of geographically referenced information for improved decision-making. Landscape physiognomic and research –and its GI science application. The geomatics developments since 40 years confront us with many new algorithms and a variety of geo data. Due to these the interest in physiognomic research has been increased. This article links the variety of geodata and its processing functions to the landscape physiognomic research framework. This link is based on an overview of the geo data, the intended applications in landscape physiognomic research and the functions to perform. The article provides an overview of geographical data using/driving methods and applications that may support physiognomic landscape research that longs from methods that rely on geo-data that ranges from a administratively defined (INSPIRE), professional experiment acquired  up to collected by volunteers. These methods may act manifold: describe, proof and project of space as could be perceived, imagined and created from both perspectives affectively and cognitively. Besides to communicate results the methods include persistently also analysis by visualization. Other findings are the interest in changing objects of the landscape and perception via moving subjects

    Usability-enhanced coordination design of geovisualisations to communicate coastal flood risk information

    Get PDF
    For at least two millennia and probably much longer, the traditional vehicle for communicating geographical information to end-users has been the map. With the advent of computers, the means of both producing and consuming maps have radically been transformed, while the inherent nature of the information product has also expanded and diversified rapidly. This has given rise in recent years to the new concept of geovisualisation (GVIS), which draws on the skills of the traditional cartographer, but extends them into three spatial dimensions and may also add temporality, photorealistic representations and/or interactivity. Demand for GVIS technologies and their applications has increased significantly in recent years, driven by the need to study complex geographical events and in particular their associated consequences and to communicate the results of these studies to a diversity of audiences and stakeholder groups. GVIS has data integration, multi-dimensional spatial display advanced modelling techniques, dynamic design and development environments and field-specific application needs. To meet with these needs, GVIS tools should be both powerful and inherently usable, in order to facilitate their role in helping interpret and communicate geographic problems. However no framework currently exists for ensuring this usability. The research presented here seeks to fill this gap, by addressing the challenges of incorporating user requirements in GVIS tool design. It starts from the premise that usability in GVIS should be incorporated and implemented throughout the whole design and development process. To facilitate this, Subject Technology Matching (STM) is proposed as a new approach to assessing and interpreting user requirements. Based on STM, a new design framework called Usability Enhanced Coordination Design (UECD) is ten presented with the purpose of leveraging overall usability of the design outputs. UECD places GVIS experts in a new key role in the design process, to form a more coordinated and integrated workflow and a more focused and interactive usability testing. To prove the concept, these theoretical elements of the framework have been implemented in two test projects: one is the creation of a coastal inundation simulation for Whitegate, Cork, Ireland; the other is a flooding mapping tool for Zhushan Town, Jiangsu, China. The two case studies successfully demonstrated the potential merits of the UECD approach when GVIS techniques are applied to geographic problem solving and decision making. The thesis delivers a comprehensive understanding of the development and challenges of GVIS technology, its usability concerns, usability and associated UCD; it explores the possibility of putting UCD framework in GVIS design; it constructs a new theoretical design framework called UECD which aims to make the whole design process usability driven; it develops the key concept of STM into a template set to improve the performance of a GVIS design. These key conceptual and procedural foundations can be built on future research, aimed at further refining and developing UECD as a useful design methodology for GVIS scholars and practitioners

    Geomatics Applications to Contemporary Social and Environmental Problems in Mexico

    Get PDF
    Trends in geospatial technologies have led to the development of new powerful analysis and representation techniques that involve processing of massive datasets, some unstructured, some acquired from ubiquitous sources, and some others from remotely located sensors of different kinds, all of which complement the structured information produced on a regular basis by governmental and international agencies. In this chapter, we provide both an extensive revision of such techniques and an insight of the applications of some of these techniques in various study cases in Mexico for various scales of analysis: from regional migration flows of highly qualified people at the country level and the spatio-temporal analysis of unstructured information in geotagged tweets for sentiment assessment, to more local applications of participatory cartography for policy definitions jointly between local authorities and citizens, and an automated method for three dimensional (3D) modelling and visualisation of forest inventorying with laser scanner technology

    Virtual Campus for the University of Jaume I, CastellĂł, Spain: 3D Modelling of the Campus Buildings using CityEngine

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.The Virtual Smart Campus for the University of Jaume I – Visca Uji – is a project that aims to transform the University of Jaume I (UJi) into a “Smart Campus”. Several applications are part of the Smart Campus such as Uji Place Finder, Energy Consumption, Routes, Resources Management, and Indoor Mapping. Part of this project is the creation of the 3D model of the university buildings using Esri software — City Engine. This study analysed two 3D modeling approaches: procedural modeling language (CGA Shape) and manual modeling. The first, Computer Generated Architecture (CGA) shape is an extension of set grammars that have been applied in CG successfully over the years. And the second, CityEngine offers a set of shape creation and editing tools that allows a more intuitive and pragmatic 3D modeling technique. Both approaches have advantages and disadvantages, overall creating a 3D model by using procedural modelling language showed to be the more efficient and pragmatic method

    Evaluation of visualisations of geographically weighted regression, with perceptual stability

    Get PDF
    Given the large volume of data that is regularly accumulated, the need to properly manage, efficiently display and correctly interpret, becomes more important. Complex analysis of data is best performed using statistical models and in particular those with a geographical element are best analysed using Spatial Statistical Methods, including local regression. Spatial Statistical Methods are employed in a wide range of disciplines to analyse and interpret data where it is necessary to detect significant spatial patterns or relationships. The topic of the research presented in this thesis is an exploration of the most effective methods of visualising results. A human being is capable of processing a vast amount of data as long as it is effectively displayed. However, the perceptual load will at some point exceed the cognitive processing ability and therefore the ability to comprehend data. Although increases in data scale did increase the cognitive load and reduce processing, prior knowledge of geographical information systems did not result in an overall processing advantage. The empirical work in the thesis is divided into two parts. The first part aims to gain insight into visualisations which would be effective for interpretation and analysis of Geographically Weighted Regression (GWR), a popular Spatial Statistical Method. Three different visualisation techniques; two dimensional, three dimensional and interactive, are evaluated through an experiment comprising two data set sizes. Interactive visualisations perform best overall, despite the apparent lack of researcher familiarity. The increase in data volume can present additional complexity for researchers. Although the evaluation of the first experiment augments understanding of effective visualisation display, the scale at which data can be adequately presented within these visualisations is unclear. Therefore, the second empirical investigation seeks to provide insight into data scalability, and human cognitive limitations associated with data comprehension. The general discussion concludes that there is a need to better inform researchers of the potential of interactive visualisations. People do need to be properly trained to use these systems, but the limits of human perceptual processing also need to be considered in order to permit more efficient and insightful analysis
    • …
    corecore