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i 

 

Abstract  

Given the large volume of data that is regularly accumulated, the need to properly manage, 

efficiently display and correctly interpret, becomes more important. Complex analysis of data 

is best performed using statistical models and in particular those with a geographical element 

are best analysed using Spatial Statistical Methods, including local regression. Spatial Statistical 

Methods are employed in a wide range of disciplines to analyse and interpret data where it is 

necessary to detect significant spatial patterns or relationships. The topic of the research 

presented in this thesis is an exploration of the most effective methods of visualising results.  

A human being is capable of processing a vast amount of data as long as it is effectively 

displayed. However, the perceptual load will at some point exceed the cognitive processing 

ability and therefore the ability to comprehend data. Although increases in data scale did 

increase the cognitive load and reduce processing, prior knowledge of geographical information 

systems did not result in an overall processing advantage.  

The empirical work in the thesis is divided into two parts. The first part aims to gain insight into 

visualisations which would be effective for interpretation and analysis of Geographically 

Weighted Regression (GWR), a popular Spatial Statistical Method. Three different visualisation 

techniques; two dimensional, three dimensional and interactive, are evaluated through an 

experiment comprising two data set sizes. Interactive visualisations perform best overall, 

despite the apparent lack of researcher familiarity.  

The increase in data volume can present additional complexity for researchers. Although the 

evaluation of the first experiment augments understanding of effective visualisation display, 

the scale at which data can be adequately presented within these visualisations is unclear. 

Therefore, the second empirical investigation seeks to provide insight into data scalability, and 

human cognitive limitations associated with data comprehension.   

The general discussion concludes that there is a need to better inform researchers of the 

potential of interactive visualisations. People do need to be properly trained to use these 

systems, but the limits of human perceptual processing also need to be considered in order to 

permit more efficient and insightful analysis.  
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1 

 

Introduction  

 

Research Context  

One million or ten times as many: that is as good an estimate as any of the number of ways 

information can be presented visually. It is well-known that ‘a picture is worth a thousand 

words’ and Tufte (2007) wrote “only a picture can carry such a volume of data in such a small 

space”. If one were to attempt to describe an image using a thousand words, the resulting 

interpretation would still lack the clarity of the original image. It is indubitable that displaying 

information in graphical form is better. Extend this thought to the fact that the rate at which 

humans produce and collect information increases exponentially every day. Finding new ways 

to manage the information load must be regarded as the highest priority.  

The methods used to harness this data are also numerous, and the techniques we use to 

display data are innovative. However, it is not simply a case of gathering relevant information 

and using a graphical representation to reveal patterns and to discover new insights: the 

nature of both the technology and the human beings that use it must be considered together. 

It is important to understand there is not necessarily a ‘best way’ to disseminate information, 

but it is certain that some ways are more effective; others less effective and some are utterly 

inadequate. 

Graphical displays of information have an additional advantage over textual and other forms: 

they not only present what is already known, they also offer opportunities for new insight. 

This newly derived insight depends on understanding how to effectively display data in a 

manner that is useful to those who wish to analyse it and use it. Data incorporating 

geographical elements add complexity to computational analysis; however, they also allow 

for different kinds of analysis, because patterns in data can literally be seen by the user. 

Kang et al. (2011) highlights the importance of measuring visualisations for their capacity or 

ability to ‘make sense’ to end users but also acknowledges the difficulty of this task. This 

research thesis is concerned with the effective display of geographical data. Existing research 

in this field includes a range of display options for visualising spatial data so this particular 

piece of research seeks to draw upon this range of visualisation types to determine the most 

effective types of visualisations available. The use of newly emerging 3D visualisations is given 
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particular attention. In order to analyse the effectiveness of these visualisations, the spatial 

statistical method of geographically weighted regression (GWR) is the key focus. 

The end user of visual data must also be considered. Human’s ability to process information 

must be taken into account when producing geovisualisations. There is little need for an 

advanced geovisualisation technique that displays highly complex data if human cognitive 

limits prevent the visualisation from being used effectively.  This research aims to provide 

deeper insight into the human interactions with a range of geovisualisations.  

 

Research Question, Aim and Objectives  

The over-arching research question for this research thesis is to assess and evaluate a range 

of data visualisation techniques to ascertain the optimal way of geographical data 

presentation.  This originates from a desire to test graphical visualisations over tabular and to 

compare those to participant task performances using advanced graphical representations. 

Slocum et al. (2002) suggest part of the difficulty in understanding and improving 

visualisations exist because human cognitive processes are not easily classifiable. Humans are 

not as homogenous as visual analytics tool developers think.  

This research question contributes to the field of investigation which is a mid-point between 

presentation of knowns and revelations of unknowns. In other words, the realm between data 

gathering and data interpretation. The characteristics of the visual display of information 

affect ease of processing. However, there will also be a limit to the amount of information 

that can be processed – at some point, data volume in an image will overload humans’ limited 

perceptual processing mechanisms and at this point data will exceed comprehension.   

To facilitate the over-arching research question within this thesis, two key aims and related 

objectives were established. These are critical in attempting to ascertain the optimal 

approach when presenting geographical data to end-users. Structurally, the empirical work in 

the thesis is divided into two parts (Experiment One and Experiment Two).  

Experiment One seeks to gain insight into visualisations which would be effective for 

interpretation and analysis of Geographically Weighted Regression (GWR), a popular spatial 

statistical method. Three different visualisation techniques; two dimensional, three 
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dimensional, and interactive, are evaluated through an experiment comprising two data set 

sizes. The aim and objectives of Experiment One are outlined below: 

Aim 1: To assess the effectiveness of three visualisation types for analysis and interpretation 

of GWR outputs. 

 Objective 1a: To assess the effectiveness of 2D visualisations for display and 

interpretation of GWR outputs. 

 Objective 1b: To assess the effectiveness of 3D visualisations for display and 

interpretation of GWR outputs. 

 Objective 1c: To assess the effectiveness of interactive visualisations for display and 

interpretation of GWR outputs. 

 Objective 1d: To decide upon the most effective of all three visualisations for 

interpretation and analysis for GWR outputs, offering guidance for producers of GWR 

outputs. 

 

According to Edsall (2003), geovisualisation grew out of a need to represent and interact with 

complex data. Edsall also states there is a general agreement among statisticians that 

visualisations are capable of providing insight into datasets (referring to the research of Tukey, 

1977, Hurley and Buja, 1990 and Wegman 2000). The usefulness and thus importance of 

visualisation methods to display information also extends to spatial data – which include 

Geographically Weighted Spatial Statistical Methods. 

Geographically Weighted Spatial Statistical Methods are employed in a wide range of 

disciplines to analyse and interpret data where they are used to detect significant patterns or 

relationships across space. One such method is Geographically Weighted Regression (GWR) 

which is used to examine processes that vary over space and time (Fotheringham et al., 2001). 

There is little variation in the types of visualisations which are used to analyse the results of 

GWR. 2D univariate maps are one of the most common visualisation methods. Dykes et al. 

(2005) stress the importance of developing knowledge of whether “geovisualisation 

techniques, tools and solutions” actually work. Despite this, it is not known why other 

visualisation methods are not employed for GWR.  

Two other visualisation methods are selected for comparison in this research, these are: three 

dimensional visualisations and interactive visualisations. For the past decade, the need for 

testing usability within geovisualisations is increasing with different types of interactions 
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emerging (Muntz et al., 2000). 3D data visualisation is a novel and relatively unused way of 

conveying spatial data. Can it be more or less effective than traditional 2D approaches and 

might it be an emerging aspect within the field of geovisual analytics? This research aims to 

explore these core questions through actual user experimentation and feedback. Keim et al. 

(2004) indicate that interactive visualisations can be extremely effective in elucidating insights 

to the data concerned. Through a comprehensive evaluation, Experiment One aims to offer a 

deeper insight into the effectiveness of GWR visualisations. It also aims to augment the 

decision making process of GWR output users so that the most suitable visualisation 

technique can be utilised to aid user interpretation and understanding of the data.  

Referring to early usability work on visualisations, the ease of use, coupled with the need to 

reduce time to complete an analysis is a measure of visual quality (Bertin, 1983). Through the 

first aim in this research a contribution is made to knowledge on usability effectiveness by 

evaluation of visualisations which display outputs of an important geographical spatial 

statistical method (GWR). 

Building on the exploration within Experiment One, the literature acknowledges the increase 

in data volume can present additional complexity for researchers. Although the evaluation of 

the first experiment can augment understanding of effective visualisation display, the scale at 

which data can be adequately presented within these visualisations is unclear. Therefore, the 

second empirical investigation seeks to provide insight into data scalability, and human 

cognitive limitations associated with data comprehension. The aim and objectives of 

Experiment Two are outlined below: 

Aim 2: To assess impact of data scale on user interpretation of 2D visualisations, thereby 

investigating the hypothesised presence of perceptual scalability.  

 Objective 2a: To assess the impact of visualisation scale and spatial unit scale on user 

interpretation of 2D visualisations. Utilising standard metrics to examine potential 

effects of perceptual scalability. 

 Objective 2b: To evaluate the impact of expertise levels on interpretation of 2D 

visualisations using standard metrics, examining potential effects on perceptual 

scalability. 
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 Objective 2c: To evaluate the impact of the order in which data distributions are 

encountered on interpretation of 2D visualisations through standard metric 

measurement, examining potential effects of perceptual scalability. 

 Objective 2d: To analyse eye movement data to ascertain if there is evidence of 

perceptual scalability, with  a particular emphasis on: 

i. The visualisation scale and spatial unit scale of 2D visualisations, investigating 

if there is a change in a user’s cognitive load. 

ii. The expertise levels on interpretation of 2D visualisations. 

iii. The variation of data distribution on a 3D visualisation, determining if any 

change in a user’s cognitive load occurs according to variations and in doing 

so, gaining insight into the potential effects of perceptual scalability.  

  

Visual scalability is the ability of visualisations to effectively display large amounts of data and 

human perception is a facet which affects scalability (Eick and Karr, 2002). This concept is 

assessed in Objective 2a. It stems from research carried out by Burke and Demsar (2010) 

which indicated there may be an issue with perceptual scalability when humans are asked to 

complete visual tasks in differently sized geographic datasets. 

According to Hoffman (2000) and Ware (2008), humans use 40% of the brain to provide visual 

output. This research aims to contribute to the field of human cognition by assessing the 

change in performance of users when faced with different levels of visual complexity. Through 

this objective greater insight can be offered into what Hacklay and Tobón (2003) refer to as 

the ‘diversity of human behaviour’ when dealing with graphic visualisations. This objective 

will also enhance the ability of developers of visualisations to produce more cognitively 

efficient visualisations which cater to the non-homogenous nature of end users. Group 

differences exist on the basis of parameters such as expertise and sensory differences (Slocum 

et al. 2001) and so the impacts of these categorisations are also explored in this thesis through 

Objectives 2b and 2c. 

Through Objective 2d, this research contributes significantly to an emerging area in the 

literature – eye movement analysis. Eye movement analysis can provide valuable insight into 

psychological and cognitive function in a number of real-world tasks (in this case for 

visualisations and scalability) including visual reading and exploration of computer displays 
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(Goldberg at al., 2001). Through eye movement analysis, the changes in participant 

performance can be assessed beyond standard evaluation metrics. 

The above research aims and objectives form the framework for the remainder of this thesis 

and set out to explore and answer the over-arching research question. Aim 1 and the related 

objectives are explored in Chapters 3 and 5 while Aim 2 and the related objectives are 

explored in Chapters 4 and 6, as per below.  

  

Thesis Structure  

To set the over-arching research aim into context, Chapter 1 has presented an overview of 

literature to provide deeper insight into the key components within this research thesis. It 

necessarily covers the core concepts of spatial statistics and methods and their use in past 

and current geographical research. Geographically Weighted Regression (GWR) is given 

special consideration because, as outlined in the research objectives above, it forms an 

important part of Experiment One in this research. GWR is a widely used spatial statistical 

method and this research thesis explores how effectively the potential of GWR output is 

realised by the methods of visualisation that are currently used across the literature. This 

research acknowledges that human consumption of the visualisations is not as a passive 

receiver of the image, but rather as active explorers of images. Cartography and visualisation 

aspects are presented in the second half of Chapter 1 as it is important to understand their 

relevance in this research thesis.  

The literature surrounding the development of Eye Movement science and how it is a valuable 

tool for researchers is detailed in Chapter 2. Eye movement tracking can be used to assess 

graphical data exploration, allowing the researcher to learn about and understand the key 

features of the graphical displays from where the observer takes information. Such human 

interpretive aspects are outlined in this chapter are closely associated with Experiment Two 

of this thesis. As suggested in some existing literature, this shows that the display and 

comprehension of data is not entirely dependent on computer based issues.  

Chapter 3 details the methodological approach used to answer the research objectives set 

within Experiment One. The development of a user-experiment test is outlined here with 

considerations for ethics, datasets, equipment and participant sourcing. There are many types 
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of visualisations published in the peer-reviewed literature where GWR is used. The purpose 

of Experiment One was to compare three different types of visualisation ‘head-to-head’ to 

attempt to ascertain the most effective one for user interpretation of geographical data. The 

three visualisation types selected were ArcMap, a 2D semi-interactive visualisation; a 3D 

visualisation called ArcScene; and a previously unused or currently very rarely used interactive 

visualisation method called ProVis. This research is contributing to the wider field and 

discipline by attempting to evaluate the effectiveness of each visualisation type with 

particular interest emerging in the previously untested area of interactive visualisations.   

Chapter 4 discusses the methodological processes of Experiment Two. Again, participant 

selection, equipment and ethical protocols are considered, with participants requiring 

knowledge of cartography or GIS. The equipment, including the Tobii eye tracker, is detailed 

to show what participants would use. Specific task design was an important facet of this 

experiment, with the task being simplified to minimise difficulty in comprehension. Certain 

aspects of the experiment design process will have already been covered in Methods 1 

(Chapter 3). Given the number of eye fixations would be considered a determining factor in 

the results chapter, it was necessary to avoid as many distractions as possible which would 

result in unnecessary eye movement – which in turn would result in noisy data. The procedure 

followed by participants was straight forward with a detailed briefing being provided before 

the experiment began. Once the experiments were complete, the data would be analysed 

using eye movement analysis software, and calculations could be performed on exported 

data. 

Chapter 5 presents the results of Experiment One and outline how 2D, 3D and an Interactive 

Visualisation System performed. The purpose of the experiment was to discover which of the 

three visualisation types utilised would be most effective for data interpretation and analysis 

of GWR output. Task performance is a key measurement, and participant’s task times were 

recorded using specialist software to gauge the differences in task completion times. The 

correctness of each task was recorded to measure changes in participant responses when 

faced with tasks of varying difficulty, using the different visualisations. Participants were 

divided into two main groups based on knowledge of software based visualisation systems 

and GWR expertise. Comparisons were made between each group to ascertain differences in 

performances according to knowledge or expertise. Mouse movement and clicks were 

recorded, providing an indication of the level of participant visualisation interactivity. These 
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movements also help to highlight confusion or difficulty experienced by participants when 

encountering tasks or visualisations. Finally, participant perception was gauged using post 

experiment surveys based on their opinion of how fast they completed a task, how easy the 

task was, and how confident they feel their answer is. These results were compared between 

visualisations to discover the perceived best performing visualisation system. The results of 

comprehensibility testing indicated that the largely untested interactive systems have a 

greater potential for analysis, even while their appearance in published literature is rare. 

Chapter 6 displays and describes the results of Experiment Two. Participant knowledge groups 

show that experience GIS does not necessarily equate to better performance and there is 

evidence of a scalability effect. Survey responses to gauge perceived participant performance 

provide an insight into levels of difficulty associated with the visualisations. Correctness ratios 

indicate differences in difficulty in another way, through the ability of participants to correctly 

identify a correct cluster within the visualisations presented. These suggest indications of a 

scalability effect with the geographical data visualisations. The time taken to provide an 

answer is important to note because it again indicates the possibility of a scalability effect, 

where participants required more time to answer tasks relating to more complex 

visualisations. Fixation counts are presented to add further evidence of a scalability effect, 

while also providing visual examples as a point of reference for the reader.  

Chapter 7 concludes this thesis with a discussion of the contribution this research makes to 

established knowledge in the fields of cartography, spatial statistical methods and 

geovisualisation. To do this, the results and implications from Experiment One are discussed 

and recommendations on the type of visualisations for effective interpretation and analysis 

of GWR are made. Suggestions are applicable to the visualisation of other spatial statistical 

methods outputs also. Experiment Two augments the first through the investigation of data 

complexity and resulting issues with user comprehension of data. It contributes to the fields 

listed above in addition to the cognitive sciences, based on the evidence of perceptual 

scalability. The general discussion concludes that there is a need to better inform researchers 

of the potential of interactive visualisations. People do need to be properly trained to use 

these systems, but the limits of human perceptual processing also need to be considered in 

order to permit more efficient and insightful analysis.  
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 1: Spatial Statistical Methods, Cartography and Visualisations: 

A Review of the Literature  

1.1  Spatial Statistics  
 

Fisher (1937) was one of the first to recognise the implications of spatial dependence, namely 

when one attribute in space is dependent upon another. While discussing the shapes of blocks 

and plots in agricultural experiments he commented,  

 “after selecting an area we usually have no guidance beyond the widely verified fact 

that patches in close proximity are commonly more alike, as judged by the yield of 

crops, than those which are further apart.”  

              (Fisher, 1937: 73-74)   

Despite the age of this publication and statement, the basic tenet of spatial dependence has 

not changed much from Fisher’s 1937 characterisation. In the current literature on statistics 

and econometrics, spatial dependence is further defined as the coincidence of value similarity 

with location similarity. Tobler (1970: 237) was a key advocate of this definition, 

understanding and interpretation.  

Basic concepts of statistical models are stochastic in nature, meaning that uncertainty is 

always present. Random variables can represent this uncertainty and the chance that a 

random variable will have different possible values is owing to its probability distribution. In 

some cases, the random variable will have a finite number of values making it a discrete 

random variable. In other cases it can be a value within a continuous range, thereby 

categorising it as a continuous variable. It is possible to have more than one random variable. 

In this case, you must consider their joint probability distribution which tells you the likelihood 

of variables taking a particular value.  

It is also common practice in the literature to establish similarity between two variables. This 

is a measure of their covariance. The covariance of two random variables divided by their 

standard deviation provides the correlation (relationship between variables). Relationship as 

a term appears frequently within spatial statistical literature and indeed it is fundamental to 
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Fotheringham et al. (2001) in their publication on the spatial statistical approach of 

Geographically Weighted Regression (GWR).  

Spatial Statistics can be viewed in two ways: global and local. Fotheringham et al. (2001) 

suggest there are many global forms of spatial analysis but few local forms of spatial analysis. 

A local level model differs from a global model in a number of ways and so it is important to 

understand the differences between the two when researching and applying spatial statistic 

methods. Global statistics are single valued meaning a singular value is returned for an entire 

set of data values. An example would be the mean value or the measure of spatial 

autocorrelation for the entire dataset. A practical example would be asking “what is the 

temperature of cities in the UK?” Here, the global model would return a single (mean) 

temperature value for all the cities in the UK. However, a local model of spatial statistics would 

be more comprehensive and would return a value for each city in the study area.   

Global models tend to highlight similarities in a dataset by smoothing noise. Local models 

highlight final exceptions or anomalies across multiple regions of space. With regard to GIS 

visualisation, local statistical techniques provide an enhanced platform for data analysis as 

they return more values, thereby allowing the GIS system the ability to display patterns 

visually. Since local statistical models provide values for each data point or location (geo-

referenced or not) in a dataset, we can say that local statistics are inherently spatial in nature 

(Fotheringham et al., 2001). Table 1.1 offers a summary of key differences between global 

and local statistics.  

Table 1.1 Distinguishing between Global and Local Statistics (Fotheringham et al., 2001) 

Characteristics of Global Statistics  Characteristics of Local Statistics  

• Summarises data for whole region  

• Single-valued statistic  

• Non-mapable  

• GIS-unfriendly  

• A-spatial/Spatially limited  

• Emphasise similarities across space  

Local disaggregation of global statistics  

Multi-valued statistics  

Mapable  

GIS-friendly  

Spatial  
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• Searches for regularities or ‘laws’  

• Example: Classic Regression  

Emphasise differences across space Searches 

for exceptions or local ‘hot spots’  

Example: Geographically Weighted 

Regression.  

  

It may be argued that local statistics are best used to find anomalies in data, but since spatial 

statistics are intrinsically location-based, it is best to display them in a map-based visualisation 

so that discoverable patterns can be observed and analysed within the data. It can be 

suggested that similarities too can be found in a dataset using local statistics.   

1.2 Geography and Statistical Methods  
  

Geographical studies require formulated research to provide quantifiable and evidence-based 

insights into phenomenon and Rogerson (2006) advocates the utilisation of statistical 

methods to contribute to geographical understanding of phenomena. A general framework 

can be used to outline particular approaches to geographic problems (e.g. Figure 1.1).  

  

Figure 1.1 Framework for the study of Geographic phenomena 
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Figure 1.1 shows a general framework that depicts the processes involved in the study of a 

geographic problem. Initially, a core concept requiring exploration needs to be 

operationalised into an understandable description. From this, research hypotheses can be 

derived whereby statistical models can be implemented to test them. Initial results are used 

to refine the model or formalise it. Validating the model leads to a proof, which could be a 

law and in turn, laws generate new theory. By implementing this framework in the study of 

geographic phenomena, valued insights and understandings can be attained.   

Giving a geographically relevant example: in the case of a population data set you could 

hypothesise that there are more males than females in a region where there are a greater 

number of all-boy schools compared with all-girl schools. This hypothesis is tested by 

collecting local population data, running local statistical models (this is a good example of 

where a global model specifically would not be helpful), and thus generating a model which 

can be used in further work.  

A hypothesis is used to test a claim or assertion. A model, deriving from the hypothesis permits 

the study of the relationship between variables in a dataset by predicting the order against 

which the real data can be compared. The model can additionally suggest the nature of a 

relationship between variables. Support for the hypothesis is gathered from the modelling 

process. The framework allows you to make assertions when carrying out analysis on a dataset 

which can generally be applied to another similar dataset. If the model is supported by the 

data, it becomes useful for generalising between studies.  

Rogerson (2006) advocates two types of statistical approaches to spatial analysis in geography 

- exploratory and confirmatory. Confirmatory methods are typically used to verify a 

hypothesis. Visualisation methods are exploratory in nature and in general it is necessary to 

adopt exploratory spatial analysis of GWR outputs. The approach taken in this thesis includes 

both approaches. Along with these statistical approaches, local regression is used. This 

approach allows for spatial analysis which is essential in studies that are geographic in nature. 

In the section on Geographically Weighted Regression, descriptive statistics are one of the 

resulting outputs of this type of local regression. Descriptive statistics are confirmatory in 

nature because they provide a form of definitive conclusion on the meaning of certain values 

or scores of that dataset when local regression is performed on it. However, most analysis will 
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be exploratory in nature since visualisations are best used to display spatial data and 

inferential statistical analysis is used in these situations. Referring back to the example of a 

question one could ask on a given population dataset, we can call this an inference. Simple 

descriptive statistical outputs from a local regression model include; the median, the mode, 

the interquartile range, and squared deviation.  

As mentioned earlier, data containing a spatial element is often complex in nature and global 

models lack the spatial detail for the geographic-based research. For this reason, local models 

are favoured, particularly when social processes are taken into consideration. Voter behaviour 

is an example of a non-stationary social process (Agnew, 1996). Political geography research 

is unanimous in agreement that voter behaviour is location-influenced. Given voter behaviour 

is therefore a spatial phenomenon, it can be referred to as ‘spatial non-stationarity’.   

When measuring spatial non-stationarity, the value at any given point in space will depend on 

the location of the measurement (Fotheringham et al., 2001). Fotheringham et al. (2001) 

provide examples where it is important to note that relationships vary over space, including 

sample variation. Local models may also be calibrated for subsets data, which means the 

parameter estimates, or outputs of the model, will not be the same over space. Fotheringham 

et al. (2001) also note that relationships can be intrinsically different across space. This 

indicates the characteristics of the local point will modify the relationships. Considering we 

are focussing on social processes, the differences across space could be related to population 

preferences. Voter behaviour is thus a prime example of population preferences requiring it 

to be analysed by statistical models that can process local data. Kavanagh amongst others 

demonstrated this point in their work on Irish voter behaviour (Kavanagh et al., 2004; 

Kavanagh, 2006). The statistical approach used to analyse the data in their research was 

Geographically Weighted Regression (GWR).  

 

1.3 Correlation  

  
GWR examines the relationship between attributes in a dataset, it is therefore important to 

understand how these relationships are calculated. The concepts of correlation and spatial 

autocorrelation must be discussed. Typically, the world comprises of orderliness or patterns, 

not randomness (Griffith, 2009). Tobler’s First Law of Geography “everything is related to 
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everything else, but near things are more related than distant things” (Tobler, 1979: 287) 

summarises this concept. However, this idea can be expanded upon with a statement: “but 

not necessarily through the same mechanisms” (Griffith, 2009: 308).  

The interaction between attributes in space is a combination of distance and adjacency. This 

interaction is measured through inverse distance weighting (see Figure 1.2)   

Figure 1.2 Inverse Distance Weighting Formula 

   

 

Wij is the interaction between the weight and two entities i and j, at a distance (d) apart with 

k representing the decline in weight as the entities become further apart in space.  

The concept of ‘neighbourhood’ is inherent in spatial autocorrelation, again referring to 

Tobler’s First Law. A neighbourhood is an entity in space that contains a set of attributes, the 

number of which depends on the size of the neighbourhood. Figure 1.3 illustrates the 

neighbourhood concept whilst simultaneously demonstrating the concept of Inverse Distance 

Weighting (IDW).  

Figure 1.3 Neighbourhood Concept (O’Sullivan and Unwin, 2010: 48) 
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The same schematic is present in each of the diagrams in Figure 1.3. The top left indicates the 

distance of all points B to F with respect to point A. The top right indicates the two closest 

neighbours and the bottom left highlights the relative importance that should be assigned to 

each point according to distance from A. The bottom right diagram shows the selected 

neighbourhood area of A. It is possible to display relationships in the form of matrices, which 

become important when understanding the Moran coefficient and Geary’s C later. A basic 

matrix is a table of numbers organised in columns and rows. Distance information can be 

summarised in a matrix called a “distance matrix”. 

An adjacency matrix demonstrates the outcome for point A where a rule has been set. The 

rule states that objects must be less than 50 metres apart. The result shows that two objects 

are within this distance and the total for columns or rows is two.  

An asymmetrical matrix is the result of a different rule using point A. This rule states that each 

object is adjacent to the nearest three objects. The results for each row and column are 

different. Using the example in Figure 1.3, the three nearest neighbours for point B may 

include point E, but the three nearest neighbours to point E may not include point B.  

Having discussed how number matrices show relationships between points, the key point of 

this exercise can be constructed. Figure 1.4 shows a weighted matrix, or an interaction “W”, 

using the Inverse Distance Weighting principle (Figure 1.2).  

Figure 1.4 Example of inverse distance weighted matrix (O’Sullivan and Unwin, 2010: 49) 

 

Commonly, the rows in Figure 1.4 are divided by the total of each row so they amount to one. 

The columns following this calculation then show the level of interaction or the relationship 

one object has upon another. Predictably, Point A has the greatest influence because of its 

central location, while Point D is least influential (see Figure 1.5). This matrix principle is 

applied within the spatial autocorrelation matrix called a spatial structure matrix where 
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spatial weights are assigned to record the spatial relationship between a data value and every 

other value in the matrix. This is discussed in more detail later.  

  

Figure 1.5 Example of Inverse Distance Weighted matrix (O’Sullivan and Unwin, 2010: 

49) 

  

Spatial properties can also be described by Thiessen or Vornoipolygons. These are proximity 

polygons in which space is dissected into areas according to the distance between each point 

and its neighbour. The work undertaken in Experiment Two of this research thesis contains 

Electoral Division polygons, so it is important to understand how they specify spatial 

properties.  

Two concepts can be taken from proximity polygons. The first is the association of a polygon 

with the neighbourhood. The second is the association of a pair of polygons within the 

neighbourhood (O’Sullivan and Unwin, 2010). It is a popular method because of its ability to 

calculate almost perfectly equilateral triangular polygons.  

Having discussed the underlying principles and methods of spatial analysis, it is clear that 

spatial statistical analysis provides insight into spatial processes. While it is possible to 

perform spatial analysis manually, the automation of the process is favourable. Spatial 

processes are categorised as either stochastic or deterministic. Stochastic processes are 

random in nature, while deterministic are more certain or defined.  

  

1.3.1 The Concept of Spatial Autocorrelation  

  

Spatial autocorrelation can be defined as the degree to which spatial features tend to be 

clustered together in space and conversely, the degree to which spatial features are 
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dispersed. Measuring spatial autocorrelation requires dataset values with geometric, 

geographic or topological properties.  

Spatial autocorrelation can be used as a diagnostic tool for model-based inferences to confirm 

a set of valid assumptions. Spatial autocorrelation detects non-linear relationships or in some 

cases model misspecification. It can help to detect the missing piece(s) of an equation, acting 

as a ‘surrogate’ for unaccounted variation. For example, where map patterns appear to be 

spatially autocorrelated and the predictor variables of a model align with the map patterns.  

The term correlation can be used to describe ‘redundant information’ (Griffith, 2009). If x and 

y are perfectly correlated then knowing x will mean you know y. Additional items of data can 

provide less new information than already present in the current data sample (O’Sullivan and 

Unwin, 2010). Correlation can also signify similarities between at least two variables, i.e. there 

is a significant relationship between them. The degree of similarity decreases as the 

correlation coefficient approaches zero. By adding a geographical element to the investigation 

of the relationship between two or more variables, the term correlation is expanded to 

include the term ‘spatial’. Non-random distribution of attributes in space has consequences 

for statistical analysis. Bias may exist towards prevalent values in the sample data. If spatial 

autocorrelation was not commonplace then there would be little interest in geography and 

geographical analysis of phenomena.  

An excellent example of spatial autocorrelation in action is taken from house prices. Attributes 

in space are intrinsically linked through their proximity to one another. The construction of an 

expensive house in close proximity to inexpensive houses will result in reduced house value 

for the more expensive house, while it increases the value of less expensive houses around it. 

In terms of spatial variation, there are two kinds; first-order and second-order. First order 

describes observations across study regions; second order describes the effects of 

interactions between observations. When analysing crime data, a first-order variation would 

be the perceived higher incidents in crime where population is most dense. A second-order 

variation would be the location of crime “hotspots” around bars or clubs. Generally, it is good 

to model both when analysing spatial data.  

In instances where the geographic landscape affects the spread of diseases, they can spread 

according to their correlation with their topographical surroundings or neighbouring 

attributes. The process in which a disease spreads can be determined by spatial mechanisms 
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(Griffith, 2009). Spatial autocorrelation can be interpreted as an ‘outcome of areal unit 

demarcation’ (Griffith, 2009: 311).   

This is related to the modifiable areal unit problem (MAUP). The example of a chess board can 

be used here. The pattern represented on this board exhibits negative autocorrelation, there 

is no discernible spatial relationship between the black and white squares on the board. 

However, by changing the partitioning of squares to clusters of four and averaging black and 

white squares so that there is a constant grey colour across the board, the spatial area of the 

chess board becomes positively correlated.   

Statistical relationships may change at different levels of aggregation (O’Sullivan and Unwin, 

2010). Another example of this can be found in politics, where ‘gerrymandering’ (the altering 

of electoral boundaries) results in pre-specified and often favourable outcomes for the 

gerrymandering party. Openshaw and Taylor (1979) demonstrated the possibility to 

aggregate data to produce a +1.0 or -1.0 spatial autocorrelation result. It has been suggested 

that analysts have sought to ignore MAUP due to a lack of understanding in order to carry out 

analysis (Openshaw, 1983). This desire to ignore MAUP is likely due to the need for simple 

explanations, but an attempt to address should be made.   

The problem of spatial autocorrelation is understood but not solved. Techniques to measure 

spatial autocorrelation help to account for its effects. With this understanding of the basis of 

spatial autocorrelation, the methods used to measure it can now be discussed further.  

Spatial Autocorrelation Estimation:  

The concept of spatial autocorrelation has been discussed but the methods used to measure 

it are equally important to understand. Two of the most commonly utilised models (or 

quantitative indices) used to measure spatial autocorrelation are the Moran coefficient (MC) 

and the Geary ratio (GR).I evaluated the presence of spatial autocorrelation in the tested maps 

using a commonly employed index – Moran’s I.  

Measuring Spatial Autocorrelation:  

Once again, the basic premise is that spatial data at near locations will be more similar than 

at distant locations. Building on this explanation, spatial data will have characteristics 

distances at which it is correlated with itself, or auto correlated (O’Sullivan and Unwin, 2010).  
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To capture the spatial relationship between all pairs of locations, we use spatial weights or a 

spatial structure matrix. The first row of this match is the relationship between the first 

location or data value and every other value in the data set. Based on this explanation we can 

say the first value of the second row is the relationship between the first value and the second 

value.  

Once a matrix has been created a set of attributes can be assigned to each data value. An 

example being adjacency where 𝑊𝑖𝑗 receives a score of ‘one’ if two locations are right next to 

each other and conversely receives ‘zero’ if they are entirely apart. When constructing the 

weights matrix, it is important to consider the relationship a value has with itself and not just 

with another value at another location. An adjacency rule can be established to include only 

values that share edges, or meet at a corner. The contiguity of entities such as polygons can 

be considered as an attribute, or you can measure the distance between the centroid of one 

polygon and another.  

The relationship between a location and itself is something that should not be considered. To 

avoid it, symmetry of weights is required, i.e. 𝑊𝑖𝑗 = 𝑊𝑖𝑗. A symmetry ruling can be used to 

overcome the ‘k nearest neighbours’ issues, where the area A may have three different 

nearest neighbours to another area, i.e. 𝑊𝐵𝐴 ≠ 𝑊𝐵𝐴.  

A key point to consider is the variety of spatial weight matrices that are possible when 

measuring the autocorrelation of values to 𝑊. An ideal spatial matrix is represented by 

weights which are meaningful to the processes under consideration. This is not an easy aspect 

to overcome, particularly when dealing with more fluid processes, e.g. social processes, or 

where processes are not well understood.  

Once variables relevant to the key variable are selected the spatial matrix can be constructed 

and the method of spatial auto correlation measurement can be decided upon. A popular 

method of choice is Moran’s I. It is most useful for interval or numerical/ratio data. The 

formidable equation for Moran’s I is shown in Figure 1.6.  

  

 

 



 

20 

 

Figure 1.6 Moran’s I Equation  

  

According to O’Sullivan and Unwin (2010), the most important section is the second fraction. 

A breakdown of the elements of this formula segment are as follows:  

𝑖and 𝑗 are areal units, or zones.  

𝑦 the data value in each area.  

𝑦  is the overall mean.   

𝑊𝑖𝑗 relates to the spatial weights matrix.  

𝛴𝛴𝑤𝑖𝑗 is the total number of spatial weights.  

 is the division by dataset variance, meaning 𝐼 will be represented by a high number 

because of high variability in 𝑦.  

Co-variance of two data values in two areas can be computed by calculating the product of 

each zone. If both data values 𝑦 of areas 𝑖 and 𝑗 occupy the same side of the mean they are 

positive, otherwise they are negative.  

The co-variance of each 𝑦𝑖 and 𝑦𝑗are multiplied by 𝑤𝑖𝑗which comes from the spatial weights 

matrix, i.e. it is an element of the spatial weights matrix. In an adjacency matrix a value of ‘1’ 

is returned where area 𝑖 and area 𝑗 are adjacent, and a value of zero when they are not.   

The rest of the formula normalises 𝐼 based on the number of areas under consideration, the 

range of 𝑦 values and number of adjacencies.  

Data value pairs will be on the same side of the mean if they are positively correlated for I. If 

data values of an area occupy both sides of the mean then we can say that I is negatively 

correlated. A score for I of +0.3 or more or -0.3 or less generally indicates the presence of 

strong autocorrelation.  
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 Local Statistics: Spatial Autocorrelation with a location: 

The spatial autocorrelation and Moran’s I descriptions thus far have not incorporated a locally 

varying aspect. Local statistics contain descriptive statistics with spatial data that varies from 

one location to another (O’Sullivan and Unwin, 2010). Referring back to Figure 1.7, we change 

the spatial weights matrix to a row matrix with a location element attached such that the 

matrix becomes:  

Figure 1.7 Row Matrix 

𝑊𝑖 = [𝑊𝑖1𝑊𝑖2 … 𝑊𝑖𝑛]  

𝑖 denotes each location in a local neighbourhood.   

Spatial Patterns: Clustered, Dispersed and Random: 

As stated previously, the outcome of spatial autocorrelation is divided into three categories. 

Clustered, Dispersed and Random (Koppel et al., 2011). Figures 1.8 1.9 and 1.10 visually 

demonstrate the difference between each of the spatial patterns. Two different attributes are 

coded in white and blue, 32 of each in an 8x8 or 64 celled grid.   

Figure 1.8 Example of a Dispersed Spatial Pattern  
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The dispersed pattern has a fully negative correlation of -1.0. This indicates there is no 

discernible relationship between the values in the dataset based on their proximately to one 

another.  

Figure 1.9 Example of a Clustered Spatial Pattern  

                        

                        

                        

                        

                        

                        

                        

                        

  

A clustered spatial pattern yields an entirely opposite score to the dispersed spatial pattern. 

The grid in Figure 1.9 can exhibit a spatial autocorrelation of +1.0 or close to it. It indicates the 

presence of a strong positive relationship. Shekhar et al. (2011) define spatial clustering as a 

process of grouping a set of spatial objects into clusters so that objects within a cluster have 

high similarity in comparison to one another, but are dissimilar to objects in other clusters. 

Clustered patterns are distributed dependently in space.  

Figure 1.10 Example of a Random Spatial Pattern 
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For the Random Spatial Pattern in Figure 1.10, a value of 0.0 is returned. This indicates that 

the spatial patterns exhibits no detectable positive or negative relationship between the two 

sets of values based on their spatial distribution in space and proximity to each other. Random 

patterns are equally likely to occur anywhere, they are independently distributed in space and 

do not interact with each other. (Shekhar et al., 2011). With this understanding of correlation 

and spatial autocorrelation of spatial distributions, it is now appropriate to discuss GWR more 

specifically as a measure of the relationship between attributes with a spatial element.   

 

1.4 Geographically Weighted Regression (GWR) 
  

Regression modelling is a reputed quantitative method used in geography (and other 

disciplines) to analyse data which measures the relationship between dependent variables 

and a set of independent variables (Bingham and Fry, 2010). A spatial regression technique, 

GWR incorporates a single dependent variable and one or more independent variables which 

are location dependent. GWR can therefore be used to detect spatial non-stationarity 

(Fotheringham et al., 2002).   

A global regression model equation can be represented as follows;  

y=𝛽0+𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑛𝑥𝑛 + 𝜖  

The GWR equation is as follows.  

𝑦𝒾 = 𝛽0(𝑖) + 𝛽1(𝑖)𝑥1𝑖 + 𝛽2(𝑖)𝑥2𝑖 + ⋯ 𝛽𝑛(𝑖)𝑥𝑛𝑖 + 𝜖𝑖  

The global regression model is location independent unlike GWR. It assumes that relationships 

between attributes do not vary over space. Regression analysis allows you to explore 

relationships between attributes. The global regression model described above is a popular 

method utilised to investigate the relationship between geographic variables. Space does not 

play a role in this model, because location is not taken into account. It is assumed that the 

relationship of variables will not vary over space. However, it is possible that relationships 

between geographical variables can vary over space, in other words, spatial non-stationarity 

may exist.  



 

24 

 

Ordinary Least Squares is a linear regression model and a good example of a global regression 

model. It is a method used to make quantitative calculations. A single predictive formula 

produces a single output which indicates the relationship between at least two geographic 

variables over an entire data-space. Non-linear regression allows for the partitioning of the 

data into segments or sections. These subdivisions allow us to gain a better sense of the 

relationship between geographic variables. Geographically weighted regression goes one step 

further by assigning a weight to each value in the dataset. Each value is then compared to 

another to assess the relationship between them.  

A more detailed example of the difference between a global regression model and local 

regression is as follows;  

Imagine we need to calculate the temperate of the Island of Ireland. Ireland is split into 32 

counties and let us assume there is an instrument in each of the counties to monitor 

temperature. This means there are 32 data values in the dataset, each representing the 

temperature of a county.   

Using the global model we are returned a single figure for the entire Island. It is an average 

calculation of the temperature across the country. This may be enough in some cases, but 

there is no way to tell how varied the temperature is from East to West or from North to 

South. In the case of Ireland, the South Eastern part of the country is known as the Sunny 

South East. The average temperature in that region of the country is higher than the rest. The 

global model would not reveal this information. However, a local model such as GWR is 

capable of revealing such information. A local regression model will highlight the variation in 

temperature between each county. It incorporates a spatial element. As long as the attribute 

values have a spatial element attached, i.e. the data value can be attributed to space, then 

you will be able to perform GWR on a dataset because of the spatial weight it assigns.  

Further to this, GWR incorporate a spatial weight so that the relationship between two or 

more variables can be examined. All the variables in the GWR model are the same as in global 

regression with the exception that they are now dependent on geographic location, indicated 

by (𝑖) in the GWR model outlined above. This addition is a significant contribution to the 

understanding of geographical phenomena. Location as a core concept in the discipline of 

geography is now incorporated into the standard global regression model and it is expected 

this advance in statistics can be a significant aid in understanding geography.   
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GWR is based on Tobler’s First Law of geography (1970: 237); “everything is related to 

everything else but near things are more related than distant things”, which implies the 

existence of a distance-effect. The GWR model works on the nearest neighbour principle and 

calibrates a local regression model at each data point based on surrounding data points that 

are nearest to it in geographic (not attribute) space. Input points are also weighted based on 

their geographical distance from the target data point model, with each data value measured 

individually to detect the influence it has in relation to the independent variable based on 

attributes, or values of its neighbour (Fotheringham et al., 2001).   

GWR output can be used to analyse the local relationship of a set of independent variables to 

a dependent variable through a set of local parameter estimates and local statistical measures 

(e.g. local R²). Typical outputs are as follows (Fotheringham et al., 2001):  

- A set of location dependent parameter estimates (𝛽1(𝑖),… , 𝛽𝑛(𝑖)) .  

- A set of T-values and S-values indicating the spatial distribution of reliability for each 

parameter estimate (𝑖).  

- Local 𝑅2 value that indicates the degree of explanation for the entire GWR model at 

each location, i.e. for all parameter estimates together.  

GWR outputs can be visualised, to allow further analysis through visual exploration of the 

spatial data (Andrienko and Andrienko, 2005) which involves tasks such as identification of 

spatial proximities, verifying spatial density and obtaining a perspective of a target 

measurement at a location or neighbouring location (Koua et al. 2006; Ogao and Kraak, 2002; 

Wehrend and Lewis, 1990). In terms of visualising and visually exploring GWR outputs, the 

relevant exploration tasks include: identify areas with high/low values in parameter estimate 

surfaces; identify areas with high/low values in t-value surfaces and link with appropriate 

values in respective parameter estimates; identify areas of stationarity where all parameter 

estimates have the same value; identify relationships between parameter estimates and 

values in the local R² surface;  identify relationships between two parameter estimates and 

identify relationships between several parameter estimates (Fotheringham et al., 2001, 

Demšar et al., 2008).   

Using the GWR model, the influence of independent variables on the dependent variable can 

be tested at every location in the dataset. Each location will have a data point, or set of data 

points, that are weighted for a regression according to their distance from the point the model 



 

26 

 

is currently measuring, let us say this is 𝑥1. The points that are closer are weighted more 

heavily than those further away. The weighted regression yields a local parameter estimate 

for the relationship between the point 𝑥1 and another point we label 𝑦1. For example, you can 

hypothesise that a house in a city centre with a garage attached would be more expensive 

because they are harder to find than the equivalent property in a city suburb where the same 

property is more likely to exist. Such a pattern is hidden in global regression, but GWR will 

discover it.  

In the model above, 𝑦 is the dependent variable, which is influenced by a number of 

independent explanatory variables 𝑥1 … 𝑥𝑛. The measurement of a relationship between the 

dependent variable and each independent variable is provided through the 1,… , 𝛽𝑛 

coefficients, and 𝜖 is a degree of uncertainty.  

First, the limitation of the global model is reiterated. As mentioned previously global 

regression models are capable of detecting the influence of explanatory variables on a 

dependent variable, they are location independent and assume the relationships are 

stationary, i.e. they do not vary over space. The same response from the model is returned 

for every area of the study region or dataset because of this location independence as 

depicted using the ‘temperature of England’ as an example. As a result the method is unable 

to reveal any spatial variation that might occur in the inter-variable relationships in spatial 

data. However, a geographical data set is likely to contain spatial variation and one solution is 

to use GWR instead of the global technique.  

In addition to its use by Kavanagh et al. (2004), GWR has been used in a wide range of other 

internationally significant studies and across many disciplines beyond geography. Table 1.2 

presents the results of an analysis of GWR use in the wider literature. The search terms “’GWR’ 

and ‘Geographically Weighted Regression’” returned 245 articles at maximum in the Science 

Direct database. The articles that were not accessible or which did not use GWR were rejected 

from the collation. Relevant literature is listed in the table below and categorised according 

to the general field of research and the nature of the presentation of the GWR results. The 

particular type of research or field of study that uses GWR is much less important for present 

purposes, other than to illustrate just how widely the technique is used. The emergent 

importance of GWR as a key method in spatial statistics is evident. The literature referenced 

in Table 1.2, without exception, used a combination of graphs, choropleth maps (i.e. maps 

displaying values of a single data attribute) and tables to visualise data. The processing power 



 

27 

 

of the human brain far exceeds that of a computer when it comes to pattern recognition: this 

is not true when it comes to processing tables of numbers. Human comprehension of complex 

data is facilitated when the data is represented in graphical form. Graphs or choropleth maps 

may be effective (or perhaps the only option) for presenting results in journal articles. 

However, other forms of visualisation of GWR data contribute to further analysis of the 

outputs. The first part of the thesis evaluates this.  

Table 1.2 Review of GWR Visualisation Literature  

 Field/Discipline   Author  

 

      

Health Geography  Cogdon (2003);  

  Gebreab and Diez-Roux (2012);  

  Gilbert and Chakraborty (2011);  

  Holt and Lo (2008);  

  Hsueh et al. (2012);  

  Huang and Leung (2002);  

  Mandal et al. (2009);  

  Nakaya (2001);  

  Tu et al. (2012);  

  Yang and Matthews (2012);  

  Yoo (2012);  

  Zhang et al. (2012);  

Political Geography  Cahill and Mulligan (2007);  

  Darmofal (2010);  

  Graif and Sampson (2010);  

  Wheeler and Waller (2009);  

Urban Geography   Szymanowski and Kryza (2011);  

  Brunsdon et al. (2002);  

  Cardozo et al. (2012);  

 

  Cho et al. (2007, 2009);  

  Crespo and Regamey  (2012);  
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  Gao and Li (2011);  

  Kupfer and Farris (2007);  

  Luo and Wei (2009);  

  Osborne et al. (2007);  

  Páez et al. (2008);  

  Pearsall and Christman (2012);  

  Svenning et al. (2009);  

  Terribile and Diniz-Filho (2009);  

  Tu (2011);  

Ecology  Aguilar and Farnworth (2012);  

  Calvo and Escolar (2003);  

  Jaimes et al., (2010);  

  Lopéz-Carr et al. (2012);  

  Ma et al. (2012);  

  Wimberly et al. (2008);  

  Zhang et al. (2004);  

Biological Science  Blanco – Moreno et al. (2008);  

  Wimberly et al. (2008);  

Environmental Geography  Fotheringham et al. (1998);  

  Fotheringham et al. (2001);  

  Gilbert and Chakraborty, (2011);  

  Harris and Brunsdon (2010);  

  Hawkins (2003);  

  Nelson (2001);  

  Páez et al. (2002);  

  Propastin (2009);  

  Robinson et al. (2011);  

  Tu and Xia (2008);  

  Tu and Xia (2008);  

  Wentz (2007);  

  Zhang et al (2008);  

Economic Geography  Li et al. (2007);  

  Lu, et al. (2011);  
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  Mittal et al. (2004);  

  Ogneva-Himmelberger et al. 

(2009);  

  Sage and Goldberger (2012);  

  Shearmur et al. (2007);  

  Wei et al. (2009);  

Statistical Model Comparisons  Brunsdon et al. (1998);  

  Farber and Páez (2007);  

  Fotheringham et al. (1997);  

  Gamerman, D., et al. (2003);  

  Griffith, D (2008);  

  Guo et al. (2008);  

  Laffan (1999);  

  Leung et al. (2000);  

  Tutmez et al. (2012);  

  Wang et al. (2008);  

  Wheeler (2009);  

  Wheeler and Calder (2007);  

  Zhang et al. (2005);  

Land Use  Páez (2006);  

Rural Geography  Leyk et al. (2012);  

Migration Geography  Nakaya (2000);  

Rural-Urban  Cardozo et al. (2012);  

  Crespo and Grêt-Regamey 

(2012)  

  Su et al. (2001);   

      

 

  

Table 1.3 shows the type of visualisations found in published peer-reviewed journal articles 

further emphasising the broad range of fields and disciplines GWR is used in. From an analysis 

of each of these texts, it is clear there is a preferred set of visualisations used to present GWR 

related research and advanced visualisation methods such as interactive visualisations are not 
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utilised. One argument against the lack of an interactive visualisation presence relates to the 

difficulty in presenting GWR outputs on paper. For example, you cannot demonstrate 

dynamically-linked views on paper like you can in a live session or presentation. It could be 

suggested that the effectiveness of interactive visualisations is lost when presenting work for 

a paper as a result. However, it would still be possible to create set piece images of particular 

data highlights using an interactive system. In other words a researcher could take a screen 

capture of a particularly important outlier in their data while it is highlighted in a dynamically 

linked multi-windowed interactive visualisation.   

Table 1.3 GWR Visualisation Types, number of papers 

Discipline          Tables   Graphs    Maps   3D  

 

 Health Geography    12  3  15  -  

 Political Geography    1  -  1  -  

 Crime Geography    3  2  3  -  

 Urban Geography    18  9  18  -  

Ecology    13  9  15  -  

Biological Science    2  1  3  -  

Economic Geography    10  1  7  -  

Environmental Geography  
  

14  8  18  -  

Stat Model Comp    14  14  10  3  

Marine Geography        1  -  

Rural-Urban Geography    1  1  1  -  

Land-Use Geography    2    2  -  

Migration    1  1  1  -  

________________________________________________________________  

Table 1.4 shows examples of a table of GWR outputs. This type of display was found in a high 

percent of the GWR articles included in Table 1.3, which was taken from a GWR workshop. 
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Typically these will be composed of a summary of statistics that include; the Median, Min, 

Max, Lower Quartile and Upper Quartile for each GWR parameter estimate. Each table will 

vary according to data used by the researcher. The use of tables as a visualisation method was 

not considered for the GWR experiment in this research thesis because graphical 

visualisations were the central focus of the evaluation and so were not deemed to be as 

significant to understand participant use of them.  

Table 1.4 GWR summary statistics 

 Lwr  Upr    

 Label   Minimum   Quartile   Median   Quartile  Maximum  

Intrcept   12.62099  13.75425  15.82323  16.31224  16.4894  

TotPop  

0 

0.000014  0.000018  0.000022  0.000025  0.000028  

PctRural   -0.06022  -0.05178  -0.03934  -0.03165  -0.0258  

PctEld  -0.25551  -0.20309  -0.1642  -0.12939  -0.0584  

PctFB   0.504876  0.82519  1.432738  2.00349  2.417666  

PctPov   -0.20451  -0.16479  -0.11004  -0.05626  -0.00424  

PctBlack   -0.03619  -0.01358  0.006294  0.031046  0.076566  

  

Graphs were also not considered for evaluation because again the focus was on graphical 

visualisations that would allow for a better comparison of user understanding. Graphs were 

used by researchers to highlight data outputs particularly for statistical model comparisons 

with GWR and Figure 1.11 which was produced using GWR workshop data shows an example 

of one possible output of Residual values that provide an indication of the ‘goodness of fit’ of 

the GWR model.   

Figure 1.11 Graph of Residual Values of GWR outputs 
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The most frequent method of visualising GWR outputs are choropleth thematic maps (see 

Table 1.3). As shown in Table 1.3, 3D surfaces were used on very rare occasions to display 

GWR outputs. Given the limited use of 3D visualisations in the existing literature, these are 

one type of potential visualisation that is used as part of the evaluation for the first 

experiment in this thesis.  

3D visualisations can display more than one parameter estimate simultaneously. It allows for 

the visual comparison of two parameter estimates where one is represented by the colour 

and the other by the height. However, one major problem exists for 3D visualisations and it 

has been highlighted by experiment participants during the post experiment interviews of this 

thesis. It became apparent that 3D visualisations suffer from ‘occlusion’ which is the 

obstruction of view based on the angle of perspective.   

In general, the level of complexity of GWR outputs means it can be difficult to visualise, 

(Matthews and Yang, 2012) particularly for publication, even though practical issues such as 

colour limitation are improving. Negative parameter estimates values can be returned so a 

grey scale designation from a negative number could be an example of a challenge. Given a 

large volume of parameter estimate data can be produced, it is advisable that it be mapped 

to be better understood. Choosing a visualisation type to display the data presents a 

challenge. For example, advanced GWR parameter estimate comparison would benefit from 

the use of bivariate and multivariate visualisations. Common cartographic design principle 

issues such as the placement of legend information can be an issue when faced with 

particularly large volumes of data. One viable approach to effective display is the mapping of 

parameter estimate values and their respective t-values simultaneously on a single map. Non-

map based visualisations may not be able to effectively display large volumes of data, one 

example is a scatterplot graph which is highlighted later in this chapter. The most effective 

methods to visualise and interpret GWR results warrants investigation  

There are other useful data representations that have been used to display GWR data. 

Common examples include a box plot and starplot, both categorised under the graph 

category. The boxplot is capable of displaying the distribution of data results to aid in the 

discovery of outliers, while the starplot can display more than one data output on the same 

plot that can be compared to another starplot that is designed in the same way. The reason 

they are not evaluated in this research is the same as outlined for tables and graphs earlier. 

The emphasis was largely on cartographic visualisation of location-based data. It is worth 
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noting the use of other data representation methods but given the extensive use of these in 

the existing literature, it was deemed more valuable to research the use of 3D visualisations 

of GWR in this thesis.  

 

1.5 Cartography and Visualisations  

  

1.5.1 Modern Cartography and Visualisation  

A major component of this thesis is concerned with the way in which spatial data is visualised. 

In the sections above, information was offered on the local regression model (GWR); the 

outputs of GWR are visually represented in the experiments. In this section aspects of 

cartography and visualisations are discussed.  When one couples geographical data with 

visualisations, geovisualisations are created. This type of visualisation is designed to be more 

effective in displaying spatial data, and the usefulness of these through GIS-based and tailored 

geovisualisation tools are discussed in Methodology Chapter 4 in more detail. Before 

visualisations there were thematic maps, thematic maps are still a commonly produced item 

in cartography and geography in general, therefore it is important to understand them.  

1.5.2 Thematic Maps  

Thematic mapping software was used to create most digital maps to begin with. Digital maps 

are still a major visualisation method. One popular digital map production software is ESRI’s 

ArcGIS Suite for example. Edsall (2003) highlights a general agreement amongst statisticians 

that visualisations are capable of providing insight into datasets, referring us to the research 

of (Tukey 1977; Hurley and Buja, 1990; and Wegman, 1990). Furthermore, maps and graphic 

devices have become key components in the exploration of spatial data, particularly in 

geovisualisation. Research has been carried out (DiBiase, 1990; MacEachren et al., 1992; and 

MacEachren and Kraak, 1997) which further supports this point. GWR falls into this category 

of complexity and stands to benefit from geographic visualisation.   

They can be used in three ways: to provide specific information about particular locations, to 

provide general information about spatial patterns and to compare patterns on two or more 



 

34 

 

maps. A common mistake made by map-makers is to place too much emphasis on the display 

of inordinate data. Maps typically limit data to a fixed placement, but interactive graphics 

allow the comparison of distributions in a less fixed manner, i.e. they are more dynamic. 

However, none of the aforementioned visualisations would be effective without good 

visualisation design.   

Before discussing visual design, it is worth noting the common graphical methods used to 

represent geographic data. At a more basic level there are thematic maps, these are followed 

by multivariate maps. Modern methods of data representation include interactive 

visualisations. As mentioned, thematic maps are used to emphasise the spatial pattern of one 

or more geographic attributes (Slocum et al., 2009). This is why choropleth maps are often 

used to display GWR outputs. Thematic maps are primarily used in three ways; for pattern 

comparison, to provide general information about spatial patterns or to provide specific 

information about particular locations.  

A Choropleth map can be defined as; “a thematic map in which areas are coloured, shaded, 

dotted, or hatched to create darker or lighter areas in proportion to the density of distribution 

of the theme subject” (Geography Dictionary, 2014). A common type of thematic map is a 

choropleth map where data (or enumeration units) are displayed in various colour shades 

denoting the data value of that area. Choropleth maps sometimes contain symbols which are 

proportional in their size to the data value they represent and these types of maps can be 

produced in 2D or 3D form. Figure 1.3 in section 1.3 above is an example of a 2D choropleth 

map. Data presented on choropleth thematic maps is highly readable and these maps were 

utilised to display data in Experiment One and Experiment Two of this research thesis. Among 

the key limitations of choropleth maps are that they do not portray variation which may occur 

within data units and the unit areas can be arbitrary (Slocum et al., 2009).  Other thematic 

map types described below are not used in either experiment of this research but it is 

worthwhile to discuss their uses in the wider context of understanding the range of map 

visualisation types available for researchers to utilise.  

Proportional Symbol Maps are used to show quantitative differences.  In the case of 

proportionate symbols, their size would vary according to the data value they represent, i.e. 

the symbols are scaled in proportion to the magnitude of data they represent. For example, a 

country’s population could be represented by graduated symbols, or graduated circles (i.e. 

the larger the circle, the greater the population in that area). Symbols can also be suggestive 
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of the data they represent. (Slocum et al., 2009). Once again, using the example of a country’s 

population, you could use an illustration of a person instead of a standard shape. Proportional 

symbol maps are more valuable than Choropleth maps for the display of raw totals (Slocum 

et al., 2009).  

Dot distributions or dot density symbols are another useful method to augment the display of 

information on a thematic map, where appropriate. Dot density maps are used to display the 

distribution of data (Slocum et al., 2009). For example, if you wanted to present the number 

of cases of a disease in a designated epidemic area, you could use the dot density method. 

The number of dots placed inside each spatial unit of a map would be determined by the 

number of recorded infections of the disease. In some instances it is useful to set the number 

of dots that would appear according to a multiple of a data value. For example, one dot could 

represent five cases of infection, equally the dot density could be set so that one dot 

represents 100 cases of infection. A single dot could represent the location of an earthquake 

or a city.  

Isoline or Isopleth Maps essentially use continuous lines to display information such as 

temperatures or elevation levels. Points of equal value are connected. A contour map is an 

example of an isoline map. These are specialised maps suitable to select ahead of Choropleth 

maps when the data is known to be part of a continuous phenomenon (Slocum et al., 2009).  

Cartogram thematic maps are less commonly used but are unique in themselves. The main 

advantage of using a cartogram is that large enumeration units normally hidden on 

conventional map projections can be emphasised (Slocum et al., 2009). A distorted effect is 

created where the size of an attribute is portrayed proportional to its value within the dataset. 

Generally, cartographers will avoid distorting the spatial relationships on a thematic map. 

Distance or geographic areas are two common types of cartograms where distance or 

geographic area is displayed proportionally within one of two types of cartograms, contiguous 

or non-contiguous. Contiguous cartograms attempt to maintain contiguity of shapes while 

non-contiguous cartograms retain the shape of enumeration units. Non-contiguous 

cartograms can make shapes difficult to identify depending on the enumeration values.  

In some cases, map makers need to display multiple attributes at once. For example, the 

percentage of owner occupied housing with respect to population and income levels. 

Displaying these three variables requires the production of a multivariate map while bi-variate 
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maps only display two results. A bivariate map is the cartographic display of two attributes 

(Slocum et al. 2009). Bivariate mapping can be accomplished using Choropleth maps by 

overlaying them with additional information using another graphic such as a histogram. It can 

be more commonly achieved by overlaying proportional/graduated symbols or dot density 

methods.   

Multivariate visualisations comprise more than two different variables. One method is to 

display single attributes on separate maps within the same window. A famous example of a 

multivariate symbol is the Chernoff face. Chernoff faces have distinct facial features 

associated with individual attributes. Starplots/Snowflakes (also known as polygonal glyphs 

or ray-glyphs) can be overlaid on Choropleth maps to display several additional attributes on 

a map. Lines representing single attributes extend from a small interior circle proportional to 

the values they represent (Slocum et al., 2009).  

1.5.3 3D visualisations  

Just over a decade ago, 3D visualisations were an emerging technology within geographic 

applications (Pullar and Tidey, 2001) and GIS systems such as ArcGIS (one of the most 

renowned programmes used to visualise geographic data in 3D). ArcGIS is a convenient 

system for data management. Geographic 3D visualisations are closely aligned with 3D 

visualisations produced by computer aided drafting systems (CAD) systems which allows an 

image to be viewed dynamically (Robins et al., 2005). When performing analysis on 3D 

visualisations, it is not unusual for the analyst to want to assess a 2D variant either 

simultaneously or intermittently, as observed in Experiment One in this thesis. In geographic 

terms, 3D visualisations can also be known as 3D surfaces because the 3D surface shown can 

be manipulated to show a set of data values, it does not necessarily relate to the physical 

topology of a geographic area.  

3D visualisations are most useful in certain situations, for example, modern medicine, 

petroleum exploration, gas exploration (Salom et al., 2009) or to display groundwater flow 

patterns (Robins et al., 2005). Geoscientists would need to produce a 3D model which 

supports the decisions of geologists to drill in particular locations for oil or gas.  3D 

visualisations present a more dynamic view of geographic data but have one major drawback 

mentioned earlier, they suffer from occlusion (Salom et al., (2009) and Tsigas (2007)). 

Generally, 2D visualisations have two degrees of freedom, they are the x and y axis. 3D 
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visualisations have 6 degrees of freedom; the x, y and z axes. In terms of interaction 3D 

visualisations are superior (Kok and van Liere, 2007). However, additional viewing angles do 

not necessarily result in an enhanced ability of non-expert users to analyse data (Cline, 2000). 

In short, it has been difficult to assess the overall performance levels of 2D visualisations 

compared to 3D visualisations because of the variety of devices, interactions, techniques and 

participant expertise (Zudilova-Seinstra et al., 2010). For example, in Experiment One of this 

research 3D visualisations are assessed by participants with a certain level of expertise for a 

spatial statistical model. Traditional 3D visualisations revolve around a windows mouse-

menu-based interaction paradigm (Kara et al., 2007).  

1.5.4 Interactive Visualisations  

A majority of our brain’s activity deals with processing and analysing visual images. 

Visualisations are described as a new field of research which examines our innate potential to 

effectively process visual representations in knowledge intense tasks (Bukhard and Meier, 

2005). It is more appropriate to view the use of visualisations as one of the most effective 

methods of analysing the increasing level of complex data. Previously described as a rapidly 

advancing field of study (Card et al., 1999; Chen, 1999; Spence, 2000; Ware, 2000), the 

visualisation of information or information visualisation is an increasingly important aspect 

associated with geographical analysis.  Information visualisation can amplify cognition (Card 

et al., 1999). The thematic maps and 3D visualisations described above are forms of 

information visualisation and they can be used to discover patters (e.g. trend clusters, gaps or 

outliers) concerning individual items or groups of items with the overall goal to derive new 

insights (Bukhard and Meier, 2005). They have three main characteristics; they are interactive 

to some extent through manipulation of a user interface where operations such as data 

selection or filtering can be applied, they are dynamic meaning they can be rendered in real-

time and they help with embedding details and context through dynamic zooming. By this 

logic, more interactive visualisations should allow for improved analysis of geographic data.   

Extending this concept, we could say that one of the most current and little used form of 

visualisation, “interactive visualisation” represents one of the most, if not the most, powerful 

tool available for analysis of geographic data. Given the emerging use of this type of 

visualisation in the literature, this research thesis aims to incorporate interactive 

visualisations into the exploration of user understanding. Interactive visualisations can be 
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purely 2D visualisations, purely 3D visualisations or a combination of 2D and 3D information 

visualisations. These visualisations can consist of one or more visualisation windows which 

displays the dataset. Experiment One of this research contains a typical example of a purely 

2D interactive visualisation consisting of several interactive windows displaying a dataset 

using different visualisation methods. 3D examples include cutting edge work on Space-time 

cubes (Demšar and Virrantaus (2011) and McArdle and Demsar (2011)) to analyse aspects of 

data including trajectories and densities.  

  

1.6 Visualisation design  

  

“Cartography is about representation” MacEachren (2004). The functionality of a map needs 

to be taken into account when designing visualisations. Artistic design does not necessarily 

mean good design and the release of the 1972 subway map of New York (See Figure 1.12) was 

met with mixed reactions. The design was innovative because it re-imagined the subway 

system but passengers and visitors could not easily grasp their location by looking at the map. 

Standardisation could be considered as important to visualisation design, because designer 

interpretation will vary. Standardisation helps to increase functionality because it focuses on 

the creation of practises that are most effective for visualisation design. However, 

cartographers disagree with this idea preferring to form an objective view based on the 

visualisation they were designing Robinson (1952) and Robinson (1973). The audience a 

particular visualisation is aimed at would generally dictate how the end product looks.   
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Figure 1.12 Massimo Vignelli’s 1972 New York subway map 

 

  

MacEachren (2004) produced a simple diagram depicting the process a cartographer 

undertakes in producing a map. Figure 1.13 shows this diagram and you can see that the 

recipient is the final link in the design-chain. In other-words, it appears that end users have 

no input into design. Cartographers saw visualisations as communication tools to be analysed 

by recipients (Kolacny, 1969). Modern cartographers are now adopting what was previously 

referred to as a representational approach (MacEachren, 2004) or a user-centered design 

approach when it comes to visualisation design. Research has been carried out to highlight 

the necessity of user input and modern visualisation design will be discussed in the next 

paragraph. Diversity of the user perspective is an inherent difficulty when attempting to 

communicate through visualisation. Broad interpretations of map detail can occur. Howard 

(1980) discusses an objective approach to incorporate user related issues including; cultural, 

psychological, and required communication processes for symbols. Adding to this, perception 

is a factor in visualisation design as it is linked to user interpretations, or how a user perceives 

a visualisation. Consider perception as a representation of what we see with our eyes and 

cognition as the objects and relationships within that scene. You will see that map objects 

such as symbols are not the only concern cartographers should focus on when designing their 

representations (MacEachren, 2004).  

As already mentioned user interpretation of representations will vary between each user. This 

complicates the ability of the communication model in Figure 1.13 to function effectively. If a 

user will create assumptions on what a visualisation depicts, then user derived meaning may 
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never correlate with the designers. To aid with map comprehension, Pinker’s framework 

(1990) on graphical comprehension can be considered as a useful tool.  

Figure 1.13 Schematic depiction of cartography as a process of information 

communication (MacEachren, 2004) 

 

  

Modern Visualisation Design needs to incorporate users in a more meaningful way. This is 

because a significant proportion of visualisation design problems are related to users. A 

similar question that was asked about the usefulness of geovisualisation can be repeated. 

“What is a visualisation good for?” Haklay and Tobon (2003) discussed how we understand 

the diversity in human behaviour when dealing with graphic visualisations. Research carried 

out by Wilson et al. (2010) on personalising visualisations shows that we need to account for 

user differences. This thesis addresses these issues and are discussed in the Experiment 

Design chapters.  

Thematic maps are also used for the acquisition of mapped information. A map conveys 

information and map creation should follow the model process shown in Figure 1.14. This 

model was applied during this research, particularly during the experiment design stage to 

ensure data was appropriately displayed for the end users. Thematic maps should also be 

considered as a significant piece of interactive visualisation. They are a staple of visualisations 

to which other types of visualisations are linked.  

Geographic  
Environment 

Cartographers  
Interpretation 

Map Recipient 
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Figure 1.14 Basic Steps for communicating map information to others (Slocum et 

al., 2009) 

  

You can split visualisation into two different definitions. The first is geographical visualisation. 

‘Geographical visualisation [can be defined] as the use of concrete visual representation, 

whether on paper or through computer displays or other media, to make spatial contexts and 

problems visible, so as to engage the most powerful human information-processing abilities, 

those associated with vision’ (MacEachren, 1992). The second is based around MacEachren’s 

(1994) Visualisation Cube, displayed in Figure 1.15. MacEachern’s argument considered 

geographic visualisation as a private activity and communication a public activity. The private 

activity would be highly interactive, while the public would be the opposite, where knowns 

are presented. More recently the phrase geographic visualisation has been replaced by 

geovisualisation (MacEachren et al. 1999), and this has become the standard term used. 

Cyber-cartography was a proposed term by Taylor (1997), and it incorporates some of the 

elements of geovisualisation such as ‘highly interactive user engagements’ and ‘new research 

partnerships’. In modern day terms we could describe these types of visualisation as online 
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interactive visualisations. These types of visualisations are an increasingly important driving 

force behind geographical visualisation advancement.  

Figure 1.15 MacEachren’s Visualisation Cube (1994) 

  

The importance of visualisations in the advancement of our understanding and analysis of 

complex data is evident, but it is also crucial to have an adequate set of tools to carry out 

analysis on data. The next section will discuss the type of visualisations that can be used to 

successfully carry out the first experiment of this thesis.  

 

1.7 Geovisualisation Systems: design and functionality  

  

Geographic visualisations are often referred to as geovisualisations. The first question to ask 

would be; "what is geovisualisation effective for?" According to Edsall (2003) the research 

initiative known as geovisualisation grew out of the need to represent and interact with 

complex data. Interactive visual representations and their tools encourage creative and 

intuitive exploration for structures and patterns which are normally difficult to detect through 

non-visual techniques (Edsall, 2003). GWR data would benefit greatly from this type of 

exploration. Insights about particular characteristics are gained with the choice and style 
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option. The tools and displays combine with users leading to knowledge construction about 

complex data via the representations (Rogers, 1999).   

Ogao and Kraak (2002) share other authors’ opinions that geographic visualisation techniques 

have linked with increasingly enhanced and interactive dynamic tools. They now complement 

quantitative approaches to data, particularly in cartographic visualisations. Cartographic 

animations have been used in mapping geospatial process, and are important for observing 

geospatial process, not just the end state (Ogao and Kraak, 2002). This is evident from the 

many authors who have worked with these animations (Kraak and Klomp, 1995; Acevedo and 

Masuoka, 1997). In the past, a lack in technology and user knowledge mired the incorporation 

of user needs in design processes (Ogao and Kraak, 2002). Now, early work can be carried out 

to create a list of user requirements and visualisation goals which could augment visualisation 

design.  

A major part of this research thesis is concerned with the way in which spatial data is 

visualised. The local regression model GWR has already been discussed along with the outputs 

of GWR being visually represented in the experiments. In this section, key aspects of 

cartography and visualisations were discussed, highlight how coupling geographical data with 

visualisations can create geovisualisation. This type of visualisation is designed to better 

display spatial data, and the usefulness of these through GIS based and more tailored 

geovisualisation tools are discussed.  

According to Edsall (2003) the research initiative known as geovisualisation grew out of the 

need to represent and interact with complex data. Interactive visual representations and their 

tools encourage creative and intuitive exploration for structures and patterns which are 

normally difficult to detect through non-visual techniques (Edsall, 2003). Insights about 

particular characteristics are gained with the choice and style option. The tools and displays 

combine with users leading to knowledge construction about complex data via the 

representations (Rogers, 1999).  
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1.8 Usability in GIScience  

  

Thematic maps have evolved into geovisualisations which have been discussed earlier, and 

these can be used to emphasise spatial patterns, usually of one or more geographic attributes. 

They can be used in three ways; to provide specific information about particular locations, to 

provide general information about spatial patterns, and to compare patterns on two or more 

maps.   

A mistake that can be made by map makers is that they place too much emphasis on the 

display of unnecessary data. Maps typically limited map data to a fixed placement, but 

interactive graphics allow us to compare distributions. Geovisualisations are also used for 

information acquisition and memory for mapped information. These maps can be useful for 

analysis up to a point, but as MacEachren (1995) mentioned that traditional map studies are 

no longer necessary with the development of interactive visualisations. You can say that many 

of these interactive visualisations are linked to geovisualisation in the modern day because of 

the methods or tools available to display data.   

In the past, a lack in technology and user knowledge mired the incorporation of user needs in 

design processes (Ogao and Kraak, 2002). Early work was carried out to create a list of user 

requirements and visualisation goals which could augment visualisation design. Lucieer and 

Kraak (2006) consider the development of dynamic visualisation cartographic techniques, a 

result of improved computer graphics technology. This could be possible through GIS based 

packages. However, Lucieer and Kraak (2004) state that most GIS packages do not offer tools 

to “model, visualise and manage uncertainty in classifications”. Users now want information 

map quality, not just the map representations of data. Lucieer and Kraak (2004) designed a 

tool for interaction with a fuzzy classification algorithm. With this in mind, usefulness and 

quality aspects are important to consider and became apparent in the analysis of the results 

of the experiment carried out as part of this research thesis.  

A starting point on how to design visualisation operations is illustrated by Shneiderman (1996) 

and earlier by Goldstein et al. (1994). One of the main problems in designing visualisation 

systems lies with the levels to which one can explore data. It is difficult to design a visualisation 

system capable of meeting every user’s specific needs, both for broad and narrowly defined 
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data exploration. At the time of publishing Ogao and Kraak (2002) noted a struggle to solve 

the complexities involved with temporal queries.  

The usability of GIS products has improved significantly in recent years (Hacklay and Tobón, 

2003). However, GIS products still require considerable technical knowledge to operate them 

and efforts to increase the ease of use are important. Human Computer Interaction (HCI) work 

has been carried out with GIS applications since the 1990’s (Nyerges at al. (1995a) and Davies 

and Medyckyj-Scott (1996)). In this early stage of GIS development it appears the same cannot 

be said of Public Participation GIS (PPGIS), which has not received the attention it requires. As 

our ability to disseminate GIS based information grows through the use of the internet it can 

be argued that Public Participation of GIS visualisations are ever increasing. Mapped 

visualisations displayed in more understandable internet flash or similar based forms have 

allowed researchers to reach a wider audience with their work. A prime example is the work 

carried out by the National Centre for Geocomputation with the Irish famine database (Kelly 

and Fotheringham, 2011).  

Ogao and Kraak (2002) share other author’s opinion that geographic visualisation techniques 

have linked with increasingly enhanced and interactive dynamic tools. They now complement 

quantitative approaches to data, particularly in cartographic visualisations. Cartographic 

animations have been used in mapping geospatial process, and are important for observing 

geospatial process, not just the end state Ogao and Kraak (2002). This is evident from the 

many authors who have worked with these animations (Kraak and Klomp (1995) and Acevedo 

and Masuoka (1997)).   

Geospatial animation functionality has been developed with the increase of computer power, 

both in speed and graphical elements. A fundamental component of animation presentation 

is simplicity. The objective is the avoidance of any user distractions such as complex 

animations. It is important to understand space-time structures and processes within 

animations. Changes can be continuous, cyclic or discrete, they can also be fast, slow or abrupt 

(Ogao and Kraak, 2002). An emphasis must be placed on the user’s ability to notice changes 

in their animation. Appropriate spatial and temporal scales are crucial. As you can see work 

to bring geovisualisations to the fore is ongoing and it emphasises the importance placed on 

geovisualisations for analysis of increasingly large and complex datasets.  
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Testing the effectiveness of geovisualisations is a crucial component within this thesis. With 

the discussion above in mind, it is imperative the design of the experiment is carefully 

considered and justified in the context of best practice in map and visualisation design. 

 

1.9 Evaluation Design  

  

There are several possible evaluation approaches to be considered. Usability measures such 

as task performance and task nature (e.g. closed or exploratory) are important factors. 

Wehrend and Lewis (1990) produced a classification list of operations which is designed to 

“distinguish problems for which the user’s goal in viewing the representation differs” 

(Wehrend and Lewis, 1990). The effectiveness to which a researcher can extract their required 

information from a visualisation can be regarded as a criterion, or a usability measurement. 

This section presents some of the evaluation approaches.  

There are common challenges associated with experiments involving information visualisation 

tools. However, the location of an appropriate testing site is a problem associated with 

visualisation tools. It is argued that they need to be tested in a real setting, and not solely in a 

laboratory. Even if this is achieved the tester has to persuade the user to take the leap of faith, 

and use the tool. The fact a tool may not be specifically designed for the needs of a user is one 

major obstacle (Plaisant, 2004). Plaisant argues researchers should invest in resources to tailor 

their tools to specific user needs. This relates to the first experiment. Participants operate 

tools tailored for the experiment, and the dataset is not chosen by the participants. Also, it 

can be argued that the experiment laboratory would be appropriate if it replicated a natural 

working environment.  

The previous sections have detailed the significance of Human Cognition in relation to a 

visualisation interaction. Cognitive aspects are important particularly in the context of 

information visualisation because they assist in the comprehension of visualisation 

performance. According to Chen and Yu (2000), “users with a stronger cognitive ability, i.e. 

high psychometrics, tend to perform better with information visualisation systems than users 

with weaker cognitive ability in terms of accuracy.” However, the work of Gibson (1979) and 

Schuman (1987) argue that human cognition is guided by their environment and not their 
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head. This indicates that the environment has a role to play in the results of any usability 

experiments, and as such must be taken into account. Different methods of analysis have 

been proposed. For example, a person should be observed in a naturalistic setting where they 

would make perceptual judgements according to Brunswick (1943). Lave and Wegner (1991) 

have also deemed work in a naturalistic setting appropriate.  

When assessing data recorded during an evaluation experiment the technique to measure 

this data should be appropriate. A correctness of response system was used by Koua et al. 

(2006), where the correct answer is coded one and the incorrect answer is coded zero. This 

could be a useful method if coupled with the interaction logs, it would be easier to analyse 

the experiment results. Time can be used as a measurement of performance, and can reveal 

some important differences in experiments as Koua et al. (2006) discovered. This method of 

recording correctness of user tasks could be applied to the experiments carried out in this 

thesis. However, given the complexity of the tasks in the first experiment this response system 

should be adapted.  

Generally empirical evaluations only include simple tasks; for example, identify and locate 

tasks. Performance reports on a task by task basis are the preferred method, compared to 

overall performance reports. This allows for in-depth analysis of performance. Tools can be 

matched with particular tasks. This is something that could be achieved through evaluations 

of visualisations in this thesis to an extent. The second experiment involving eye tracking 

technology would work most effectively with these types of tasks.  

Given the nature of the GWR outputs in the first experiment the inclusion of a set of 

exploratory tasks would represent a more accurate testing platform. The evaluation methods 

used by Koua et al. (2006) emphasised exploratory tasks and knowledge discovery support. 

The authors presented an approach for assessing the usability and usefulness of the visual-

computational analysis environment. It is important to understand user cognition and how 

users make interpretations and inferences when conducting analysis. Crucial to this is the 

choice of an appropriate visualisation metaphor. The evaluation results serve as a guideline 

for the design of geovisualisation tools which integrate several visualisation types 

simultaneously. It is evident from the evaluations conducted by Koua et al. (2006) that certain 

visualisations perform better for each task. This suggests a multiple representation 

environment would be best for analysis of varying spatial and temporal data. It could also be 

suggested that any experiment including multi-windowed representations would be 
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augmented by comparative single windowed representations. A more comprehensive set of 

results could be obtained for analysis.   

Gabbard et al. (1999) have produced methods for virtual environment (VE) usability 

engineering. Their methodology steps includes; user task analysis, expert guidelines based 

evaluation, formative user-centric evaluation and summative comparative evaluations. The 

user task analysis is the process of identifying a complete description of tasks, subtasks and 

methods required to use a system, as well as other resources necessary (Gabbard et al., 1999). 

The user task analysis represents insights gained through organisational and social workflow, 

and a general understanding of the needs of the user. This step of user analysis was often 

overlooked in the 1990s. Developers and evaluators operate on a ‘best guess’ to interpret 

how VE applications should be designed. It highlights the need for a more user inclusive 

approach to visualisation design.   

Heuristic evaluations or usability inspections are capable of identifying potential problems by 

measuring established design guidelines to an applications user interaction design. More than 

one person should perform these evaluations since it is unlikely that one person will identify 

all of the problems in an application. Evaluators inspect the application individually and the 

results are then combined. Gabbard et al. (1999) have found the expert guidelines to be too 

general, and have designed a set of guidelines specifically for VEs within a framework of 

usability characteristics.  

The expert-guideline-based evaluations are critical to the effectiveness of formal and 

summative evaluations (Gabbard et al. 1999). They are useful for streamlining the two latter 

evaluation types. Time is not wasted on identifying obvious usability problems.  

According to Andrienko and Andrienko (2005) geographical analysis is considered to be a set 

of operations or tasks to achieve data exploration aims. The process involves the identification 

of different element spatial proximities, verifying spatial density, and obtaining a perspective 

of a targets measurement at a location or neighbouring location (Koua et al., 2006).  
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Weldon (1996) describes operations in a more specific manner, the tasks include:  

- Identification of clusters in data, and relationships between elements.   

- Comparison of values at different spatial locations, distinguishing a range of values.  

- Relation of the value, shape and position of identified object.  

- Analysis of extracted relevant information.  

  

There are several taxonomies for visualisation that have been suggested by authors (Zhou and 

Feiner, 1998; Ogao and Kraak, 2002). An earlier taxonomy for visualisation operations can be 

obtained from reading Wehrend and Lewis (1990). It is presented in Table 1.5. Table 1.6 shows 

a more modern taxonomy that condenses the operation keywords (Ogao & Kraak, 2002). 

However, this taxonomy can be streamlined further for the purposes of the experiments in 

this thesis, and Table 1.7 shows an adapted version.  

In the first experiment, for Task 1, participants identified a particular Electoral Division. 

However for Task 2 and Task 3 an additional appropriate operation class ‘relationship’ within 

each task was added to Table 1.19 below. These operations aided the creation of a series of 

tasks to represent the types of questions a user of GWR would want to answer when analysing 

a complex data set.  

Table 1.5 Taxonomy of Visualisation Operations 

Operation    Operation Description  

  

Identify  

to establish characteristics of a piece of data recognise or select by 

analysis.  

Locate   to discover the extract place or position of data of object.   

Distinguish   to discern, to identify characteristic differences.  

Categorise  to order/split or arrange a group (of data in this case).  

Cluster  a group of similar things positioned or occurring closely together.  

Distribution  the way in which something is dispersed, diffused or spread.  

Rank  a position within a fixed hierarchy.  

Compare  to estimate, measure, note similarity or dissimilarity.  

Associate  a logical or casual connection between two things.  
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Correlate  have or bring into a relationship in which one thing affects or depends 

on another.  

Determine  to ascertain, to decide by research or calculation.  

Look up value  similar to identify according to Roth and Mattis (1990).  

  

Source: Reproduced from Wehrend and Lewis (1990).  

  

Table 1.6 Four Generic visualisation operations (reproduced from Ogao and Kraak, 2002). 

 

Visualization 
operator          

Visualization sub-operator Example of definitive characteristics of 
results. 

  
Spatial identification 

Length, area, irregularity, 
minimum, maximum range, 
distance, pattern of distribution 

Identify 

 Temporal identification Extent: longest, shortest; 
sequence: first, last; category: 
nominal, ordinal, interval/ratio; 
movement: continuous, cyclical, 
intermittent. 

 Thematic identification Name, symbols (legend) 

   

Locate Spatial Location (x,y),           , grid locations, (rows, 
columns), near, within, between, 
above, below, neighbourhood of. 
 

 Temporal Location Event, valid time t, observed 
interval (t1-t2) before, after, 
together, next. 

Associate/ compare Spatial association/ comparison Topological relations, spatial 
collection,  covariance, correlation 

 Temporal association/ Temporal 
comparison 

Temporal relations, time between 
objects, orientation (before, 
after), adjacency (just before, just 
after), causality (correlation). 

*Relationship   Relationships between two 
variables. 
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Table 1.7 Adapted Taxonomy of Visualisation Operations 

  

 Operation        Operation Description  

 

  

Identify  to establish characteristics of a piece of data recognise or select by  

analysis.  

Locate   to discover the extract place or position of data of object.   

*Relationship    to discover the type of interaction between two variables.  

 

 

While designing tasks, it is important to prevent any overlapping of content to minimise the 

possibility of a learning effect occurring. The learning effect experienced by participants who 

recall information from memory as they become familiar with the layout and content of an 

experiment had to be minimised. This familiarity could alter results (Robinson and Griffin, 

2010). The order of the experiment tasks example - from the Latin square technique by 

adapting its concept of randomisation to ensure GWR tasks, some of which are complex, 

would not be repeated.  The Latin squares technique (Dénes & Keedwell, 1974) is a matrix of 

letters or numbers used to prevent experiment participants from learning the details of an 

experiment.   

Since this experiment contains GWR related tasks, i.e. bivariate and multivariate tasks it 

complicates our efforts to use a textbook Latin square technique for the experiment. A 

standard Latin Squares task randomisation sequence of ABC CAB BCA is ideal for univariate 

tasks. However, given the number of tasks and the fact that they were also bivariate and 

multivariate in nature, this was not possible.  As you can see, the technique is designed to 

prevent a task from recurring. In the case of the GWR experiment there are five parameter 

estimates to account for and their respective T-values were used as an additional complexity 

to simulate typical GWR task analysis. Tasks could be arranged in a sequence that helps to 

prevent the learning effect whilst providing the necessary complexity required. In some cases, 

more than one task contained the same attributes but participants would be asked to look for 

highest or lowest value relationships so tasks would still remain different. In other words, no 

two tasks were the exact same.   
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The next chapter will address in greater depth the human-related aspects that are important 

to consider for effective visualisation of data. It should be noted that the key goal of this 

research was not to design a visualisation, but rather to compare and test the utility of 

visualisations. The first experiment tests these for GWR, and the second experiment tests if 

human perception is affected by scalability. It was found that participant performances partly 

reflected familiarity with and ease of use of the visualisation tools, as well as their 

understanding of GWR and GWR outputs.   

  

1.10 Glossary of Terms  

  

2D visualisations: A two dimensional graphical display of data values.  

3D visualisations: A three dimensional graphical display of data values.  

Choropleth Map: a map in which data is shaded with varying colour intensities according to 

the value of data of that unit.  

Geographically Weighted Regression: A spatial statistical model used to examine processes 

which vary over space.  

Geovisualisation: Is a simplified version of geographic visualisation, a term simplified by 

MacEachren et al. (1999). It is the use of visual representation of spatial information on paper 

or in digital form. It allows humans to engage their processing spatial data. Unknown spatial 

information can be revealed in a Geovisualisation.  

Interactive Visualisation: A set of dynamically linked windows in which data is displayed using 

different types of visualisations. These visualisations can be manipulated to highlight one or 

more data values simultaneously across every dynamically linked window.  

Spatial non-stationarity: relationships which are not constant across space.  

Spatial Statistics: A set of statistics that contain a spatial element or geographic properties. 

They give explicit consideration to spatial properties, e.g. location, patterns and distance.  
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Thematic Map: Used to highlight spatial patterns of one or more geographic attributes. They 

include; Choropleth maps, Dot Distribution/Dot Density maps, Graduated symbol maps and 

Isoline maps.  

Visualisations: Any graphical technique that is used to display data and communicate 

information of that data.  
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2: Cognitive Processing of Graphical Data  
  

The previous chapter reviewed literature in relation to the first experiment on visualisations 

within this research thesis. Chapter two is concerned with literature relevant to the second 

part of the research within this thesis. Here, cognitive processing of graphical data is 

considered in depth to contextualise the likely output from Experiment Two of this research. 

André Du Laurens, in the 16th century, referred to the eyes as the ‘window into the mind’ 

because the eyes move to objects of interest and salience to the mind. Therefore, analysis of 

eye movements are a critical part of the second phase of the research carried out in this thesis.  

The chapter is structured into seven key sections. Firstly, the structure of the human eye is 

described given this is the organ of sight and Experiment Two is concerned with how users 

view and then interpret visualisations. Next, a discussion on eye movement research is 

provided to help contextualise the research aims of Experiment Two in this thesis.  The 

emerging theme of geovisual analytics is then considered before focusing on human computer 

interaction. Stemming from this, a discussion on human cognition and perception follows 

before the theme of visual scalability is introduced. Each of the above sections are critical in 

framing the research carried out in Experiment Two and will aid analysis of the research 

output later.  

2.1 The Structure of the Eye  
  

Yarbus (1967), a pioneer of eye movement research, provides an account of why it is 

important to understand how the structure of the human eye (see Figure 2.1) relates to its 

function and movement. The shape of the eye is maintained by the firm tissue called Sclera 

and the Cornea is a transparent membrane that protects the inner structure of the eye. The 

Iris changes the size of the pupil determining the amount of light transmitted into the eye and 

reflected onto the rods and cones – the receptors – of the retina. Where the axons of the 

neurons gather to form the optic nerve which projects to the brain, there are no receptors, 

this part of the retina is therefore a “blind spot”. Another area of the retina – the fovea 

centralis – has thinner retinal layers and greater cone density. This is the region of greatest 

acuity and therefore eye movements align the eyes so that light from areas of interest are 

focussed on the fovea. This is called ‘foveation’. Although attention can be directed to other 

parts of the visual field, generally one foveates attended locations. For this reason, eye 



 

55 

 

movements are a proxy measure of covert attention. For some time, eye movements have 

been researched in an attempt to better understand user interest and interpretation of visual 

phenomenon. The next section discusses this research in-depth.  

Figure 2.1 of detailing parts of the eye  

 
  

2.2 Origins of Eye Movement Research  

  

Human eyes make dozens of movements – saccades – every second. Analysis of eye 

movements therefore provides valuable insights into psychological and cognitive function in 

a number of real‐world tasks, including reading and visual exploration of computer displays 

(Goldberg et al., 2002). Eye movements are generally studied through acquisition and analysis 

of eye movement trajectories via eye tracking.   

A saccadic eye movement involves the synchronised movement of both eyes at a rapid speed 

from one position to another. Up to 173,000 saccades are made each day (Abrams et al., 

1989). The exact duration of a saccade will vary according to the visual input, although the 

speed of a saccade can be as high as 500 degrees per second (Rayner, 1998).   

Any object or scene the eyes pass over during a saccade may not be properly visualised due 

to saccadic suppression (Bridgeman et al., 1975). This implies that information is derived from 

the visual scene during fixations. We study eye movements on the assumption that fixations 

are foveating points of interest.   
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There are a variety of techniques for measuring eye movements, which vary according to the 

extent to which they are invasive and in their accuracy. Unfortunately, these factors are 

inversely correlated. The most basic method of eye movement measurement is direct 

observation. We are reasonably good at being able to tell, broadly speaking, what another 

human is looking at. However, although this is the least invasive method, it is also the least 

accurate. Trajectory and velocity of saccades are largely impossible to track by observation, 

and this method would only be somewhat useful in recording the final fixation point of the 

eyes. Our capability to accurately record eye movement has improved considerably. Wade 

and Tatler (2005) provide a summary of eye tracking technologies and note that remote 

devices – not head mounted, but rather at a comfortable and not visually interfering distance 

from the participant – provide sufficient accuracy to record patterns of fixations while 

minimising interference with vision. This is the type of eye tracker used in the second 

experiment.   

Çöltekin et al. (2009) studied map designs using eye movement analysis as well as usability 

metrics (e.g., speed and accuracy of comprehension). Çöltekin et al. (2009) state that 

‘softcopy’ (digitally-based) maps are becoming the norm with the spread of internet access 

and mobile devices. The need for usable interface tools for digital cartographic mapping is 

therefore an important factor to consider for the future of maps. Basic map design principles, 

and to an extent the usability principles applied in the work of Çöltekin et al. (2009), are 

important to consider because maps are one of the oldest examples of a visual display of 

complex information. The evaluation carried out by Çöltekin et al. (2009) used two different 

interactive maps services, Natlas (2008) and Carto.net (2008), which have different layouts, 

in order to compare their usability. Çöltekin et al. (2009) state that it is a common assumption 

that more fixations “indicate a less efficient search strategy, longer fixations indicate difficulty 

with the display, and plotting scan paths and fixations will allow documenting” (Çöltekin et 

al., 2009). The authors provide an account of a user’s typical visual search pattern where two 

processes occur. The first is perceptual, during which the user locates the target area of 

interest, and the second is cognitive, where the user will processes the information at the 

target location. The same principle applies for any visual processing of a complex graphic.   

The visual processing of complex objects or a scene with many items of potential interest will 

not generate the same response from every person. People’s eyes will fixate on certain 

elements of the objects, and typically complex objects or scenes will contain many elements. 
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An early study by Yarbus (1967) on the 1884 art work by Ilya Repin called ‘An Unexpected 

Visitor’ shows that participants focused more on elements of the painting than they thought; 

as Yarbus put it, ‘useful and essential for perception’. Figure 2.2 shows the original work, while 

Figure 2.3 shows an example of participants recorded eye movement patterns over the course 

of a three minute period. Through a series of experiments such as this one Yarbus found 

participant eye movements were not necessarily determined by the number of details. This is 

interesting to note because it is linked to more modern research, where the number of 

elements presented to participants vary greatly. Yarbus also noted that light and dark details 

did not attract participant attention unless essential information lay within those details. In 

relation to the experiment conducted for this thesis, the lightest and darkest areas would be 

the ones containing the most information and therefore participants’ attention and foveation 

would be attracted to these areas of the visualisations.  

Figure 2.2 Repin's ‘An Unexpected Visitor’, 1884 

 

 

Yarbus (1967) concluded in his ground-breaking work that eye movement is at most only 

slightly dependent on the contents of a scene being observed by the eyes. However, in his 

experiment certain details were not highlighted as being particularly important. This 

experiment was exploratory in nature because there was no task requiring an answer, 

participants did not have to search for key elements in the scenes presented to them for three 

minutes at a time.   
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Figure 2.3 Illustration of participant eye movement, Yarbus 1967 

  

A large component of this research is linked to the perception of a human being.    

2.3 Modern Eye Movement Science 
  

Eye movement science is used to augment research on human behaviour. Eye tracking 

technology is more sophisticated and accessible than ever before resulting in more precise 

readings during experiments. Approximately 40% of our brain is used to process the visual 

environment (Ware, 2008). Therefore it would be advantageous to attempt to measure eye 

movement to evaluate, understand, and improve. Ware (2008) focuses on the idea of visual 

thinking and, how the human cognitive pattern of thinking and eye movement are linked in 

‘acts of attention’. Attracting and keeping the attention of a person is better achieved through 

graphical representations; “graphics can be more precise and revealing than conventional 

computations” (Tufte, 2007). A valid assumption is that graphical representations are more 

efficient than non-graphical visualisations (Çöltekin et al., 2010) to display information.  

The comprehension of cognitive perception is a key point of eye movement research and is 

consequently strongly relevant to the research presented in this thesis. There are two types 

of perceptual process to note: Bottom-Up and Top-Down (Ware, 2008). The bottom-up 
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process consists of information filtering so that meaningful objects can be visualised in the 

environment. Generally the number of objects that a human can focus on at one time is three. 

This is our visual working memory and in the design of the eye tracking experiment in this 

research it was important to carefully construct the visualisations because they contain 

unimportant objects that participants would potentially focus on. The top-down approach is 

also present somewhat in the bottom-up approach to a certain extent because the eyes will 

work to clearly establish what the objects of interest are in the particular environment. 

However, instead of using a series of filters to better visualise what would be a set of objects 

present in front of us, the top-down approach is related to instances where we have a specific 

task to complete (Ware, 2008). When attempting to complete a task we will search for the 

relevant objects in our environment.  

What is important in the study of perception through eye movement are the sequences or 

potential patterns our eyes perform. Abbott (1995) mentions perception as the first major 

cognitive sequence topic. Ware’s “Visual Thinking for Design” (2008) cites an experiment by 

Hayhoe and Ballard (2005) on the sequencing of eye movement who also cite the work of 

Yarbus (1967) on the ability of eye movement to offer an insight into cognitive thought 

patterns. Hayhoe and Ballard (2005) mention the evidence of sequential eye movement 

patterns, which again can be attributed to a pattern associated with possible task completion. 

A more recent example of eye move sequential studies is Çöltekin et al. (2010) where eye 

movement pattern recognition is explored through interactive and dynamic graphical 

representations. The graphical representations, or visualisations in this research are 

geographical in nature and the work by Çöltekin et al. (2010) is one of the few studies relating 

to cartography and geovisualisation. Swienty and Reichenbacher (2008) is another example 

of investigating the complexity of geovisualisations in relation to cognitive processing and 

visual scanning. Çöltekin at al. (2010) made a distinction between Bottom Up and Top Down 

processes that is different from the Swienty and Reichenbacher (2008) study. A top down 

process relates to theory or hypothetically driven patterns of scanning of a visual scene, while 

bottom up processes are data driven. These processes can be identified by observing scanning 

patterns of participant eye movements. More on the approaches used in the eye movement 

research of this thesis is discussed further in Methodology Chapter 5, but it is important to 

mention its place among eye movement literature here.  
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Perception is linked to cognitive aspects of our brain. According to Lai et al. (2013) the visual 

perception of a person is achieved through all three sources of information; foveal, parafoveal 

and peripheral vision. Since these aspects help form our perception of the environment it is 

important to understand their relevance. As mentioned earlier, Landolt (1879) carried out 

very early experiments on visual acuity in which he suggested our visual ability deteriorates 

as it gets further away from the central point of focus. The fovea is the area with greatest 

clarity or visual acuity in the eye, followed by the parafovea and then the peripheral region. 

Our fixations and saccades are made through the fovea, which is why the clearest images in 

our environment are always those we focus upon. Work carried out by Duchowski and 

Çöltekin (2007) show examples of the foveated vision through Gaze-Contingent Displays 

(GCDs). One example used can be seen in Figure 2.4 where the foveated vision is simulated 

on a scene from the Movie ‘Gladiator’ which was cited by Duchowski and Çöltekin (2007) and 

was originally produced in Geisler and Perry (2002). The original image can be seen in the 

bottom left, and the visual field on the bottom right. Figure 2.5 effectively provides an 

example of what your eyes would see when they focus on an element in a scene. Figure 2.5 

was created using Giesler and Perry’s Space Variant Imaging software from the Center for 

Perceptual Systems (2014) at the University of Texas. It is a foveated screen capture of a 

phonetic alphabet often found on the wall of an optometrist, the focus of the eye is simulated 

on the ‘n’ at the centre of the image. Although these displays are simulated artificially they 

still offer a good insight into the visual acuity of our eyes.  

Figure 2.4 adapted by Duchowski and Çöltekin (2007) from Giesler and Perry (2002). The 

original image is ©DreamWorks SKG and Universal Studios. 
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Figure 2.5 An example of our area of vision, produced using Visual Field Simulator 1.7 

created by Giesler and Perry (2002) 

  
  

It has already been mentioned that fixations and saccades can occur at areas of interest (AOIs) 

(Çöltekin et al., 2009). When analysing fixations the researcher will check for two things. The 

first is the number of fixations a participant made. Figure 2.6 shows two examples with 

different numbers of fixations completing the same task with the type and scale of the 

visualisation the same for both. Referring back to the AOIs you can see the circled areas that 

would typically be areas of primary interest when analysing eye movement.   

 

 

 

 

 



 

62 

 

Figure 2.6 An example of eye fixation count variety A) fewer fixations, B) more fixations 

 

  

Table 2.1 provides a summary of the measurements that can be obtained from eye movement 

fixations and shows an example of these fixation measurements. Some have already been 

discussed as these are the measurements that were primarily focused on during analysis of 

the second experiment data. The spatial density or coverage of eye movement on a 

visualisation is another useful method that will now be discussed.  

Table 2.1 Summary of eye movement measurements. 

 

          Type Description        Measurement

 
No. of fixations  

Location of  

Number required by participant to process the 

information  

fixations  Where the spatial focus occurs    

  

Fixation duration  Time taken to interpret a visual representation    

Total fixation time  Total time on an area of interest    

  

Scanpath length  Shorter paths indicate more organised information    

Scanpath duration  Indication of time taken to process complexity   

Spatial density  Coverage of eye attention of the representation     

 

   

B)  
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It is possible to display the coverage of eye movement on a visualisation in the form of a spatial 

density map or ‘heat map. Figure 2.7 shows two examples of these heat maps. A heat map is 

a reflection on the frequency an area on the visualisation is attended by a participant. In other 

words, the amount of time a participant focuses on a particular area of the map is indicated 

by the intensity of the heat colour. In the case of the second experiment the heat colour is 

blue with darker blue signifying a greater amount of attention and lighter blue indicating less 

attention given. In instances where the map is entirely visible with no heat map colour you 

can assume that no attention was paid to that area by the participant during the experiment.   

Figure 2.7 Heat Map of all participant eye movement for Clustered 50 spatial unit (A) and 

250 spatial unit (B) visualisations from Experiment Two 

 

A)   

  

Once eye movement data is collected, it will need to be analysed to derive meaningful insight. 

In addition to fixations, the saccadic trajectory is also important to include in analysis of eye 

movements. The meaning of a saccade has already been mentioned above, and generally eye 

movement trajectory interpretation comes from ideas on ‘scanpath’ theory. Norton and Stark 

(1971) were the first to propose scanpath theory: the theory is based on the sequence of 

fixations, labelled as “scanpaths”, which reoccur. Stark (1994) found experimental 

participants would repeat the same pattern of eye movements when first presented with a 

visualisation on a screen followed by a blank screen. In another piece of research Ellis and 

B) 
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Smith (1985) had suggested scanpaths are completely random but this was not tested at the 

time. According to Pieters et al. (1999), scanpath theory “predicts that a subject scans a new 

stimulus during the first exposure and stores the sequence of fixations in memory as a spatial 

model, so that a scanpath is established.” If this is true, then a type of learning effect could be 

observed if participants were faced with the same visualisation with the same data 

distribution. This aspect is important to note because experiment design best practise seeks 

to minimise participant learning effects to avoid skewing of the results. Velocity and distance 

of scan paths can also be useful to analyse, however, for the purposes of this research it is not 

essential to facilitate analysis of scanpaths.   

Related works discussed are associated with a graphical environment and although text based 

eye movement occurs during the eye tracking experiment it forms only a small part and it is 

not the primary concentration of this research. Literature based on saccadic eye movements 

over text has already been mentioned under the description of saccadic eye movement. The 

notion of eye movement perception, effects of lighting, speed of movement of the 

environment, potential cognitive patterns and sequences have also been addressed. As 

Çöltekin et al. (2010) suggests there is a need for work on graphical representations, or 

visualisations, with eye movement to be carried out. It is important to understand concepts 

on graphical representation.   

Additional concepts to consider when exploring graphical representation include Human 

computer interaction (HCI), human cognition – within a visual context – and human 

perception. An extension of the latter includes our ability to perceive data, and how it can be 

scaled. However, before discussing these, the emergent theme of geovisual analytics is 

explored given its relevance to this research thesis.  

We use more than 40% of our brain to provide visual output (Hoffman, 2000; Ware, 2008). 

Such a considerable percentage explains why so much time is spent understanding and 

improving visual representations. Cognitive Fit Theory (CFT) (Vessy, 1991) is one example of 

research into how technology is suited to a task. CFT is related to this research because we 

are assessing the fit of visualisation technology to a set of tasks. Dennis and Carte (1998) found 

maps faster and more efficient for task completion than tabular representations for multi-

criteria decisions. The research of this thesis originates from a desire to test graphical 

visualisations over tabular and to compare those to participant task performances using 

advanced graphical representations. Part of the difficulty in understanding and improving 
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visualisations exist because human cognitive processes are not easily classifiable. Humans are 

not as homogenous as visual analytics tool developers think (Slocum et al., 2001). Individual 

and group differences exist on the basis of parameters such as expertise, culture, sex, age, 

sensory differences, ethnicity and socioeconomic status.   

Slocum et al. (2001) suggest when differences in visual analytic strategies are identified then 

two approaches are possible to address the question ‘what to do with them’; Integrate the 

insights from findings in educations (training) of potential user, or, modify the design to meet 

the needs of the user. In the case of this research we integrate the findings in education of 

potential users through discussion in this thesis and from that suggestions to improve 

visualisation designs can be made. Future direction could be to study the task and stimuli-

based clustering more in depth and then to modify the design of the interfaces for further 

comparative testing. It is also important to systematically compare and contrast methods, 

thresholds and tools that are used in sequence analysis of eve movement recordings to 

establish benchmarks and guidelines for this kind of empirical work.  The extent to which a 

graphic can be complicated can be referred to the level of detail (LOD). LOD management 

requires decisions on objects location, geometrical properties, and viewer’s location and 

visual capabilities (23). We need balance between perceptual (visual fidelity, visual quality, 

visual clutter) and technical (storage, bandwidth, processing power) fidelity.  This is linked to 

visual scalability and human perception with regards to how scalable visualisations are. 

Visualisations used in this research are cartographic in nature and predominantly relate to GIS 

based systems. Compression techniques of LOD already implemented in GIS but don’t 

consider human visual system (HVS) properties and don’t address limits and strengths of 

human spatial perception (2). HVS doesn’t process visual information uniformly so a uniform 

resolution is pointless (27). Referring to Slocum et al. (2001) this is another reason why 

understanding and implementing improvements for visualisations can be difficult.  

We can visualise non-uniform information through Gaze contingent displays (GCDs) which is 

a type of Variable Resolution Displays (VRDs) used in eye tracking research to identify Points 

of Interested (POIs). These may be more effective for the display of information. These types 

of displays are more capable of supporting what is termed perceptually lossless degradation 

of an image resolution in computer vision literature. In eye movement literature this can be 

called foveation. As the computer vision field understand it, the brain processes the functional 

field of view, and not just where the eyes are looking. GCDs are similar to multiple adjacent 
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displays not unlike those found in interactive visualisations such as ProVis used for this 

research. A step further for GCD displays include image fusion based displays. Medical 

imaging, remote sensing and geovisual applications use multi-resolution image sampling from 

hierarchical data structures in GCDs. Fusion image output consists of some input images from 

the same region of interest but the available input may have different data structures such as 

raster or vector. They could also be produced by different sensors to give you satellite imagery 

at different spatial intervals. In short, if fusion image based GCDs are designed adequately 

then an observer will not notice a transition from one structure and/or resolution to another. 

Fusion based imaging is related to research carried out on map change detection but it is not 

studied in this research. The GCD alternatives are worth considering for research now that 

their cost has been reduced and reliability has been improved. Duchowski (2004) reported 

some early implementations suffered from technical difficulties and high equipment costs.   

  

2.4 Human Computer Interaction  

  

Surveys, usability evaluations and interviews represent some of the more formative methods 

of Human-Computer Interaction. Increasingly, these methods are being applied online and 

can yield similar results (Brush et al., 2004). In the early human computer interaction, many 

HCI experiment participants were professional users from a corporate environment, this 

group would have been financially motivated to improve system processes (Lazar et al., 2010: 

368). Importantly, systems and products are now more widely tested.  

The usability of GIS products has improved significantly in recent years (Hacklay and Tobón, 

2003). GIS products still require considerable technical knowledge to operate them. Human 

Computer Interaction (HCI) work has been carried out with GIS applications since the 1990’s 

(Nyerges at al., 1995a and Davies and Medyckyj-Scott, 1996). The development of more 

usable online thematic maps, geovisualisation and interactive visualisations is evident.   

Eastman (1985a) working on a more conceptual level, provides a clear sketch of the 

information processing perspective and its potential applicability to user research in 

cartography. He also deals with the issue of linking a semiotic approach to map symbolisation 

with an information processing view of map reading. In this presentation of system and 
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process models for map reading, Eastman is careful to point out the fundamental difference 

between an information theory approach to map communication that measures bits of 

information transmitted (with the goal being communication of the most bits) and attention 

to information processing (with the goal being to understand how people actively see and 

conceptualise about map information. For cartographers to facilitate visual and cognitive 

information processing, we must understand both the system that does the processing and 

the processes themselves.   

 

2.5 Evaluation and Eye Tracking for Geovisualisation  

  

Standard metrics which measure the effectiveness of visualisation methods (including 

geovisualisation methods) are useful for evaluating their viability in terms of displaying 

information. However, these can be augmented by more modern metrics, such as eye 

movement. Eye tracking evaluations are capable of offering previously unattainable 

information on the effectiveness of geovisualisations for displaying results. This is particularly 

useful given the fact on how little work has been carried out to assess user perceptions of 

complexity (Schnur et al., 2010).  

Evaluations have been conducted to assess the most effective data visualisation methods 

(Slocum et al., 2001; Robinson et al., 2005) with modern evaluations assessing interactive 

visualisations (Lobo et al., 2015). It is important to continue to improve on usability as the rate 

at which we can collect and gather increases. Virrantaus et al. (2009) suggest there is a need 

to move towards an understanding of the role of the user in the process. This furthers the 

case for a user centred design approach to map design and geovisualisation evaluations. Eye 

tracking recordings will augment these evaluations.   

Evaluations such as those completed by Lobo et al. (2015) help to inform the design of 

geovisualisations. Human Computer Interaction researchers focus on; how users interact with 

maps, the techniques used to visualise content and to navigate in terms of space and scale 

(Lobo et al., 2015). Modern methodologies for evaluating the effectiveness of interactive 

visualisations can include metrics taken from eye movements which have been discussed 

earlier (Çöltekin et al., 2009). These further the ability to create the most effective 

visualisations. Reliably designing a highly usable interactive visualisation has proven to be 
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difficult as explained by Robinson et al. (2005).  In many instances an element of context 

provided through user input is helpful at every stage of the design.   

The usefulness of evaluations containing eye movement records is evident from work carried 

out by Harrie and Stigmar (2009). Work by Çöltekin et al. (2010) demonstrates evidence of 

how humans work with interactive geovisualisations, through monitoring of their search 

pattern techniques. This systematic approach highlights the potential for improving 

interactive geovisualisations. An evaluation of more than one geovisualisation using eye 

tracking technology is effective for the design decision making process. Çöltekin et al. (2009) 

performed a comparative test of two different geovisualisation interactive designs, using eye-

movement recording to inform how each design performed.  

Advanced forms of geovisualisations such as the space-time cube have also been evaluated 

using eye-tracking technology. Li et al. (2010) combined more commonly used approaches 

such as interviews and think-aloud protocols with eye tracking. The authors recognise that 

current eye-tracking procedures and analysis are still relatively cumbersome and the 

overwhelming level of data gathered on eye movements can result in over-plotting. This 

problem can be mitigated by the scale of the geovisualisation being evaluated but despite this 

issue the benefits of incorporating eye tracking technology warrant its’ inclusion where 

possible.  

More advanced geovisualisations are interactive as described above, this means they contain 

some form of map animation, i.e. the geovisualisation changes as it is manipulated by the 

user. This change can be categorised into a set of visual variables (Slocum et al., 2009), they 

are: duration, rate of change, order, display date, frequency and synchronisation. Robinson 

and Griffin conducted research which examined the effect of leader lines with a 

geovisualisation. Several of these map animation variables were utilised for this evaluation. 

3D geovisualisations including Space-Time Cubes and spatio-temporal visualisation contain 

many of these visual variables. The point to note here is, eye movement analysis can be an 

important asset to geovisualisation evaluations and it is not limited to the analysis of less 

animated geovisualisations. That is not to say that analysis would be considerably more 

difficult on an animated 3D Space-Time Cube displaying the famous visualisation of, for 

example, the long march of Napoleon’s army to Russia and back compared to a 2D 

geovisualisation version. Returning to the reason why eye tracking is used in this research, it 

significantly augments the evaluation study carried out on geovisualisations in Experiment 
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two. Particularly in relation to the four levels of details or “Information Intensity” of 

geovisualisations. As Slocum at al. (2009) ask, how much detail is appropriate?  

 

2.6 Human Cognition  
  

According to MacEachern (2004: 23) “Human vision and visual cognition remain 

incompletely understood”. The dominant consensus on vision is that we use it as a system to 

process information.  

“Visual cognition encompasses issues of how cognitive processes interact with vision 

to enable us to interpret the world and our apparent ability to mentally manipulate 

visual information in the form of images” (MacEachren, 2004: 33).  

Visual cognition work carried out by Marr (1982) describes a framework for vision that 

converts and transforms simplistic representations into complicated scenes. Figure 2.8 shows 

an adaptation of this framework. The primal or basic sketch was the construction of basic 

objects, lines or boundaries. The 2.5 D sketch establishes surfaces according to visual acuity. 

The 3D section provides detail of that surface and objects can become three dimensional. 

Pinker (1990) extended upon Marr’s framework for graphical comprehension. MacEachren 

(2004) states that Pinker’s framework simultaneously addresses comprehension issues and 

we can cite this work on human cognition as an important part of visual design. Figure 2.9 

shows an adaptation of what Pinker’s framework would look like when visually presented, as 

you can see it is similar to Marr’s. Pinker suggests users create physical dimensions of 

graphical marks, or a visual description and users map physical dimensions onto mathematical 

scales. As mentioned earlier user interpretation of a visualisation will vary and Pinker 

proposes four factors to determine the most likely visual description of a representation. 

MacEachren (2004: 35) summarises these factors and he said the first was borrowed from the 

work of Kubovy (1981). Certain visual variables are indispensable, these are; space and time. 

Both attributes are perceptually dominant. MacEachren mentions that time is important in 

non-static graphs and since interactive visualisations are becoming the mainstream technique 

used to visualise data the attribute ‘time’ is increasingly apparent. The attribute space can be 

translated into ‘spatial location’ particularly in a geographic context and geographic data 

analysis. Users visualise a scene with the assistance of spatial locations within that scene. 
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MacEachren goes on to say that our attention is more; ‘selective’, meaning we will focus on a 

location better than an object or shape. It also links to Bertin’s work on graphics and 

perception (Bertin, 1967 and Bertin, 1983).  

 

Figure 2.8 Marr’s Stages of Vision Framework (Marr, 1982) 

 

 

Figure 2.9 Pinker’s Stages for Graphical Comprehension Framework (Pinker, 1990) 

Redrawn for this thesis 

  

Differences and similarities found in fixation sequences may be parallel to cognitive 

differences and similarities of the viewers (Stark and Ellis, 1981; Brandt and Stark, 1997; West 

et al., 2006).  

  

2.7 Human Perception  
  

MacEachren (2004) discusses visual magnitude as a factor that affects the visual description 

of a scene, this would include various types of visualisations. Eastman (1985) and Pinkman 

(1990) suggest that maps are facilitators rather than communicators whilst Gibson (1979) 
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believed that visual perception is a highly viable alternative to the information-processing 

perspective of cognition. Eastman (1985) and Pinkman (1990) believe a clear perceptual 

organisation of the display will be most effective for the display of information. This is linked 

to visualisation design, in that human perception is affected by the characteristics of a 

representation. MacEachren (2004) states; ‘geographic visualisations require a higher level of 

interaction between the user and the display’. Users must analyse or search the displayed 

data and a different information processing model designed by MacEachren and Ganter 

(1990) is most effective for geographic visualisations. It is also important to consider 

perceptual limits of visual retention. For example, Ware (2008) states that visual working 

memory can hold three objects at any one time. In some cases objects with multiple features 

are treated by the mind as a single object (Luck and Vogel, 1997).  

  

2.8 Visual Scalability  
  

In the modern day it is common for data to be collected in large volumes. Previously issues of 

data scalability and terms such as ‘big data’ did not exist because there was no need to 

consider potential problems now associated with data. Visual scalability is linked to issues 

with data scalability (geographic scale, grain and extent) because data needs to be displayed 

effectively if the user is to successfully interpret it. This is particularly important if data is to 

be disseminated to a wide audience including the general public. It could be suggested that 

the time a websites presentation has to impress a person could also be applied to a 

visualisation of data. In order for data to be successfully publicised the general public will have 

to like what they see and find it usable almost instantly. Researchers considered experts in a 

field involving ‘big-data’ will afford more time to understanding this data when it is visualised.   

Visual scalability is designed by two things according to Eick and Karr (2002). The first are 

responses or impacts of a visualisation. The second are factors or the characteristics of 

visualisations. A simple formula was devised for this definition that could be used to measure 

the visual scalability of a visualisation;  

        Responses = F (factors, data).  

Eick and Karr (2002) critique this formula however by suggesting it isn’t feasible due to a lack 

of measureable response data for visualisations. It is important to note that this research 
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focuses on the performance of visualisation systems to display data in the first experiment 

and on the change of participant performance in the second. Visual scalability is a key focus 

for investigation and analysis in Experiment Two of this thesis.  

To measure visual scalability in a more practicable manner, Eick and Karr (2002) divide visual 

scalability into two classes; database metrics and visualisation characteristics. Database 

metrics measure dataset size in terms of rows and bytes while visualisation characteristics 

relate to elements and attributes displayed on screen. In this thesis it can be suggested that 

measuring visualisation characteristics is more relevant than database metrics. From the 

human perspective several principles must be taken into consideration, they are; human 

perception, monitor resolution, visual metaphors, interactivity, data structures and 

algorithms and computational infrastructure (Eick and Karr, 2002).   

As previously mentioned, the human eye accounts for approximately 40% of brain activity and 

is one of the most powerful tools humans have to process the visual environment. This is 

linked to human perception and it is no surprise to see Eick and Karr include it as a factor to 

consider in visual scalability. Monitor resolution through physical size and pixel count affects 

the visual scalability of data, or as Yost et al. (2007) suggest, it affects visual acuity. The 

techniques used to display data, e.g. attribute charts and maps are visual metaphors that 

require thought. The scalability of a visualisation is greatly affected by its interactivity and 

therefore must be taken into account. Algorithms that allow different methods of data 

representation are also important and the power of a computer to process and display data 

cannot be underestimated. In the case of the second experiment of this thesis it would not be 

a problem. However, for the larger 3D dataset in experiment one, the computational power 

of the experiment host machine reached its limits on several occasions. The effect on overall 

experiment results would be negligible or minimal but it is a factor that would need to be 

assigned a greater weight of importance if larger datasets are used in the future.  

 The general principle remains the same. Visualisation plays an essential role in dealing with 

large data-sets. Eick and Karr in their 2002 work stated ‘scalability analyses of visualisations 

are almost entirely absent’ despite a need to scale effectively. Eick and Karr provide examples 

of bar charts and scatterplots which are two popular data display types. Bar-charts cannot 

cater for more than two to three dozen data attributes and scatterplots are overwhelmed 

with too much data.  



 

73 

 

Increasing visual scalability is possible provided a correct set of measures is taken. Interactivity 

is regarded as the crucial aspect that would allow for improved visual scalability. Eick and Karr 

suggest that intelligent design of data display would be beneficial. For example, when 

analysing a bar-chart graph the detail presented on it will be grainy (less detail will be shown) 

as the user zooms out. Conversely more specific detail will be presented to the user when 

they zoom in. Computer algorithms could augment the implementation of this idea. They talk 

about using different representation techniques to improve visual scalability, one example 

being 3D representations. They offer an alternative 3D technique to help overcome occlusion 

and Figure 2.10 shows an example of this. It contains 3D scrollbars and a water-level plane 

across the central 3D model. Attributes displayed on the 3D model are separated into two 

vertical bar-charts on the back walls of the multi-scape view.  

Figure 2.10 Example of a multiscape view by Eick and Karr (2000) 

 

 

  

A secondary example provided is of scalable text and graphic data windows (see Figure 2.11). 

Animated movements of the level of detail presented on this type of representation increases 

visual scalability and it is another useful technique.  
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Figure 2.11 Data sheet and scalable text view  

 

 

 

Eick and Karr (2002) emphasise the importance of interactivity for larger datasets. Zooming 

and panning, highlighting selections of data, dynamic window resolutions and intelligent 

labelling are key aspects to consider when designing a data scalable interactive visualisation. 

In the second experiment involving eye movement it was important to understand the 

underlying principles of visual scalability because an element of scalability was assessed. Eye 

movement data is best recorded when potential distractions or problems are minimised for 

participants. To explain it in some more detail, the experiment process had to be designed to 

be as simple as possible so it would be easier to measure, analyse and then extract results 

from the experiment instead of wondering what participants may have been thinking or 

looking at during the experiment. It would all be comparable. To have provided more than 

one ‘window’, with participants moving between, would have increased the difficulty of 

obtaining comparable measurements. This problem would increase with more windows, 

particularly if interactivity and multi-scape or multi-windowed visualisations were considered. 

As Eick and Karr (2002) stated it is not possible to definitively measure visual scalability but 

we can try. The addition of eye movement can help us measure one element of it which is 

perceptual scalability. We are not interested in the performance of the visualisations but how 
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the participant performs with different levels of data complexity displayed in those 

visualisations. It is a fine line similar to the first experiment where the effectiveness of the 

visualisation were being tested and not the participant.  

The ‘footprint’ is the number of pixels occupied by a visualisation on screen, i.e. how much 

space they take up. If a map footprint is large is means it occupies most of the available screen 

space and consequently contains more pixels. If a map footprint is smaller it will occupy less 

overall pixels. Theory on map footprint is linked to Visual Scalability where research was 

carried out to assess how many pixels a display needs to effectively display information. The 

first sentence of a paper published by Yost and North (2006) was “Larger, higher resolution 

displays can be used to increase the scalability of information visualizations”.  Their work 

concluded that the visualisations used in their experiment were perceptually scalable. They 

found participant performance did not decrease when the display used to present each 

visualisation to experiment participants changed in size.   

Yost et al. (2007) carried out work which suggests an increase in performance efficiency is 

observed when larger and higher resolution displays are used to ‘scale up’ information beyond 

the limitations of what is known as ‘visual acuity’. “Visual acuity is the sharpness of vision, 

measured by the ability to discern letters or numbers at a given distance according to a fixed 

standard” (Online Oxford Dictionary, 2014). Visual acuity is linked to visual scalability and 

perceptual scalability. Visual scalability research attempts to measure visualisation 

performance at varying pixel rates compared to perceptual scalability which attempts to 

measure human performance at varying visualised data complexity rates.   

 

2.9 Glossary  

  

Fixations: The action performed by the eye when it focused on visual stimuli. Associated with 

attention being given by a human to stimuli.  

Foevation: A commonly used image and video compression technique. It is an imitation of the 

eyes fovea or band of vision in computer generated form (Çöltekin, 2006).  

Geovisual analytics: Analytical reasoning facilitated by visualisations and the exploration of 

complex spatial datasets.  
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Human cognition: The thought process which takes place in the human brain. It includes 

problem solving, evaluation, reasoning and computation of stimuli.  

Human Computer Interaction: The study of how people interact with computers.  

Human Perception: The capacity for a human to sense or comprehend stimuli.   

Perceptual Scalability: The degree to which humans can view and comprehend scale or 

complexity, where scale could be a number of data values. The human capacity to perceive a 

number of objects may be limited and exposure to too much stimuli could alter the capacity 

to comprehend. Visual acuity imposes a limit on perceptual scalability (Yost et al., 2007).  

Saccadic eye movement: The rapid movement of the eye, it is a jerk and jump type of 

movement as the eye moves from one fixation to another.  

Scanpath: An internal mechanism of the eye that produces eye movements where the 

structure of human visual perception is understood. Scanpaths are repetitive sequences of 

saccades and fixations by the eyes when they are exposed to visual stimulus.  

Spatial perception: The human ability to sense the stimuli; e.g. size, movement, shape or 

orientation.  

Visual acuity: A measure of your central vision where your ability to distinguish details and 

shapes of objects is clearest.   

Visual scalability/spatial resolution: Defined as the Responses that measure the number of 

insights of a visualisation and the Factors (characteristics) that affect Responses (Eick and Karr, 

2002). This is difficult to measure. 
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3: Methodology – Experiment One 
  

Chapter 2 outlines the usefulness of GWR and how it is used to examine processes that vary 

over space (Fotheringham et al., 2002). The common types of visualisations used to display 

GWR have also been discussed. The purpose of Experiment One was to evaluate the 

effectiveness of graphical representations of GWR output data. The aim was to discover the 

most appropriate way to facilitate interpretation and analysis of GWR. It is not difficult to 

display GWR data because there is a wealth of visualisation choice for the researcher with the 

right knowledge to choose from. However it is not fully understood which visualisation 

method is most effective for analysing GWR outputs. It can be suggested that current choices 

in the field are largely down to personal researcher preference and knowledge. The research 

in Experiment One can serve as a possible guide for future GWR visualisations. 

  

3.1 Participants  

 

Participants (n=13) were recruited from the staff and student body at the Maynooth University 

based on participants having at least some knowledge of GWR.   

MSc. students (n=2) were asked to volunteer having completed a set of GWR, GIS and 

visualisation modules during their study for a Masters in Geocomputation. This meant they 

had operational knowledge of the GIS systems used in the experiment, an understanding of 

GWR principles, GWR output and were familiar with an interactive visualisation system. These 

features made them suitable candidates to take part in this experiment.   

A cohort of doctoral research students (n=9) had knowledge of GWR, GIS and/or interactive 

visualisations. Some participants were members of University staff (n=2). Similar to the PhD 

student cohort, members of staff had knowledge of visualisations, GWR, GIS and/or interactive 

visualisations.   

The selected participants answered a background profile questionnaire to gauge the level of 

participant expertise and these were then divided into two groups; A and B. There were six 

levels of knowledge of visualisation systems (Group A, 1-4): and secondly GWR (Group B, 1-2). 

Group A1 had knowledge of the ArcMap (2D) visualisation system; Group A2 had knowledge 
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of both ArcMap and ArcScene (3D) visualisations. Group A3 had knowledge of all three types 

of visualisations used in the experiment. Group A4 were familiar with ArcMap and an 

Interactive Visualisation system. Group B1 consisted of participants who said they had a more 

basic understanding of GWR while Group B2 consisted of those who said they had a good to 

expert understanding of GWR. Table 3.1 provides a summary of these groupings.  

  

Table 3.1 Knowledge Groups of Participants according to their background information 

 

Group   Subset  Knowledge Bracket  Number of Participants 

   1  2D  5  

A  2  2D & 3D  5  

   3  3D, 3D & Interactive  2  

   4  2D & Interactive Vis'  3  

B  1  Poor and Basic GWR  9  

   2  Good & Expert GWR  6  

 

Participants required a particular knowledge base to enable them to participate successfully 

in Experiment One. Basic understanding of GWR was necessary so that participants would be 

able to comprehend the data being displayed. It was also necessary that participants had some 

working knowledge of GWR-based or visualisation-based data display systems. The 

experiment script provided a refresher for GWR and the visualisation systems used in the 

experiment but the refresher was limited to explanations of basic feature functionality. An 

ethics process also required completion prior to the commencement of the experiment. The 

next section discusses this process.  

 

3.2 Ethics 
 

Every experiment undertaken in a third level institution in Ireland must be first given 

permission by that institution’s ethical body. Two main types of ethical committees exist: one 

processes medically-based experiments and the other facilitates all other types of research. A 

specific set of forms had to be completed and a list of documents for use in the experiment 

had to be drawn up. These included a participant consent form and an experiment briefing 
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sheet. The ethics committee also required a complete description of the experiment via a 

protocol form. Once the correct paperwork was gathered, completed and submitted, the 

experiment received approval and a letter was sent from the ethics committee as proof of 

permission (See Appendix 1).  

  

The sections on the protocol form included: Name of researcher, Position and Department, 

Research Objectives, Methodology, Participants, Persons Under 18, Vulnerable Persons, Risks, 

Informed Consent, Follow-up, Confidentiality/Anonymity of Data, Ethics in subsequent 

outputs, Professional Codes of Ethics and included an instruction template to follow when 

creating the experiment briefing sheet and consent form. Full details of the ethics protocol 

form can be found in the Appendix. No substantial risks were identified in the experiment and 

the two most important elements of this section were to ensure participants would be as 

relaxed as possible to prevent any psychological stress during the experiment and to 

emphasise that all experiment profiles, content, discussion and output would be held in the 

strictest confidence and used solely for research purposes.  

  

3.3 Pilot Experiments 

 

Pilot experiments were carried out in order to gain feedback on the original design and adjust 

the experiment accordingly. They were used to improve experiment design and minimise 

problems that could be experienced during the course of the actual experiments.   

From the pilot experiments carried out as part of this research thesis, it was clear the time 

taken to complete the initially designed tasks was too long in duration. The greatest concern 

here related to participant fatigue as stressed by authors such as Steinborn et al. (2009). 

Experiment participants on average can perform at an optimal and constant level for a set 

period of time, once that time is exceeded their ability to perform decreases. This aspect could 

skew results. It was estimated a minimum of 45 minutes and maximum total time of 90 

minutes in a single session was acceptable based on the information needed as part of this 

experiment.   

Initially the experiment was designed with five questions per visualisation with a total of 30 

questions, but to reduce the time taken we cut the question number down to three per 
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visualisation for part A and part B with a total of 18 questions (content discussed below). In 

the revised experiment, one univariate, one bivariate and one multivariate task were included. 

This meant typical GWR analysis could still be simulated which was important. The experiment 

script was also streamlined and discrepancies in visualisation details were corrected.  

 

3.4 Experiment Set Up  

 

It has been mentioned in Chapter 1 that the experiment environment should be as natural as 

possible. The experiment was carried out on the premises of the National Centre for 

Geocomputation (NCG) which had a private meeting room with sufficient space and lighting 

deemed suitable for the experiment conduction. A secondary suitable location was also used 

during times when the meeting room was unavailable. The meeting room consisted of a set 

of large tables that the experiment equipment could be placed upon. The secondary room 

layout was similar. A 24 inch flat-screen monitor was placed in front of the participant at a 

distance of approximately 18 inches. A mouse and keyboard along with the monitor were 

connected to an experiment host laptop where the researcher could follow the participant’s 

experiment discretely. A comfortable chair was positioned directly in front of the monitor. 

This set up replicated a typical workplace station. An additional personal laptop was 

connected to the host laptop via a cable that allowed for observation of participant progress; 

this is elaborated upon in the next paragraph.  

 

3.5 Materials 

 

Data were recorded using several methods as summarised in Table 3.2. A major component 

was “Morae”, an experiment management system designed by Techsmith. It is a reasonably 

affordable software package (costing approximately €1,200). It consists of three components; 

the Manager, Recorder and Observer. Morae Manager is used to analyse data gathered by 

Morae Recorder, which was installed on the experiment computer. Morae Observer allowed 
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for the monitoring of participant progress in real time and logged anything of interest for later 

analysis.   

Table 3.2 Experiment Recording Methods Used 

 
   

Measurement Taken  Record Method  

Task Time  Morae Usability Software  

Mouse Movement  Morae Usability Software  

Mouse Clicks  Morae Usability Software  

Correctness Ratios  Written responses on script  

Perception of Task Ease  Morae Usability Software  

Perception of Task Speed  Morae Usability Software  

Perception of Task Confidence  Morae Usability Software  

Participant Activity A  Webcam - Morae Feature  

Participant Activity B  Sony HD Camera  

Part C Interviews  HTC Phone Voice Recorder  

 
    

Every recorded experiment could be viewed in Morae Manager. Figure 3.1 shows an example 

of the 2D visualisation. A 3D visualisation example can be seen in Figure 3.2 and Figure 3.3 

displays the Interactive visualisation type. The different visualisation styles are clear and the 

menu and logging systems are consistent in each. In the bottom right corner of each figure is 

the view recorded by an attached webcam.   
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Figure 3.1 Example of Morae Project: 2D Visualisation  
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Figure 3.2 Example of Morae Project: 3D Visualisation 
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Figure 3.3 Example of Morae Project: Interactive Visualisation 
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At the bottom of the above figures is a timeline menu indicating the current time in the 

experiment (see Figure 3.4 for a magnified version of this timeline) along with any audio data 

picked up by the webcam and a series of logged events created during the experiment to assist 

in analysis. Different coloured loggings were made with pink being an event of interest for 

example and blue being a point where the participant required assistance from the experiment 

host. It is also possible to create clips of experiment sections which could be useful for live 

demonstrations but for the purposes of this research and thesis this was not necessary.  

Figure 3.4 Morae Project Timeline Bar 

  
  

Morae Recorder was installed on the host laptop in addition to; ArcMap; ArcScene and ProVis. 

Morae Recorder has the ability to set up a progress panel that can be overlaid on other 

software, in this case, the visualisation software. The progress panel contained start, end and 

continue buttons that helped instruct participants and it also measured participant task times. 

It provided the questions participants were required to answer followed by a short survey 

relating to the task they just completed. While post-task survey responses were logged on the 

host laptop, task answers were hand written in space provided on the experiment script.  

Morae Observer allowed for visual on-screen monitoring of the experiment by the researcher. 

A set of logs could be created while monitoring participant activity to reduce data filtering 

later. It was also helpful to note participant expressions of frustration such as a ‘sigh’ or where 

their facial expression may have indicated high levels of concentration or a degree of 

annoyance. If a participant was experiencing an observable problem without asking for 

assistance, the experimenter volunteered to provide a solution so that the experiment would 

continue to run as smoothly as possible. In some instances participants were reminded to use 

the progress panel so that task time measurements could be recorded properly.  

As mentioned previously, a Morae webcam module was used during the experiments to record 

participant activities. The webcam was a Microsoft Lifecam VX-3000. Clarity and function of 

the webcam were adequate for the purposes of the experiment. The use of a webcam was 

deemed useful if there was a need to determine reasons for a lack of on screen activity. The 

webcam would assist in the smooth running of the experiment as participant behaviour could 
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be monitored more carefully. In the event a participant exited the webcam view window, a 

second camera was used to record participants, from a different angle. The second camera (a 

Sony HDR-SR10) could still record participant behaviour with a built-in storage space of 30GB.   

Both cameras were used to record participant activities. Facial expressions that could highlight 

participant confusion or frustration could be noted if anomalies in recorded Morae Task data 

occurred. It would also help to explain a sudden lack of onscreen activity caused by participant 

reading, writing or questioning of the experiment supervisor. The second camera would be 

able to record this type of activity even if the participant moved out of the webcam view. Any 

anticipated or unexpected activity by a participant could therefore be accounted for and 

would help reduce any possible errors in the analysis of the various experiment indicators 

(correctness ratios, time-taken, mouse clicks etc.).  

Finally, post-experiment interviews were carried out with each participant and these were 

recorded using a digital recording device.  

 

3.6 Stimuli 

 

The experiment consisted of three parts; A, B and C. Participants worked with two separate 

data sets of GWR outputs in controlled parts A and B, which allowed the measurement of 

participant performance on each visualisation type, and each task type. Part A and B took 

approximately one hour each and part C, which consisted of a short, semi-structured 

interview, lasting no more than 25 minutes.  Participants performance would be tested using 

two different data set sizes, with Part A’s data set being approximately one third the size of 

part B’s, as outlined in the following section.  

To account for issues of visual scalability, as discussed by Yost et al. in 2007, two different data 

set sizes were used; one containing spatial units for the entire Republic of Ireland, the second 

smaller dataset being a subset covering the Leinster province of them. The larger Republic of 

Ireland dataset contains 3,412 Electoral Divisions (EDs), split over 26 counties. EDs are the 

smallest spatial units in the Republic of Ireland for 2007 census data. The Leinster Province 

(one of the four provinces in Ireland) dataset contained over 1,214 EDs split over 12 counties. 

Data were obtained from the Irish Central Statistics Office (CSO, 2011), Ordnance Survey 
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Ireland (OSI, 2011) and Kavanagh (2011). These were used as input in a GWR model to explain 

the voter turnout based on census variables.   

Based on previous work by researchers such as Kavanagh and Fotheringham, it was decided a 

similar real life data set and a similar model would be used in Experiment One of this thesis. 

Five variables were chosen to form the model which was combined with 2002 voter turnout 

data. The GWR was then performed on these data using the following GWR procedure. A 

stepwise regression method, or Principle Components Analysis (PCA), was followed to 

construct an appropriate model for these input data similar to one used by Kavanagh et al. 

(2002). A PCA involves model building to include the set of attributes that would provide the 

most significant explanation or that most affect the independent variable. The variables were 

entered into (SPSS) and added into the final model according to their level of significance. 

Based on previous research, seven primary attributes were selected for consideration. 

Resulting outputs of each variable included an R² value.   

The variable with the highest R² value was then paired with every other selected variable and 

run though the GWR model again. The resulting outputs which resulted in the highest R² value 

would then be paired with every other selected variable again until the five variables best 

explaining the model were selected. The dependent variables which were calculated as a 

percentage of population are as follows;   

i. Male population  

ii. Social Classes 1 and 2  

iii. Third Level Education  

iv. Population Aged 5 and Over 

v. Population Unemployed.   

The parameter estimate surfaces belonging to these dependent variables were then visualised 

along with their respective T-values and the local R² in the 2D, 3D and interactive visualisation 

types used for analysis in Experiment One. The understandings of these terms are outlined in 

Chapter 1.  

Once the factors had been selected they were combined in a separate dataset so that it would 

be easier to create the choropleth map visualisations for the experiment content. Once GWR 

output data was integrated with the voter turnout data, it could then be visualised. ArcMap 

and ArcScene project menus display maps in a layered order with each layer selectable at any 
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time. For the purposes of Experiment One, maps relating to each task were placed in an order 

starting with task one at the top. ProVis attribute integration was kindly contributed by a 

former colleague.   

 

3.7 Experiment Protocol  

 

3.7.1 Participant’s Tasks  

 

Task design was based on the Latin square that was adapted for the purposes of this 

experiment. Participants were required to answer three types of tasks for each visualisation 

in Part A and Part B. Table 3.3 provides examples of each task. Task 1 is a univariate task which 

examines only one variable, Task 2 is a bivariate task examining two variables, and task 3 is a 

multivariate task with three or more variables. The difficulty of each task increased as the 

participant progressed from one to three for each visualisation type in each part. Although it 

was important to avoid a learning effect as discussed in Chapters 1 and 2, the task format 

required a degree of consistency and uniformity (i.e. task one was always a univariate, task 

two was always a bivariate, and task three was always a multivariate). Since the task questions 

varied, the concern of a learning effect could still be minimised.  
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Table 3.3 Visual Exploration Tasks Relevant to GWR Results 

 Task Type  Task  
Number  

Relevant Exploration Task for GWR  

Univariate 
Task  

  

  

1  

  

  

Identify high/low values in different spatial locations for each 
parameter estimate.   

Identify high/low values in different spatial locations for Local 
R² value.   

Identify high/low values in different spatial locations for T-
values.   

Bivariate Task  

  

2  

  

Identify spatial relationships between each parameter 
estimate and T-value.   

Identify spatial relationships between each parameter 
estimate and Local R² value.  

 
Multivariate  
Task 

3 
Identify spatial relationships between several parameter 
estimates.  

  

Table 3.4 provides detail on the task breakdown for each part of the experiment. It includes 

an initial task set prior to pilot experiment work which is discussed later.   

Table 3.4 Task breakdown for the GWR experiment  

 

Part A  Pilot 1  Pilot 2  Pilot 3  Experiment  

ArcMap  5  3  3  3  

ArcScene  5  3  3  3  

ProVis  5  3  3  3  

Total  15  9  9  9  

Part B  

ArcMap  

  

5  

  

3  

  

3  

  

3  

ArcScene  5  3  3  3  

ProVis  5  3  3  3  

Total  15  9  9  9  

Overall 

Total  30  18  18  18  
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3.8 Experiment Procedure 

 

The participants were provided with a script detailing the steps they were required to 

complete as they progressed through the experiment. Table 3.5 outlines this experiment 

procedure.   

Prior to commencement of the experiment, participants were presented with an explanation 

of the purpose of the experiment, details on the GWR Model along with a brief refresher on 

GWR itself. Details on the relevant characteristics of the visualisations were also provided and 

a quick walkthrough of an example task was provided for the interactive visualisation system 

as it was anticipated this visualisation system would be the least familiar, but potentially the 

most complicated. The task questions were written on the experiment script and displayed in 

a progress panel on screen. Participants responded to each task in a space provided within the 

experiment script. The following is an example of a specific task as given in the script;  

“Identify the relationship between the parameter estimates for the population of Social 

Classes 1+2 and the parameter estimates for Third Level Education on voter turnout 

levels?”  

A consent form was designed and provided for participants to sign before they began the 

experiment in accordance with the ethical requirements outlined in Section 3.2 of this thesis. 

A profiler questionnaire was created to enable the categorisation of experiment participants, 

also outlined above. Once participants completed part A of the experiment they had a break 

to prevent any possible onset of fatigue. The experiment script was retained by the researcher 

and reissued to participants at the beginning of part B.  

Table 3.5 Experiment Script Process 

  

Title of Research  

Aim 

Experiment Schedule 

Experiment Length 

Experiment Hardware & Software 

The Dataset 

GWR Refresh 

Part A 

Interacting with ArcMap 

ArcMap Tasks 1-3 
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Interacting with ArcScene 

ArcScene Tasks 1-3 

Interacting with Processor (ProVis) 

ProVis Tasks 1-3 

Part B 

ArcMap Tasks 1-3 

ArcScene Tasks 1-3 

ProVis Tasks 1-3 

 

 

 

Experiment recording began when participants clicked on the “Start” button of the progress 

panel associated with Morae Recorder (discussed above). The panel displayed the task that 

required completion by the participant, this was the same task written on their experiment 

script. Each post-task survey question was displayed in the same order as the previous post 

survey order, so participants would be well prepared to answer it, avoiding unnecessary 

complication. Table 3.6 displays the three types of questions asked of participants following 

the completion of each task in the experiment. These questions are adapted from a standard 

System Usability Survey.    

  Table 3.6 Post Task Survey Questions 

 

How easy do you think the task was to complete?  

How fast do you think the task was to 

complete?  

How correct do you think the answer is?  

 
  

Once the second part of the experiment had been completed, participants were asked to take 

part in a short review interview. The interview method and design was constructed using a 

semi-structured interview approach. Here, a general interview guide was prepared to discuss 

with each participant but there was flexibility to allow the individual participant raise new 

topics not in the interview guide. This approach, as opposed to a structured interview, meant 

there was greater exploration of the issues experienced by the participant within the 

experiment and points not initially considered by the researcher could be flagged and 

identified as important in the research analysis.    

Participants were shown a set of possible questions they could be asked to instigate discussion 

on the experiment. Table 3.7 shows this set of questions. In some cases, participants answered 
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more than one question spontaneously before it was asked by the researcher. The interviews 

were semi-structured in nature because as mentioned above, this allows for a degree of 

researcher control over content and yet participants are free to expand upon a topic that is not 

covered in the interview questions. From previous work (Burke, 2009) semi-structured 

interviews had proved to be successful in eliciting useful information from participants.   

  

An important element of interview design is to remember to avoid asking a leading question 

because that can influence the interviewee’s response. A leading question could be “you 

enjoyed that didn’t you?” It is also good interview practise to avoid overly vague questions 

when possible. The first question interviewees responded to was the only one of two general 

questions. The second was the final question asking interviewees if they had any comments to 

make relating to the experiment that had not already been covered.  

  
Table 3.7 Interview question template  

 

1. In general, what did you think about the visualisations? What did you like or not like 

about them?  

2. What did you like or not like about the 2D Visualisation, ArcMap?       

3. How did you find the 2D visualisation "ArcMap" to answer Task 1, the univariate task? 

   

4. How did you find the 2D visualisation "ArcMap" to answer Task 2, the bivariate task? 

   

5. How did you find the 2D visualisation "ArcMap" to answer Task 3, the multivariate 

task?   

6. How did you find the 3D visualisation "ArcMap" to answer Task 1, the univariate task?  

7. How did you find the 3D visualisation "ArcMap" to answer Task 2, the bivariate task?  

8. How did you find the 3D visualisation "ArcMap" to answer Task 3, the multivariate 

task?    

9.  How did you find the interactive visualisation "ArcMap" to answer Task 1, the univariate task?  

10. How did you find the interactive visualisation "ArcMap" to answer Task 2, the bivariate task?  

11. How did you find the interactive visualisation "ArcMap" to answer Task 3, the multivariate task?  

12. If you had to pick one visualisation to use for univariate task, which visualisation would that be?  

13. If you had to pick one visualisation to use for bivariate task, which visualisation would that be?  

14. If you had to pick one visualisation to use for multivariate task, which visualisation would that be?  

15. Do you have anything you would like to mention that was not already discussed?     

 

   

The interviews were usually carried out in the meeting room in which the experiment had just 

taken place but in the instances where the secondary room had to be used, the interview had 
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to take place in an adjacent common room. The interview was conducted as courteously as 

possible to help the interviewee feel comfortable whilst maintaining the semi-structured 

approach deemed so useful earlier.   

 

3.9 Experiment Measurements and Data Analysis  

 

A correctness of response system adapted from a system used by Koua et al. (2006) was used 

when analysing participant task responses. Correctness was measured through comparison to 

correct answers for each task, and a correctness score was assigned to participant responses. 

Correctness is the percentage of the task a participant answered accurately. Generally empirical 

evaluations only include simple tasks, for example; identify and locate tasks and although the 

interaction logs can be effective for analysis in this experiment, the spatial nature of the 

majority of tasks mean tasks responses must be assessed differently. Participant answers were 

coded according to the percentage of correctness, with 100% being a fully correct answer and 

0% being an entirely incorrect answer. Participants were required to provide the name of one 

or more Electoral Divisions in their answer. For example if a participant is required to submit 

the names of four Electoral Divisions in their answer but only submit two, that task correctness 

score will be 50%. The largest cluster of spatial units on the map (when identifying highest or 

lowest value clusters) is the correct answer. This method was also applied for Random maps, 

where it was estimated that participants would find it more difficult to identify clusters (where 

only a few spatial units could be grouped together). 

Mouse data were collected on the number of pixels the participants moved their mouse during 

each task. Both right and left mouse clicks were recorded as part of the mouse clicks data. 

Movement and clicks were acquired for the duration of each task. These logged clicks and 

mouse movements offer an insight into how the data were explored by the participants and 

also on the degree to which they may have been confused depending on their performance on 

a task. The participants completed a short post task survey that allowed us to measure the 

perception of the user on their performance of each task. Information included; the ease in 

which they completed the task, the speed in which they completed the task, and the confidence 

they had in their answer to the task. The survey contained three questions scored on a Likert 

scale of 1 to 5 with 1 being “Strongly Disagree” and 5 being “Strongly Agree”. Using this 
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recorded data on perception it was intended to discover if participants thought their 

performance changed when they had to contend with a data set with a higher number of 

variables. This indicated if a scalability effect could be detected and/or observed.   

During analysis of Experiment One output, the average of each combined post-task survey 

results were used to gauge overall participant perception on their performance and satisfaction 

levels relating to the task they had just completed. This perceptual element is important 

because it provides an indication on the likelihood that a participant would use a particular 

visualisation to answer a task. A participant may complete a task quickly with 100% accuracy 

but if they found it very difficult and felt the time taken to complete the task was long they 

would be less likely to re-use that visualisation. The post-experiment interviews augment the 

survey results.  

Participant post-task survey responses and task responses were compiled. First the written 

answers had to be transcribed and then each task was assigned a correctness score depending 

on the extent to which the answer was correct. There was no straightforward way of applying 

a correctness score to every task because participants answered differently. The correct 

answers were compared to participant answers and scores were based on the extent to which 

participant responses matched the correct answer. For example, where a correct answer 

required the participant to rank the parameter estimates from the most negative to most 

positive in relation to voter turnout and they ranked three of the five in the correct order then 

that answer would receive a correctness score of 60%.  

Analysis of the interview data was carried out by transcribing each interview in full and the 

collation of interview content by identifying common or recurring themes using both 

quantitative (e.g. counting, frequency) and qualitative approaches (e.g. meaning, 

interpretations, themes).  

The general frequent themes identified in the interview data were divided into visualisation 

groups, and ranked in order of appearance. Qualitative information obtained through 

interviews is always subjective in nature, meaning the understanding derived from collected 

qualitative data is dependent on the researcher. Additional information from qualitative data 

has always proven to be useful and in the case of this experiment, common themes emerging 

in the interview transcripts were clear. These are discussed in the results chapter for this 

experiment. 
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4: Methodology – Experiment Two  

  

The idea and basis for Experiment Two stemmed from research carried out in Experiment One 

of this research thesis. Results indicated there may be a change in user performance when 

more information is displayed on a screen. While it might seem logical to suggest that the 

performance of a person to complete a task becomes more difficult as the information they are 

required to comprehend increases, we do not know to what extent this is true. Results of the 

previous experiment suggest changes in participant performance when the level of data or type 

of visualisation encountered became more complex. However, without attempting to measure 

the cognitive behaviour of participants it would have been difficult to understand the results 

beyond standard measured task times and correctness ratios.   

The European Cooperation in Science and Technology (COST) provided the opportunity to apply 

for a Short Term Scientific Mission (STSM) under the Knowledge Discovery from Moving Objects 

(MOVE) group. Dr. Arzu Çöltekin of the University of Zürich, Switzerland was the host 

collaborator on this research strand. This chapter outlines the processes involved with the 

experiment development, implementation and analysis.  

In the first section, the composition of experiment participants is described. In the second 

section, the ethical procedures required to carry out the experiment are discussed. Section 

three highlights the improvements derived from the pilot experiments carried out.  The fourth 

section describes materials used in the experiment which include dataset spatial units and eye 

tracking equipment. Section five details the stimuli involved. Section six describes the process 

of spatial autocorrelation performed on the resulting visualisations to determine the patterns 

of each choropleth map. Terminology on ‘Clustered’ versus ‘Random’ is discussed and the 

outputs of the Moran’s I spatial autocorrelation calculations are explained in this section too. 

The protocol for the completion of tasks within the experiment is detailed in section seven. 

Section eight describes the procedure followed throughout the experiment. Finally, section 

nine on Data Analysis highlights the recorded metrics obtained from the experiment which can 

be used for analysis. Findings and analysis from Experiment Two are discussed in Chapter 6: 

Results 2.  
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4.1  Participants  
  

A total of 32 participants were sourced to complete Experiment Two. Three of these acted as 

pilot participants in the first three days of the experiment procedure. Three of the participants 

were excluded from the experiment due to the low number of recorded eye movement 

fixations in their experiment. Therefore, the remaining 29 participants formed the final set of 

participants for the experiment. This experiment utilised choropleth maps. Therefore, 

canvassing for participants with an understanding of GIS minimised the potential for 

encountering user difficulties during the experiment. Participants comprised of undergraduate 

students, postgraduate students, doctoral students and University research institute staff.  

A request for participation of undergraduate students was made to those with at least a basic 

understanding of GIS. Suitable and eligible participants consisted of: Undergraduate students 

who were taking a GIS module; Postgraduate students who were either research assistants or 

studied in the host geographic institute; Post-doctoral researchers working in the host institute; 

and tenured staff of the host institute. Each participant had the required level of understanding 

of GIS principles and so were deemed eligible for participation in the experiment.   

 

4.2  Ethics  
 

Appropriate ethical procedures, permissions and risk assessments were completed (see 

Appendix). A written description of the experiment was produced for participants to read 

before they began the experiment. This ensured participants were fully aware of the 

experiment aim, what to expect from their involvement and helped ensure they had no 

reservations about participating in the experiment. A consent form was created for each 

participant to sign once they had understood the experiment description. Again, this outlined 

their involvement in the experiment and assured the participant their involvement was 

voluntary and confidential and that they were free to withdraw from the experiment at any 

time.   
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4.3  Pilot Experiments  
 

As outlined above, three participants assisted with the set of pilot experiments. Improvements 

were made after each test. Initially, the map legend was positioned at the bottom of each 

visualisation and the task was positioned at the top. The positions of each of these were 

changed following pilot participant feedback to better suit the user’s visualisation of the overall 

experiment screen. The second pilot test experiment resulted in a change in the visualisation 

background. Previously the background was coloured white which was the same colour as the 

lowest valued spatial units on each map. This may have caused user confusion so the colour 

was changed to a pale yellow to provide a better visual contrast. Questions asked by pilot 

participants allowed the experiment researcher to clarify participant instructions for the 

experiment.  

 

4.4 Experiment Set Up 

 

When conducting an experiment involving human participants it is important to create the most 

natural working environment possible as outlined in a previous Chapter. The experimental 

laboratory was occupied by the researcher and the participant only. The use of non-invasive 

eye-tracking technology was important to minimise participant discomfort.  

 

4.5 Materials 

The eye tracking machine was attached to the desk and located under the computer screen. 

The eye tracker was a ‘Tobii X120’ complete with analysis software on the desktop computer. 

The eye tracking machine was calibrated for the screen size and extent of tracked eye 

movements in advance of the experiment. The chair was an adjustable computer chair, with 

the castors removed to limit erratic participant movement. A small glass weight was used as a 

hand rest to stop the chair from swivelling. The participant was seated approximately 18 inches 

from the screen. A webcam was used to record participant facial behaviour and can be seen on 

top of the desktop.  
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A pen and paper were used to observe and record participant behaviour and performance 

during the experiment itself. A laptop was used to back-up the experiment recording after each 

session had finished and the participant had left the room.   

Tobii eye tracking analysis software was installed on the desktop. This software recorded a 

number of metrics including: time-to-first fixation; number of fixations; time-to-first mouse 

click; number of mouse clicks; number of fixations in an area of interest (AOI); post-task survey 

responses; time taken for each task; and participant profiler responses. This meant that almost 

all of the recordings were taken by the Tobii analysis software and it was expected this would 

offer somewhat greater ease of data collation following completion of the entire set of 

experiments.   

4.5.1 Map Production  

The maps were produced using ESRI’s ArcMap software and followed the same procedure as 

outlined for map production in Experiment One, with the exceptions outlined below. The 

procedure for the calculation of the spatial autocorrelation for these maps is described later.  

4.5.2 Dataset  

The dataset used in Experiment One was also used to produce the maps in Experiment Two. 

This allowed for more accurate comparisons between the results of the two experiments if 

needed. This was a real-life dataset rather than a generated simulated dataset. This was 

assumed to be beneficial to the participant as it was more likely to reflect the types of data 

being used in real life work. Specifically within the dataset, Geographically Weighted Regression 

(GWR) outputs were selected to represent Clustered and Random patterns in the dataset. The 

outputs included parameter estimate values of the five attributes used in the first experiment 

(Social Class 1 and 2; Owner-occupied homes; Over-65 age category; 3rd level education and 

unemployed persons; S-Values and T-Values. The attributes used to produce the maps were 

selected based on observable patterns in this data. The default data classification system was 

used in all instances.  

4.5.3 Spatial Units  

The ArcMap shapefile used to create the spatial map units in Experiment Two was the same 

shapefile as used in Experiment One again allowing the possibility of comparisons. During the 

design stage of Experiment Two a rigid rectangular-shaped map was decided upon as opposed 

to a freeform or more naturally-occurring shape. This permitted a more uniformed set of maps 
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for participants with the intention of reducing a potential learning effect which can occur with 

more recognisable map shapes (e.g. shape of a country). The spatial unit polygons used are real 

world Irish “Electoral Divisions” (EDs) as described in Experiment One.   

 

4.6 Stimuli  
  

Since we were testing perceptual scalability in this experiment, a systematic approach was 

adopted in order to enhance the comparability of the visualisations thereby improving the 

experimental design. Four different sized maps were produced with incrementally increasing 

scales by order of five (10; 50; 250 and 1,250). Real life map topography of Electoral Divisions 

(the smallest area unit) in Ireland were used to replicate a more natural visualisation and 

experience for participants. At the time, Electoral Divisions were the smallest spatial units used 

in Irish datasets. The data on the choropleth maps presented to participants was also based on 

real life data. This was a mix of Geographically Weighted Regression outputs and Census data 

obtained from the National Census of Ireland Database (CSO.ie). However, the origin of the 

data was not a key point of information for the experiment participants. The visualisations 

produced and used in the experiment were designed to be as simple as possible, without 

distractors or extraneous clutter.  

Three visualisation sets were created so the experiment would consist of three different 

sections; Random, Clustered and Paired. As mentioned above, four data scales were used in the 

experiment with increments of x5 to allow for more comparable measurements and analysis. 

Stimuli were created to vary two factors: Random versus Clustered and the size of the spatial 

units; large/small vs. constant. That is to say, spatial unit size decreases as more units are 

included, unless the size of the units remain constant in which case the overall map area will 

change as more units are added. As outlined in the opening paragraphs of this chapter, it was 

hypothesised that participants would find it more difficult to answer tasks for Random data 

visualisations because the visualisation appeared to be more complex.  

Figure 4.1 shows an example of the eight different types of visualisations used. The same map 

structure was used for representation of Clustered data. It is important to note the difference 

between A) and B). In Figure 4.1 A) the size of each spatial unit decreases as the level of data 

increase. The spatial unit size remains the same throughout Figure 4.1 B.  
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Figure 4.1 of the “Random” Visualisation maps  

  

  

4.7 Spatial Autocorrelation  
  

Spatial Autocorrelation calculation of experiment visualisations (the choropleth maps) was used 

to differentiate between the levels of visual randomness. Visual randomness was calculated so 

that a comparison of the performance of participants between Clustered and Random could be 

performed. This comparison will assist in answering the question of the effect Clustered maps 

have on participants compared to Random maps. Changes in performance are expected to be 

an indication of the difficulties encountered by participants. Changes in participant cognitive 

load could not be reliably assessed without knowing the spatial autocorrelation group that each 

visualisation belonged to. This is a principal reason spatial autocorrelation was calculated.  

Moran’s I was chosen as the method to calculate spatial autocorrelation. It is used to measure 

the degree of similarity between data values. In the case of the second experiment, the data 

values are spatial units called Electoral Divisions (EDs). Moran’s I is calculated on a global level 

so an overall assessment of spatial autocorrelation for each visualisation is achieved.  

A)   

B)   
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It is estimated that participant interaction with “Random” choropleth maps will require a 

greater cognitive load than “Clustered” choropleth maps.  

4.7.1 Moran’s I  

Based on the relevant literature (Slocum et al., 2013; Moore and Drecki, 2013; O’Sullivan and 

Unwin, 2010) and further drawing on Tobler’s First Law of Geography (1970) one can gain an 

understanding of methods used to understand and assess spatial autocorrelation. The simple 

outcomes are; positive, negative or none/zero autocorrelation. The description of spatial 

autocorrelation is of key importance in spatial analysis as indicated by Slocum et al. (2013: 35).   

Geary’s C and Moran’s I are two common methods used to calculate autocorrelation of data. 

Moran’s I can be used to study stochastic phenomena of data that is distributed in space. It is 

heavily linked to the standard correlation coefficient. Geary’s C is based on a comparison of 

contrasting map values. Geary’s C establishes whether there is a correlation between 

neighbouring values in a dataset. Geary’s C is more sensitive to local autocorrelation compared 

to Moran’s I. For Experiment Two, Moran’s I was chosen as the method to calculate spatial 

autocorrelation so that an overall picture of spatial autocorrelation can be taken for each 

visualisation used within the experiment.  

4.7.2 Spatial Autocorrelation calculation   

As with the creation of the maps, ESRI’s ArcMap was utilised to calculate the spatial 

autocorrelation of each visualisation. ArcMap’s toolbox contains a feature to calculate spatial 

autocorrelation using Moran’s I. Some of the changeable options were as follows;   

Table 4.1 ArcGIS Toolbox Moran’s I Spatial Autocorrelation selected options  

Input Feature Class  Left to the default working directory.  

Input Field  Set according to the active parameter.  

Conceptualisation of 

Spatial Relationships  

Inverse Distance  

Distance Method  Euclidean  

Standardisation  Standardisation  
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The input class and input field choices are self-explanatory. Inverse Distance was chosen 

because it would best measure clusters or patterns. The further one spatial unit is from another, 

the smaller the impact it has. The closer two spatial units are in space to each other, the more 

likely they are to interact and affect each other.  

Euclidean Distance was selected as it calculates the distances between the central points of 

each spatial unit to its neighbouring spatial units. The limitations of Euclidean distance are not 

relevant here, e.g. slopes or physical landscape variations. Manhattan distance is restricted to 

straight line connections, comparable to right angles only, e.g. North to South or East to West. 

This makes it less appropriate to use because the dataset is less grid-like and is very much a real 

life dataset. Standardisation was tested but the difference in the Moran’s I outcome was 

negligible.  

4.7.3 Spatial Autocorrelation Outputs  

Essentially, Moran’s I can indicate whether a spatial pattern is Clustered or Random. There are 

three main outputs from Moran’s I: Index, Z-Value and P-Value. Table 4.2 below demonstrates 

the categorisation of each of the main outputs in terms of confidence levels.  

Once the spatial autocorrelation calculations are complete, the first step is to assess whether 

the null hypothesis is true or false. In this experiment, the “null hypothesis” states;  

“There is no spatial clustering of the values associated in the study area.”  

Positive Index scores indicate clustering, while negative index scores indicate. Scores closer to 

zero indicate a Random distribution. The p-value is probability. The probability that observed 

spatial patterns are Random processes. A small p-value indicates observed spatial patterns are 

unlikely to be a result of Random process. The Z-values are standard deviations. P-values and 

Z-values are suggestions on whether you can reject the null hypothesis or not. Generally, the 

null hypothesis will be that there are no spatial processes present in data.  

High positive or negative Z-values combined with small P-values are normal. Small p-values with 

very high or low Z-values indicate that a spatial pattern may not reflect the null hypothesis 

random pattern. In this instance, a subjective decision is made. A typical confidence level table 

is a follows:  
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Table 4.2 Moran’s I Confidence Measurement 

Z-score  P-value  Confidence  

< -2.58 or +2.58  < 0.01  99%  

< -1.96 or > +1.96  <0.05  95%  

<-1.65 or > +1.65  < 0.10  90%  

  

The above description demonstrates the necessary completed steps so that analysis can be 

carried out on participant expertise, fixations, time-to-task completion and the spatial 

distribution of experiment visualisations.   

4.7.4 Experiment Terminology 

The difference between Random and Clustered as presented to participants for the experiment. 

The standard technical definition of ‘Random’ and ‘Clustered’ is different to their use in 

Experiment Two. In general statistical literature, the term “Clustered” can relate to spatial 

autocorrelation where a spatial dataset can be assessed for the extent to which a perceived 

pattern has occurred by chance. The term “Random” can be applied to patterns which have 

occurred more by chance rather than having a quantifiable statistical spatial connection.   

While the above definition of each term is understood, the displayed terms of “Clustered” and 

Random” in the tasks presented to participants in Experiment Two are used to facilitate 

understanding by participants according to their perceptual perspective. The terms “Random” 

and “Clustered” are used to describe the perceived or observable spatial pattern of visualised 

data on each map output. The distributions were not initially created using a mathematical 

formula for Clustered or Random map generation as may be assumed in the statistical definition 

of the terms. However, for analysis purposes, spatial autocorrelation was performed on the 

visualisations in order to categorise them correctly.  

4.7.5 Analysis Terminology 

Referring back to Chapter 3, we know what qualifies a spatial distribution as “Clustered”, 

“Random”. Through this literature we can say that:  

 An ideal “Clustered” map is described as a map with an Index Score of “1.0”and P-Score 

of “less than 0.01”.  
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 An ideal “Random” map is described as a map with an Index Score of “zero”, more and 

a P-Score of “less than 0.01”.  

4.7.6 Experiment Visualisations Spatial Autocorrelation Outputs  

Table 4.3 shows the outputs of the spatial autocorrelation calculations for the experiment map 

visualisations. A description of why each map has been categorised as “Clustered” or 

“Random”” is provided below. Studying each primary output, it has been established that P-

values (assist in the detection of the reliability of the spatial autocorrelation result) of zero 

indicate that the resulting Index Scores (level of clustering) are not likely to be a result of a 

random process.  A choice was made for purposes of labelling and analysis that maps would be 

classified as “Random” is their Index score was less than 0.4. Even though there is statistically 

significant clustering on certain maps, e.g. “1250 L r” is labelled Random because the Index 

scores are relatively low. 

Table 4.3 of Visualisation Spatial Autocorrelation 

Map  Index  P-Value 
Indicated 
Pattern  

10s 0.493 0.001553 Clustered 

10s 1 0.492541 0.001407 Clustered 

10L 0.492541 0.001407 Clustered 

10L 1 0.516546 0.000842 Clustered 

10s r 0.018652 0.400002 Random 

10L r 0.028002 0.414583 Random 

10s r1 -0.39483 0.132513 Random 

10L r1 -0.27857 0.386992 Random 

50s 0.831886 0 Clustered 

50s 1 0.858707 0 Clustered 

50L 0.809499 0 Clustered 

50L 1 0.833335 0.000213 Clustered 

50s r 0.312483 0.117649 Random 

50s r1 0.121791 0.117649 Random 

50L r 0.059247 0.380477 Random 

50L r1 0.059247 0.380477 Random 

250L 0.935263 0 Clustered 

250L 1 0.922299 0 Clustered 

250s 0.931089 0 Clustered 

250s 1 0.914997 0.413945 Clustered 

250L r 0.027359 0.001859 Random 

250L r1 0.116653 0.001859 Random 
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250s r 0.128894 0.000571 Random 

250s r1 0.229048 0 Random 

1250 0.948047 0 Clustered 

1250L 0.960195 0 Clustered 

1250s 0.937812 0 Clustered 

1250s1 0.95829 0 Clustered 

1250L r 0.363214 0 Random 

1250L r1 0.056256 0.000835 Random 

1250s r 0.055902 0.000899 Random 

1250s r1 0.055902 0.000899 Random 

 

A threshold was established for the categorisation of each visualisation. Most of the Clustered 

maps were identified as having an Index score that was closer to 1, with a Z-score greater than 

2.58 and a p-value of zero or close to zero. In most instances, this description fits the maps 

categorised as Clustered. Some of the maps were straightforwardly classified as being Random. 

These maps had a much lower Index score, with a Z-score that is still greater than 2.58, but 

much closer to that figure. While the Random p-value was still close to zero, it was much greater 

in relative terms to the majority of the Clustered P-values. Only two maps recorded a negative 

spatial autocorrelation. Relative to the Clustered maps, the P-value was much greater than 

zero.  

It is difficult to be entirely confident with the spatial autocorrelation outputs for the ‘10’ spatial 

unit maps category given the minimum recommended number for spatial autocorrelation 

calculation is 30. It could be suggested that the comparatively lower Index scores for the ‘10’ 

spatial unit maps demonstrate the difficultly associated with discerning patterns which are not 

likely the result of a random process in so few data values. Similar to ‘50L r’ and ‘50 L r1’ the Z 

values for ‘10s r’ and ‘10L r’ are below the 2.58 threshold so there is a degree of uncertainty 

surrounding their Index score to determine if Clustered or Random patterns are observed. The 

high P-values indicate that the observed patterns are likely to be the result of a random process. 

The lack of a presence of a Clustered pattern means that ‘10s r’ and ‘10L r’ can be categorised 

as being “Random”.  

For the ‘50L r’ and ‘50L r1’ maps, the Index score is quite low. It is much closer to zero than 1.0. 

This indicates that the presence of a Clustered pattern is unlikely. The p-values for these maps 

are over the 0.1 threshold which indicates that the observed patterns are likely to be the result 

of a random process. They can still be accepted into the “Random” process category.  



 

106 

 

For the ‘250’ set of Random maps, the distinction is less certain because the Index scores are 

still quite high. But with a much lower Index score than their Clustered ‘250’ spatial unit 

counterparts, they have been classified as being Clustered. The Z-Score for all but one of the 

‘250’ maps is above 2.58 indicating that the observed patterns are unlikely to have occurred by 

chance. This is least certain for the ‘250L r’ because the Z-score is below 2.58 indicating there 

is a degree of uncertainty about its place as a Random map. The Index score is much lower than 

the other ‘250’ spatial unit Z-scores and it indicates that the presence of Clustered distribution 

is not very likely. The p-value is also higher than 0.1 which indicates that the observed pattern 

for the ‘250L r’ maps may have occurred by chance. This may indicate the presence of a random 

distribution, so the map can be categorised as being “Random” here for the purposes of 

analysis.  

The classification for some of the visualisations was less straight forward. For example, in the 

case of ‘1250L r’, the Index score was considerably less than the Index score of the other 

Clustered ‘1250’ scale maps. However, the Z-value is much higher than the Random ‘1250’ so 

we can be more certain that the map is Clustered.  

  

4.8 Experiment Protocol  
  

4.8.1 Participant’s task  

In experiment segments lasting approximately 10 minutes, participants were asked to complete 

tasks that a typical geographer would find very simple, but which required them to inspect the 

maps. Clear instructions were given.   

An example of a single choropleth visualisation task is as follows: Identify the large cluster with 

the highest values.   

An example of paired choropleth visualisation task is as follows: 

 

Identify the map containing the largest cluster of the highest values.  
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Tasks to complete were considered straight-forward and participants were required to identify 

the highest or lowest valued clusters of Electoral Divisions on the choropleth maps presented 

to them. In order to see if perceptual scalability was apparent when participants had to 

compare two maps of the same scale and information, a set of paired visualisations was 

included in the experiment (see Figure 4.2 for an example).   

Figure 4.2 Paired choropleth maps for Random distribution 

 

   

These were choropleth maps of the same scale. Participants were asked to complete similar 

types of tasks as before, except now they had to choose a map instead of a cluster. Following 

guidance in the literature, the order in which participants were shown the visualisations in each 

spatial distribution group was randomised using the Tobii Studio experiment system to prevent 

a possible learning effect. Table 4.4 provides additional details on this visualisation, data and 

task design.  
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Table 4.4 Experiment visualisation, data and task details 

   

Display 

Type  

Spatial Unit 

Size  

Spatial Unit 

Distribution  

No. of  

Display 

Sizes  No. of Tasks 

per Display  

Total 
tasks 

for  
Part  

Part 1 

A  

Remains the 

same  

Progressively 

smaller  

Spatially auto 

correlated 

4  2  8  

Part 1 

B  

Remains the 

same  

Progressively 

smaller  

Random 4  2  8  

Part 2 

A  

Progressively 

larger  

Remains the 

same  

Spatially auto 

correlated 

4  2  8  

Part 2 

B  

Progressively 

larger  

Remains the 

same  

Random 4  2  8  

Part C  Remains the 

Same  

Remain the 

same  

Spatially auto 
correlated 

and 
Random 

4  1  8  

     

It was important to maintain visualisation uniformity in terms of shape so that results could be 

more readily compared. An example where this uniformity of shape was successfully 

implemented and can be seen in either of the ‘1250’ scale Random visualisations shown in 

Figure 4.1. Although it was difficult to make a selection of EDs that occupied a rectangular or 

uniformed shape for the smallest scale (‘10’ spatial units), the selections made were relatively 

successful.  

In order to record measureable results the methods of scaling would have to be considered 

carefully. Initially a maximum of 2,500 EDs were planned for. However, the scaling was not 

consistent because the smallest number of spatial units would have been 50. It would increase 

to 250 and then to 500 followed by 1000 and then either 2000 followed by 2500.   

While results could be compared between visualisations with the same scale it would have been 

difficult to measure perceptual scalability across visualisations with different scales. An 

additional practicality regarding the dataset had to be considered when using the largest 

number of spatial units. A real life data set based on the shape of Ireland was used. This meant 

that a uniform square shape would not have been possible if the number of spatial units 

exceeded more than 2000. If the shape/rectangular of any visualisation looked unique and was 
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reused to display different data or the same data in a different colour then a learning effect 

could occur. 

 

 4.9  Experiment Procedure  

Participants were briefed prior to starting the experiment and thereafter proceeded to 

complete the tasks in a self-paced manner. The experiment was expected to last between 5 

and 10 minutes dependent on the pace of the individual participant. Each participant 

performed the tasks in segmented blocks of Random data distribution and Clustered data 

distribution, with the order of blocks counter-balanced.   

Upon arrival, participants were instructed to take a seat at a desk upon which they would be 

presented with the experimental brief (see Appendix). The brief was explained by the 

researcher and participants were told that the visualisations were being evaluated for 

comprehensibility: this served to relax participants. When any participant questions had been 

answered a consent form was shown and explained to them. Again, once they were happy 

with the explanations and understood what would be required of them in order to complete 

the experiment, the consent form was signed.  

The participant was seated in front of the experiment desktop computer and the eye tracking 

machine, which was calibrated for each individual. Depending on the dominant hand a 

participant would use, the mouse and the stabilising globe were arranged so that the 

participant used their preferred hand to respond with the mouse and their non-dominant had 

was placed on the globe to stabilise movements. Participants were instructed to look at the 

screen at all times (this was to prevent the infrared light from the tracker losing the target (i.e. 

the participant’s eyes). The height of the chair was adjusted to compensate for differences in 

participant height so that the eye tracking machine would successfully locate and track the 

eye movement.  

A profiler questionnaire was completed, with several questions using a Likert scale of 1 to 5. 

Table 4.5 details the profiler questions asked as part of the experiment. The participant was 

allowed to ask any number of questions during the course of the experiment. They were 

informed that a single mouse click would be sufficient when answering tasks but that their 

final mouse click would be taken as their answer. The tasks described above were written in 
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straightforward, non-technical English language so that any participants with less experience 

of the English language would not find it difficult to comprehend what was asked of them.   

Table 4.5 Experiment Profiler Questions  

 

How many hours of sleep did you get last night? <4, 4-6, 6-8, >8  

 Please rate your training on Cartography, 1-5      

Please rate your training on GIS software, state verbally which type(s), 1-

5  

Please state your level of experience in the English language, 1-5  

 
  

The same post-task survey from Experiment One was attached to each visualisation in the 

experiment. The survey questions asked participants to rate their responses using a Likert 

scale of 1 to 5 (see Table 4.6).  

Table 4.6 Post Task Survey Questions  

 

 How easy was that task to complete? 

 How fast do you think you completed that task? 

 How confident are you that you answered the task correctly? 

 
 

In accordance with the randomised system of visualisation display discussed above, the 

Clustered visualisation set would be shown first to one half of total participants and the 

randomised visualisation set would be shown first to the other half of total participants. The 

paired map visualisations would be shown once the Clustered and randomised visualisations 

segments were completed. All three map distribution types were shown to participants in a 

single sitting because the time taken to complete the experiment was not expected to result 

in participant fatigue. The participant was instructed to notify the experiment host when they 

had completed the first part of the experiment. The host would then start the second part 

immediately. This was repeated at the end of the second part for the final, third segment.  

Once the experiment was completed the participants were asked if they had any additional 

thoughts or feedback to contribute. Every participant was offered a nominal reward 

(chocolate) and the Undergraduates were also rewarded with a 5 Swiss Franc university café 
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voucher in acknowledgment of their participation. Participants were not aware of this nominal 

gift prior to their participation in the experiment.  

 

4.10 Experiment Measurements and Data Analysis  
  

The cognitive element of Experiment Two was less complex because there were no functioning 

map features. There were just mouse clicking, reading the question and finding the target area 

they believe to be the correct answer. This experiment process is one that needs to be taken 

into consideration when analysing results.  

Each recorded measurement was extracted for every participant for further analysis. 

Participants were divided into perceived brackets of expertise using participant profiler data. 

Post-task responses were also categorised for each visualisation. The number of eye fixations 

and times to first mouse click were exported and filtered to remove irrelevant data. Eye 

fixations provide an indication of difficulty experienced by a participant in answering a task. It 

is expected that the number of fixations will be greater for non-clustered distribution maps 

over comparable maps scales. The time to first mouse click will suggest the length of time 

required by a participant to discern where the correct answer is located. This data was added 

to the divided group and a comparison of these groups was made to assess differences in 

performance.  

Areas of interest (AOIs) were created for each map within Tobii Studio. The AOIs are selected 

areas containing more relevant information than the rest of the map. Rectangle and ellipse 

shapes were drawn around the cluster relating to the task for each visualisation. Ellipse AOIs 

were adjusted to better mimic the shape of the cluster where necessary. The number of 

ellipses varied according to the number of relevant clusters. Participants answered a question 

through a mouse click - they would click on the cluster they believed to be the correct answer. 

In section three of the experiment, merely clicking the map was sufficient, but in most cases 

participants selected the cluster on one of the maps.   

The duration of fixations within the Areas of Interest (AOIs) provide an indication of required 

attention. If a participant has spent more time visiting the AOIs for each task then it can 

suggest difficulty in deciding on the correct answer. This is also true for mouse click recordings. 
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The “time to first mouse click” is typically used to measure speed of participant decision-

making. Again, this was recorded within the AOI to determine if a participant answered 

correctly or not. In the case of this experiment, this speed would help determine the efficiency 

of a visualisation to present information.  

Correctness levels were determined based on whether a participant clicked in the visualisation 

cluster with the largest grouping of spatial units, as required by the task question. The simple 

tasks described above varied in levels of difficulty based on the visualisation type presented 

to the participant. The short survey answered by participants following the completion of each 

set of visualisations was also exported to Microsoft Excel for collation and analysis. 

Suggestions on perceived task difficulty, speed to complete and confidence in answers can be 

derived from this data.  

The Tobii eye movement analysis software allowed for the collation of almost all experiment 

data as mentioned above, with the exception being post-experiment participant feedback and 

written observations made by the host during the sessions.  

Using the above methods of data collation, participant data were also divided according to 

their perceived level of GIS expertise and the order in which they viewed each map during the 

experiment. This is described in more detail below and would allow for further comparison of 

results. From the set of experiment participants, two GIS expertise groups were created 

according to the answers provided by participants on their perceived level of GIS expertise 

possessed. The two groups were labelled GIS Non-Experts and GIS-Experts. Non-Experts rated 

themselves between 2 and 3 on a Likert Scale. Experts rated themselves between 4 and 5 on 

that same Likert scale. A group was also created to differentiate participants according to the 

order in which they encountered each distribution of visualisations within the experiment. 

One group was presented with visualisations from the “Clustered” category first, the other 

group was presented with visualisations from the “Random” category first.  

The metrics (number of fixations, correctness, time to complete task, time to mouse click) 

described above were compared within the groups of expertise and within the groups which 

encountered either “Clustered” or “Random” visualisations first. Results for visualisations in 

which the spatial unit remains the same versus visualisation in which the spatial unit size 

becomes progressively smaller. The next chapter will discuss the results derived from data 

collected as part of Experiment Two.  



 

113 

 

5: Results and Analysis – Experiment One  

 

The purpose of Experiment One was to investigate the performance levels of people with 

knowledge of GWR with respect to their interactions with visualisations. A trio of visualisations 

were selected for testing and these acted as a medium to assess the popular visualisation 

techniques of 2D, 3D and interactive visualisation types. The performance of all three 

visualisations are evaluated and discussed in this chapter. To overview, visualisations 

performed equally in some instances. However, results did indicate that interactive 

visualisations are better suited for more comprehensive or advanced analysis of GWR outputs. 

The chapter is structured with seven core sections outlined below to aid analysis, 

interpretation and understanding of Experiment One’s results.  

First, the composition of the experiment participants is outlined according to knowledge levels 

(section 5.1). Next, the experiment correctness ratios of participants are analysed in section 

5.2. Section 5.3 highlights the speed of task completion for each visualisation type and each 

visualisation scale tested during the experiment. Data obtained on mouse movement and 

mouse clicks which offers an insight into the difficulties encountered by participants is 

investigated in section 5.4. In section 5.5, participant perception of their own performance on 

task completion is considered through analysis of post-task surveys within the experiment 

itself. Then, qualitative results of the semi-structured interviews and participant’s own 

observations compared to their actual performance results is discussed in section 5.6 before 

a discussion piece in section 5.7 to conclude the chapter.  

  

5.1 Categorisation of Participants According to Expertise Levels  
  

Table 5.1 outlines the divisions created for analysis purposes according to participant 

expertise. As highlighted later in this chapter, these divisions are split into two sections, one 

for Part A of the experiment and the other for Part B.  

The explanation of each division is as follows; G1 contains participants with knowledge of the 

2D visualisation system used (ArcMap). Participants with knowledge of the 2D and 3D 
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visualisation systems, ArcMap and ArcScene, are found in G2. G3 comprises participants with 

knowledge of all three visualisation systems (ArcMap, ArcScene and ProVis).  Participants with 

knowledge of ArcMap (2D) and ProVis (Interactive) are located in G4.  

G5 and G6 are related to participant GWR expertise. G5 contains participants with a perceived 

“poor” or “basic” knowledge of GWR while participants with “good” or “expert” knowledge of 

GWR are in G6.  

Table 5.1 Divisions of participants according to their knowledge base on the experiment 

visualisations and GWR 

    Knowledge bracket  

G1  2D    

G2  2D & 3D    

G3  3D, 3D & Interactive  

G4  2D & Interactive Vis'  

G5  Poor and Basic GWR  

G6  Good & Expert GWR  

  

5.2 Correctness Ratios Analysis 

 

Correctness ratios varied across the knowledge groups. Tables 5.2, 5.3 and 5.4 show the 

average correctness percentages of the knowledge groups for each visualisation on every task. 

In general, participants attained the highest correctness ratios in Task 1 of the 2D visualisation 

for Part A. Task 3 proved the most difficult to answer when using the 2D and 3D visualisations.  

The interactive visualisation performed best for the multivariate task. This section gives details 

on each of the participant groups and visualisation types.   

Table 5.2 Average Correctness Ratios for 2D Visualisations 

  Part A   Part B  

A 2D T1 2D T2 2D T3 2D T1 2D T2 2D T3 

G1 90 85 57.5 56 52 56 

G2 92 85 52 64 44 45 

G3 100 100 65.00 60 55 37.5 

G4 86.67 100 46.67 53.33 41 48.33 

G5 92.5 81.25 51.25 58.89 50.56 47.72 

G6 90 90 53.33 60 51.66 50.83 
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Table 5.3 Average Correctness Ratios for 3D Visualisations 

  Part A   Part B  

A 3D T1 3D T2 3D T3 3D T1 3D T2 3D T3 

G1 68.75 75 42.5 66 52 39 

G2 51.25 100 20 76 54 33 

G3 80 75 40 55 50 65 

G4 86.67 66.67 28.33 60 30 30 

G5 75.63 87.5 23.13 66.67 43.75 28.33 

G6 65.83 83.33 45.83 71.67 51.67 36.67 

 

 Table 5.4 Average Correctness Ratios for Interactive Visualisations 

  

  Part A          Part B  

  Int T1 Int T2 Int T3 Int T1 Int T2 Int T3 

G1 60 52.5 62.5 72 84 72 

G2 88 53 72 72 84 96 

G3 80 37.5 75 100 65 80 

G4 61.67 41.67 60 70 75 80 

G5 87.5 48.75 61.25 77.78 78.33  85.56 

G6 60.83 76.67 75 71.67 78.33 76.67 

 

 

5.2.1 Differentiation between Knowledge Groups  

Summarised results for both parts are shown per group in Tables 5.2, 5.3 and 5.4. Those with 

knowledge of ArcMap only (Group 1) contained some of the worst performers when using the 

interactive visualisation for Part A and Part B. Those with ArcMap and ArcScene knowledge 

(Group 2) recorded the lowest average scores for Part A Task 3 of the 3D visualisation despite 

having knowledge of this visualisation type. This group was also the worst performer on Task 

1 of the 3D visualisation. This is unusual because this group also recorded the highest average 

correctness ratios for Part A, Task 1 in addition to Part B, Task 1 and 2 of the 3D visualisations.  

Group 6 recorded better correctness ratios than Group 5 for most tasks in Part A and Part B 

with approximately 17% of Group 5 ratios being higher. Group 6 performed better than Group 

5 in Part A and Part B of the 2D visualisation. The results show those with a good understanding 

of GWR recording having higher correctness ratios for every task on Part B of the 3D 

visualisation. Correctness ratios for Part A and Part B, the interactive visualisation indicate that 
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participants with a more basic understanding of GWR recorded a slightly better score than 

participants with a good understanding of GWR.  

5.2.2 Differentiation between Visualisation Types  

2D maps performed best for Task 1 on Part A data set. Both Tasks 1 and 2 in Part A received 

correctness scores of over 80%. This suggests that this type of visualisation is well suited to 

simple GWR tasks. The 2D map correctness ratio for Part A’s Task 3 was less than the 

interactive visualisation, while Part B’s percentage difference with the interactive visualisation 

was over 15%. The 2D visualisations are therefore less appropriate for multivariate GWR 

exploration and these are significant differences since GWR analysis is likely to be complex.  

The 3D visualisation failed to record the highest correctness percentage for any of the tasks in 

Part A or B with the exception of Task 2 of Part A (Group 2).  In particular, Task 3 had the lowest 

correctness ratios across all groups in Part A and again in Part B with respect to ratios for Task 

1 and 2 for all visualisations. This can be attributed to the ArcScene layout which incorporates 

a 3D visualisation rotation feature. Technically the participants did not have to utilise this 

rotation feature for Tasks 1 and 2 and could observe the maps from a top-down perspective. 

Task 3 however required the use of interactive rotation and even knowledge of ArcScene 

(groups G2 and G3) didn’t seem to help with rotation,  although these groups performed better 

than most on Tasks 1 and 2 in Part A. This indicates a difficulty in using a 3D visualisation to 

complete multivariate tasks. 3D surfaces with rotation therefore seem least suitable for a 

majority of GWR tasks.  

In addition, a potential geographic scalability effect can be observed for 3D surfaces between 

Parts A and B in that participant’s correctness ratios were in general lower in Part B, with each 

task average for all visualisations being between 55 and 68% compared to a Part A average of 

almost 70%. This includes an average of approximately 80% for Task 1 of Part A and an 

approximate average of 75% for Task 2 for all visualisations. Correctness ratios for Part A Task 

3 were lower than Task 1 and 2 with averages between 50 and 56% for Part A and Part B.  

On average for all tasks, participants performed better on Part B than Part A. When the 

average correctness ratios of all knowledge groups are compared, it is evident the interactive 

visualisation performed best overall for Part B. This suggests that participants perform better 

with this visualisation type once they gain operational experience when they complete Part A. 
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It is more difficult to determine if there is a scalability effect present between Part A and Part 

B of this visualisation type. For instance, the univariate correctness ratios are slightly lower in 

Part B, but the multivariate ratios are slightly higher in Part B.  Since the correctness ratio for 

Task 3 was better for the interactive visualisation in Part B compared to the 2D and 3D 

visualisation, it offers an indication that interactive visualisations could be best for more 

complex GWR analysis.  

  

5.3 Speed of Task Completion  

 

Tables 5.5, 5.6 and 5.7 provide details on knowledge groups for every task of both parts for 

the three visualisations. The average time-to-task completion and standard deviation for each 

group and task is recorded. In the following, results per group are outlined below the set of 

tables.  

Table 5.5 Average Task Times for 2D Visualisations (in minutes) 

   Part A      Part B    

  
T1 

Time 
T1 
SD 

T2 
Time 

T2 
SD 

T3 
Time 

T3 
SD 

T1 
Time 

T1 
SD 

T2 
Time 

T2 
SD 

T3 
Time 

T3 
SD 

G1 5.51 1.45 8.64 5.61 6.16 1.96 7.39 4.89 4.4 2.01 4.43 1.73 

G2 5.37 4.08 3.52 1.54 6.99 5.71 4.9 5.2 4.4 1.67 4.48 2.02 

G3 4.38 1.97 3.12 1.97 2.68 1.26 4.1 2.33 5.36 2.22 2.48 0.91 

G4 5.66 1.62 8.59 8.6 6.24 3.88 5.85 5.32 5.47 1.83 4.13 0.89 

G5 5.61 3.34 3.79 1.38 6.54 5.02 3.67 3.26 4.6 1.39 4.1 1.93 

G6 5.75 1.19 8.02 5.51 7.44 3.06 7.53 5.72 4.03 2.52 3.35 2.23 

 

Table 5.6 Average Task Times for 3D Visualisations (in minutes) 

   Part A      Part B    

  
T1 

Time 
T1 
SD 

T2 
Time 

T2 
SD 

T3 
Time 

T3 
SD 

T1 
Time 

T1 
SD 

T2 
Time 

T2 
SD 

T3 
Time 

T3 
SD 

G1 5.66 1.85 5.26 3.38 16.37 5.62 4.74 2.51 11.2 8.74 9.29 5.46 

G2 3.9 2.72 2.34 1.38 9.34 3.39 4.04 3.25 7.2 3.13 8.31 1.81 

G3 4.67 0.98 5.4 3.97 3.75 2.37 4.64 0.03 7.15 2.55 8.89 0.25 

G4 5.15 1.52 3.23 0.38 12.28 11.3 3.08 0.24 6.48 3.43 12.18 5.89 

G5 3.57 1.39 3.59 1.65 8.27 4.39 4 2.49 6.8 3.02 9.51 3.82 

G6 5.43 1.79 5.02 3.41 12.97 8.46 5.21 2.1 6.09 3.65 10.23 4.97 
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Table 5.7 Average Task Times for Interactive Visualisations (in minutes) 

   Part A      Part B     

  
T1 

Time 
T1 
SD 

T2 
Time 

T2 
SD 

T3 
Time 

T3 
SD 

T1 
Time 

T1 
SD 

T2 
Time 

T2 
SD 

T3 
Time 

T3 
SD 

 

G1 4.31 3.37 3.49 2.28 5.19 3.52 2.65 1.57 5.55 3.1 5.37 4.65  

G2 4.38 1.97 3.12 1.97 2.68 1.26 4.1 2.33 5.36 2.22 2.48 0.91  

G3 2.6 0.11 3.46 2.18 3.03 3.27 3.9 2.23 4.11 1.07 2.85 1.13  

G4 5.41 1.93 0.49 0.42 5.68 1.99 1.66 0.92 6.8 0.71 2.43 0.47  

G5 4.21 2.02 3.19 1.57 3.72 2.35 3.63 2.02 5.47 1.69 2.71 1.17  

G6 4.05 3.07 3.39 2.24 5.01 3.44 3.31 1.79 5.95 2.78 4.48 3  

 

 

5.3.1 Group 1 – Knowledge of ArcMap only  

Participants with knowledge of ArcMap took the longest time on average to complete tasks 

using the 3D visualisation. This was particularly apparent for the Part A multivariate task and 

on the bivariate and multivariate tasks in Part B. This group also managed to complete the Part 

A 2D tasks faster than Part B’s. This is likely a result of users gaining a sense of familiarity with 

the visualisation. The ProVis task times were quite consistent over both parts; this suggests 

these users do not experience any greater difficulty when faced with a more complex dataset 

despite having no prior experience in the operation of an interactive visualisation. On average 

the ArcMap knowledge group completed tasks quicker using the interactive visualisation 

compared to the 2D visualisation.  

5.3.2 Group 2 – Knowledge of ArcMap and ArcScene  

For participants with knowledge of both ArcMap and ArcScene (Group 2) it was difficult to 

discern any noticeable difference in task times for the 2D visualisation between Parts A and B. 

There is an increase in the time taken to complete 3D visualisation tasks between Task 1 and 

Task 3, this increase can also be distinguished when comparing Part A and Part B. Part B tasks 

took longer to complete. With the exception of the Part B bivariate task for ProVis every task 

was as quick if not quicker than the 2D visualisations bivariate task. Tasks were completed 

faster using ProVis in comparison to ArcScene except for the univariate and bivariate task in 

Part A where participants could employ the same completion strategy already used with the 

2D visualisation univariate and bivariate tasks.  
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5.3.3 Group 3 – Knowledge of all three visualisation types 

Two participants signified they had experience with all three visualisation types but this was 

not necessarily indicated by the time taken to complete tasks. For example, when using the 

2D visualisation these users took as long if not longer to complete tasks than the other groups. 

They completed the 3D tasks in a similar time to other groups, they were not significantly 

faster. The same can be said about the Interactive visualisation task times. For some tasks they 

were faster on average for the multivariate tasks than the other groups.   

5.3.4 Group 4 – Knowledge of ArcMap and the Interactive Visualisation  

The group with knowledge of ArcMap and Interactive visualisations (Group 4) struggled to 

complete the multivariate tasks using the 3D visualisations. In particular, this knowledge group 

was the slowest to complete Task 3 for Part B of the 3D visualisation. This could be due to a 

lack of knowledge with this visualisation type. The average task completion time for Part A 

Task 2 of the interactive visualisation was less than half a minute, making Group 4 the fastest 

group to complete this task. The group also completed the interactive visualisation Part B tasks 

one and three faster than any other group, meaning Group 4 completed half of the interactive 

visualisation tasks faster than any other group.  

5.3.5 Group 5 and 6 – GWR knowledge  

Groups 5 and 6 can be compared because they are a combination of participants’ knowledge 

of GWR, with Group 5 being the basic knowledge group, and Group 6 being the more proficient 

knowledge group. The most noticeable difference between these groups is that Group 5 

completed most tasks with each visualisation type faster than Group 6 (refer back to Tables 

5.5, 5.6 and 5.7). The exceptions are 2D Part B Tasks 2 and 3, 3D Part B Task 2, Interactive 

Visualisation Part A Task 1 and Part B Task 1. This means that only 16.67% of the group with 

superior knowledge completed tasks quicker than the group with a more basic knowledge. 

Standard deviations for Group 6 are slightly more varied compared to standard deviations for 

Group 5 which may suggest that there is an outlying participant, but since Group 6 deviations 

are not consistently more varied it is difficult to discern if this is the case.  
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5.4 Analysis of Mouse Movement and Mouse Clicks  

 

Figure 5.1 illustrates the number of clicks made by the individual on each task. Immediately 

noticeable is a relatively low number of left mouse clicks when using ProVis. This is because 

participants did not need to click on any item to see information, except when switching 

between which parameter estimate was viewed or when they performed the select feature 

task. Otherwise the relevant information was displayed by holding the mouse over the graphic 

elements.  

Figure 5.1 Average number of Mouse Clicks of each application by for Parts A and B  

 

 

There is no clear indication when analysing the entire group together of any definitive 

difference between Part A and Part B for univariate tasks.  

A pattern that stands out is a comparatively large number of clicks when performing the 

bivariate and univariate tasks (Tasks 2 and 3) using 2D Maps. Participants were required to 

analyse up to 5 maps for the multivariate task when using the 2D visualisation and this is 

indicative of the number of mouse clicks executed by participants. It can also indicate a degree 

of confusion or extra cognitive effort since users are required to perform navigation between 

the five maps.   

It is interesting to observe the number of mouse clicks for 3D visualisations decrease between  



 

121 

 

Part A and Part B on the univariate and multivariate tasks. It is possible they were more familiar 

with the visualisation system by the time they were answering tasks for Part B which meant 

they did not need to click as frequently.  

With the number of mouse clicks for interactive visualisations being considerably lower on 

average compared to the 2D and 3D visualisation, it can be suggested that the interactive 

visualisation system (ProVis) represents a more efficient visualisation technique for analysis of 

GWR results.   

Figure 5.2 Average number of Pixels of Mouse Movement of each application for Part A 

and Part B  

 

Figure 5.2 shows the average level of mouse movement on each task for each visualisation. 

The obvious outlier in this figure is the multivariate task (Task 3) for the 3D visualisation. The 

levels of mouse movement are considerably higher here because of the interaction with the 

visualisation. It indicates the significantly greater effort required by participants to complete 

the most ArcScene task. ArcScene mouse movement levels are higher for every task compared 

to ArcMap and ProVis.  

Despite the interactive nature of ProVis, the level of mouse movement is comparable with the 

2D mouse movement. Mouse movement levels for ArcMap and ProVis are similar for Tasks 2 

and 3. ProVis required less movement for Task 1 than ArcMap.   
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5.5 Participant Task Perception 

 

Quantitative survey scores provide an insight into the perception participants have of the tasks 

completed during the experiment. These survey scores are based on the participant’s opinion 

of how they felt they performed on every task. The scores attained on each task are provided 

in Tables 5.8, 5.9 and 5.10. Part B average scores indicate participants were more satisfied 

with their performance on univariate and bivariate 2D visualisation exercises. This could be a 

result of increased familiarity with this visualisation type since all 2D tasks and the first two 

tasks of the 3D visualisations could be answered using a top down visualisation view. 

Participants were less confident with their performances on 3D and on Part B than their Part 

A counterparts.  In the literature, 3D visualisations are known to be poor performers for 

analysis but in the case of GWR analysis and interpretation of the survey results here, it 

suggests 3D visualisations are just as useful.   

When analysing the knowledge groups for surveys, they indicate a trend of increased 

satisfaction with performance when progressing from Part A to the more complex Part B. This 

seems counterintuitive because Part B’s dataset is much larger in size than Part A’s. It could 

suggest participants are more familiar with the visualisations the second time around. It is only 

when you compare correctness ratios and task times that the issue of perceptual scalability 

becomes visible.  In any case it is interesting to compare measures of user perception to actual 

task time and task correctness, it is clear a gap exists between these.  

Table 5.8 Average Survey Scores for 2D Visualisations, Parts A and B Part 

     A      Part B    

  T1  T2  T3  T1  T2  T3  

Av Ease  3.07  2.86  2.57  3.71  3  3.79  

Av Speed  2.86  2.93  2.86  3.43  3.14  3.79  

Av Confidence  3.07  2.86  2.64  3.5  2.93  3.14  

  

Table 5.9 Average Survey Scores for 3D Visualisations, Parts A and B Part 

     A    Part B  

  T1  T2  T3  T1  T2  T3  

Av Ease  3.1  3.57  1.8  3.5  2.214  2.2  

Av Speed  3.2  3.5  1.7  3.5  2.214  2.2  

Av Confidence  3.3  3.29  2.4  3.1  2.286  2.1  
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Table 5.10 Average Survey Scores for Interactive Visualisations, Parts A and B 

   Part A  Part B  

  T1  T2  T3  T1  T2  T3  

Av Ease  3.6  3.29  2.3  4  3.286  2.7  

Av Speed  3.4  3.5  2.9  3.9  3.214  3.2  

Av Confidence  3.6  3.36  2.5  3.6  2.571  2.6  

  
  

5.6 Insights from Post-Experiment Semi-structured Interviews 

  

Short semi-structured interviews were carried out at the end of the experiment with each 

participant. Interview data was used to investigate and to try understand more qualitatively 

participant’s impression about the visualisations tested. For greater validation, results were 

compared to the quantitative measurements of correctness and time to assess if and how 

users’ perception corresponds to their performance.  

Table 5.11 presents a set of coded categories which indicate the general themes most 

commonly observed during the post experiment interviews. While a positive theme was 

evident in the top five topics of each visualisation type there were clearly some outlying 

results. The interactive visualisation system received the most positive set of remarks, while 

the 3D visualisation followed the trend of the survey analysis by featuring as the least 

preferred choice for completing tasks according to the points raised during the post-

experiment participant interviews.  

The 2D visualisation was noted as being preferred for Task 1, or univariate visualisations. The 

2D visualisation is also an adequate choice to answer a task that involves just one parameter 

estimate and is reflected in the number of times that 2D visualisation received a positive 

comment from participants when they spoke about Task 1. This makes sense when participant 

familiarity is taken into account, particularly when it is the simplest task. It is important to 

remember however that GWR output analysis often involves more than a single univariate 

parameter estimate but this served as a good baseline of feedback.  

The trend of the 3D visualisation largely continues through the participant interviews. There 

was a recognisable difficulty in using the 3D visualisation to complete the tasks. 3D was 
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mentioned 18 times in a general negative fashion, meaning there was some problem 

encountered with it. More specifically it was possible to note that the 3D visualisation was 

difficult to navigate in terms of visualisation rotation by eleven out of thirteen participants, 

and height was seen as an issue in the 3D visualisation by eleven participants also.  As the tasks 

became more complex particularly with the multivariate task it could be suggested that 

visualisation height issues coupled with difficulties with rotation ultimately lead to occlusion 

problems and thus the comments received from participants post-experiment. There were 

some positive comments in general related to the 3D visualisation however, and these are 

most likely associated with the simpler tasks where it is technically possible to avoid the use 

of the rotation capabilities. It effectively places the 3D visualisation on a similar line with the 

2D visualisation for Task 1 and Task 2, and the majority of participants were noted as having 

avoided the use of full 3D functionality in order to answer the first two tasks. This would 

explain the number of general positive comments number, and also the fact that 3D was 

mentioned as being preferred to answer Task 2.   

The Interactive visualisation comments were largely positive as depicted by the top five 

remarks made when this visualisation type was discussed during the interviews. A general 

positive comment was made over a dozen times by participants relating to interactive 

visualisation which is double the number of general positive comments made for the two other 

visualisations. The interactive visualisation was mentioned as the preferred or easiest to use 

visualisation six times each.  While both the 2D and 3D visualisations were mentioned as being 

preferred, their preference depended on the type of task they had to complete. It is interesting 

to note this ‘ease of use’ theme given it is the visualisation cited by most participants as being 

the least familiar to them.   

Table 5.11 Frequency of Selected Interview Topic Content 

 2D (times mentioned)  3D (times mentioned)    ProVis (times mentioned)  

2D Map difficulty  7  3D problem  18  Int positive  13  

2D preferred for task 1  6  
3D rotation/navigation 

problem  
11  Int preferred  6  

2D positive  6  3D height problem  11  Int easiest to use  6  

2D positive task 1  5  3D positive  7  Int PCP positive  5  

2D problem  4  3D preferred for task 2  4  Int preferred for task 2  4  

  

Participant satisfaction in using 2D visualisations to answer a univariate question is visible in 

Table 5.11 adding to the positive measured participant performance levels obtained through 
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methods already discussed. Participant preference for the bivariate task was split between the 

3D and Interactive visualisations. Overall though, the Interactive visualisation was cited as 

being the easier to use in many instances by participants and was generally preferred to 

answering tasks with the aspect of familiarity the apparent obstacle to placing the Interactive 

visualisation as the clear preferred choice. The integration of this visualisation type also led 

users to say it was the fastest to use compared to the other two visualisation techniques in 

order to complete tasks. Despite these positive comments on speed to complete a task, 3D 

and Interactive visualisations were mentioned in relatively equal measure when participants 

were asked which visualisation type they would most like to use to answer multivariate tasks.  

In terms of negative comments, there were some for each of the visualisation types. The 2D 

visualisations were not without problems which participants highlighted when using the 

choropleth maps to answer more complex bivariate and multivariate tasks.   

3D visualisations were the most problematic overall according to the participants. Participants 

found these visualisations difficult to understand or confusing, yet using this visualisation type 

was less of an issue for the univariate and bivariate tasks compared to the multivariate task 

that required use of the 3D rotation feature which caused the most problems for participants 

according to interview feedback. This occurred once participants were required to navigate 

the 3D surface through the use of the rotation feature on the multivariate task.   

The interview content can be linked to actual performances on tasks, not just perceptual. 3D 

visualisations did not perform as well as the 2D and interactive visualisations on task times, 

and correctness ratios. The lack of positive commentary using the 3D visualisation to answer 

multivariate tasks is also clear and this can be related to the survey perception scores recorded 

for Task 3 in both Parts A and B. They are among the lowest averages between all participants.  

Although the top 5 mentioned topics relating to Interactive visualisations were positive, some 

participants did encounter problems. These problems occurred mainly due to a lack of 

familiarity with the system and the PCP was highlighted in particular because it is not such a 

well-known visualisation technique compared to other methods used in the experiment, for 

example, a choropleth map. Problems with more complex tasks of a bivariate and multivariate 

nature were linked to this theme of familiarity. In fact, the aspect of familiarity was a common 

theme through all interviews.  
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 5.7 Discussion of Results  

  

Referring back to Chapter 1, Hacklay and Tobón (2004) asked “What is a visualisation good 

for?”. This is what this experiment helps to answer for analysis of GWR outputs. To this end, 

the usefulness of all three visualisation techniques need to be considered and compared.  

The interactive visualisations performed well overall. This is indicated by the metrics discussed 

in this chapter. Correctness levels are generally higher for the interactive visualisation 

compared to the 2D and 3D visualisations. Participants with a greater perceived knowledge of 

GWR (G6) recorded higher correctness scores which indicates that a level of GWR knowledge 

will improve proficiency in successfully completing tasks. This is not to say that a higher level 

of GWR knowledge results in faster completion times because those with less GWR knowledge 

(G5) were faster to complete tasks. Where approximately 17% of Group 6 recorded higher 

levels of correctness, approximately 17% of the same group completed tasks faster than Group 

5. Perhaps there is a medium between speed of completion and levels of correctness.  

The post task results which record participant perception offer an insight into the likelihood 

that they would want to use one particular visualisation type over another, this is because they 

rate their own ease of task completion, speed of task completion and confidence in their task 

answer. The 3D visualisation can be ruled out of this perception comparison because 

perception scores for the 3D visualisation were considerably lower than the 2D and Interactive 

Visualisation, with the exception of the univariate task which was more on par with the other 

two visualisation types and did not require any 3D rotation or typical 3D interaction. 

Participants were slightly happier with their performance using the 2D visualisation compared 

to the Interactive visualisation according to their perception scores, despite exerting a greater 

effort to complete the task in terms of mouse movement and mouse clicks. Overall task 

completion times were higher for 2D visualisations compared to Interactive visualisations.  

One emerging trend from these results is that 3D visualisations performance is poorer than 2D 

and Interactive visualisations. Despite this trend, some participants speak favourably of the 3D 

visualisation. In some cases the 3D visualisation is preferred to the Interactive Visualisation. 

This could be due to the visual appeal of the 3D method, it also encourages interactivity for 

the most complex experiment task type (Task 3). Ultimately, participant preference is likely to 

decide whether one visualisation type is used over another without a more comprehensive 
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comparison this experiment provides. This is reflected in Table 5.11 where the frequency that 

the 3D visualisations is spoken about positively is similar to the 2D visualisation. However, the 

frequency of negative 3D visualisation is three times higher than the frequency of positive 3D 

visualisation comments.   

It is important to remember that the specific visualisation systems used in this experiment are 

not being assessed. They are merely chosen mediums which facilitate the evaluation of the 

visualisation techniques. As mentioned in Chapter 1, Plaisant (2004) said visualisation tools 

may not be specifically designed with the needs of the user in mind. This is why it is important 

to complete this assessment, to better understand which visualisation technique is best for 

interpretation and analysis of GWR outputs. Based on the results, there are clear indications 

that the interactive visualisation performs better overall and that it presents the least number 

of problems according to participant feedback.  
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6: Results and Analysis: Experiment Two 

The Second Experiment began on the 4th November 2012 and finished on the 18th November 

2012. Experiment Two was designed and carried out following results of the research and 

output derived from Experiment One, as discussed earlier in this research thesis. Results 

indicated that a visual scalability effect may be present. Visualisations play an essential role 

in dealing with large data sets. Despite this, visual scalability analyses are almost entirely 

absent according to Eick and Karr (2002) and this result aims to contribute to this gap in 

knowledge. This visual scalability effect could be dependent on a participant’s level of 

expertise, the map scale encountered, or the order in which a set of spatial distributions are 

presented to a participant. These aspects will now be discussed.  

Following from Chapter 5, this chapter details the results of Experiment Two. The chapter is 

split into seven key sections. The first describes various divisions for the purposes of data 

analysis. Section two analyses the effect of the various spatial unit scales used in the 

visualisations in the experiment. Possible visual scalability effects are discussed here using 

correctness ratios, time to answer and eye fixations as indicators. Section three focuses on 

the categorisation of participants according to GIS expertise. Similar to section two, the 

discussion here is shaped around key indicators such as correctness ratios, spatial unit scales, 

eye fixations, time to answer and user perception of tasks. Section four explores the data in 

relation to type of visualisation first encountered in the experiment. Again for comparability 

of analyses, indicators of correctness ratios, time to answer, eye fixations and user perception 

form the framework for the discussion. Section five outlines the results of the experiment 

with two paired maps and section six a visual comparison of fixation patterns. Finally, section 

seven concludes the chapter with an overall discussion of the findings and context in relation 

to the experiment aim.   

 

6.1 Data divisions for data analysis 

Data were analysed using three different divisions of tasks for participants. The first division 

(section 6.2) was defined by task properties and was by the number of spatial units in the 

display. The other two divisions were defined by participant properties and were based on 
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either the participants’ expertise in GIS (section 6.3) or on the order of viewing in which they 

saw the tasks (section 6.4). In this section we describe these three divisions. 

Figure 6.1 shows the division of participants into two main divisions: Division 1 and Division 2. 

Division 1 and 2 are separated into two participant groups which are marked A and B. Division 

1 is separated according to the participant’s perceived level of expertise in Geographic 

Information Science (GIS), group 1A being GIS Non-Experts and group 1B being GIS Experts. 

There are a total of 11 participants in the “GIS Non-Expert” and 18 in the “GIS Expert” groups. 

Division 2 is divided according to the order in which Participants encountered ‘Clustered’ 

(Group 2A) and ‘Random’ (Group 2B) visualisations. There are 16 participants in the Clustered 

group (these saw a Clustered visualisation first) and 13 in the Random group (these saw a 

Random visualisation first).   

Figure 6.1 Participant Divisions for Experiment Two 

 

 

 

6.2 Spatial Unit Scale 

In this section we analyse the effect of the various spatial unit scales used in the visualisations 

of the experiment for all participants as one group. Possible visual scalability effects are 

discussed here using correctness ratios, time to answer and eye fixations as indicators of 

complexity in each set of spatial unit maps.  
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6.2.1 Correctness Ratios across each spatial unit scale 

Comparing results within each spatial unit type scores (i.e. between spatial units that vary in 

their size and between spatial units that do not vary in their size) highlights several aspects to 

correctness ratios (see Figure 6.2). Participant correctness scores clearly decrease from the 

10 spatial unit display to the 1250 spatial unit display, regardless if the unit scale varies or 

remains the same. Maps in which the spatial unit size varies tend to have a higher correctness 

score than maps in which the spatial unit size remains static or unchanged.   

Figure 6.2 Spatial Unit Scale: Correctness Ratios (in %)

 

6.2.2 Eye Fixations on each spatial unit scale  

Figure 6.3 shows a bar chart of the average number of fixations per spatial unit scale. The 

average number of fixations is higher for maps in which the spatial unit size varies compared 

to the maps in which the spatial unit size remains the same. This is true for each spatial unit 

scale and indicates that a greater cognitive effort is likely required to answer tasks in which 

the spatial unit size varies. The average number of fixations is greater for almost all of the 

visualisations in which the size of spatial units vary. The difference in the average number of 

fixations between displays where unit scale varies and those where it remains the same is 

smallest for the 250 spatial units and largest at the 1250 spatial unit scale. This suggests that 

more complex Clustered visualisations present a more complex challenge of pattern 

recognition. A similar finding was outlined in the literature review sections of this thesis 
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(Abbott, 1995; Hayhoe and Ballard 2005; Tufte, 2007; Swienty and Reichenbacher 2008; 

Çöltekin et al., 2009; Çöltekin et al. (2010).  

Figure 6.3 Spatial Unit Scale: Number of Fixations

 

6.2.3 Time to Answer within each Spatial Unit Scale 

For visualisations in which the spatial unit size remains the same, there is a clear increment in 

the time required by participants to achieve task completion (Figure 6.4). The mean values for 

time to task completion for varying spatial unit size maps shows there is an increase through 

each spatial unit scale.  

The average time taken to complete a task is greater on non-varying spatial unit sized maps 

for 10 and 50 unit scales. This changes once the scale reaches the 250 scale (third level of 

complexity). For the 250 and 1250 spatial unit scales, tasks were completed faster for the 

varying unit size maps. It is interesting to note that it took participants a greater amount of 

time to complete tasks on the 10 and 50 spatial unit scale maps in which the spatial unit size 

is designated as “Large”.  
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Figure 6.4 Spatial Unit Scale: Time to Answer a Task (1 second = 1.0) 

 

 

6.3 Division of Expertise 

 

6.3.1 Division of Expertise: Correctness Ratios 

Figure 6.5 shows the average correctness ratios for participants grouped according to their GIS 

expertise, grouped by the type of maps (Random vs. Clustered) and number of spatial units (10 

to 1250). Non Experts and Experts have similar average correctness values, with the exception 

of the Random 1250 Spatial Unit Map. The average Correctness ratios for Experts were slightly 

lower overall compared to Non-Experts. This finding suggests that participant level of expertise 

does not result in a difference in performance of completing a task correctly, however, a more 

complex (based on map size) or randomly distributed data may result in increased levels of 

difficulty.  
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Figure 6.5: Division of Expertise: Average Correctness Ratios (in %) 

 

We were further interested in the distribution of correctness values in order to investigate the 

spread of intra-participant differences. To do this, we created box plots for correctness values, 

per map type and size, where participants were grouped according to their expertise (figures 

6.6. and 6.7).  

Correctness ratios for Non-Experts in Figure 6.6 highlight the spread of Non-Experts’ 

correctness values. There is a general compactness to the results with correctness levels 

occupying an approximate 20% band or less for five of the eight boxplots below. The exceptions 

being Clustered and Random 50 spatial unit maps and 1250 spatial unit maps which occupy an 

approximate 40% spread of correctness. The wider boxplot for 1250 units suggests a higher 

level of difficulty, associated with larger amounts of data and increased complexity of data 

distribution. 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

10 C 10R 50C 50R 250C 250R 1250C 1250R

Non Expert Expert



 

134 

 

Figure 6.6 Division of Expertise: Correctness Ratios for Non-Experts (in %)  

 

Figure 6.7 shows the same boxplots for GIS experts. Interestingly, the spread of values here is 

much larger than for non-experts, in particular for maps of the following three types: Clustered 

50, Clustered 1250 and Random 1250. The wider spread of values could indicate the variety in 

levels of knowledge in the Expert division, compared to the Non-Expert division.  

Figure 6.7 Division of Expertise: Correctness Ratios for Experts (in %) 
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Figure 6.8 shows the Standard Deviations and Coefficient of Variation for Spatial Unit Scale 

according to division of expertise. Standard Deviations for Non Experts and Experts indicate 

there are considerable variations in participant correctness ratios. Experts have a higher level 

of consistent variation for more complex Clustered and Random maps (250 and 1250 spatial 

unit maps).  

Figure 6.8 Division of Expertise: Standard Deviation and Coefficient of Variation for 

Correctness Ratios (in %) – Left axis for Standard Deviation, Right axis for Coefficient of 

Variation 

 

 

 

6.3.2 Division of Expertise: Number of Fixations 

The second metric to assess the complexity of tasks was the number of fixations. A larger 

number of recorded eye fixations can indicate a higher cognitive load and can be considered as 

a proxy for complexity of the task. Figure 6.9 shows this effect clearly, i.e. there is an increase 

in the average number of fixations and therefore cognitive load on participants when faced 

with more complex data. 10 spatial unit maps (both Clustered and Random) and 50 spatial unit 

Clustered maps have a similar average number of fixations, which could be described as the 

first level of difficulty. The second level begins at the Random 50 spatial unit maps and the third 

is reserved for the Random 1250 spatial unit maps.  
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Figure 6.9: Number of Fixations for Non-Experts and Experts 

 

 

To investigate distributions of the fixation numbers within each participant group, we again 

created relevant boxplots (figures 6.10 and 6.11). Figure 6.10 shows the distribution of eye 

fixations for Non-Experts on every spatial unit scale. The figure has been split into two graphs 

in order to visualise the two very different scales in one figure. Again, there is an observable 

increase in the number of fixations vs. the increase in the number of spatial units and there are 

some variations in the number of fixations recorded for participants. Fixation counts are spread 

for 50 and 1250 spatial unit maps in particular, while fixation counts for 250 spatial unit maps 

are more similar between participants. There are more fixations for Random maps (except the 

50 spatial unit map) than for Clustered maps which can indicate difficulty with search patterns 

or displayed data (Çöltekin et al., 2009). 
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Figure 6.10 Division of Expertise: Boxplot of the Number of Fixations for Non-Experts 

 

 

For experts (see Figure 6.11), the spread of data is very large for the Random 1250 maps, which 

is due to a pair of individuals with substantially more or substantially less fixations on Random 

1250 maps (the two whiskers in the plot). There is an observable increase in the number of 

fixations from 10 to 1250 maps, with some Clustered maps (e.g. 50 or 250) requiring less 

fixations or less cognitive effort to complete tasks. 

 

Figure 6.11 Division of Expertise: Boxplot of the Number of Fixations for Experts 
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Figure 6.12 Division of Expertise: Standard Deviation and Coefficient of variation for 

Number of Fixations – Left axis for Standard Deviation, Right axis for Coefficient of Variation 

 

In Figure 6.12 the Random 1250 maps were removed due to the outlying nature of the values. 

The Standard deviation for Random 1250 maps were 68.58 and 82.85 for Non-Experts and 

Experts respectively, while the coefficient of variation is 0.84 and 0.79 respectively for Non-

Experts and Experts. The coefficient of variation and standard deviation values follow a similar 

trend, where values are higher for standard deviations, values for coefficient of variation are 

higher. Expert values for standard deviations and coefficient of variation are higher in general 

than Non-Experts for less complex 10 and 50 maps, except for the clustered 50 spatial unit 

maps. This greater spread on less complex maps could indicate some participants found tasks 

straightforward to complete, while others required slightly more time. Standard Deviations are 

unusually similar for Non-Experts and Experts on 250 spatial unit maps, with a slightly greater 

spread for Random 250 maps. Even with the 1250 Random maps removed, the Non-Expert 

Clustered 1250 maps have a great spread of values according to standard deviations and 

coefficient of variation. This suggests a possibility of participants finding complex data difficult 

to interact with, particularly if they are less experienced. The standard deviation and coefficient 

of variation values of Non-experts on 1250 maps are at least double the values of 10, 50 and 

250 spatial unit maps. For Experts, standard deviation and coefficient of variation values on 

Random 1250 maps are also double the values of 10, 50 and 250 spatial unit maps. 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

10C 10R 50C 50R 250C 250R 1250C

Non-Expert STD DEV Expert STD DEV

Non-Expert CoVar Expert CoVar



 

139 

 

6.3.3 Division of Expertise: Time to Answer 

The third metric to explore was the time it took each participant to find the answer to the task 

and click on respective areas on the map. Average times to answer are shown in Figure 6.13, 

broken down by participants’ expertise. There is a clear general increase in time taken to 

answer a task for both divisions of expertise from 10 to 1250 spatial units. Non-Experts did not 

perform significantly worse than Experts and outperformed Experts in some instances (e.g. 250 

and 1250 Clustered). Similar to Correctness ratios, it can be said that participant level of 

expertise does not necessarily result in better performance. Experts take more time to answer 

the task, possibly because they feel they have an ability to analyse data in more depth.  

Figure 6.13 Division of Expertise: Time to Answer a Task (1 second = 1.0) 

  

 

Figure 6.14 shows a general increase in the time required to complete a task from 10 to 1250 

spatial maps, similar to other Figures in this subsection on Time to Answer a Task. The greatest 

spread of time occurs on the 1250C map. Upon studying the boxplot on the Number of Fixations 

(Figures 6.10 and 6.11) it appears the level of difficulty for participants is similar between 

Random 250 and Clustered 1250 maps. However, in Figure 6.14 there is an observable increase 

in the spread of participant times to complete a task. 
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Figure 6.14 Division of Expertise: Box plot of Time to Answer a Task (1 second = 1.0) 

 

Figure 6.15 shows that there is a general trend towards an increase in time to completion as 

participants completed tasks from 10 spatial unit maps to 1250 spatial unit maps. The spread 

of time to complete a task falls within a tight band for several maps. The greatest spread occurs 

on the Clustered 1250 maps which indicates there could be some difficulty involved in 

completing more complex maps. This interpretation is also observable for Random 250 maps 

where the band spread is greatest. Similar to Random 250 and Clustered 1250 maps, Random 

1250 maps also recorded longer times on average compared to other map scales. 

 

Figure 6.15 Division of Expertise: Box plot of Time to Answer a Task (1 second = 1.0) 
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Figure 6.16 highlights the Coefficient of Variation (lines) and Standard Deviation (bars) levels. 

The Non-Expert Coefficient of Variation is higher for Random 10 spatial unit maps than the 

coefficient for experts. The coefficient of Variation levels are also lowest for Random 1250 maps 

for Non-Experts and one of the lowest for Experts. The spread of relative standard deviation 

predominately lies between 0.1 and 0.3. The standard deviation spread is higher overall for 250 

and 1250 maps. There are less than 2 seconds of standard deviation for 12 of the 16 standard 

deviation values indicating a close spread of values. An exception being the outlier for Clustered 

1250 maps, which matches another standard deviation outlier for Random 1250 maps in Figure 

6.13 (Number of Fixations). The higher standard deviation value for the 1250C map suggests 

there are some participant results that do not fit into the general trend. 

Figure 6.16 Division of Expertise: Standard Deviation and Coefficient of Variation for Time to 

Answer – Left axis for Standard Deviation Right axis for Coefficient of Variation 
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indicates a level of expertise will determine the type of perception participants have when 

completing tasks. The indications on the speed of task completion are that Experts feel they 

take longer, which is consistent with Average Time to Task Completion metrics already 

discussed in this section. 

Figure 6.17 Division of Expertise: Participant Task Perception (rating out of 5) 

 

 

Figure 6.18 shows the standard deviation and coefficient of variation for the survey. The 

coefficient of variation levels are similar with minor changes for each question. There is a 

greater spread in the perception of ease of completion for both divisions of expertise according 

to the Standard Deviation for Non-Experts and Experts. Expert Standard Deviations are lower 

compared to Non-Expert. This could indicate participants with less GIS experience will 

experience a greater degree of variation on the Ease of completion. There is also a greater 

spread of Standard Deviation values for Speed and Confidence levels of Non-Experts, the 

coefficient of variation is also consistently higher for Non-Experts. Again this indicates the 

potential for greater variation of perception among Non-Experts compared to Experts.  
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Figure 6.18 Division of Expertise: Participant Perception: Standard Deviation and Coefficient 

of Variation for Non-Experts and Experts 
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first, their correctness ratios were higher on Random maps (again, except for spatial unit maps 

10). The difference is minor overall, approximately 5-10%. 

Figure 6.19 Order Encountered: Average Correctness Ratios (in %) 

 

The spread of data in Figure 6.20 shows there are some outlying participants in terms 

of correctness of tasks. The results indicate that there is potential for participants to 

perform poorly when completing tasks, particularly for more complex maps where the 

two lowest average distributions can be observed (Random 250 and 1250 maps). This 

suggests there is a greater level of difficulty associated with more complex maps and 

with more complex data distributions. 
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Figure 6.20 Order Encountered Clustered 1st  Boxplot (1 = 100%) 

 

Participants who encountered Random maps first exhibit a greater distribution of 

performance levels than participants who encountered Clustered maps first according 

to Figure 6.21. Levels of correctness are shown to be lowest for the Random 250 and 

1250 maps which correlates with results in Figure 6.22. The spread of these two maps 

is greater for participants who encountered Random maps first which suggests the 

potential to perform poorly is higher for more Random (or more complex) maps, 

particularly if Random maps are shown first. 

Figure 6.21 Order Encountered Random 1st  Boxplot (1 = 100%) 
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Figure 6.22 shows a considerable variation in the Standard Deviation and Coefficient of 

Variation values compared to most other charts of a similar kind in this Chapter. The Clustered 

50 map exhibits the highest variation in participant correctness for Standard Deviation and 

Coefficient of Variation. For Random 10, 250 and 1250 maps, both statistics vary more than for 

their Clustered counterparts. This indicates a greater level of difficulty occurs for some 

participants for Random maps, values of correctness vary to a greater extent. 

Figure 6.22 Order Encountered: Average Correctness Ratios: Standard Deviation and 

Coefficient of Variation: Left axis for Standard Deviations and Right axis for Coefficient of 

Variation 
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Figure 6.23 Order Encountered: Average Number of Fixations 

 

Figure 6.24 shows the spread of fixation counts for participants who encountered Clustered 

Maps first. Overall, there is a compactness to this participant grouping for every map type, with 

the exception of Random 1250 spatial unit maps which indicates participants may have 

encountered a higher level of difficulty when completing tasks for the Random 1250 maps. 

Figure 6.24 Order Encountered: Clustered First: Number of Fixations 
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of performance with some outlying results. The spread of participant performance is far greater 

for this map which again indicates participant difficulty levels may increase when required to 

complete tasks using more complex maps. 

Figure 6.25 Order Encountered: Random First: Number of Fixations 

 

Random 1250 maps show significantly greater Standard Deviation and Coefficient of Variation 

compared to every other map (Figure 6.26). This suggests that more complex maps require a 

significantly greater cognitive effort to analyse, this is an effect of perceptual scalability which 

is exacerbated if a participant encounters a Random map first. There is still a large variation 

according to the Standard Deviations and Coefficient of Variation for other map types, 

particularly for Random maps (except Random 250). The variation for participants who 

encountered Random maps first is also greater, suggesting a difficulty in analysing Random 

maps first. 
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 Figure 6.26 Order Encountered: Number of Fixations: Standard Deviation and Coefficient of 

Variation– Left axis for Standard Deviation, Right axis for Coefficient of Variation  

 

6.4.3 Order Encountered: Time to Answer 

Figure 6.27 shows the effect encountering Random maps first has on participant performance 

in terms of average time spent on task. Times to complete a task were higher for participants 
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on Clustered maps highlight a potential learning effect throughout the experiment.  
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Figure 6.27 Order Encountered: Time to Answer (1 second = 1.0) 

 

There is a general trend towards a longer time to completion according to the distribution in 

Figure 6.28 for more complex spatial unit maps. The spread is greatest for Clustered 1250 maps 

which indicates level of complexity is detrimental to consistent participant performance. 

Figure 6.28 Order Encountered: Clustered First: Time to Answer (1 second = 1.0) 
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higher for more complex maps (the Clustered 1250 map and Random 250 and 1250 maps. 

There is an observable scalability effect, with the potential for participants to perform at a lower 

level when faced with more complex data. 

Figure 6.29 Order Encountered: Random First: Time to Answer (1 second = 1.0) 

 

Figure 6.30 shows that variation is greatest for two of the four more complex maps (250 and 

1250) for both Standard Deviation and Coefficient of Variation. This suggests there is a greater 

spread of results and therefore potentially greater difficulty associated with more complex map 

types. The variation is greatest for Random 250 maps which could indicate a difficulty 

associated with this type of data distribution. 
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Figure 6.30 Order Encountered: Time to Answer (1 second = 1.0): Standard Deviation and 

Coefficient of Variation – Left axis for Standard Deviation, Right axis for Coefficient of 

Variation 

 

6.4.4 User perception of tasks 

As the results of Figure 6.31 suggest, participants who encountered Random maps first are 

more confident in completing tasks, with an “Ease of Completion score being greater than 4.0. 

They also produced results to show they felt their speed of task completion is faster than 

participants who encountered Clustered maps first. The ease at which they completed tasks 

again demonstrates the confidence of participants that encountered Random maps first. 

Figure 6.31 Order Encountered: Participant Task Perception (rating out of 5)
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The Coefficient of Variation shows there is greater variation in participants who encountered 

Clustered maps first for Ease of Completion, than Confidence (Figure 6.32). This indicates that 

participants who encountered Clustered maps first felt they were able to complete tasks 

quickly, but were less confident in their answer. The Standard Deviations are greater for Ease 

of completion for participants who encountered Clustered maps first, with lower Standard 

Deviation values for this group’s levels of confidence in their answers. Participants who 

encountered Random maps first show less variation between Standard Deviation Values and 

Coefficient of Variation values. This indicates participants in this group were in agreement with 

performance levels on a more consistent basis. 

Figure 6.32 Order Encountered: Participant Perception: Standard Deviation and Coefficient 

of Variation: Left axis for Standard Deviations and Right axis for Coefficient of Variation 
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Contrary to previous Non-Experts versus Experts results, Paired Maps show that Experts 

perform better on average compared to Non-Experts in terms of average Correctness Ratios. 

With some, with two exceptions, Experts attained a higher overall correctness ratio than Non-

Experts (Figure 6.33). This suggests that higher levels of GIS knowledge is advantageous when 

analysing more than one visualisation simultaneously. 

Figure 6.33 Paired Maps: Expertise: Correctness Ratios for Paired Maps

 

In some instances, Experts produced less fixations for two of the four more complex map sets 

(250 and 1250 spatial unit maps), which a third showed similar fixation averages for both 

Divisions of Expertise (Figure 6.34). This indicates a higher level of expertise could result in 

requiring less cognitive effort to complete tasks. This trend is contradictory to the fixations for 

less complex maps, where Experts required more fixations to complete three of the four tasks 

(for 10 and 50 spatial unit maps). 

0

10

20

30

40

50

60

70

80

90

100

10CP 10 NCP 50CP 50NCP 250CP 250NCP 1250CP 1250 NCP

GIS Non-Experts GIS Experts



 

155 

 

Figure 6.34 Paired Maps: Expertise: Number of Fixations for Paired Maps

 

 

According to Figure 6.35, time taken to complete tasks is higher on average for Non-Experts 

compared to Experts. The simultaneous comparison of maps shows what single map analysis 
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spatial unit map, with the exception of the 10 spatial unit maps. Experts also produced a similar 

time to answer for the Clustered 50 spatial unit map. The trend is still apparent though for five 

of the eight map sets. This additional level of complexity – the comparison of maps 

simultaneously shows that level of expertise could be an advantage. 
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Figure 6.35 Paired Maps: Expertise: Time to Answer a Task (1 second = 1.0)

 

Figure 6.36 shows the correctness ratios of Paired Maps for order encountered. Participants 

were required to select one of the two maps as the correct answer. Those who encountered 

Random maps first attained a higher percentage of correctness on average compared to 

participants who encountered Clustered maps first. This indicates that participants who 

encounter the arguably more complex Random maps first are better equipped to correctly 

complete tasks where two maps are compared simultaneously, side by side. 

Figure 6.36 Paired Maps: Order Encountered: Correctness Ratios 
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According to Figure 6.37, there is no discernible pattern of fixations for those who encountered 

Clustered or Random maps first. There is a general increase from 10 spatial units to 1250 spatial 

units as observed in Figures 6.3, 6.9 and 6.19. For more complex 1250 spatial unit maps, 

participants who encountered Random maps first produced more fixations in order to complete 

the tasks, resulting in a higher cognitive load. 

Figure 6.37 Paired Maps: Order Encountered: Number of Fixations 
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Figure 6.38 Paired Maps: Order Encountered: Time to Answer a Task (1 second = 1.0) 

 

 

6.6 Visual Comparison of Fixations 

 

As an example of eye-tracking trajectory analysis, in this section we visually compare example 

scanpaths (sequences of fixations and saccades) of one participant on different map types. 

Further trajectory analysis is beyond the scope of this thesis, but similar differences in 

scanpaths as outlined for this particular individual are generally observable among all 

participants. Figures 6.39 and 6.40 show the scanpaths on Clustered and Random maps 

respectively. The areas corresponding to correct answers (i.e. where the participants were 

supposed to click if they answered the task question correctly), are marked as Areas of Interest 

(AOIs, Çöltekin et al. 2009) and shown with circles and oval shapes, overlaid on each of the 

maps. 

There is an observable search pattern of groups of fixations on Clustered maps (figure 6.40), 

while the search pattern on Random maps which is more scattered (Figure 6.41). This 

difference is a consequence of the complexity of the visual distribution of data values and 

places an additional cognitive load on participants when they are completing tasks (Çöltekin 

et al., 2009 and Çöltekin et al., 2010). 
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In this case we can also observe an effect of the size of the maps in terms of the number of 

spatial units. Less complex maps, i.e. 10 spatial unit maps, do not show a large difference in 

search patterns, while 50 spatial unit maps only show minor differences as additional clusters 

of fixations appear. The search patterns on 250 and 1250 spatial unit maps show the difference 

between the grouped fixations search and a scattered search. 

Figure 6.39 Example of the difference in fixation counts on Clustered maps  
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Figure 6.40 Example of the difference in fixation counts on Random maps
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6.7 Discussion 

As Yost et al. stated in 2007 (see Chapter 2). Visual scalability issues can be resolved by 

presenting data on a larger set of displays, but this isn’t practical and it essentially limits the 

volume of displayable data according to screen size. The results in this chapter displays some 

evidence for the change in performance of individuals who interact with spatial data at different 

levels of visual complexity. We assessed this using three standard eye-tracking analysis metrics: 

correctness, time spent on task and number of eye fixations. We performed the analysis by 

grouping the data in three different manners: spatial unit scale, levels of GIS expertise of the 

participants, and the order in which participants were shown two types of displays. The results 

indicate an influence of the visual scalability on the task performance and fills a gap in literature 

as mentioned in Chapter 2 (Eick and Karr, 2002). In this section we briefly summarise and 

discuss some of the findings. 

One finding is that a greater effort is required by individuals to complete tasks on Random maps 

compared to Clustered maps. This is indicated by the time to answer metrics, which increases 

for Clustered maps.  As the data becomes more complex, in the form of additional spatial units, 

this therefore slows down the performance. Our finding echoes the results of related studies, 

such as work by Abbot (1995), Hayhoe and Ballard (2005), Swienty and Reichenbacher (2008) 

and Çöltekin et al. (2009), which have all investigated eye movement with respect to visual 

complexity. In particular, Çöltekin et al. (2010) suggest there may be an observable increase in 

time spent on task in eye movement experiments when a difficulty in perception occurs. 

Further, we found that the level of participant expertise does not necessarily reflect what would 

normally be expected, i.e. a higher level of performance. To an extent this is shown through all 

three metrics, the correctness ratios, time to task completion and the number of fixations. 

Correctness levels are marginally in favour of the GIS Experts group which could indicate a 

higher level of performance on more complex maps (in this case, the 1250 spatial unit maps). 

A greater cognitive effort is expended by GIS Experts than GIS Non-Experts as evident by the 

greater number of fixations for each visualisation scale. 

Interestingly, the results from the post-task survey on participant perception, that is on the 

ease, speed and confidence of task completion by GIS Non-Experts and Experts for Clustered 

and Random maps do not make it possible to differentiate between groups. GIS Non-Experts 

were slightly less confident in their answers but this was not reflected in their overall 



 

162 

 

correctness levels and might indicate perception of ability to complete tasks. In fact, GIS Non-

Experts felt they completed tasks faster than GIS Experts which largely coincides with the time 

taken to complete tasks by both groups. Non-Experts were faster overall.  

In terms of the order of maps shown to the participants, the participants who encountered 

Random visualisations first recorded a greater average number of fixations compared to 

participants who encountered Clustered visualisations first. There was no observable 

consistency in the average number of fixations to suggest that participants who encountered 

the Random visualisations first would require a greater cognitive effort over the course of the 

entire experiment. The only consistency was the increase in the overall average number of 

fixations from the 10 spatial unit scale through to the 1250 spatial unit scale. Comparing with 

the survey on user perception for this section, participants who encountered Random 

visualisations first felt their tasks were easier to complete despite believing it took them longer 

to complete and they were more confident in their task responses. There is a noticeable 

difference in correctness levels however. Participants who encountered Clustered 

visualisations first recorded a higher level of correctness for every task on every scale with the 

exception of the Random 10 spatial unit scale map. I refer to my earlier discussion which eludes 

to potential familiarity with the experiment format and increased skill in completing 

experiment tasks. Also, most of the correctness scores for the order of map encounters 

(Clustered First or Random First) were lower for 250 and 1250 spatial unit scales compared to 

10 and 50 spatial unit scales. This suggests that Random visualisations are a more difficult 

introductory spatial distribution which appears to affect participant performance. Less 

discernible patterns require a greater cognitive effort.  

The Spatial Unit Scale analysis produced some insightful results. The average level of 

correctness was greater for all of the “Large” unit scale visualisations, i.e. visualisations with a 

greater map footprint (with the exception of the 1250 scale). This suggests the presence of a 

visual scalability effect with respect to the map footprint. To strengthen the case for a visual 

scalability effect, a greater average number of fixations were recorded for every visualisation 

in which the spatial unit scale varies. Although it is not entirely possible to compare the 1250 

scales because their map footprint does not differ significantly, it can be said that; a larger map 

footprint results in a greater cognitive load, which in turn yields a greater correctness score for 

tasks that may or may not take more time to complete than tasks on maps which occupy a 

smaller map footprint where the spatial unit size remains constant. The spatial unit scale of an 
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interactive visualisation would typically vary in size, depending on the extent to which a user 

elects to examine the visualisation. It would change to occupy the greatest amount of space 

where appropriate, i.e. the map footprint would be as large as is appropriate. This related to 

Experiment One where the interactive visualisation performed best where the visual scalability 

effect was first observed. 

As highlighted in Chapter 2 under the Geovisual Analytics section, more than 40% of our brain 

power is used to provide visual output (Hoffman, 2000; Ware, 2008). This explains why so much 

time is spent understanding and improving on visual representations, not least geographical 

representations as geographical data becomes more accessible and increases in volume. 

According to MacEachren (2004) “Human vision and visual cognition remain incompletely 

understood” (see Chapter 2). The combination of metrics in this experiment which include eye 

fixations and perception of participants contribute to understanding the effect of data 

complexity on visual cognition. 
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7: Discussion and Research Conclusions  

  

In this chapter, the research is summarised and contextualised within the wider field of  

research. First a summary of the thesis is provided before the research question and aims 

are addressed along with an in-depth discussion on the overall findings and implications of 

this research thesis. 

Chapter 1 introduced the research area and provided an insight into the aims and objectives 

of the research.  

The effective display of data is an important aspect of this research. As discussed earlier, the 

existing research and literature in this field do include a variety of visualisation types for 

spatial data representation. This research sought to draw upon this range of visualisation 

types to ascertain the optimal or most effective types of visualisations available, with a 

particular emphasis on the use of newly emerging and novel 3D visualisations. The assessment 

of these visual analytics is specifically focused on the spatial statistical method of 

geographically weighted regression (GWR). 

Furthermore, the human element is equally important to understand. The human ability to 

process information has to be taken into account to truly understand the outputs and to 

produce the most effective outputs. There is little need for an advanced geovisualisation 

technique that displays highly complex data if human cognitive limits prevent the visualisation 

from being used effectively.  This research aimed to provide deeper insight into the human 

interactions with such geovisualisations so that future research can be guided on most 

effective types of data display techniques. 

To reiterate from Chapter 1, based on current knowledge, the over-arching aim of this 

research thesis was to assess and evaluate a range of data visualisation techniques to 

ascertain the optimal way of geographical data presentation with a particular emphasis on 

GWR and perceptual scalability. To attempt to answer this aim, two empirical experiments 

were constructed and carried out, each with a specific set of objectives designed to contribute 

to deeper understanding of the overall thesis aim and research question. Experiment One 

asked what visualisation type is best for interpretation and analysis of GWR results, focusing 

on three particular types (2D, 3D and interactive). Experiment Two explored at what point 
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does visual scalability result in a change in human performance? Below a discussion of the key 

research findings from these experiments are offered.  

Chapter 2 explored the relevant literature in the field. This research was interdisciplinary in 

nature, with aspects of geography, computer science and psychology. Given its inherently 

encompassing nature, geography as a discipline has a tendency to relate to almost every other 

discipline and GWR is incorporated into a lot of research (not exclusively geographical) that 

has a related spatial element. GWR uses geographical weighting to run the spatial statistical 

model (Fotheringham et al., 2002). Visualisation techniques to effectively display data and the 

interaction with these visualisations are embedded within computer science. These 

techniques are developed to include geographical aspects to produce a geovisualisation. 

Methods such as GWR adopts a geographically local approach to model spatial non-

stationarity and Crespo’s work outlines spatial non-stationarity or spatial heterogeneity as a 

way to understand the concept of spatially varying relationships (2009).  

Chapter 3 and 4 outlined the methods employed to design, implement and analyse the two 

key experiments. Each experiment was researched and designed in line with best practice in 

the field. Each experiment was innovative and attempted to explore and answer a unique set 

of questions to better understand the field of geovisualisation, particularly that of GWR data. 

Chapters 5 and 6 presented the key findings of the research and explored their significance 

and contribution to the field. Specific research aims and objectives are addressed in each of 

these chapters. 

 

7.1 Discussion of Key Research Findings  

To attempt to answer the research question, first a discussion on the key experiment findings 

is required to contextualise the overall conclusions before the findings and implications can 

be positioned in the wider literature in this field of research. 

The main research question within this thesis was to evaluate visualisations of Geographically 

Weighted Regression and assess 2D visualisations for perceptual scalability. There are two 

core aims for the experiment, each with several objectives. These are now discussed. 
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Aim 1: To assess the effectiveness of three visualisation types for analysis and interpretation 

of GWR outputs. 

 

The motivation of Aim 1 was to assess which visualisation technique works best for 

interpretation and analysis of GWR output. This aim was explored and evaluated in the first 

experiment. Three different visualisation types (2D, 3D, Interactive) were utilised as 

benchmarks for visualisations in general. 

 

 Objective 1a: To assess the effectiveness of 2D visualisations for display and 

interpretation of GWR outputs. 

 

The 2D visualisation is regarded as the most commonly used visualisation type for GWR 

outputs according to research carried out in Chapter 2. Specifically, thematic maps are a 

popular example of these 2D visualisations. Choropleth or thematic maps are primarily used 

in three ways; for pattern comparison, to provide general information about spatial patterns 

or to provide specific information about particular locations. These thematic maps can be 

created through digital means. Statisticians generally agree that visualisations are capable of 

providing insight into datasets (Edsall, 2003). Thematic maps have become key components 

in spatial data exploration and research showing the value of geovisualisations has been 

carried out (Hurley and Buja, 1990; Wegman, 1990 and Tukey, 1977). 

Despite popular use of thematic map 2D visualisation with GWR outputs, their effectiveness 

for interpretation and analysis is not fully understood. Given their popularity of use with GWR 

outputs (see Table 1.3 in Chapter 1), Objective 1a seeks to provide insight into the effectives 

of these 2D visualisations and uses metrics such as correctness ratios, mouse clicks and eye 

fixations to interpret and draw conclusions. Having assessed the results of Experiment One, 

we can say that 2D visualisations are effective for interpretation and analysis on a basic level. 

2D visualisations are less appropriate for multivariate GWR exploration and these are 

significant differences since GWR analysis is likely to be complex.  

Expanding on what a “more basic level” refers to, 2D maps are effective completion of non-

complex tasks like univariate tasks (tasks which involve one parameter estimate which is 

displayed on a thematic map visualisation). 2D visualisations are also relative effective for bi-

variate tasks, where two different thematic map visualisations are compared. GWR outputs 
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are complex and geovisualisations are key to deriving meaning from complex data (DiBiase, 

1990; MacEachren et al., 1992; and MacEachren and Kraak, 1997). A significant question 

therefore is, are 2D visualisations effectivness for complex analysis of GWR outputs, i.e. 

multivariate analysis in the form of task three in Experiment One, containing three different 

parameter estimates. The multivariate display which is discussed below (the interactive 

visualisation) outperformed 2D visualisations on correctness ratios which suggests more 

modern interactive visualisation techniques such as this could be more effective for 

interpretation and analysis of GWR results. The difference in correctness levels between 2D 

visualisations and interactive visualisations is more than 15%. Assessed on their own, with 

comparison, it can be argued that 2D visualisations could perform adequately, particularly for 

more basic analysis, but not for more complex analysis.  

A significantly higher number of mouse clicks are required for more complex task completion 

with 2D visualisations, indicating they are not perfect for use in these instances. For simpler 

tasks, this visualisation type one again appears adequate. The higher number of mouse clicks 

are an indication of an increased cognitive effort on the part of the user to complete more 

complex tasks. For example, navigation between five different 2D maps is not ideal. 

As mentioned, thematic maps are used to emphasise the spatial pattern of one or more 

geographic attributes (Slocum et al., 2009). This is why choropleth maps are often used to 

display GWR outputs. Based on findings in Experiment One, there is no reason to discourage 

the use of 2D visualisations for less complex tasks. The inclusion of 2D visualisations in 

interactive visualisation systems is to be encouraged. As Plaisant (2004) describes, no one 

(visualisation) tool is specifically designed to cater for the needs of a user. 2D visualisations 

can be useful for GWR output interpretation and analysis to a certain extent.  

This analysis is designed to provide initial guidance to GWR outputs users and to demonstrate 

2D visualisation effective for interpretation and analysis of GWR results. A more 

comprehensive method of the popularity of GWR output analysis would be through direct 

communication with GWR output users. A database containing analysis methods utilised by 

GWR outputs users would offer further insight into GWR output visualisation methods. 

 

 Objective 1b: To assess the effectiveness of 3D visualisations for analysis and 

interpretation of GWR outputs. 
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3D visualisations are a more recent method of displaying data compared to 2D visualisations. 

This is an emerging technology within geographic applications (Pullar and Tidey, 2001) 

commonly displayed in the popular geographic software tool ArcGIS Suite. They are arguably 

more effective for displaying at least two different sets of data values. As such, it is important 

to compare the effectiveness of 3D visualisations to other common mediums of display for 

2D and Interactive visualisations – of which the latter is discussed later in this chapter. 

 

According to Slocum et al. (2009), 3D visualisations are particularly useful in the display of 

certain kinds of data, e.g.: petroleum exploration, gas exploration or modern medicine. 

However, they have one major drawback, they suffer from occlusion (Slocum et al., 2009; 

Tsigas, 2007). Assessing the degree to which this is true for GWR data is therefore important 

because it will affect the overall effectiveness of this visualisation type for interpretation and 

analysis of GWR outputs. The additional viewing angles presented in 3D visualisations 

compared to 2D visualisations (Kok and Liere, 2007) do not necessarily result in an augmented 

ability of users to analyse information (Cline, 2000). Again, using the same metrics, this was 

explored further. 

 

3D visualisations were unable to record the highest correctness percentage scores for any 

task in Part A or Part B of Experiment One. The exception being the Task 2 in Part two (Group 

2). That is five out of six tasks. A scalability effect was also observed for 3D surfaces between 

Part A and Part B, with correctness ratios being lower for Part B than Part A. Furthermore, 3D 

visualisations recorded some of the lowest correctness ratios across all expertise groups for 

Task 3. This is partly due to a 3D rotation feature incorporated into the ArcGIS 3D visualisation 

system which is necessary to use when completing the multivariate task (Task 3). 

 

As Zudilova-Seinstra et al. (2010) state, it’s difficult to assess 3D visualisation performance 

compared to 2D visualisations because of the variety of devices, interactions, techniques and 

participant expertise. This is true to a certain extent based on the results of Experiment One, 

but there are indications which show that there is no advantage to using simple 3D 

visualisations for simple or complex GWR tasks than compared to 2D visualisations. Tasks 1 

and 2 for 3D visualisations could be completed using the same methods applied to Task 1 and 

2 for 2D visualisations.  
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Having knowledge of 3D visualisation techniques didn’t seem to help the problem 

encountered with occlusion, exacerbated by the 3D rotation feature. Essentially, the rotation 

feature and occlusion issue is linked because the 3D rotation feature was used by participants 

to manoeuver the visualisation into a desired position for greater perspective to interpret and 

analyse the visualisation and data. In summary, 3D surfaces with rotation seem less suitable 

for a majority of GWR tasks. As Slocum et al. (2009) and Tsigas (2007) suggest, 3D 

visualisations are hampered for the problem of occlusion and Experiment One results indicate 

this issue is also prevalent for GWR results. As previously mentioned, advanced research using 

cutting edge 3D visualisation techniques has been carried out. 3D examples include cutting 

edge work on space-time cubes (Demsar and Virrantaus, 2011; McArdle and Demsar, 2011) 

to analyse aspects of data including trajectories and densities.  Perhaps it is in this domain 

that 3D visualisations are in a better position, where interpretation and analysis of data 

containing a temporal aspect is required. 

 

 Objective 1c: To assess the effectiveness of interactive visualisations for analysis and 

interpretation of GWR outputs. 

 

We already know the majority of brain activity is related to the processing and analysing of 

visual images. Visualisations allow us to explore our innate potential to process visual 

representations in knowledge intense tasks (Bukhard and Meier, 2005). The emergence of 

interactive visualisations render traditional map studies unnecessary (MacEachren, 1995). 

Geographic visualisation techniques are linked with increasingly interactive dynamic tools 

(Ogao and Kraak, 2002) and it is possible to display geovisualisations within these interactive 

dynamic systems. These interactive visual representations are designed to encourage intuitive 

and creative data exploration and in identifying difficult to find patterns (Edsall, 2003). 

Interactive visualisation methods could be useful for interpretation and analysis of GWR 

outputs, since interactive visualisation methods are becoming a popular medium of data 

display, it was important to include them as part of the evaluation in Experiment One.  

 

Evaluating interactive visualisations it is evident that participants performed better on Part B 

than Part A. It is apparent that the interactive visualisation performed best overall for Part B, 
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the more complex of the two datasets used. This indicates interactive visualisations could be 

better suited to interpretation and analysis of more complex data. It is less limited. For simpler 

tasks, such as the bivariate task, it was as quick if not quicker to complete using interactive 

visualisations compared to traditional 2D visualisations, despite 2D visualisations performing 

well for less complex tasks. Group 4 contained participant with knowledge of all visualisation 

types, these participants completed Part B tasks using the interactive visualisation faster than 

other groups. This suggests a knowledge of visualisation types or systems will lead to faster 

analysis and interpretation, while maintaining similar levels of correctness. Participants with 

knowledge of ArcMap only completed tasks faster using the interactive visualisation system, 

compared to 2D and 3D visualisation tasks. This highlights the potential usefulness of 

interactive visualisations for users with no prior knowledge. 

 

Mouse click counts were considerably lower for the interactive visualisation system, 

particularly for multivariate tasks. Interactive visualisations demonstrate a reduction in effort 

required by users to complete tasks, suggesting it could be an efficient visualisation technique 

for analysis of GWR results. It is difficult to determine if there is a scalability effect present 

using interactive visualisation when analysing the performance of this visualisation technique 

for Part A and Part B. For instance, Task 1 correctness ratios are lower in Part B, while 

multivariate correctness ratios are higher in Part B. Again this indicates interactive 

visualisation techniques could be best suited to complex GWR output interpretation and 

analysis.  

 

Interactive visualisation results indicate the potency of this particular visualisation type. 

Overall, participant performing with this visualisation type is at least on par with 2D and 3D 

visualisations for the completion of simple tasks. For multivariate tasks, the interactive 

visualisation is either on par or outperforms 2D and 3D visualisations. There are instances 

where interactive visualisation task completion times were faster and required less effort to 

complete. User perception feedback also highlights a greater number of positive thoughts or 

comments related to interactive visualisations than 2D or 3D visualisations. 

 

 Objective 1d: To decide upon the most effective of all three visualisations for 

interpretation and analysis for GWR outputs, offering guidance for producers of GWR 

outputs. 
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Collating content from Objective 1a, 1b and 1c, we can surmise the performance of each 

visualisation type to draw conclusions on Aim 1. The metrics used to evaluate the 

effectiveness of the visualisations in Chapter 5 (Results of Experiment One) provide evidence 

of the interactive visualisation’s superior performance. Interactive visualisations are less used 

and perform best overall, despite the apparent lack of researcher familiarity. 2D visualisation 

performance levels are largely on par with interactive visualisations for simpler tasks and 3D 

visualisations are also on par to an extent with 2D visualisations for simpler tasks. This means 

the defining task is the multivariate task. The 2D visualisation became more cumbersome 

when participants were required to complete Task 3. It is clear that 3D visualisation 

performance was poorest for Task 3, while the interactive visualisation performance was 

higher for Task 3. If users can overcome the lack of familiarity with interactive visualisation 

then this would be the display method of choice, for smaller or larger datasets, since 

performance levels for Part A and Part B on the interactive visualisation were not significantly 

different. Furthermore, the Knowledge group containing participants with knowledge of 

ArcMap only – participants who have no prior knowledge of interactive visualisations – were 

faster to complete tasks using the interactive visualisation system. Again, this suggests that a 

lack of familiarity does not necessarily equate to reduced performance when interpreting and 

analysing complex geographic data. Figure 7.1 provides a simple visual breakdown of 

suggested visualisation use based on the results of Experiment One. 

 

To summarise findings from Aim 1, overall correctness levels are lower for the 2D and 3D 

visualisation types in part B than in Part A which indicates participants had a more difficult 

time in correctly completing tasks. The interactive visualisation type actually shows an 

increase in correctness levels which could be attributed to an increased familiarity with the 

interactive visualisation system, resulting in higher levels of performance. It was hypothesised 

that there would be a scalability effect, whereby participant performance would change when 

faced with a larger dataset. The change in dataset size had a negative effect on performance 

levels for all of the visualisation types, although it is less noticeable for the interactive 

visualisation system. Speed of completion does not necessarily indicate the presence of a 

scalability effect because the time to task completion is so varied but the number of mouse 

clicks and level of mouse movement do indicate the presence of a scalability effect, 

particularly the level of mouse movement which is higher for the majority of Part B tasks 

compared to Part A tasks. Post task survey scores do not indicate an increased level of 
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difficulty or any positive or negative change in terms of scalability but this could be offset 

somewhat due to increased levels of familiarity with the visualisation systems. Returning to a 

description of the 3D visualisation during interviews, the discussions with participant indicate 

that Part B multivariate task was toughest to complete, particularly using the 3D visualisation 

type.  

To conclude the discussion on Aim 1, the range of metrics used to evaluate the three 

visualisation techniques were beneficial in assessing the effectiveness of each in terms of the 

ease of use, interpretation and analysis. The relatively unused technique of interactive 

visualisations within GWR research has positive indicators of its effectiveness and therefore, 

this research suggests further use of this technique in emerging studies to ensure users are 

presented with the optimal geovisualisation for the spatial data concerned. Stemming from 

Aim 1, a need to study potential impacts of scalability of data became apparent and this 

formed the basis for Aim 2 and therefore Experiment Two. 

 

Aim 2: To assess the impact of data scale on user interpretation of 2D visualisations, thereby 

investigating the hypothesised presence of perceptual scalability.  

The motivation of Aim 2 was to investigate the presence (if any) of a perceptual scalability 

effect with visualisation of spatial data. This aim was addressed through the research, design 

and user testing of Experiment Two. The performance of participants completing tasks in 

Experiment Two was measured using standard evaluation metrics in addition to eye 

movement monitoring, a novel approach to assess user interaction with the subject. It is 

useful to briefly reiterate the definition of Random and Clustered at this point. Clustered 

refers to a higher level of spatial autocorrelation in a map as opposed to a spatial pattern that 

has occurred by chance. The term Random relates to spatial patterns which have occurred 

more by chance than as a result of a quantifiable statistical spatial distribution. 

In general, there is a noticeable difference in performance between Clustered and Random 

map distributions. This is prevalent on more complex data scales (e.g. 250 and 1250 spatial 

unit scales). Results in Experiment Two suggests an increased cognitive load is required by 

participants to complete tasks on more complex maps. Evidence of this is observable in 

Figures 6.3, 6.10 and 6.19 of Chapter 6. 
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The pattern of eye fixations is also affected by the spatial distribution of data. Random maps 

generally required a higher number of fixations compared to Clustered maps, thus requiring 

a greater cognitive effort.  

 Objective 2a: To assess the impact of visualisation scale and spatial unit scale on user 

interpretation of 2D visualisations, utilising standard metrics to examine potential effects 

of perceptual scalability. 

 

Research shows data complexity requires management of a display resolution or screen size. 

Yost (2006) carried out research on the size of a screen displaying visualisations and how they 

are scaled. This research offers further insight into the effect of visualisations in terms of scale 

and size. Experiment Two built on Yost’s work. The screen size remained the same however 

with the focus being on the change in performance of participants when presented with 

different data value (or spatial unit) scales – among other aspects discussed in objective 2b.  

 

Correctness score for participants decrease from 10 spatial unit maps to 1250 spatial unit 

maps, regardless of whether the spatial unit scale varies or not. These correctness results do 

indicate the presence of a scalability effect, a concept which was of particular interest in this 

research thesis.  Though correctness levels decrease from 10 to 1250 spatial unit maps, 

correctness scores are higher in general for maps in which the spatial unit scale remains the 

same (see Figure 6.4). Time taken to complete tasks on these map types increases with each 

spatial unit scale. Participants were slower to complete tasks on maps where the spatial unit 

size remained the same. By utilising available space for the map footprint, participant 

performance will be less affected by the change in the number of spatial units being displayed 

on screen. Significantly, this objective suggests perceptual scalability does exist and is a factor 

in geovisualisation (of 2D GWR data in this case). 

 

 Objective 2b: To evaluate the impact of expertise levels on interpretation of 2D 

visualisations using standard metrics, examining potential effects on perceptual 

scalability. 

 

Assessing the changes in cognitive load can be difficult to understand, “Human vision and visual 

cognition remain incompletely understood” (MacEachern, 2004: 23). Objective 2b provides 
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evidence of a scalability effect for 2D visualisations and the extent to which cognitive load of 

users with different levels of knowledge changes, contributing to our understanding cognition. 

Firstly, it is important to note that knowledge of GIS did not result in an overall processing 

advantage. Here, cognitive load is measured by the change in metrics recorded during 

Experiment Two. Increases in data scale did result in a change in the cognitive load of 

participants, this is most noticeable on the largest data scale of 1250 spatial units. However, 

average correctness values were similar between Experts and Non-Experts which indicates 

there may be no significant advantage to having more or less knowledge of 2D visualisations 

or varying dataset scales. 

 

In a number of cases the 250 spatial unit maps demonstrated an increased cognitive load. The 

differences in performance by participants according to their level of GIS expertise are not 

consistently in favour of less or more experience. In some instances, GIS Experts are capable 

of completing more tasks correctly, but they take longer to complete these same tasks. In other 

instances, GIS Non-Experts record a higher correctness level and complete tasks faster than 

GIS Experts. This is not what would normally be expected as experts typically use their greater 

level of knowledge to work more efficiently and produce more accurate results. Non-Experts 

were less confident in their answers, presumably because they believed their comparative lack 

of expertise would yield poor performance. Interestingly, Experts believed they took longer to 

complete tasks on average, conversely to Non-Experts, perhaps Experts felt a need to study 

each visualisation in more detail before providing an answer – which could also indicate why 

they felt more confident in their task completion performance. 

 

 Objective 2c: To evaluate the impact of the order in which data distributions are 

encountered on interpretation of 2D visualisations through standard metric 

measurement, examining potential effects of perceptual scalability. 

 

Robinson and Griffin (2015) introduced a rotation feature into their visualisation to avoid a 

learning effect; participants would not be presented with the same kind of map visualisation 

to the extent a learning effect would occur. This is similar to the idea adopted for this 

experiment. A control was introduced to Experiment Two to assess the impact of presenting 

different participants with Clustered or Random distribution maps first. As briefly mentioned 

in the outline of this section, encountering Random maps had a generally negative effect on 
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performance levels and resulted in a greater cognitive load as tasks took longer to complete. 

However, according to participant perception the effect of encountering Random maps first 

was negligible. Opinions on the ease of task completion, speed of task completion and 

confidence in their answer were higher for those who encountered Random maps first.  

 

 Objective 2d: To analyse eye movement data to ascertain if there is evidence of 

perceptual scalability, with  a particular emphasis on: 

i. Spatial unit scale of 2D visualisations, investigating if there is a change in a 

user’s cognitive load. 

ii. The expertise levels on interpretation of 2D visualisations. 

iii. The variation of data distribution on a 2D visualisation, determining if any 

change in a user’s cognitive load occurs according to variations and in doing 

so, gaining insight into the potential effects of perceptual scalability.  

 

Eye movement science is an emerging area across disciplines such as psychology, business, 

education and geography, providing valuable insight into psychological and cognitive function 

into a number of real world tasks Goldberg et al. (2002). This particular strand of the research 

is novel in the field of geovisual analytics and findings made are insightful and beneficial to 

better understanding the data and results of the experiment. The invaluable contribution of 

eye movement recordings is because the number of fixations for each spatial unit scale clearly 

indicate the presence of a scalability effect – a concept of interest throughout this thesis. They 

also highlight the extent to which perceptual scalability is an anomaly proportionately related 

to the level of data complexity. The number of eye fixations increase when progressing from 

10 spatial units to 50 spatial units, the same occurs when progressing from 50 spatial units to 

250 spatial units. Once again, when moving from 250 spatial units to 1250 spatial units the 

number of eye fixations increases. This indicates an increased cognitive load on the individual 

(see Figures 6.3, 6.10 and 6.19 of Chapter 6).  

i. 

 

There is evidence to show the presence of a scalability effect when the spatial unit scale 

varies, compared to when spatial unit scale remains the same. A greater cognitive effort is 

required to complete tasks on maps where the spatial unit scale varies. As highlighted in 
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Chapter 6, the difference in the average number of fixations for displays in which the spatial 

unit scale varies and displays in which it remains the same is greatest for 1250 spatial unit 

maps. This suggests the effort required to recognise patterns is higher on more complex 

maps. This finding coincides with existing literature, where more complex challenges of 

pattern recognition are presented by more complex clustered visualisations (Abbott, 1995; 

Hayhoe and Ballard 2005; Tufte, 2007; Swienty and Reichenbacher 2008; Çöltekin et al., 2009; 

Çöltekin et al.,2010). It’s possible that findings on cognitive effort required to complete tasks 

on more complex Clustered data distribution visualisations are transferrable to Random maps 

as described in this thesis and presented through 2D visualisations. 

 

ii. 

 

Eye movement metrics are useful as proven by Çöltekin et al. (2009). By assessing the number 

of fixations for different level of expertise we can assess how the users’ cognitive load is 

affected by changes in data complexity. Greater numbers of eye fixations may indicate a 

higher cognitive load and can be considered as a representation for task complexity.  The 

number of fixations for Non-Expert and Experts show no significant difference which suggests 

higher levels of knowledge result in a better performance or decreased cognitive load when 

completing tasks. Figure 6.10 highlights the degree to which spatial unit scale affects user 

cognitive load for both expertise levels and there is a clear change in participant cognitive 

behaviour between the 10 spatial unit scale and the 1250 spatial unit scale. As the dataset 

becomes more complex, the effort required by either expertise group to complete a task 

increases. For five of the eight maps presented, Experts demonstrated a higher increase in 

the number of fixations required to complete a task. This increased level of effort relates to 

the time taken by Experts to complete tasks, as discussed earlier in this section. It’s also worth 

noting that the higher number of fixations for Experts did not equate to a higher average of 

correctness. 

 

iii. 

 

There is an increase in the average number of fixations and therefore cognitive load on 

participants when faced with more complex data. 10 spatial unit maps (both Clustered and 
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Random) and 50 spatial unit Clustered maps have a similar average number of fixations, which 

could be described as the first level of difficulty. The second level begins at the Random 50 

spatial unit maps and the third is reserved for the Random 1250 spatial unit maps.  

Again, there is an observable increase in the number of fixations vs. the increase in the 

number of spatial units and there are some variations in the number of fixations recorded for 

participants. Fixation counts are spread for 50 and 1250 spatial unit maps in particular, while 

fixation counts for 250 spatial unit maps are more similar between participants. There are 

more fixations for Random maps (except the 50 spatial unit map) than for Clustered maps 

which can indicate difficulty with search patterns or displayed data (Çöltekin et al., 2009). 

 

Overall, the conclusions drawn from Aim 2 indicate that data scale does play a role in 

interpretation of 2D visualisations. The metrics used to evaluate the experiment data indicate 

a level of perceptual scalability does exist and this is an important factor to note for producers 

of visual representations of data. This is especially pertinent for geographers and those using 

geographical or spatial data.  

 

7.2 Guidelines for geovisualisation of GWR output  

Geovisual analytics, a field within the discipline of visual analytics, concerns itself with spatial 

data in particular (Andrienko et al., 2007). From this research thesis, it is now possible to 

create a summarised guide (of the GWR experiment results coupled with the visual scalability 

element) for use as a best practise guide for analysis of GWR outputs, or other forms of 

regression analysis, and appropriate levels for the display of data. This suggested guide is 

presented in Figure 7.1. The guide is based on a combination of the performance of the 

visualisations for all tasks, and participant perception and post-experiment comments.  

Contributing to the field of geovisual analytics, a basic visualisation guide for GWR outputs 

has been created to serve as an aid to future researchers in this area. The visualisations were 

categorised using a simple traffic light system to indicate their effectiveness for interpretation 

and analysis of GWR out puts.  
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Figure 7.1 Basic Visualisation Guide 

Visualisation 

Type  

Univariate 

Tasks  

Bivariate 

Tasks  

Multivariate 

Tasks  
  

  

  

  

Key  

   

2D              Highly Suitable  

Adequate  

Inefficient  

3D              

Interactive              

  

In Figure 7.1 the visualisation types are set out as follows; 2D visualisations were represented 

in Experiment One through ArcMap, the most commonly used tool in ESRIs ArcGIS suite. 3D 

visualisations were represented in Experiment One by ArcScene, a popular element of ESRI’s 

ArcGIS suite. Interactive visualisations were represented by ProVis, which was created using 

the Processing scripting language.  

For a more specific guide, Figure 7.2 offers an indication of the overall effectiveness of the 

visualisations with respect to metrics in Experiment One.  
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Figure 7.2 Visualisation Effectiveness based on Experiment One Metrics. T1 = Task 1, 

T2 = Task 2 and T3 = Task 3 

  
2D 3D Interactive 

T1 T2 T3 T1 T2 T3 T1  T2 T3 

Correctness                   

Speed of 
Completion 

                  

Mouse 
Movement and 
Click 

                  

Perception of 
Ease 

                 

Perception of 
Speed 

                  

Perception of 
Confidence 

                  

Interview 
Feedback 

                  

 

According to Figure 7.2. The interactive visualisation method is the strongest overall 

performer. This figure is in line with the results from Experiment One. For more basic tasks, 

any of the visualisation types are suitable. However, when the most complex tasks (the 

multivariate tasks) are completed, the interactive visualisation is the strongest. Most GWR 

analysis will be multivariate in nature so this is why the interactive visualisation should be 

given preference. The 3D visualisation in this experiment performed worst and is therefore 

not recommended for standard GWR analysis unless the purpose is to perform basic analysis 

or to demonstrate some basic GWR outputs in a visually appealing way.   

Part of the issue of using 3D visualisation is the difficulty associated with showing GWR 

outputs in publications. Although there is an increasing number of digitally based publications 

which offer interactive attachments as a feature of published work, it is not yet widely 

available. Published visualisations are often displayed in free frame captures or screenshots. 

Interactive visualisations also suffer from this issue to a degree, but it is possible to display a 
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selected set of values in a dataset for publication purposes using visualisations (including 

interactive visualisations).  

Participant perception as outlined in Figure 7.2 indicates that the more commonly used 2D 

visualisation type is sufficient for a large part of their GWR analysis. In fact, there are 

suggestions that the interactive visualisation is less preferred to the 2D visualisation for 

analysis. This can be attributed to a lack of familiarity with the interactive visualisation. It is 

recommended that interactive visualisations are assigned a greater level of importance by 

GWR users as they can be extremely effective in elucidating insights to the data concerned 

(Keim et al, 2004).  

The pattern of fixations is also affected by the spatial distribution of data. “Random” maps 

generally required a higher number of fixations compared to “Clustered” maps, thus requiring 

a greater cognitive effort.  

Andrienko et al. (2007) highlight the importance of decision support for producers of spatial 

data such as the GWR explored in this thesis. The above suggested guide for users of GWR 

methods can therefore act as a decision support tool to maximise conveyance of geo-spatial 

information. 

 

7.3 Further Discussion  

  

This research thesis has contributed significantly to better understanding the range of 

visualisations available for GWR data along with considering the effects of perceptual 

scalability. This has been achieved through the design, implementation and analysis of two 

key experiments involving real-life users. Kang et al. (2011) highlights the importance of 

measuring visualisations for their capacity or ability to ‘make sense’ to end users but also 

acknowledges the difficulty of this task. The research results, as discussed earlier, do act as a 

guide for researchers on geovisualisation choices along with providing validation for the 

usability of these visualisations in expert and non-expert audiences.  

The literature suggests new insights can be gained from the use of interactive 

geovisualisations (Keim et al., 2004) and also suggests human perception affects the likelihood 
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of an uptake in the use of interactive systems. In other words, if a researcher is comfortable 

in the methods they use to analysis complex data or they are reluctant to gain knowledge on 

the operation of an interactive system then, it is unlikely interactive systems will become the 

most popular method for analysis. Obviously, this is not to say that they are not being used at 

all.  

As the acquisition of complex data increases, the methods used to display data become more 

important. Provide too little information and one cannot derive useful meaning. Provide too 

much, and one can suffer from information overload. Keim et al (2010) suggests visual 

analytics can provide effective understanding, reasoning and decision making on the basis of 

very large and complex data sets. The range of data scales tested in this research is broad and 

the indications for optimal data scales are considered in Experiment Two.  

Yost (2006) carried out research into the perceptual scalability of visualisations. In her 

research she focused on the size of screen a visualisation was scaled upon. Through 

Experiment Two, there is an observable scalability effect. This is based on the change in 

participant performance according to the number of data values a human can effectively 

perceive. As stated in Chapter 1, a human being is capable of processing vast amounts of data 

but at some point the perceptual load will exceed the cognitive processing ability. At this 

point, the ability to comprehend data is adversely affected.  

The second question on visual scalability attempts to clarify the extent to which a human being 

experiences a change in performance or behaviour when faced with different levels of data 

complexity. When data is randomly distributed participants find it more difficult to discern 

clusters or patterns. An obvious reason for this is the lack of patterns or groups of spatial units. 

Using smaller sized datasets this does not appear to be a problem, however when participants 

were presented with a more realistic dataset size it became clear that behaviours change. 

Visualisations that presented what appears to be more spatially auto-correlated data were 

straightforward. The change in performance from small to large dataset sizes were to be 

expected, participants required more time to analyse more complex datasets but their search 

behaviours largely remained the same. The search patterns of eye movements are a telling 

sign of the degree of confusion (see Figures 6.4 and 6.5 for a comparison of Clustered and 

Random spatial distribution search patterns). The degree of confusion could be described as 

the extent to which a participant struggles to answer an assigned task. For example, an erratic 
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search pattern suggests a greater degree of confusion compared to a uniform like search 

pattern.  

Intelligent design of interactive visualisations would be beneficial (Eick and Karr 2002). Would 

it be difficult to suggest that the visual scalability results can be applied beyond set 

visualisation display systems? Yost (2006) focused on size of the screen and resolution data is 

displayed for example. Google Maps and other frequently used real world mapping systems 

all incorporate responsive data display algorithms, Kelly and Fotheringham (2011) for 

example, demonstrate the use of modern online mapping systems. The volume of information 

presented to the user on these maps changes according to the viewing level, i.e. it depends 

on how far you have zoomed in on the map. The number of displayed attributes displayed at 

each level of detail need to be carefully considered to avoid information overload. Would it 

be difficult to suggest that the visual scalability results can be applied beyond set visualisation 

display systems?  

There is a need to better inform researchers of the potential of interactive visualisations. If 

people are properly trained to use these systems then more efficient and insightful analysis 

can occur. It would not be unreasonable to create a set of classes to educate researchers 

through the suggested guide above. Large bodies of researchers including government based 

services utilise GIS based systems for the analysis of complex data so there is a place for this. 

As MacEachren (2004) states, “Cartography is about representation”. Visualisation 

functionality is an important factor in the design of visualisations, not least interactive 

visualisations. Developing intuitive and highly usable visualisation systems to display complex 

data is paramount. 

Individually, not all measurements taken in the second experiment reveal evidence of a 

scalability effect. There are mixed perceptions of knowledge groups on their performance for 

each visualisation set. Participants identified the correct cluster in most of the visualisations 

too. However, there is a remarkable increase in required cognitive load to complete a task by 

participants for higher scales, Figures 6.3, 6.10 and 6.19 provide evidence of this. In fact, there 

is a noticeable change between each spatial unit scale. Participants studied more complex 

visualisations for longer, and took more time to answer tasks. The correctness levels are still 

quite high for the most complex visualisation type, so higher cognitive function does not 

necessarily equate to a drop in the potential to correctly identify patterns within data, at least 

for Clustered data.   
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Overall, this thesis was concerned with assessing and evaluating a range of data visualisation 

techniques to ascertain the optimal way of geographical data presentation with a particular 

emphasis on the spatial statistical method of GWR and the potential effect of perceptual 

scalability. Through two in-depth user experiments, it was concluded that whilst 2D, 3D and 

interactive visualisations all have merits for representing GWR data, the benefits of interactive 

techniques appears most effective for user interpretation and data analysis. This is a 

significant finding as effective data representation is a critical element to visual 

representation of data. As alluded to in Chapter 1, “a picture paints a thousand words” so it 

is vital for producers of visual data to be aware of optimal types of visualisations. Furthermore, 

this thesis has uncovered the presence of perceptual scalability when it comes to data scale 

and related user experiences. Human cognitive load is an important consideration for all 

producers of visualisations to again ensure the key information can be translated to the user 

through the visualisation. Through these two aims and their related objectives, one can 

overall conclude a degree of perceptual scalability does exist and that interactive 

visualisations may be the most effective way of visualising spatial data, such as GWR output 

as was used here. These are significant factors to be aware of for all producers of such 

visualisations. 

 

7.4 Further Research  

  

Stemming from this research, the scope for further research is quite large with several 

thought-provoking questions emerging. Firstly, how significant are the findings made here? 

Statistical significance tests could be performed on current metrics. Furthermore, it would be 

useful to perform a similar experiment with commercially based or governmental institutions 

that incorporate spatial statistical work into data analysis. GWR workshops to train individuals 

in the use of GWR are hosted in numerous locations around the world and the inclusion of an 

additional workshop module on visualisation could be useful to train users and producers of 

visual data. As stated more than once before, a lack of familiarity with more advanced 

visualisation systems is evidently one of the problems associated with an uptake in use, even 

if these approaches can be more effective in information conveyance. Going a step further, it 

is possible to design a visualisation system to specifically cater for the visualisation of spatial 
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statistical methods, in this case GWR. Looking to the future, it is desirable to increase the 

accessibility of spatial statistical methods because of their capability to identify relationships 

within complex data 

Complex data present another set of difficulties relating to comprehension, and it is essential 

to display this data effectively so that is can be understood. Research using advanced 

visualisation techniques has already proven advantageous in analyse complex data, including 

data with a temporal aspect (Demsar and Virrantaus, 2011). The second experiment provides 

evidence of a scalability effect, where participants ability to perceive different scales shows 

that more complex visualisations of data result in a change in participant performance. 

Expanding this experiment to include larger data scales (of which there are theoretically 

infinite scales) would augment this research and potentially further validate the findings. As 

with the first experiment results, statistical significance tests could reveal relationships 

between metrics. 

Eye movement analysis is a proven effective evaluation tool (Harrie and Stigmar, 2009; Schnur 

et al., 2010; Coltekin et al., 2010). Additional analysis of eye movements, particularly those 

associated with the AOIs versus non-AOI attention can provide more insight into the types of 

patterns most visible to participants. In turn, this could provide an explanation on why 

participants have decided the areas of focus are important to them. The saccadic movement 

or eye trajectories could be studied to discover changes in cognitive processes in more detail. 

Sequential pattern techniques could be applied to further study this eye movement data. It is 

also possible to combine mouse based movement with eye movement to identify the 

relationship between mouse movement and cognitive behaviour patterns identified using eye 

movement data.  

The valued geographical concept of perceptual scalability can be further tested. Rather than 

exclusively focusing on 2D visualisations as were the case in this thesis, a focus on, the deemed 

most effective, interactive visualisation system would be insightful to research. Returning to 

the issue of scale, a greater variety of data scales may provide more advanced tangible data 

on human ability to correctly perceive data using some of the most advanced data 

visualisation techniques available. Evidently, there is great scope for further research across 

many areas covered in this thesis. Overall, a more focused approach to study more select 

techniques would be beneficial to gain a deeper and more refined insight into matters of 

geovisualisation effectiveness and scale. 
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 7.5 Overall Conclusion  

Overall, through the two empirical experiments carried out as part of this research thesis, 

the research aim was addressed and answered. A range of data visualisation techniques 

were prepared, assessed and evaluated to gain a deeper insight into the most effective 

modes of visualising geographical data. The spatial statistical method of GWR was a central 

component to the research with the concept of perceptual scalability also crucial to 

understanding how users interpret visual data.  

The key findings indicate that popular visualisation methods used to display GWR outputs are 

useful for analysis and interpretation of GWR results to a certain extent. The results of 

comprehensibility testing indicated that the largely untested interactive systems have a 

greater potential for analysis, even while their appearance in published literature is rare. 

There are two obstacles to overcome in order to increase the users of this visualisation type; 

the first is familiarity, the second is the modernisation of publication methods to include 

digital appendices. 

The two other key findings of this research are the presence of a scalability effect and the 

observation indication of perceptual scalability. The scalability effect occurs when faced with 

increasingly complex data while the perceptual scalability effect offers further evidence on 

the change in performance, which has been measured to a certain extent in this research, of 

human beings when they encounter more complex data.   

The general discussion concludes that there is a need to better inform researchers of the 

potential of interactive visualisations. People do need to be properly trained to use these 

systems, but the limits of human perceptual processing also need to be considered in order 

to permit more efficient and insightful analysis. As with all geographical problems, scale is a 

crucial concept to factor in. 

A core component of this research was ultimately concerned with the way in which spatial 

data is visualised. This research contributes significantly to the wider field of knowledge by 

demonstrating qualitatively and quantitatively the usefulness of popular and emerging 

visualisation types for interpretation and analysis of GWR results. The need to be mindful of 

a scalability effect when presenting data in visual form is also a significant factor to consider. 
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Appendix 1: Experiment One 

a. Ethical Application Form 

 
 

National University of Ireland Maynooth - Application Forms 

National University of Ireland Maynooth Ethics Committee 
 
 
This section contains the following forms: 
 
 
1.  Application Form involving research with Human participants (with the 
exception of the medical or clinical based projects) 
 
 
2. Application Form for Ethical Approval of a Research Project involving 
participation of Humans or Human Derived Material 

 
Please complete sections 1-16 (where applicable) Applications should be emailed 

to research.ethics@nuim.ie 
 
 
 

1. Name of applicant: Tommy Burke 
2. Appointment or position held: PhD Student 
3. Qualifications: Bachelor of Arts Double Honours in History and Geography, Masters in 

Geographical Analysis. 
4. Department: National Centre for Geocomputation (NCG) 
5. Contact details: tommy.burke@nuim.ie, 086 3166815. 

 

6. If the applicant is a postgraduate student:  
Name of Supervisor: Dr. Urška Demšar 
Position held: Lecturer  
Department: National Centre for Geocomputation 
Contact details: urska.demsar@nuim.ie 

 
A detailed letter from the supervisor must be included outlining how the 
applicant is suitably qualified/prepared for the type of work proposed. 

 
7.   Will the research be carried out with: 

i. Human Participant(s) 
ii. Will the human participant(s) be children or individuals with mental disabilities? No 

iii. If yes will the sessions be supervised by a guardian or a person responsible for the 
individual? N/A 

iv. If the sessions are to be unsupervised we are required to carry out Garda Vetting. Do 
you agree to NUI Maynooth carrying out this procedure? Yes 

v. Human derived material 
vi. Please describe the source of material 

 

mailto:ethics@nuim.ie
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8. Why does this project require ethical approval? 
Section 3.1 of ethical policy dictates that any interaction with living individuals 
requires ethical approval. Data will be collected from participants through a 
computer based experiment and short interview. The University Ethics Committee 
must approve of this work before it can commence. 

 
9. Brief title of research project:  
An evaluation of visualisations of Geographically Weighted Spatial Statistical 
Methods. 

 
10. Please submit a copy of the research application which has been offered 
funding (if applicable)  
N/A 

 
11. Describe the purpose of the research (c. 150 words) 
The purpose of this research is to discover the most appropriate visualisations 

which facilitate interpretation and analysis of Geographically Weighted Spatial 

Statistical Methods. Geographically Weighted Spatial Statistical Methods are 

employed in a wide range of disciplines to analyse and interpret data where they 

are used to detect significant patterns or relationships. One of these methods, 

Geographically Weighted Regression (GWR), is used to examine processes that vary 

over space and time. There is little variation in the types of visualisations which are 

used to analyse the results of GWR.  2D Univariate maps, statistical summary tables 

and graphs of residual values are primarily used.  Consequently, it is unclear 

whether other visualisation methods could be more effective for displaying the 

results.  The research we are conducting focuses on evaluating different 

visualisation techniques for GWR.  This will be achieved through user trials with 

different visualisation techniques to ascertain their effectiveness for a given set of 

tasks. The initial goal is to discover the most appropriate way to facilitate 

interpretation and analysis of Geographically Weighted Regression. These results 

will be expanded upon for use with other methods such as Geographically 

Weighted Discriminant Analysis and Spatio-Temporal Geographically Weighted 

Regression. 

 

12. Describe the methods and procedures to be used, showing how they adhere 
to the NUI MAYNOOTH Ethical Policy (See Section 3), under the following 
headings 
 

a. Techniques to be used. 
An experiment involving up to 30 individuals will be carried out. In accordance 
with NUI Maynooth Ethical policy each research participant will be asked to give 
informed consent before the experiment begins. An information sheet with 
details of the aims, objectives and general outline of the experiment will be 
provided. If the participant has any questions they will be answered to their 
satisfaction. They also have the option to opt out at any point. 
Any data collected from the experiments will be managed according to the NUI 
Maynooth Ethical Policy on data storage. All participant information will be 
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treated as confidential. Each participant will be given an alias to ensure they are 
not identifiable, and the data will be stored in a secure environment. 
 
b. Personal questions, interview schedules and questionnaires (for interviews 
please give a list of potential/possible questions that will be asked): 
The first phase of the experiment will be computer based. A general participant 
profile will be established through several questions including: 

– Persons Position (e.g. student). 
– Persons knowledge of Geographically Weighted Regression. 
– Persons knowledge of visualisation software. 

 
During the experiment the participant will be asked to complete a series of tasks 
using visualisation. These visualisations will show the spatial distribution of 
voting data. An example of these questions are as follows: 

– Identify the area where the influence of Owner Occupied housing has a significant effect 
on voter turnout levels. 

– Locate the areas where Third Level Education had a positive influence on voter turnout 
levels. 

– What is the relationship between the population aged 65 and over and male population? 
 
A short semi-structured interview will be carried out after the computer based 
experiment. Questions will be asked to gain a sense of the participants 
perception of the different visualisation types presented. A sense of user 
satisfaction and ease of completion will also be obtained from these interviews. 
Sample interview questions are as follows: 

– How difficult was it for you to complete the tasks? 
– How happy were you with the time it took to complete each task? 
– Do you think one visualisation was better to use than another? 

 
 

c. Duration and frequency of sessions:  
Each participant will complete one experiment. The sessions will last no longer 
than 2 hours to avoid participant fatigue. The computer based phase will require 
90 minutes of this time.  

 

13. Describe any discomfort or inconvenience to which participants may be 
subjected (if applicable), for example: 

 
a. Procedures that for some people may be physically stressful or might 
impinge on the safety of the participants e.g. noise levels 
The participants will be monitored by Eye-gaze tracking software through a 
webcam and experiment progress will be recorded via another ‘observer’ 
computer by tracking mouse movement, keyboard interactions, face recording 
and voice recording. All of this will be explained to the participant before they 
begin and they should be relatively relaxed. Stress should not be encountered.  
 
b. Procedures that for some people could be psychologically stressful, e.g. 
tasks with high failure rate 
The user will be aware that they are being timed. The participants however, will 
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be clearly informed in instructions that the test is not exclusively based on the 
time taken to complete the tasks. It is the visualisations being evaluated and not 
them. This should relax them and prevent any psychological stress.  

 
 
 
 
14. Participants. 

a. Who will be participants be? 
The participants will be people with a knowledge of Geographically Weighted 
Regression, and an adequate working knowledge of the visualisation software 
which will be used in the experiment. Participants will mainly consist of PhD 
students, MSc students, and interested individuals from NCG that have 
completed a GWR workshop. 
 
b. How will they be recruited? 
They will be recruited on the basis of their knowledge as outlined above since 
it is a requirement. In most cases I will verbally invite them to participate in the 
experiment. In the event I can not conveniently invite them in person, a 
telephone call will be place, or an email shall be sent. 
 
c. Will the participants be paid, if so how much? 

The participants will not be paid on the basis that it may skew the experiment 
results. Participants may change their process on thought on certain aspects of 
the experiment if their time was compensated financially.  

 
15. What will the participants be told about the study? 

The participants will be presented with a A4 sheet detailing the aims and objectives 
of the experiment. They will be informed that the goal is to discover the 
visualisations which best facilitate the interpretation and analysis of GWR. They will 
also be informed that it is the visualisations that are being evaluated, not them. 
Details of how the experiment will benefit their own use of GWR will be provided. 
Since the most appropriate visualisations will be identified, the participants can 
utilize these in their own work. 
 
 16. What information, if any, will be withheld about the research procedure or 
the purposes of the investigation? 
No information will be withheld about the procedure or the purposes of the 
investigation. 

 
17. Consent: 

 
a. When will consent be obtained? Prior to or at the time of the investigation. 
Consent from participants will be obtained before the start of the experiment. 
 
b. Will consent be verbal or written? (If not written, please justify) 
The consent will be written. I will provide a consent form for each participant 
to sign. 
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c. Will consent be personal or third party on behalf of the participant? 
The consent will be directly from the participant. 
 
d. Will personally identifiable information be made available beyond the 
research team? If so, to whom and how will consent be obtained. 
Participants information will not be identifiable. Alias names/numbers will be 
used. 
 
e. Please include a consent form (See following pages for the required form) 
The consent form is attached. 

 
 
18. When the research is completed, outline how the participants will be 
debriefed as well as ways of alleviating and/or dealing with any distress or other 
problems that may arise. 

The participant will be thanked and they will be informed of what I hope to achieve 
by carrying out the experiments. I would stress that the tests are no reflection on 
the person in any way and that the information gathered in the experiment will 
remain confidential. I will offer to provide keep the participant informed of results 
of the experiment. 
 
19. If researchers are proposing to refer to a professional code of ethics 
governing research in their area, this must be specified and the appropriate part 
of the code appended to this application. 
N/A 
 
 
Note: Based on the Council of the School of the Biological Sciences, Cambridge 
Human Biology Research Ethics Committee, application for ethical approval of a 
research project form. 
 
  



 

211 

 

b. Experiment Profiler 

Background Profile  Participant Number:       

         

Gender   Male   Female     

         

English Knowledge  poor   basic   good   

   excellent   native     

Native language (if not English)____________________________________________   

         

Describe your academic background (check one or more fields):     

  Mathematics and Computer Science      

  Geocomputation       

  GIS and Remote Sensing      

  Geography       

  Other (Please Specifiy)________________________________________   

         

What is your current job/position: _________________________________________   

         

How long have you approximately been using Geographical Weighted Regression (GWR)   

in your work (please check just one box)      

  <1 Year        

  1-3 Years        

  3-10 Years       

  >10 Years       

         

Describe your knowledge of GWR (Please check one box)     

  Poor        

  Basic        

  Good        

  Excellent        

  Expert        

         

Which types of visualisation software do you have experience with?    

(Please check one or more boxes)      

  ArcMap        

  ArcScene        

  Interactive Visualisation Software      

  Other (Please Specify)_______________________________________________ 

  None of the above       
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c. Experiment Introduction Sheet 

 

Title of Research:  

An Evaluation of Visualisations of Geographically Weighted Regression. 

Aim: 

To evaluate the visualisations of Geographically Weighted Regression (GWR), and 
to discover those which best facilitate the interpretation and analysis of 
Geographically Weighted Regression results. 

Experiment schedule: 

The experiment will be split up into three parts, A, B and C. 

Part A will have you working with a small dataset. Part B will have involve work with 
a large dataset. Both A and B contain three sections, detailed below: 

1 – Working with Static 2D visualisation software - ArcMap. This software is capable 
of producing static 2D maps. 

2 – Working with 3D visualisation software – ArcScene. This software is capable of 
producing 3D models. 

3 – Working with Interactive visualisation software –Processor. This software is 
capable of producing an interactive 2D map, a parallel coordinate plot, and 
scatterplots. 

In Part C you will participate in a short interview. Questions on your overall 
experience with the different visualisations will be covered here. 

Experiment length: 

Part A will be approximately 50 minutes, as will Part B. Part C will last for 
approximately 20 minutes. In total, the experiment will take approximately two 
hours. 

Experiment Hardware and Software.  

Morae is a usability testing software package which can collect data, log and 
observe important moments, and analyse and visualise the results.  

Mousetracker is designed to follow your mouse movements to help with analysis.  

The HDcamcorder will provide a high quality recording of the participant’s facial 
expressions to help with analysis.  

A digital voice recorder will record the participants’ voice in Part C. 
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If you have any questions regarding the dataset, the software, the tasks or the 
instructions feel free to ask the observer. If you think you are unable to continue the 
experiment for any reason at any time you are free do to so. 

d. Experiment Consent Form 

Title of the Study:  An Evaluation of Visualisations of Geographically Weighted 
Regression. 

 

Researcher details: Tommy Burke 
National Centre for Geocomputation 
Íontas Building, North Campus, 
NUI Maynooth, 
Maynooth, Co.Kildare. 
     
 tommy.burke@nuim.ie 
 01 6286731 
 
Supervisor details: Dr. Urška Demšar 
National Centre for Geocomputation 
Íontas Building, North Campus, 
NUI Maynooth, 
Maynooth, 
Co.Kildare. 
 
urska.demsar@nuim.ie 
01 6286178 

* * * 

The purpose of this research is to discover the most appropriate visualisations 
which facilitate interpretation and analysis of Geographically Weighted Spatial 
Statistical Methods. Geographically Weighted Spatial Statistical Methods are 
employed in a wide range of disciplines to analyse and interpret data where they 
are used to detect significant patterns or relationships. One of these methods, 
Geographically Weighted Regression (GWR), is used to examine processes that vary 
over space and time. There is little variation in the types of visualisations which are 
used to analyse the results of GWR.  2D Univariate maps, statistical summary tables 
and graphs of residual values are primarily used.  Consequently, it is unclear 
whether other visualisation methods could be more effective for displaying the 
results.  The research we are conducting focuses on evaluating different 
visualisation techniques for GWR.  This will be achieved through user trials with 
different visualisation techniques to ascertain their effectiveness for a given set of 
tasks. The initial goal is to discover the most appropriate way to facilitate 
interpretation and analysis of Geographically Weighted Regression. These results 
will be expanded upon for use with other methods such as Geographically 
Weighted Discriminant Analysis and Spatio-Temporal Geographically Weighted 
Regression. 
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A camcorder will be used to record the participants facial expressions, and a 
Dictaphone will be used to record their speech. Any data obtained during the 
course of the experiment will be stored in a secure environment, i.e. it will be kept 
in a locked cabinet at work. The data is available to the subjects at their discretion. 
Any digital voice records, video records, transcripts or other recorded data can be 
accessed at any time. The identity of each participant will be anonymous.  

The results will be analysed using special analysis software to help answer my 
research question. They will form part of my PhD thesis. 

The computer based experiment or subsequent interview do not pose any risk to 
your person. Your participation is voluntary, and should you wish to discontinue the 
experiment at any point you may do so. 

If during your participation in this study you feel the information and guidelines 
that you were given have been neglected or disregarded in any way, or if you are 
unhappy about the process please contact the Secretary of the National University 
of Ireland Maynooth Ethics Committee at  research.ethics@nuim.ie  

Please be assured that you concerns will be dealt with in a sensitive manner. 

“I have read and understood this consent form, and agree to participate” 

 

Signed: 

________________________________________________ 

 

Date: 

________________________________________________ 

 

  

mailto:research.ethics@nuim.ie
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e. Experiment Script 

The Dataset: 

The dataset for this experiment is a combination of voter level turnout and census 

information*. We will use two different data set sizes. The large dataset comprises 

of electoral division (ED) level data for Ireland. The small dataset contains data for 

the province of Leinster. The values in the dataset can be either negative or 

positive, remember this when you are using the visualisations to answer the tasks.  

You will see the word relationship often in the in the task questions. This word is 

asking to you compare attributes to see if there are any patterns which stand out. 

For example, the attributes could be affecting voter turnout in a similar way. 

Table 1: The Experiment Dataset 

 

The level of voter turnout is the dependent variable, and the significant attributes 

are the independent variables. 

Geographically Weighted Regression (GWR) Refresh. 

Abbreviated 

Parameter 

Name 

Full 

Parameter 

Name 

Parameter Details 

Males Total Male 

Population.  

Proportion of the 

population whose 

gender is male. 

Soc 1and2 Social Classes 

One and 

Two.  

Proportion of the 

population that 

occupies social classes 

one and two. 

ThirdLevel Third Level 

Education.  

Proportion of the 

population with third 

level qualification. 

Over65 Populated 

Over 65.  

Proportion of the 

population that is aged 

65 and over. 

Unemp Unemployed 

Population 

Proportion of the 

population that is 

unemployed. 
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GWR works on the Nearest Neighbour principle which weighs a point in the dataset 

against other data points which are nearest to it (the neighbours) and assigns it a 

value based on this weighting.   

GWR has a number of outputs including Parameter Estimates, T-Values, Standard 
error values (S-Values) and Local R-Squared Values. 
 
Parameter estimate values explain the influence an attribute has on the dependent 

variable. In the case of the dataset you will be using the dependent variable is of 

course, voter turnout. 

T-Values help to highlight areas where their parameter estimate values are 

significant, particularly if the values are more than 2, or less than -2. 

S-Values are a measure of the accuracy of predictions of the parameter estimates. 

The closer these values are to zero, the better the estimate. 

Local R-Squared values measure the variation of the dependent variable which is 

explained by the independent variables.   

 

In the centre at the top of the screen you will notice a start and ‘Exit Session’ button 

panel. This is the experiment ‘progress panel’. Please, do not press this button as it 

will stop the test. This ‘progress panel’ is designed to assist in the analysis of the 

experiment results after it is complete.  

If any of the visualisation software crashes inform the observer to get them working 

again. 

PART A 

First you will use ArcMap, a GIS software created by the Economic and Social 

Research Institute (ESRI). It is the principal component of ESRI’s ArcGIS suite of 

geospatial processing programs. It allows the user to explore data within a data set 

and produce maps. 

Interacting with ArcMap: 

On the screen in front of you, you can see ArcMap open with a Map. The map 

information is contained in the Table of Contents (TOC) to the left of the screen. 

You may display any of these maps by ticking their blank box at any time. If you 

want to examine a map you must un-tick all the maps above it. Try to limit the 

number of maps you have ticked at once to five or six as the speed of the computer 

is affected. Please do not delete any map from the table of contents. 

As you can see in TOC the maps are coloured and ranked from most negative (red) 

to most positive (green). Each map visualisation displays one attribute/parameter. 

You can use the zoom in and zoom out buttons at the top of your screen in the 

menu bars. You can also use the ‘identification button’ to discover the county 

names. Select the ‘black arrow’ button to return to normal browsing. These buttons 

are highlighted in the screenshot below:   
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The screen should now look like this:  

 

If you have any questions please ask them now to avoid any disruptions during the 

course of the experiment. 

Tasks 

Select the ‘Start’ button from the progress panel when you are ready, next hit the 

‘Start Task’ button to begin answering the tasks. When you have answered a task, 

hit the ‘End Task’ button. Your mouse cursor will begin to flicker but this is normal. 

Task 1: 

Rank in order for “Male” parameter estimates, the five counties which have the 
most positive effect on voter turnout, and the five counties which have the most 
negative effect on voter turnout. 
 
A: 

___________________________________________________________________

___________________________________________________________________



 

218 

 

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 2: 

What is the relationship between the parameter estimates for the population of 
Social 1+2 and the parameter estimates for Third Level on voter turnout levels? 
 

A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 3: 

What is the relationship between Over 65’s parameter estimates, Over 65’s T-
Values, and Over 65’s S-Values? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

 

When you have completed task 3 you can minimise the ArcMap program 

 

 

The second set of tasks will be completed using visualisations produced by 

ArcScene. ArcScene is a 3D visualisation application which allows you to view GIS 

data in three dimensional visualisations. It is fully integrated with the geo-

processing environment, providing access to many different analytical functions 

and tools. 

Interacting with ArcScene: 

Maximise the ‘ArcScene A’ from the tabs toolbar at the bottom of the screen.  You 

will notice there is a list of visualisations to the left of your screen in the table of 

contents. You can zoom in and out using the magnifying buttons with the ‘ + ’ and ‘ 

- ‘ signs. You can also rotate the 3D visualisations by holding down with the left 
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mouse button on the image in the viewing window and moving the mouse, 

alternatively you can use the ‘rotate’ icon. You can use the ‘identification button’ 

to find out the county names, and ‘black arrow’ button to return to normal 

browsing of the 3D visualisation. These buttons are highlighted in the screenshot 

below:

 

You can adjust the height of the visualisation by right clicking the ‘scene layer’ button 

at the top of the Table of Contents’, and entering a larger or smaller number in the 

‘vertical exaggeration’ box. At the top of each 3D visualisation you will see a title 

describing what it displays. The first parameter name provide the colour, the second 

parameter name provides the height. These are coloured and ranked from most 

negative (yellow) to most positive (blue). To help you answer each task you should 

tick the appropriate county boundary file. Please do not delete any visualisations. 

The screen should now look something like this: 

 

Tasks 
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Don’t forget to select the ‘Start Task’ button when you are ready to answer a 

question, and ‘End Task’ when you have completed a question.  

Task 1: 

Locate the counties where the parameter estimates for the Unemployment 
population have a negative effect on voter turnout levels. 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 2: 

What is the relationship between the parameter estimates and T-Values Males? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 3: 

For this task, please correct the height exaggeration so that your will become 3D. 

To do this, right click ‘Scene Layers’ at the top of the TOC. Select ‘Properties’, Under 

‘General’ in the height exaggeration box, type in 50000. This will provide your 3D 

model with an appropriate height to help you answer the final ArcScene question.  

In which areas does the model not fit well (have the lowest local R-squared values)? 
What are the influences of all parameter estimates in these areas? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

 

When you have completed task 3 you can minimise the ArcScene program. 
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Interacting with Processor**: 

Processor is a program used to develop a set of interactive visualisations. Several 

different visualisation types are displayed at once, and they are integrated. This 

means if you highlight something or hover over an attribute value in any of the 

visualisations, the same attribute will be automatically highlighted in all of the other 

visualisations. You can deselect any highlights you have made by clicking anywhere 

on the screen that is not taken by one of the visualisations. This highlighting 

technique is known as interactive brushing.  

The visualisations on the right are scatterplots. They are useful for displaying groups 

of data and for examining the relationship between one variable and another. Each 

axis is related to one attribute with each dot representing a point of data. 

At the bottom you will see a Parallel Co-ordinates Plot. Each attribute of a dataset 

are mapped onto a series of vertical axes. Each data object is represented by a 

continuous linear line which appears to connect the axes together. These lines 

intersect the vertical axes at the points which correspond to the value for that 

attribute. 

Let us try this highlighting and brushing technique now. First, click on the colour of 

the first legend titled ‘Males’. Next, click on the interactive map window to make it 

active. Now, browse over the Leinster region. You will notice the name of the ED 

and the county will appear if you hover your mouse over an ED. Now click on the 

PCP window to make it active, hover your mouse over the values in the 

visualisation. You can also zoom in on a particular area by holding the shift button, 

and using the scroll button on your mouse. To return to the original viewing 

distance, just click the home button in the visualisation window. Remember to click 

on the visualisation window to make it active. If you want to change which attribute 

is displayed, click on the ‘colour’ button in the colour legend of that attribute. 

Lastly, let us use the select attributes feature. This feature allows you to highlight a 

certain number of attribute values, and examine them on their own. Click on the 

map, and hold and drag your mouse over a county sized area (just as you would if 

you would highlighting text in a word document for example). Release the mouse 

button when you are happy with the area you have selected. Any attribute values 

within this box will now be visible with all others blanked out. 
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Here is a screenshot showing an example of an area that has been highlighted: 

 

Do the same with the PCP, click on the window to activate it, and highlight a number 

of values. To deselect the values and return to normal viewing, perform the click 

hold and drag operation in any area that does not have attributes. Please do not 

close any of the visualisations. 

Tasks 

Task 1: 

Identify the counties where parameter estimates for Third Level Education have the 
least positive effect on voter turnout levels. 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 2: 

Identify two parameter estimates from the five you have available that exhibit the 
least similar behaviour. Which two have you selected? Why did you select these 
two? 
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A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 3: 

Identify the areas of least stability, where the behaviour of all parameter estimates 
is least similar. Do such areas exist? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

 

When you have completed task 3, you can minimise the processor visualisations 

using the box in the centre of the screen.  

You are now half way through the computer based part of this experiment! 

 

PART B 

First, maximise the ArcMap window named ‘Part B’ which can be found in the 

toolbar list at the bottom of your screen. The ArcMap window should pop up and 

cover the whole screen, make sure it is maximised. Your screen should now look 

like this: 



 

224 

 

 

You should already have an understanding of how to interact with the different 

visualisations to complete the tasks required so let us continue onto the tasks. 

Tasks 

Task 1: 

Rank in order for “Unemployment” parameter estimates, the counties which have 
the most negative to most positive effect on voter turnout? 
 

A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 2: 

What is the relationship between parameter estimates for Third Level Education 

Levels and parameter estimates for Males on turnout levels? 

A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 3: 
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Rank the parameter estimates in order for which they exhibit the most negative to 
least negative influence on voter turnout levels. The order should be from 1 to 5, 
with 5 being the least negative. 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

 

When you have completed task 3, answer the System Usability Survey, and then 

you can minimise the ArcMap program. 

 

 

Maximise the ArcScene program called ‘Part B’ by selecting it from the programs in 

the toolbar list at the bottom of the screen. The screen should now look like this:  

 

You already have an understanding of how to interact with ArcScene, so let us begin 

answering the tasks. 

Tasks 

Task 1: 
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Identify the counties where parameter estimates for population over the age of 65 

have a positive influence on voter turnout levels. 

A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 2 

What is the relationship between Social Classes 1 and 2 S-Value and Social Classes 

1 and 2? In the counties where the S-Values are most stable, how do parameter 

estimates for Social Classes 1 and 2 affect turnout levels? 

A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 3 

For this task, please correct the height exaggeration so that your will become 3D. 

To do this, right click ‘Scene Layers’ at the top of the TOC. Select ‘Properties’, Under 

‘General’ in the height exaggeration box, type in 50000. This will provide your 3D 

model with an appropriate height to help you answer the final ArcScene question.  

In which areas does the model best fit best (have the highest local R-Squared 
values)? What are the influences of all parameter estimates in these areas? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

 

When you have completed task 3, answer the System Usability Survey, and then 

you can minimise the ArcScene program. 

The final visualisation program we will again work with is Processor. Double click 

the program called “Ireland” in the ‘deploy’ folder which can be found in the tab 

menu at the bottom of your screen.  
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From Part A you should already have an understanding of how to interact with the 

interactive visualisations so let us begin answering the set of tasks. 

Tasks 

Task 1: 

Identify the counties where parameter estimates for Social Classes 1 and 2 have the 
most positive effect on voter turnout levels. 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 2 

What is the relationship between Local R-Squared values and the areas where 
parameter estimates for Males positively affect turnout levels? How do parameter 
estimates for Males affect turnout levels in areas where Local R-Squared values are 
highest? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

Task 3 

Identify the areas of stability, where all parameter estimates behave the same. Do 
such areas exist? 
 
A: 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

________________________________________ 

 

When you have completed task 3, answer the System Usability Survey, and then 

you can minimise the processor visualisations.  
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When you have completed all of the tasks in Part A and Part B you can select the 

‘Exit Session’ button in the Morae ‘Progress Panel’ at the top of your screen. I know 

you were informed not to do this before but since you are finished the computer 

based aspect of the experiment you can do this now. 

That’s it for Part A and Part B! Part C is next. Please inform the observer that you 

are ready to proceed to this part of the experiment now. 

 

*The voter turnout data is courtesy of Dr. Adrian Kavanagh from the Department of 

Geography, NUI Maynooth. The census information was retrieved from the Central 

Statistics Office (CSO) online database. 

** The Processor visualisation software in this experiment was kindly designed by 

Peter Foley, National Centre for Geocomputation (NCG). 
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Appendix 2: Experiment Two 

a. Ethical Application form 

 

 

 

 

 

 

 

 

    Please Tick:  (click on the box then click ‘Checked’ for a cross to appear in the box) 

   

Undergraduate          Postgraduate Research         Postgraduate Taught         Staff        

     

     Lecturer/Course Controller on behalf of Taught module      Module Code:  

Researchers 
Name(s): 

Tommy Burke 

Project Title: 
An Evaluation of Perceptual Scalability of Visualisations 

School/Unit: 

(Please indicate) 

 

Centre for GeoInformatics, Geography 

and GeoSciences, 

 

Supervisor: Dr. Urška Demšar 

Emails 

 

tb44@st-andrews.ac.uk 

urska.demsar@st-andrews.ac.uk 

 

Date 

Submitted 
5/10/2012 

 

 

1.1 University of St Andrews  

1.2 Teaching and Research ethics committee 

(UTREC) 

 

1.3 ETHICAL APPLICATION FORM 

 

Approval Code:     

(Official Use Only)    

mailto:tb44@st-andrews.ac.uk
mailto:urska.demsar@st-andrews.ac.uk
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Rationale:  Please detail the project in ‘lay language’.  This summary will be reviewed by UTREC 
and may be published as part of the reporting procedures.  DO NOT exceed 75 Words (for 
database reasons).   Elucidation, if required can be given in Q.28 

We will use eye movement trajectories and other usability techniques to investigate how the 
perceptual behavior of individuals changes with increased data set sizes through choropleth map 
visualisations. Eye trajectories are recorded using non-invasive eye tracking technology. Other 
usability techniques include task times and mouse movement trajectories. 

Ethical Considerations: Please detail the main ethical considerations raised by the project, 
concentrating on any issues raised specifically in the red sections, and addressing, where 
appropriate, the issue of whether basic ethical criteria has been met in all supporting documentation 
and if not why not.   This summary will be reviewed by UTREC and may be published as part of its 
reporting procedures.  DO NOT exceed 75 words (for database reasons).   Elucidation, if required 
can be given in Q.28 

All ethics concerns have been addressed. Participants will be provided with a consent form to sign, 
they will be aware that their participation is voluntary and that they may stop the experiment at any 
time. Participants will be briefed on all aspects of the experiment before it begins, and will be 
debriefed afterwards. Participant identities will be anonymous, and any data obtained during the 
experiment will be stored in a secure location. 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4  

1.5 APPLICATIONS MUST BE SUBMITTED TO THE RELEVANT SCHOOL 

ETHICS COMMITTEE 

1.6 HTTPS://WWW.ST-

ANDREWS.AC.UK/UTREC/SEC/SECMEMBERS/   

Please DO NOT submit directly to UTREC.   

1.7  

 Please submit an electronic copy and one hard copy (with signatures) to the 
Secretary/Administrator.  In the absence of a Secretary please submit to the SEC 
Convener.    

 Applicants must be accompanied by the relevant supporting documents without which 
a full ethical assessment cannot be made. 

 Please do not type out with the text boxes provided, note that the Text Boxes are fixed 
in size and will not allow any viewing beyond the word limit permitted. 

https://www.st-andrews.ac.uk/utrec/SEC/SECMembers/
https://www.st-andrews.ac.uk/utrec/SEC/SECMembers/
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If ethical approval has been obtained from the University of St Andrews for research so 
similar to this project that a new review process may not be required, please give details of 
the application and the date of its approval. 
 
Approval Code:  

Date Approved:  

Project Title:  

Researchers 
Name(s): 

 

 

RESEARCH INFORMATION 

1. Estimated Start Date: 
5th November 2012 

 

2. Estimated Duration of 
Project: 

Up to six months including research and analysis. 

3. Is this research funded by any external sponsor or 
agency? 

 

YES  NO  

If YES please give 
details:  

 

 

For projects funded by ESRC please be aware of the Ethical and Legal Considerations found 
at http://www.esds.ac.uk/aandp/create/ethical.asp 

 
ESRC Funded Studentships (postgraduate Students) please be aware of the requirements as 

outlined at (in particular in relation to Submission of data to the Economic and Social Data 
Service, ESDS 

4. Does this research entail collaboration with researchers from other  
    institutions and/or across other University Schools/Units? 
 

 

YES  NO  

    If YES state names and    
    institutions of 
collaborators: 

Dr. Arzu Çöltekin, Department of Geography, Geographic Information 

Visualization & Analysis, University of Zurich. 

5. If the research is collaborative has a framework been devised to 
ensure that all collaborators, including all University Staff, External 
Researchers, and Students, are given appropriate recognition in any 
outputs?    

N/A  YES  NO  

 

6. Where projects raise ethical considerations to do with roles in 
research, Intellectual property, publication strategies/authorship, 
responsibilities to funders, research with policy or other implications 
etc., have you taken appropriate steps to address these issues? 

N/A  YE

S 

 NO  

 

 7. Location of Research  
    Fieldwork to be 
conducted: 
 

Geographic Information Visualization & Analysis Unit, Department of 

Geography, University of Zurich, Zurich, Switzerland. 

http://www.esds.ac.uk/aandp/create/ethical.asp
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RESEARCH INFORMATION 

8. Are you using only library, internet sources or unpublished data  
    (with appropriate licenses and permissions) and so have no human    
    involvement such as interviewing of people?  
 

 

 

    

YES  NO  

9. a.  Who are the intended Participants     
         (e.g. students aged 18-21) and how     
         will your recruit them (e.g. 
advertisement) 

Ages: 18-25 

Advertisement: Through Emails, and Posters around 

the department, contact through potential participant 

modules. 

    b.   Estimated duration of Participant  
          Involvement. 
 

30-40 minutes. 

 

 

 

 

10.  Have you obtained permission to access the site of research? 
       
 
 
 

N/A  YES  N

O 

 

 If YES please state agency/authority etc. & provide documentation. 
If NO please indicate why in Q.28 

Prof. Dr. Sara I. Fabrikant 

(Head of Unit). Dr. Arzu 

Çöltekin (Senior Research) 

 
11.  Will inducement i.e. other than expenses, be offered to 
participants? 
       If YES, please give details of the inducement being offered and 
justify  
       in Q29. 
       Q31 

N

/

A 

 YES  NO  

 

12.  Has ethical approval been sought and obtained from 
any external body  e.g., REC(NHS)/LEA and or including 
other UK Universities?  If YES, please attach a copy of the 
external application and approval. 
 

N/

A 

 Y

E

S 

 N

O 

 

 

13.  Will you tell participants that their participation is 
voluntary? 
 

  YES  NO  

 

14.  Will you describe the main project/experimental 
procedures to participants in advance so that they can 
make an informed decision about whether or not to 
participate? 
 

  YES  N

O 

 

 

 
ETHICAL CHECKLIST 
 

If you have answered YES to Q8 but the project has other Ethical 
Considerations  

please go to Q.28.  If there are no other Ethical Considerations please sign 
and submit. 
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15.  Will you tell participants that they may withdraw from 
the research at any time and for any reason, without having 
to give an explanation? 
 

  YES  N

O 

 

 

16.  Please answer either a. or b. 
       a.   Will you obtain written consent from participants? 

 

  YES  N

O 

 

 

       b.  (ONLY: Social Anthropology, Geography/Geoscience, 
                          International Relations & Biology) 

Will you obtain written consent from participants, in those 
cases where it is appropriate? 

  YES  N

O 

 

 

17.  Please answer either a. or b. 
       a.  If the research is photographed or videoed or taped 
or observational, will you ask participants for their consent 
to being photographed, videoed, taped or observed? 

 

 

N/

A 

 Y

E

S 

 N

O 

 

 

            

 

       b.  (Social Anthropology & Biology ONLY) 
            Will participants be free to reject the use of intrusive 
research methods such as audio-visual recorders and 
photography? 
 

N/

A 

 Y

E

S 

 N

O 

 

 

18.   Please answer either a. or b. 
        a.  Will you tell participants that their data will be 
treated with full confidentiality and that if published, it will 
not be identifiable as theirs? 
 
 
        b.  Will you tell participants their work /contribution will 
be credited unless they specifically request anonymity? 
  
 

  Y

E

S 

 N

O 

 

      

  Y

E

S 

 N

O 

 

 

19.   Will participants be clearly informed of how the data 
will be stored, who will have access to it, and when the data 
will be destroyed? 
 

  Y

E

S 

 N

O 

 

 

 
 
20.   Will you give participants a brief explanation in writing 
of the study? i.e. a debrief  
 
 

  Y

E

S 

 N

O 
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21.   With questionnaires and/or interviews, will you give 
participants the option of omitting questions they do not 
want to answer? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N/

A 

 Y

E

S 

 N

O 

 

 

 

 

 

 

 

 

WORKING WITH CHILDREN AND OR VULNERABLE PEOPLE 

Do participants fall into any of the following special groups?   

 
 

22.   a.   Children (under the age of 16 in Scotland or 18 in 

England/Wales)  
YES     NO   

b.   Vulnerable Adult, receiving care or welfare services  YES     NO   

c.   People with learning or communicative difficulties  YES     NO   

d.   Residents/Carers in a specific location, e.g. Care Home YES     NO   

 

 

 
 

 

 

 

 

 

e.  NHS Patients or Staff  YES     NO  

 

f.   Institutionalised persons   YES     NO  

 

  
 

If you have answered NO to any question 12- 21, please give a brief 
explanation in the statement of  

Ethical Considerations on Page 1 and expand in Q28 if necessary. 
If you have answered YES, it must be clearly illustrated in 

the relevant paperwork which must be attached i.e. 

Participants Information Sheet, Consent Form, Debriefing 

Form, Questionnaire, Letters etc…… 

If you answer YES to Q.22 a. – d., you may be required to obtain Protection of 

Vulnerable Groups [PVG] Disclosure approval (for all research being conducted in 

Scotland and elsewhere).  Except, England / Wales please obtain the 

England/Wales equivalent – Police Check.   Please check with the relevant people 

in Student Support (student applications) or Human Resources (staff applications) 

for clarification. 

 

Refer to the UTREC Working with Children and Vulnerable Groups webpage for 

further guidance 

If you answer YES to Q 22.,e. or f., it is likely you will be required to obtain approval 

from the NHS.  This should be sought prior to approval from the relevant SEC or 

UTREC. 
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g.   People in custody 

YES     NO  

 

h.   People engaged in illegal activities, e.g., drug-taking 
YES     NO  

 

 

 

If you have answered NO to Q. 22 a – d please skip Q 23 and proceed to Q 24.    

 

23.   As an adult have you lived/worked outside the UK in the last 12 

months?   

YES     NO  

 

  
 

 

 

 

 

ETHICAL RISK  
 
This section is for ethical use only and does not replace the University official procedures on Risk 
and Safety measures.   In addition to completing this section you must review the following 
https://www.st-andrews.ac.uk/utrec/EthicalApplication/riskassessment/  and http://www.st-

andrews.ac.uk/staff/policy/Healthandsafety/Publications/Fieldwork/  and follow the relevant procedures. 
 

 

24.   Are any of the participants in a dependant relationship with the  
        investigator e.g. lecturer/student? If YES, give explanation in Q.28. 
 

 YE

S 

 N

O 

 

 

25.   Will your project involve deliberately misleading participants in any 
way?   
         If YES, give details in Q.28 and state why it is necessary and explain 
how debriefing will occur 
 
 

 

 YE

S 

 NO  

 

 

If YES to Q22. g. or h., you should ensure that the relevant Risk Assessment Checklist has 

been completed 

 

If you have answered YES you may be required to provided, in addition to 

PVG approval, a police reference/check from the country of residence during 

this period.  Please check with the relevant people in Student Support 

(student applications) or Human Resources (staff applications) for 

clarification. https://www.st-andrews.ac.uk/utrec/EthicalApplication/children/  

 

https://www.st-andrews.ac.uk/utrec/EthicalApplication/riskassessment/
http://www.st-andrews.ac.uk/staff/policy/Healthandsafety/Publications/Fieldwork/
http://www.st-andrews.ac.uk/staff/policy/Healthandsafety/Publications/Fieldwork/


 

236 

 

26.   Is there any significant risk to any paid or unpaid participant(s), field  
        assistant(s), helper(s) or student(s), involved in the project,  
        experiencing either physical or psychological distress or 
discomfort?   
        If Yes, give details in Q.28 and state what you will do if they should  
        experience any problems e.g. who to contact for help. 
 

 YE

S 

 NO  

 

27.   Do you think the processes, including any results, of your research  
        have the potential to cause any damage, harm or other problems 
for people in your study area?   If YES, please explain in Q.28 and    
        indicate how you will seek to obviate the effects. 
 

  YES  NO  

 

 

ETHICAL STATEMENT 
 
28.  Write a clear but concise statement of the ethical considerations raised by the project and how you 
intend  
       to deal with them.   It may be that in order to do this you need to expand on the Ethical 
Considerations  
       section on page 1.  (continue on additional pages if necessary) 
 
 
  
 
An experiment with up to 50 participants will be carried out. In accordance with the University of St Andrews 
(UTREC) policies, each participant will be asked to give informed consent before the experiment begins. 
An information sheet with details of aims, objectives and general outline of the experiment will be provided. 
If the participant has any questions they will be answered o their satisfaction. They also have the option 
to opt out at any point and they will be aware of this. Any data collected from the experiment will be 
managed according to UTREC policies, and will be stored in a secure location and encrypted. 
 
The participants will be monitored by Eye-gaze tracking software through non-invasive Tobii eye tracking 
technology, and experiment progress will be recorded via another ‘observer’ computer. Mouse movement, 
keyboard interactions, and face and voice recording will also be carried out. All of this will be explained to 
the participant before they being and they should be relatively relaxed. Stress should not be encountered 
at any point. The user will be aware that they are being timed, but will be clearly informed through 
experiment instructions that the test is not exclusively based on the time taken to complete the tasks. 
 
The eye tracking technology is non-invasive. The hardware is positioned below the computer participants 
sit in front of for the duration of the experiment. No information will be withheld about the procedure or the 
purposes of the investigation. No participant information will be identifiable, random identification numbers 
or alias names will be used. All participant information will be treated as confidential. Any link between a 
persons’ video and voice records will be security protected and kept in a secure location at all times. It will 
be stored for up to six months so that it can be analysed fully. No aspect of the experiment puts any 
participant at risk at any time. Participants will be thanked at the end of the experiment, and I would offer 
to keep them informed of the results of the experiment when they have been analysed. 

 

There is an obligation on the Lead Researcher & Supervisor to bring to the 

attention of the School Ethics Committee (SEC) any issues with ethical 

implications not clearly covered by the above 
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DOCUMENTATION CHECKLIST 
 

Ethical Application Form   YE

S 

 NO  

 

Participant Information Sheet   YE

S 

 NO  

 

Consent Form   YE

S 

 NO  

 

Debriefing Form   YE

S 

 NO  

 

External Permissions   YE

S 

 NO  

 

Letters to Parents / Children / Head Teachers etc…..   YE

S 

 NO  

 

PVG (Scotland) or Police Check (England/Wales) Approval (as 
necessary)  

  YE

S 

 NO  

 Advertisement   YE

S 

 NO  

 

Other (please 
list): 

 

 

 
DECLARATION 
 

I am familiar with the UTREC Guidelines for Ethical Research http://www.st-
andrews.ac.uk/utrec/guidelines/ and *BPS, *ESRC, *MRC and *ASA (*please delete the guidelines not 
appropriate to your discipline) Guidelines for Research practices, and have discussed them with other 
researchers involved in the project. 
 
 
 
 

 

STUDENTS ONLY 
My Supervisor has seen and agreed all relevant paperwork linked to this project 
 

YE

S 

 NO  

 

Print Name: 
Tommy Burke 

Signature 
Tommy Burke 

Date: 5-10-2012   

SUPERVISOR(S) 
The Supervisor must ensure they have read both the application and the guidelines, and also has approved 
the project and application, before signing below, with clear regard for the balance between risk and the 
value of the research to the School/Student.  (Supervisors should provide this on a separate sheet or supply 
to the student to insert below)  Please, if you wish, add comments in no more than 200 words: 

 

 

Print Name: 
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Signature 
 

Date:  

 

STAFF RESEARCHER ONLY  
 

YE

S 

 NO  

 

Print Name: 
 

Signature 
 

Date:    

 
SCHOOL ETHICS COMMITTEE OFFICIAL USE ONLY 

 
 
STATEMENT OF ETHICAL APPROVAL 
 
This project has been considered using agreed University Procedures and has been:   
 

 Approved                                                  Not Approved pending: 

 

                                                                               More Clarification Required 

 

                                                                               New Submission Recommended 

 
                                                                                      Discussed with Supervisor   
             
                                                                                      Referred to UTREC 
 
                                                                                      Referred to Fieldwork Subcommittee  
                                                                                          (Angus Clark <ajc30>) regarding risk 
 
 

Convenor’s 
Name 

 

Signature 
 

Date:  
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Please use the space below and additional pages to attach any supporting 

documents i.e. Participant Information Sheets, Consent Forms, Debriefing 

Forms, Questionnaires, Letter to Parents etc. 

We recommend you refer to the sample documents provided at 

https://www.st-andrews.ac.uk/utrec/EthicalApplication/SampleDocuments/ 
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b. Briefing Script 

Experiment Information: 

Title of the Study: 

An Evaluation of the Perceptual Scalability of Visualisations. 

 We conduct a usability experiment to acquire and analyse trajectories of eye movement data 

in two visual exploration settings that differ in the size of geographic data. We couple eye 

movement analysis in the context of usability evaluation with analysis of spatial trajectories. We 

investigate how the type of perceptual behaviour of analysis of individuals with regards to 

scalability is linked with particular patterns in eye movement trajectories.  

The experiment is split into two parts, A (1 & 2) and B (1 & 2). In the first part, the units in the 

dataset remain the same size on screen, while the number of spatial units in the dataset gets 

bigger. In the second part the size of dataset units gets smaller on screen, while the number of 

spatial units in the data set increases. A script will be provided showing clear instructions on how 

to complete the experiment, and there will be a research observing the experiment that can 

answer any questions a participant may have at any time. 

This duration of the experiment will be approximately 40 minutes including pre experiment and 

post experiment briefings. It will take place in the Eye Tracking Labs of the Geographic 

Information Visualisation & Analysis Unit. Participants will interact with a computer screen to 

complete a set of tasks using varied 2D choropleth map visualisations, and datasets containing 

varying numbers of spatial units.  

Any data obtained during the course of the experiment will be security protected and stored in 

a secure environment initially at in the Geographic Information Visualisation & Analysis unit and 

at the Centre for GeoInformatics in a locked drawer. The data is available to the subjects at their 

discretion. Any digital voice records, video records, transcripts or other recorded data can be 

accessed at any time. The identity of each participant will be anonymous, and data will be stored 

for up to 12 months after the experiment to carry out analysis. 

We have permission to carry out this research with the full approval of the School of Geography 

and GeoSciences at the University of St Andrews, and the Geographic Information Visualisation 

& Analysis unit, which is part of the Department of Geography in the University of Zurich. 

The content of this experiment presents no risk what so ever to participants. If a participant 

wishes to withdraw from the experiment at any time and for any reason you may do so. If you 

would like to express any concerns or have any questions about this experiment please contact 

one of the following persons: 

Tommy Burke – PhD Student 

Centre for GeoInformatics, 

Geography and GeoSciences, 
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University of St Andrews, 

Scotland. 

Email: tb44@st-andrews.ac.uk 

 

Dr. Urška Demšar – PhD Supervisor 

Centre for GeoInformatics, 

Geography and GeoSciences, 

University of St Andrews, 

Scotland. 

Email: urska.demsar@st-andrews.ac.uk 

 

Dr. Arzu Çöltekin – Research Collaborator 

Geographic Information Visualisation & Analysis,  

Department of Geography,  

University of Zurich, 

Switzerland. 

Email: arzu.coltekin@geo.uzh.ch 
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c. Participant Consent Form 

 

Participant Consent Form 

Aim:  To discover the perceptual scalability of 2D visualisations.   

Objectives:  

1. To collect data of users task completion on increasingly complex datasets using 
a 2D visualisation. 
2. To detect the threshold of users change in performance due to perceptual 
scalability. 
3. To develop specific methods for pattern detection in eye movement 
trajectories to detect this scalability. 
4. To detect the difference (if any) in performance between the two different 
display sizes of spatial units. 
 
Any data obtained during the course of the experiment will only be accessible by the experiment 
researchers listed below. The data will be security protected and stored in a secure environment 
at all times in a locked drawer, both in the University of Zurich and the University of St Andrews. 
The data will be used to answer the research aim and objectives stated above, and may be used 
to answer further questions that may arise from conducting this experiment in future research. 
All participant information will be anonymous, and at no time will participants be identifiable. 
The data may be stored for up to six months for the purposes of research and analysis.  
 

Experiment Reserachers: 

Tommy Burke – PhD Student 
Email: tb44@st-andrews.ac.uk 
 

Dr. Urška Demšar – PhD Supervisor 
Email: urska.demsar@st-andrews.ac.uk 
  
Dr. Arzu Çöltekin – Research Collaborator 
Email: arzu.coltekin@geo.uzh.ch 
 
 
 
“I have read and understood this consent form, and agree to participate” 

Signed:       Date: 

_______________________________________________________________________ 
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d. Participant Information Sheet 

 

 

Participant Information Sheet 

Project Title  
An Evaluation of the Perceptual Scalability of a 2D Visualisation. 
 
What is  the study about?  
You are invited to take part in a usability experiment to acquire and analyse trajectories of eye 

movement data in two visual exploration settings that differ in the size of geographic data. We 

couple eye movement analysis in the context of usability evaluation with analysis of spatial 

trajectories. We investigate how the type of perceptual behaviour of analysis of individuals with 

regards to scalability is linked with particular patterns in eye movement trajectories.  

This study is being conducted as part of Tommy Burkes PhD thesis in the Centre for 

GeoInformatics from the School of Geography and GeoSciences at the University of St Andrews, 

and is in collaboration with Dr. Urška Demšar, Centre for GeoInformatics from the School of 

Geography and GeoSciences at the University of St Andrews and Dr. Arzu Çöltekin from the 

Department of Geography, Geographic Information Visualization & Analysis of the University of 

Zurich. 

Do I have to take Part? 

This information sheet has been written to help you decide if you would like to take part.   It is 

up to you and you alone whether or not to take part.   If you do decide to take part you will be 

free to withdraw at any time without providing a reason.    

What would I be required to do? 

You will be asked to complete an experiment which contains two parts (A and B). You will 

complete a series of simple tasks using the Geographical Information System (GIS) Software, 

ArcMap. The Arcmap visualisations will be varied 2D choropleth maps, and the datasets used to 

produce these maps will contain spatial units varying in both number and size as you move from 

task to task, and from part A to part B. 

We anticipate the experiment will not take more than 40 minutes to complete, including pre 

and post experiment briefs. 
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Will  my partic ipation be Anonym ous and Confidential?  
The identity of each participant will be anonymous, and data will be stored for up to 12 months 

after the experiment to carry out analysis. Only the researcher(s) and supervisor(s) will have 

access to the data which will be kept strictly confidential. Your permission may be sought in the 

Participant Consent form for the data you provide, which will be anonymised, to be used for 

future scholarly purposes. 

Storage and Destruction of Data Collected 

The data we collect will be accessible by the researcher(s) and supervisor(s) involved in this study 

only Any data obtained during the course of the experiment will be security protected and 

stored in a secure environment initially at in the Geographic Information Visualisation & Analysis 

unit and then at the Centre for GeoInformatics on a computer system hard drive. All data will be 

stored in an anonymised format. Your data will be stored for at least 12 months after the 

experiment to carry out analysis before being destroyed. 

What will happen to the results of the research study? 

The results will be finalised by the end of 2013 and written up as part of my/our PhD Thesis. We 

will also seek to produce at least one paper from the results of the experiment, and it is hoped 

that it will provide a basis to carry out research in the future. 

Are there any potential risks to taking part? 

The content of this experiment presents no risk what so ever to participants. If a participant 
wishes to withdraw from the experiment at any time and for any reason you may do so  
 
Questions  
You will have the opportunity to ask any questions in relation to this project before giving 

completing a Consent Form. 

Consent and Approval 

This research proposal has been scrutinised and been granted Ethical Approval through the 

University of St Andrews ethical approval process, and is hosted in the University of Zurich with 

the approval of Prof. Dr. Sara I. Fabrikant, head of the Geographic Information Visualization & 

Analysis Unit. 

What should I do if I have concerns about this study? 

A full outline of the procedures governed by the University Teaching and Research Ethical 

Committee is available at http://www.st-andrews.ac.uk/utrec/Guidelines/complaints/ 

Contact Detai ls  
Researcher: Tommy Burke (email: tb44@st-andrews.ac.uk, Phone:+44 77 333 44 5 66) 
Supervisor: Dr. Urška Demšar (email: urska.demsar@st-andrews.ac.uk) 
Host Collaborator: Dr. Arzu Çöltekin (email: arzu.coltekin@geo.uzh.ch)  
 

mailto:tb44@st-andrews.ac.uk
mailto:urska.demsar@st-andrews.ac.uk
mailto:arzu.coltekin@geo.uzh.ch
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e. Debriefing sheet 

 

Debriefing Sheet (Verbal Debriefing) 

First I will thank the individual for their participation. I will ask them how they found the 

experiment. I will explain we hope to discover the differences in patterns of eye movements on 

different sizes of datasets, and on different variations of the same type of visualisations. I will 

mention how the researchers mentioned in the Information sheet and Consent form hope to 

discover the point at which a participants search pattern changes, and to discover if there is a 

pattern in the type of eye movement trajectories for the different data sizes and the different 

visualisations. 

I will emphasise that any data obtained during the experiment will remain confidential, and that 

if they would like to be kept updated on the results of the research to let me know. They will be 

informed that they are free to contact any of the researchers mentioned on the consent and 

participant information sheet if they have any concerns or questions regarding the experiment 

that just took place. I will also let them know that they can withdraw their data at any time for 

any reason. 

Reason for verbal debriefing: I want to verbally debrief the participants because I believe they 

will have already had enough to read before the experiment began, and verbal debriefings can 

help to relax participants after the experiment has been complete because of the informality 

introduced. 

 


