Masters
Program

in Geospatial
Technologies
i Y B T W

VIRTUAL CAMPUS FOR THE UNIVERSITY JAUME |,
CASTELLON, SPAIN.

3D Modeling of the Campus Buildings using CityEngin e.

Sara Costa Antunes

Dissertation submitted in partial fulfilment of the requirements
for the Degree of Master of Science in Geospatial Technologies

IIIIIIIIII

€102

VIRTUAL CAMPUS FOR THE UNIVERSITY JAUME |, CASTELLO N, SPAIN.
Modeling 3D campus buildings using CityEngine.

Sara Costa Antunes

VIRTUAL CAMPUS FOR THE UNIVERSITY JAUME |, CASTELL®I, SPAIN.

3D Modeling of the Campus Buildings using CityErgin

Dissertation supervised by
Michael Gould, PhD
Escuela Superior de Tecnologias y Ciencias Expetates
University Jaume |, Castell6n, Spain

Dissertion co-supervised by
Joaquin Huerta, PhD
Escuela Superior de Tecnologias y Ciencias Expetates
University Jaume |, Castellén, Spain

Pedro Cabral, PhD
Instituto de Estatistica e Gestado de Informacao

Universidade Nova de Lisboa, Lisboa, Portugal

February 2013

ACKNOWLEDGMENTS

I wish to thank, first and foremost, my supervisdtsofessors Michael Gould,
Joaquin Huerta and Pedro Cabral for their suppondamost of all, for introducing me
this wonderful and exciting project — the ViscaSjnart Campus.

| would like to thank others within the GeoTech Ma®epartment of the University

Jaume | for their advice and guidance in the degelent of this project.

To my fellowGeospatial Technologies colleagues aodll my friends back home
that cared for me and always provided support andfidence throughout this Master

course.

Thank you to my parents who have been an authpraiof of eternal love and

support throughout my life.

Thank you Kristinn for your presence and constapert. It was a pleasure to

work with you.

Finally thank you to the Master Geotech consortidor giving me this

opportunity and life experience that | will neverdet.

VIRTUAL CAMPUS FOR THE UNIVERSITY JAUME |, CASTELLO N, SPAIN.

3D Modeling of the Campus Buildings using CityEngie.

ABSTRACT

The Virtual Smart Campus for the University of Jaum Visca Uji — is a project
that aims to transform the University of Jaume Jijunto a “Smart Campus”. Several
applications are part of the Smart Campus such g®ldce Finder, Energy
Consumption, Routes, Resources Management, andrliMigpping. Part of this
project is the creation of the 3D model of the emsity buildings using Esri software —
City Engine.
This study analysed two 3D modeling approachescguiaral modeling language
(CGA Shape) and manual modeling. The first, Commgbémerated Architecture (CGA)
shape is an extension of set grammars that have dgealied in CG successfully over
the years. And the second, CityEngine offers afsgliape creation and editing tools
that allows a more intuitive and pragmatic 3D maagltechniqueBoth approaches
have advantages and disadvantages, overall creaiBD model by using procedural
modelling language showed to be the more effi@adtpragmatic method.

KEYWORDS

Smart Campus

Smart Cities

3D GIS

Geovisualization

Computer Generated Architecture
Procedural Modeling

CGA Shape Grammar

Texturing

uJi

VISCAUJI

ESRI

CAD

XML

GML

KML

CGA

CEJ

WebGL

ACRONYMS

University Jaume |

Virtual Smart Campus for the Universityudae |
Environmental Systems Research Institute
Computer-aided design

Extensible Markup Language

Geographic Markup Language

Keyhole Markup Language

Computer Generated Architecture
CityEngine Scene File

Web-based Graphics Language

vi

TABLE OF CONTENTS

1 INTRODUCTION ...ttt it e e e ettt e e e e e e e ettt e e e eeasbbsaeeeeeaeeessnnnns 1
1.1 TheoretiCal FrameEWOIKccoeuuiiiieiee e e e e e e rm e e e e e eennn s 3
1.1.1 From 2D t0 3D GIS .oiiiiiiiieiieieieit ettt e e eeees 3
1.1.2 Online Geovisualization and StandardScoooveeeeeiiiiiiiiiiieeeeeeeeiieens 5
1.1.3 CGA and 3D Real World Representations w.we....cocovvvuieeeriiiieeeennnnnnnn. 6
1.2 Motivations and ODJECHIVESoutccemme e 8
2 METHODOLOGY ..oiiiiiiiiii i eeeie e e s e e emmmme e e e e e e e e e eaata e e e e e e e aeaeesanaeaaeenassnnaaaeeaeeennes 10
0t R I 0TS O T o1 o1 £ PSR 12
2.2 SOftWAre @nd DAtcuuuieieetmmmmmee e e e et e e e eete s e e e eaar e e eeetn s e eeaaeeeennnaeeeesnnnaeeees 13
2.3 ProQUCLION PrOCESScccuiiiiiiiee it eeeeeee e ettt e e e et n e e e e ee e e e e e e e eeanannnns 17
2.4 Procedural MOAEINGooiiiiiii et eeeme et e e e e eaaaans 18
2.4.1 ESTCE BUIldING .. .ot 21
2.4.2 The Students Residence BUilding.......c.cooiiiiiiii, 28
2.4.3 AQOra BUildiNgS........cooiiiiiiiiiie e 32
2.4.4 The Workshops BUildingcoooimmmmmmeeeeeieiiii e 34
2.5 ManUal MOOEING ..o et 35
2.5.1 The Sports BUIlAiNgG..........cooeiuuit e e e e e e e aeees 37
2.5.2 Paranimfo/Anditorium BUilding..........ccemeeeeeeiiiiieeiiiiee e 38
2.6 Texturing the MOAELcooiiiii e e e e 39
2.6.1 Crop IMage TOOl......ccouiiiiiiii e 40
2.6.2 Static Texturing TOO.........cooeiiiiiiieeer e 41
2.7 Model EXport and INtegratioN............coeveiieeeiiiiie e ee e e e e e eeaans 42
3 DISCUSSION L.ttt eeeeeee e e e e et e e e e e e e e e ettt e eaeeeeaesaaneeeeeaessnnnaaaaaaeeannes 45
N O] N[0 I8 15 []\ PP a7
o R U1 (01> V1Yo P 48
BIBLIOGRAPHIC REFERENCES ..ottt e e e e e e e e eaannees 50
Annex 1: CGA Rule File for the ESTCE BUildiNg. .cceu.ivvviiiiiiiii e eeea e 54
Annex 2: CGA Rule File for the Students Residengddigccooveiiiiiiiiiiiiine e 60
Annex 3: CGA rule file for the Workshops buildingcccooooiiiiiiii e 64
Annex 4: CGA rule file for the Agora BUIdINGS e c..coveeeeeeeeeeeeee e 67

Vii

INDEX OF TABLES

Table 1: CityEngine’s user analysis applied te gtudy

viii

INDEX OF FIGURES
Figure 1: Flowchart of the methodology used in gtigly. 10
Figure 2: Campus area in CityEngine with the firadi 3D buildings. 12

Figure 3: Esri Local Government Information Modpphed to ViscaUJi project
(Sanchis & Arnal & Molina & Sanchis & Diaz & Huer&aGould, 2012). 14

Figure 4: CityEngine ViscaUji File System. On te& image, the Scene view and on
the right image the Navigator VIEW. ... 15

Figure 5: View of the CGA rule file in the CGA ruéglitor window and on the right, the
schematic view of the rule. ... 16

Figure 6: The Inspector Window for the Agora CGAerdile.ccocoveevenennnnne. 17

Figure 7: The scope of a shape. The point P, tegetith the three axis X, Y, and Z and
a size S define a box in space that contains theesfMuller & Parish& Haegler &
Ulmer &Van GOool, 2006).oveeeeeiiieeiicemmm e e et e e e ee e e e eean e eenes 19

Figure 8: CGA rule like shape tre€.ouueeeiiiiiiii e 20

Figure 9: ESTCE building located on the southwesther of the Campus. (Departament
de Matematiques. ESTCE. Universitat Jaume |, Jr2(i 3.
http:/MWWW.AeptMat.Uji.ES/). ...coeeeeee e e e 21

Figure 10: CityEngine Web Scene 3D Model of the EEuilding.............cccovvvenenn. 21

Figure 11: Image on the left: Wireframe on shadedilired view of the 3D building and
subdivision of the footprint. Image on the righadk side of the building. 22

Figure 12: On the right, the output of the “Comgédr”o peration. The left image shows
discontinUed fACATE.iiiiiiiiiiiieeememe e 23

Figure 13: On the right, CityEngine Web Scene tedaiiew of ESTCE's South
Facade. On the left, a Split Operation along thexié on a basic facade design. .. 26

Figure 14: On the right, CityEngine Web Scene tedaiiew of ESTCE's South
Facade. The image on the left is the Split Opemationg the X axis, in a basic
FACAAE UESIGN. ...ttt e e e e e e anaeaa 27

Figure 15: On the left North West view of the Reside. (tuestudios.com. Residencia
Universitaria Campus — Castellon. January 2013.
http://www.tusestudios.com/content/residencia-ursNaria-campus-castellon-2).
On the right image: South view of the Residendemédez, Olivia.
oidocozina.blogspot.com.eMay2012.January2013.
http://oidocozina.blogspot.com.es/2012/05/indepanideuniversitaria.html) 28

Figure 16 : CityEngine Web Scane 3D model reprediemt of the North West and
South facades of the Student’s Residence Building..............cccccoeeeiiiiiiieiennnnn.n. 28

Figure 17: On the left image: CityEngine Web Sceiegv of the West facade 3D
Model. On the right, SideFacade Rule, split aldreyt axis on a basic facade

(0 LTS T [PR 30
Figure 18: Ground Floor rule on a basic facadegesi............ccccooeeeviiiiieiiinnnnnnn. 30.
Figure 19: CityEngine Web Scene model of the rgdion the main entrance of the

Student’'s Residence Building.o o occeeei e 31
Figure 20: CityEngine Web Scene of the Agora bogicccooveeveeeeeeeeennne. 32
Figure 21: Discontinued facades in Agora building€ityEngine..............ccccocuvn..... 32
Figure 22: CityEngine Web Scene of the Agora Wasadle 3D model. 33
Figure 23: Basic facade design for the rules Apd WindowFrame of the West facade

iN the Agora DUIINGS.cooiiiii e 33
Figure 24: CityEngine Web Scene of the 3D Workshaogkling model..................... 34

Figure 25: Creating and Editing shapes manualliberdan CityEngine (CityEngine
L L= T2 0 PRSPPI 35

Figure 26: Examples created on the fly to showuttege of the polygon shape
modeling tools in the ViscaUJi CityENQING SCENE..n......ccovvvviiiiiieiiiiiiiiiaeee e 36

Figure 27: The image on the left is the CityEngiieb Scene of the 3D model of the
entrance facade of the Sports building. On thetrglphotograph from the Sports
building. (Arga.com. Pabellén polideportivo de laitkrsidad Jaume | de
Castellén. November 2004. January 2013.
http://arqa.com/arquitectura/internacional/pabellgolideportivo-de-la-
universidad-jaume-i-de-castellon.hdml..............ccoooo i, 37

Figure 28: CityEngine Web Scene 3D Sports Buildimagel.cccooeeeeveiiennnnn. 37

Figure 29: On top a photograph of the Auditoriunag@llon Convention Bureau -
Turismo y negocios en Castellon. 2010. January 2013
http://www.castelloncongresos.com/web/index.php@opitom_onestabliments&ta
sk=listTipo&id=21&Itemid=33). And below, CityEngin@&/eb Scene from the
AUdItorium BUIING. ...coooeiii e 38

Figure 30: CityEngine’s Crop Image tool. On the &éle a photograph as input and on
the right the result OULPUL.cooiiii i 40

Figure 31: Use of City Engine’s Shape Texturing lMadhe Auditorium Building..... 41

Figure 32: Autodesk 3D Studio Max university buigs. On the left, the Humanities
Faculty and on the right, the Library. (Geotech,Djta)..............ccoevvieeiiiiiineennns 43

Figure 33: Autodesk 3D Studio Max university builgs: on the left image the

Technology & Experimental Sciences building andhanright the Economics
Faculty. (Geotech, Uji Data)ommmeeeeeeiiieeeeiiieeeeeiis e ee e e e e eeeeens 44

Xi

1 INTRODUCTION

The University Jaume | (Uji) is one of the majosearch institution located in the
Valencian Community, Spain. Created in 1991 islalipunstitution of higher education
and research which aims for the social, econoriccattural development of the city of
Castelldn, in particular. UJi is a vibrant, compieéi and enterprising university.

The development of a strategic plan and the fomattn of their image and
communication policy, endorse UJi as an entity tlsatcommitted to quality and
transparent management, with a strong social comenit with its surroundings. The
UJi campus, a single and attractive campus allolsec relationships between the
different faculties and their students. Currentlli bas 31 degrees and diplomas courses
available to about 13, 500 students, with 1120heecand 640 administrative services
professionals.

In the last couple years, UJi decides to take apomant step in their
technological and economical development — the Stdarproject. Smart UJl means
Smart Campus. A Smart Campus has the goal to pr@andnteractive map and services
that allows people to visualize, locate and acéefssmation about the campus street
network, buildings, classrooms, departments, progreoffices, cafeterias, residence,
green spaces, and so forth. The concept of SmanpGs follows the same principles
than the known Smart Cities concept/policy: findmé&t” solutions to provide
guantitative and qualitative improvement of lifetbé populations, whether to an urban
population or students in a campus.

Smart UJi intends to improve the resources and \behiamanagement in the
campus and, most of all, aims to produce spatith @md manage information to
optimize the use of all resources related to thepess. Being a university campus a
smaller enclosure than a city, this concept serves testing ground for the
implementation of real Smart City.

For instance, the development of services and egipins supported by a data
gathering platform that integrates real time infatimn systems and intelligent energy
management systems will teach the user to learntbamteract with the building and

thus, the building learns how to interact with tiser in a more energy efficient way.

At this point, ViscaUJi is a map-based view of e and/or exterior assets on
the university campus that enables employees, stei@ad visitors to locate an area of
interest and review information stored in the humesources and facilities management
database. In the future, will also allow employees visitors to deliver a web-based
service request or booking spaces applicationsragedrate other existing services like
the monitoring of energy consumptions or solid wastmanagement{GEOTEC,
Geospatial Technologies Research Group, 2012

Among the applications for the monitoring and mamagnt of resources currently
the prototype incorporates a customer display, dase ESRI map templates, to
visualize and obtain information from all of thengaus outdoor spaces (sidewalks,
parks, parking lots, bike routes). As well as sfie@lements such as trees, different
types of containers residues or spots reservehidgcle parking.

With the finalization of this project the prototypéll be updated into a 3D scene.
All the campus buildings, street network and a#l tutdoor spaces as well as, indoor
spaces will be displayed in a near future in 3Opdiolly.

Nowadays, more and more people are increasinglprbeg familiar with 3D
visualization of the earth's surface, for instaGo®gle Maps or/and Google Earth.

GIS applications such as ArcGIS are taking fuNattage of these capabilities
and empowering their software with 3D tools.

Using 3D building models is extremely helpful, suofodels let designers,
architects, and managers virtually walk through rajget to get a more intuitive
perspective on their work. They can also checksagdés validity by running computer
simulations of energy, lighting, acoustics, fireydaother characteristics and thereby
modify or adjust designs as needed before congirubegins.

In brief, this thesis will focus on the proceduretioe 3D creation of the first
university buildings using the new Esri softwar€ityEngine.

It is relevant to mention that the creation of Smddi and the 3D data in
CityEngine is quite new and unique. There is ontheo example that was created in the
same conditions as UJi, which is the Esri CampurRedlands.

The following chapter reviews some relevant frameuwo

1.1 Theoretical Framework

1.1.1 From 2D to 3D GIS

Over the past 20 years, GIS has become a soptiedicystem for maintaining
and analysing spatial and thematic information patial objects. From paper maps to
digital cartography, GIS has always been dynamitiarevolution. In the early 90's, the
introduction of 2.5D concept enabled GIS to takeotirer dimensions and enabled users
to get closer to the real world. The continuousrisrpments in GIS are allowing us to
visualize the world in a true 3D environment. G§$ho longer 2D, but is now becoming
3D.

3D City Models are digital representations of thartE's surface and related
objects belonging to urban areas. The most comreerofti3D geovisualisation today is
within public planning, architecture, environmentabnitoring and landscape planning.
For instance, museums focus on 3D information f@sentations, using its unique
ability for landscape visualisation and for visgalg temporal changes. Tourism plays
an increasing role, while the gaming industry keggavisualisation under surveillance.
(Nielsen, 2007)

The fact that we are now capable of building 3DyCModels in a GIS
environment, is allowing users to overcome soméaditions of 2D GIS, such as, noise
prediction models, water flood models, air pollatimodels, and so forth.

Many disciplines are evolving into 3D. When it cam® scientifically correct
visualisations, like in geovisualisation, the adeges are many. First of all,
Presentation: 3D models are natural and cognitigabier to interpret and are thus more
appropriate to communicate ideas and visions; pJdtation: the human vision is made
to quickly interpret a large amount of content atedin a scene. There are relations in a
scene which the human brain perceive, often withbeing conscious of it; 3)
Immersion: The user can be led through hardwarerfades to get the feeling of
immersion into the scene and thereby to have axgteense of being in a physical
world. This has been used in adventure oriented etspdas well as in product
development of for instance engines; 4) Documeamtatiluch geographical information

contains height information that are only handledadditional information in 2D; and

5) Simulations and dynamics: temporal simulatioh8D data can give new ways of
studying complex processes in nature and socidtglgen, 2007)

The improvement of 3D data collection techniqueshsas aerial and close range
photogrammetry, airborne or ground based lasernsecgrand GPS are an important
factor for the development of 3D modeling.

The development of laser-scanning has reachede& $ificient for providing
data for realistic 3D geovisualisation modellindhigh today is the subject of various
terrain models and automatic object generation.

Among the large GIS companies, ESRI has develoatias of 3D applications,
the ArcGIS 3DAnalyst including ArcGlobe. ArcScerMapinfo’s Vertical Mapper is
the competitive response to ArcGIS and another tyjpproduct is the CAD-related
programs (Nielsen, 2007).

In CAD models such as 3D Studio Max and SketchWppBjects are represented
by vectors as points, lines and polygons in a doatd system. The CAD models
representations have a high degree of precision dmtdil therefore they are more
suitable for a limited geographical area. Their iss@ery popular in architecture and
engineering projects, and not as much for geogecaplprojects. CAD models aren't
very useful for storing associated attributes @otogical information and thus are not
useful for analytical tasks.

Other new techniques that push 3D GIS developmemts hardware
developments: processors, memory and disk spadgeedeivave become more efficient
in processing large data sets, especially graploesds also used by gaming
industry.(Stoter & Zlatanova, 2003). The advancemenveb technologies has greatly
contributed to the successful implementation of Gily Models to support town
planning, environmental analysis, security and gew®cy management, as well as many

other applications. (Elwannas, 2011)

1.1.2 Online Geovisualization and Standards

Today, we live in an online world. Everything angeg/one is online. The web
service has arrived and it is here to stay. Nowsdais possible to image when asked
about where a certain place is located to go a sfuelkand open up your world atlas?
Most probably, you will use Google Maps.

Nowadays, geobrowsers such as Google maps, GBagle, Bing maps among
others revolutionary the way we see the world te&&r growing popularity is due to
easy access from the users and the ability to Nzsularge geographical areas. Online
map services allow the user to visualize, inteaud search for spatial information,
using high quality aerial photographs.

Google Maps offers Street View that allows therusevisualize and explore
places and geographical areas around the worldughro360-degree street-level
imagery. Bing Maps offers the Birds Eye view thisavas the user to visualize the scene
from above, as if the user is a bird, gaining @avated view from the object below.

In that sense, for many years, virtual globes wa@stly seen as pleasant
visualisation tools, online applications that alldwe user to visualize the world as it is.

However, in the last years virtual globes havenba&roducing 3D models. The
3D web scenes, especially of urban areas, have Heeeloping in an impressive
rhythm. For instance Google Maps offers a free rtingdool to create 3D models of
any place on the globe (SketchUp Google, 2010)tcBkip is a basic, easy and intuitive
program for drawing objects (buildings) and applytextures in a very automatic and
practical way. Still, comparing 3D modeling toolsda3D software programs are out of
the scope of this thesis.

Behind the 3D web geovisualisation, there is glage that defines a set of
rules for encoding documents in a format that ith bmman-readable and machine. The
most known is XML (Extensible Markup Language). farthe large number of XML
standards it is worth to mention the: Geographicrkdp (GML) and the Keyhole
Markup Language (KML). GML is a grammar to expregographical features and
KML is a geographic notation and visualization withthe web. CityGML and
GoogleEarth are the most known examples.

CityGML not only represents the shape and grapha&ggpearance of 3D

buildings but specifically addresses the objecta#ins and the thematic properties,

taxonomies and aggregations. In the past city nsod#en have been built as purely
graphical 3D models, new applications have inforomatneeds beyond visual
characteristics. Besides geometry, semantics gralagy of the 3D objects have to be
taken into account in order to enable for themgtieries, analysis tasks, automatic
integration, validity checking, or spatial data mm

CityGML is an open source modeling language forGE Models and a general
information model for the representation of 3D urlmdjects. Berlin is an example for
having an official 3D model that is based on thgyGML and uses it as the exchange

format between database, editor, and presentatgiarss.

1.1.3 CGA and 3D Real World Representations

Real world 3D representations such as the onesemtex$ in this study
incorporate representations in a realistic wHye X, y, and z coordinates are mainly
used to show the real world dimensions, elevatio'a the dimensions, including
height of buildings or other objectAdditional details are suggested through photo
texturing of the facades while the details areexgtlicitly modelled in the underlying
geometric model.

There are variety of approaches based on diffedatd sources and aiming
different resolution and accuracy. Accordingly ttwt8r & Zlatanova, there are four
general approaches for creating 3D models:

- Bottom-up: using footprints (from existing 2D ns@nd extrude the footprints
with a given height using laser scan data, surggy®PS or photogrammetry data.
Consequently, this approach has the problem oti¢hail of roofs cannot be modelled.
This approach is known to be very fast and sufficier applications that do not need
high accuracy or that don't need roofs, and marsilde

- Top-down: using the roof obtained from aerial foigpaphs, airborne laser scan
data and some height information from the grounuis Bpproach on the other hand
emphasises the modeling of the roofs.

- detailed reconstructing of all details. The mostowmn approach is to fit
predefined shapes to the 3D point clouds obtaimech laser scan data or 3D edges

extracted from aerial photographs. The advantadgki®fipproach is the full automation

and the major disadvantage is that it is very taarsuming since the algorithms used
are very complex. And the last approach is a coatlun of all of them.

There isn't a general approach, the choice of rttethod has to take in
consideration the type of project, the type of ot§e¢o model (if virtual or real), the data
sources available, as well, as the software andifae definitions.

When modelling real objects, such as in this mipjhe details are what makes
the 3D construction/creation labour intensive. Thdetails be adjusted to the
requirements of the application and the time elemen

Procedural modeling, based on CGA shape gramnsasspowerful method to
efficiently produce 3D building models. It offerdightweight semantically meaningful
representation instead of huge mesh files. (Matkiddartinovic & Weissenbergy &
Van Goo, 2011).

In architecture, shape grammars were successfsélyl for the construction and
analysis of architectural design. (Bao & Schwarz @&Wa, 2013). CGA Shape has a
standardized description with powerful shape opamatwhile remaining readable to
humans and a commercial tool (CityEngine) existsémdering 3D models from CGA
Shape rules. The CGA Shape grammar supports a laegg number of different
operations and functions in its rules.(Mathias &rimvic & Weissenbergy & Van
Goo, 2011).

Grammar-based architectural modeling has a lontpryis Briefly the most
important facts will be exposed.

In 1971, George Stiny in his artichape Grammars and the Generative
Specification of Painting and Sculptumetroduced the idea of shape grammars. In
reality, shape grammars are similar to phrase tstrecgrammars introduced in the
discipline of linguistics. Where phrase structurangmars are defined over an alphabet
of symbols and generate one-dimensional stringsyofibols, shape grammars are
defined over an alphabet of shapes and generaitmendional shapes. (Stiny & Gips,
1972).

In 2003, a breakthrough came with the introductidrsplit grammars in the
article “Instant Architecture” by Wonka & Wimmer &illion & Ribarsky.

Split grammars are a specialized type of set gramoperating on shapes. Its

suitability for the automatic modeling of buildinggeems from the fact that restrictions

have been carefully chosen so as to strike a balbatwveen the expressiveness of the
grammar, i.e., the number of different designseitpts, and its suitability for automatic
rule selection. Further development of this idehttethe introduction of CGA Shape, a
shape grammar designed for the procedural generafidarge scale urban models.
(Wonka & Wimmer & Sillion & Ribarsky, 2003)

In 2008, Markus Lipp co-created a framework fateractive grammar editing
that lead to a more approachable procedural magleWvith his article, a real-time
interactive visual editing paradigm for shape grarsrwas introduced, allowing the
creation of rule bases from scratch without teld fditing. Shape-grammar based
procedural techniques were successfully appligtié¢ocreation of architectural models.
However, those methods are text based, and magftierbe difficult to use for artists
with little computer science background. (Lipp & Wka & Wimmer, 2008)

In summary, nowadays Shape Grammars are knowrhér efficiency and
practical methods of creating and modeling urbarddaapes. CityEngine procedural
modeling language using shape grammars is a peefeminple how the modeling

process of an urban area can be made in a fasb@edlitious way.

1.2 Motivations and Objectives

This project main goal is to create 3D data boddi for visualization, model
interaction, and in further development, use thedaia to perform simulations. As far
as possible, through a virtual scene created bypaten generated graphics, the model

must match accurately with the real campus.

Viewing Geospatial data in 3D leads to new ingghi¥e live in a 3D world...so

model and present your data in 3D! (Sengupta, 2011)

The Visca Uji project is a very ambitious and ietting project that surely will
bring more “visibility” to the University Jaume t a national and international level.
This project is all about integration. Integratioindifferent projects that joined together
will create Smart UJi. Different projects meanswadl, different data sources, such as,

2D CAD files, 3D vector, Information Models, Pulbiisg templates, UJI databases,

Satellite images, Aerial Photographs, Sensors aongv@sourcing. This information is

georreferenced, organized and prepared for funtitegration and publication online.

At this point, the data is published online is: g@is online, ArcGis Server and
ESRI topographic layer. Regarding the applicatisw,far the UJi Place Finder is
created and operational. This is a brief descmptdout the current status of the
ViscaUJi. Further on the section “Data and SoftWatfee data structure will be better

explained, as well as, the main properties of Gityige.

The results of this project will be 3D universiiyildings that will be used as a
shell to visualize and interact with other appli@as, for instance, indoor mapping
navigation and/or energy consumption. Additionahdfés of using 3D models for
simulations, provides a better platform for genaratrealistic renderings of new
infrastructure, especially if a temporal contexicls as solar or seasonal studies, is
required. 3D city models are also used for secuaipplications such as landslide

prevention or flood simulation.

Using the base information from Uji (Uji database)yill be possible to produce
3D content with a distinctive conceptual design ammbeling solution for the efficient
creation of 3D university buildings, streets andeexr spaces (such as trees, urban
furniture and so forth). In addition to the 3D mimdeisualization and user interaction,
this project will produce data — 3D data. That Hofhe will be displayed and used as

platform for other applications.

2 METHODOLOGY

The methodological approach used in this projecuismarized in Fig. And

described in this section. The dashed lines reptéstire work.

3D Building Design
CityEngine

Data Resources

i i . . CAD File with building Interior Spaces
“ViscaUji” Geodatabase: Building Footprints e wi U:' ing ior Sp

Virtual Globes (Google Maps/Bing Maps 5
v

Indoor Mapping

v

Procedural Modeling Manual Modeling
Rule driven design in 3D usir Creating and Editing Shapes
parametric rules Manually

Generate Models

Texturing

Future Work and Conclusions

Figure 1: Flowchart of the methodology used iis gtudy.

10

The workflow for this project starts with the desigf the 3D buildings in
CityEngine. From the moment CityEngine is installgsl learning process begins. It
is important to understand what CityEngine mairerggth is and what makes it
different. Many materials, tutorials and demos available on the web and were

crucial for learning how to work with CityEngine.

The next step was the integration of the datauress available for this
project. In the Figure 1, virtual globes are memtid not as data source, but as online
tools that allow a better perspective of a buildifipe use of Google Maps, Google
Earth and Bing Maps revealed to be very usefulesin@llowed the visualization of
the university buildings without having to travel the campus every other day.
However, Google Maps and/or Google Earth don’t heseess to all the streets in the
campus. The simple going around a building wasomes cases impossible. On the
other hand, Bing Maps became a good resource, iaipetith the Bird's Eye view.
The elevated view of the buildings from above gawgood perspective that Google
Maps in some cases, couldn't. On section 2.2 tterdaources will be explained with

more detail.

After importing and integrate the source data iGityEngine, the practical
creation of the 3D buildings begin. There are twaimmethods for the creation of 3D
data: manual modeling and procedural modeling.mh& goal is to experiment both
methods, describe them and in the end, compare. thenthe procedural modeling
method the university buildings ESTCE, Student'sitRence, Workshops and Agora
were created. And for the manual modeling the amdsdldings were the sports
pavilion and auditorium building. From section 28 section 2.6, a detailed
description of the methods is presented, as wedl explanation of both procedures

applied for each building mentioned previously.

Texturing the model is the last process of thédings 3D model creation and

consists of assigning digital or photograph texducethe buildings.

Finally, on the final sections of the document amalysis will be made
regarding the both methods, the performance o$difisvare, its main advantages and

disadvantages, as well as, the main contributhisfstudy.

11

2.1 The Campus

The Uji Campus modeling process includes the demnghdrawing of the model

in 3D, visualization and adding realism to the madlels by applying real facades.

Figure 2: Campus area in CityEngine with the firedi 3D buildings.

The Uji campus is a quite large and ample campmuighft reason and regarding

the deadline factor, is wasn't possible to modethe buildings in 3D.

The buildings created in 3D were somehow randoralgcted. Some reasons
such as, complexity of the building design, facadedterns, and the strategic
importance of the building in the campus were fexcton my mind. The buildings
modelled in CityEngine were: the School for Teclogyl and Experimental Sciences
(ESTCE); the Students Residence; the Agora buitdinige Workshop building; the

Sports centre; and the Auditorium building.

Figure 2 illustrates a final version of the Uji gaus in CityEngine.

12

2.2 Software and Data

Esri CityEngine is a 3D modeling software applioatideveloped by Esri R&D
Center Zurich (formerly Procedural Inc.). CityEngiwas best known for their use of
procedural modeling approach in the creation ohorbcenarios for video games and
movies. CityEngine creates urban environments soratch, based on a hierarchical set
of comprehensible rules that can be extended depgiod the user’'s needs. (Muller &
Parish, 2001). This approach enables the efficiegation of detailed large-scale 3D

city models, in a less time-consuming period.

Esri CityEngine main advantage is the capabilitymaideling a complete urban
landscape using a comparatively small set of $izdlsand geographical input data.
Specifically for this project, the 2D campus builglifootprints were the only data
needed to simply apply an extrusion operation gmlyathe rules for the creation of the
3D buildings.

In my opinion, CityEngine is an attempt to unifyrédb major areas:
GIS/Geography, Civil Engineering and Computer GregyDesign. This means that,
CityEngine was created to combine GIS with computenerated architecture.
CityEngine allows the compilation, use, and manajegeographic information,
including shapefile and file Geodatabase formatc@s native formats). As well as,
performing many GIS tasks, such as: mapping, datgpdation, analysis, Geodatabase

management, and geographic information sharing (Qf@ine).

The ability to easily create 3D urban scenes baseéexisting GIS data is one of
the key strengths of CityEngine. The software afloyou to create high-quality 3D
content using nothing more than a combination ofd2a, attributes, and procedurally
defined rules. This means that any GIS organizatiih be able to create visually
stunning 3D urban environments using the data #imady have. (Muller & Parish,
2001)

The data used for the model creation was organis@edGeodatabase that follow
ESRI model known as Local Government Informationdelp a schema-only layer
package containing the schema of the data it nefeseThe content schema was

migrated into a geodatabase design

13

This allowed benefiting from a structure of predefi relationships between the
different elements that characterize infrastructared services, just like a city

government.

‘ Feature dataset

FacilitiesStreets Feature dataset
ReferenceData

"Il Lira featura class

i Line fzalure class
SiteAmenities

Line fapture class
PavementMarkngLing

Painl feabure class
PavementMarking

E Podygal
WaterBod

E Palygon feature dass

StreatPavement ‘ Feature dataset
o p— CitizenService
ke

= Paolygon laature class

E:l Polygan legiure class
BuildinglntericrSpace

i'_ 1L i T
Bullding

ServiceRequestComment

E:l Poiygon feslure class
BuildingFloors

Figure 3: Esri Local Government Information Modpphled to ViscaUJi project (Sanchis & Arnal &
Molina & Sanchis & Diaz & Huerta & Gould, 2012).

This geodatabase was the main data source we ltadsabefore starting the
realization of the project. Apart from that, thesere CAD files of some of the
buildings that included interior spaces lines; ancexcel database of some of the UJi
buildings. The database fields were about the physiharacteristics of each space,
such as, surface area, building name, floor nunflmt 1D, space ID, which is the
unique identifier of each indoor space. This idetican be related to other data such
as the faculty, department, use, staff and themtamt information, equipment,

facilities use, energy consumption, and so on.

After having access to the data, the geodatabasemnn@orted into CityEngine.
There were some initial problems regarding theresfee system when loading it,
since the file geodatabase had to be in WGS 1984ldMdercator, the same
reference system in ArcGIS.

14

CityEngine's file system can be seen on the flguiiehe data structure is

organized in folders and it is arranged in the §ator window.

= *Scene I

b search expression

@@ Scene Light

& & Pancrama

& ® Terain

" @ FacilitiesStreets\Buildings (202 Objects)

>
> " ® Shapes from FacilitiesStreets\Building_Models (220 Objects)
> rﬂ.\ Humanidades (1695 Objects) = - =
> rd‘\ EdificiosAgora (2314 Objects) L=<J-> = L_';_i ,_-.J" ‘_-,.‘:r e 'i’ = ;'
> I @ Edificio_TD (9 Objects) . . -
. i @ Edificio Juridicas (9 Objects) Mavigator &3 |
> W @ Edificio_C2 (20 Objects) a = dthVersionlji
> W @ Edificio_C1 (11 Objects) b= assets
> @ Bll?lfo.teca (14 Objec.ts] b G data
> W @ Edificio_TCL (12 Objects) =
W @ FacilitiesStreets\LandscapeArea Import (2596 Objects) " If_ e
> fm FacilitiesStreets\StreetPavement Import (1775 Objects) bz maps
4 @ FacilitiesStreets\Street Import (1208 Objects) i (= models

@ Network b (= rules

» I} Blocks 4 [scenes
> W @ rectorateS Import (70 Objects) g kiddil .cej

¥ @ HdificiosAgora P.a.st.e((] ObJects). . . % Kiddli2.cej

> " @ Shapes from FacilitiesStreets\Buildings_Models (3 Objects) B i
> " @® Shapes from Shapes from FacilitiesStreets\Buildings_Models_Models (2 Objeci = Vet ony

I» = scripts

Figure 4: CityEngine ViscaUiji File System. On teét image, the Scene view and on the right image th
Navigator view.

The Navigator is the main tool to navigate and afgepn files and folders. It
is possible to edit CGA and scene files as wefirasiding the basic operations such

as copying, renaming and deleting files and folders

Bellow the Navigator window, is the Scene. Thertéceindow is the central
place where you manage the scene and where thasddisplayed in layers, a bit
similar to the ArcGis Table of Contents. Currentlye following layer types exist:
environment layers control such as scene's panooarttee scene lightgraph layers
containing street networks and blocks; dynamic sbkafstreet shapes, building
footprints), and generated models. Shape Layertarostatic shapes, typically used
as building footprints for generation of CGA mod€[SityEngine, Guide, 2012). The
format of the scene files are CEJ.

15

Next on the Figure 4 is a view of the CGA ruletediThe CGA rule editor
allows the user to write, modify, add and replade files. It is an interactive window
for the user to work on their rule files. SinceyEihgine main strength is working
with procedural modeling language and the creatib®©GA rule files to generate

models, this window is essential.

e Es 4Eh R N K@ o8

[Navigator 52|

(

[Agora.coa 52 |

extruds (world.v, 7)

Footprintl --> extrude (world.w, 7.50)
@® comp (£) { world.north: north | world.south : Wall | warld.cast : eag

nerth —-> split (%) {-0.1: Wall | ~0.4: WallSplitc | ~0.2: Wall | ~O.

WallSplit —-> split: (¥) {~0: Wall | ~0.4: Window2 | ~0.4: Window2 | -

##FRONT WALL TOWARDS AGORA SQUARESHwwwwwwn

Figure 5: View of the CGA rule file in the CGA ruglitor window and on the right, the schematic

view of the rule.

Following the CGA Editor View, the "Inspector” alls the user to visualize and
modify CityEngine objects. Depending on the typ®bject selected — shape, face, edge
or vertex — the inspector provides full acceshodbject's attributes, materials, vertices
and information. Users that are familiar with Ar&3amily of software, this window is
more or less similar to the Attribute table. Altighu the appearance it is not a table, the

list of attributes is exposed and the user is foemodify, add and/or delete attributes.

16

Object Attributes

Area G
FACILITYKEY G
OBJECTID 18
SHAPE_Area 2424.108016
SHAPE_Length 245778652

ee?

v Materials
W Vertices

" Information

Figure 6: The Inspector Window for the Agora CGAerfile.

2.3 Production Process

After describing the software main properties apécsications, and the data
resources, this section will explain how the ceatand design of the 3D models

processes.

Usually, the 3D model creation starts by desigrilmg street network. However,
since this is a shared project, the 3D buildingsvainat this study will focus. Later, this

will have some implications when joining of the alat

The design of the 3D models always starts by exiguthe buildings. A complete
3D building model has three major assemblies: walltshitectural components, and
floors and ceilings. Extrusion should handle eastembly differently according to its

unique characteristics and the specific applicatieads. (Muller & Parish, 2006)

Extrusion operation is applied to the building foatts, from thematic 2D map,
using CGA rules and according to their approxintegight. All heights of the buildings
were calculated by floor (each floor on average daseters). The attribute height is
always possible to change using the procedural imgdi&anguage, meaning that it is

possible to change whenever.

Due to the nature of the CGA Shape, this ensuigdltle resulting rule set is size-

independent and can later be used in a flexible {Wyller & Parish, 2006)

17

Each building in Uji is complex and composed byatént and multi geometries.

In some cases, the buildings have different tyfpésxwures or colours in their facades.

During my learning process of CityEngine, it wdecided to apply a rule per
building. Somehow, this goes against the main “pdweé this software, since City
Engine’s strength relies on generating city landesausing one CGA rule file.
However, a single rule file was applied for eacliding, since each building at UJi is
unigue, from an architectural perspective. CitylBRgis use best for huge masses of
buildings which obey the same rules; it is notlgetie best tool to recreate individual
real world buildings. (Matthias Buehler, ESRI Sehio

2.4 Procedural Modeling

Procedural modeling language can simply be defaged programming language
that uses algorithms/ rules — CGA shape grammasruCGA shape, a novel shape
grammar for the procedural modeling of CG architext produces building shells with
high visual quality and geometric detgMuller & Parish& Haegler & Ulmer &Van
Gool, 2006)

The CGA shape grammar is defined by four companentinite set of shapes; a

finite set of attributes; a finite set of operagpand a finite set of production rules.

A shape consists of a symbol (string), geometryoifgetric attributes) and

numeric attributes. Shapes are identified by symlsisally a string.

Geometric attributes correspond to the scope, emted bounding box in space
(Figure 6). The most important geometric attribuaess the position P, three orthogonal
vectors X, Y, and Z, describing a coordinate systaimmd a size vector S. These
attributes define an oriented bounding box in speadéed scope. (Muller & Parish&
Haegler & Ulmer &Van Gool, 2006)

18

Figure 7: The scope of a shape. The point P, tegetith the three axis X, Y, and Z and a size Snéeh
box in space that contains the shape (Muller &dP&iHaegler & Ulmer &Van Gool, 2006).

Shape Operations are a very important componehgeishape grammar and there
are essentially four types. First, the Scope omeratmodify the scope of a given shape
and include translation, rotation, and resizinge Bplit operations split the scope along
a given axis, with split sizes as attributes. Thepé&at operations repeat a shape in a
given direction as long as there is enough spac€GA Shape they are written as a
part of a split rule. For example, a window getseaed over the whole length of a
floor. And lastly, the Component split operationitsp3D scopes into shapes of lesser
dimension, e.g. faces, edges, or vertices. (MatRiddartinovic & Weissenbergy &
Van Goo, 2011).

Shape grammar rules modify and replace shapeatitely evolve and develops a
design by adding more and more details (wall, 8oawindows, doors). The model
production usually starts from an initial shape,ickhis most commonly a building

footprint. This shape is gradually refined as raes successively applied.

In summary, the example of the shape grammatrisealike structure. Its nodes
represent shapes, split, component split and rejgesations, capturing the structure of
the building. The process begins with the extractadi shape symbols, and their
classification as terminal or non-terminal shapmlsgls. In the next step, the rule set is

analyzed, creating the tree structure.

19

Figure 8: CGA rule like shape tree.

In the following section, the design process wilirs by applying CGA shape
grammar rule to some buildings on the campus. Eutbncepts and specifications will

be described.

20

2.4.1 ESTCE Building

The first building campus modelled in 3D was thBecuela Superior de
Tecnologias y Ciencias Experimenta(ESTCE) This building is where the GeoTech
Master department is located. The geometry of thieling isn't very complex.

Figure 9: ESTCE building located on the southwesher of the Campus. (Departament de
Matematiques. ESTCE. Universitat Jaume |, JanR@iB. http://www.deptmat.uji.es/).

BULCUI R

T

I
=2 SO e
|
| H

Figure 10: CityEngine Web Scene 3D Model of the EETuilding.

When modeling a real building it is important fesf look at the geometric
shapes of the building, as well as, the buildinigime the facades (if they are identical
or diverse, type of windows, types of textures,)etBuilding mass models are most

naturally constructed as a union of volumetric €safie Corbusier 1985; Mitchell

1990).

21

It is important to have a clear idea of what i;ngado be modelled. To help in
that task taking photograplis situ, and in case it isn't possible, using online virtual
globes such as, Google Maps, Bing Maps and GoogtéhEs essential to get the
whole picture of the building.

In order to make easier the process of modelindpthieling, the building footprint

is divided into four shapes. To all of them a diffiet rule is assigned.

Footprint3b

Footprint2 Footprint3 Footprint3Circle

Figure 11: Image on the left: Wireframe on shadediired view of the 3D building and subdivision of
the footprint. Image on the right: Back side of thalding.

The first and basic operation to generate a 3limgj is calledExtrusion (Line
1 of the code). This operation will increase thee¢hdimension of the footprint
according to the height value of the building iefided. The three-dimension has to be
aligned correctly with the up axis in the world odioate system, in this case the WGS
1984 World Mercator. Usually it is defined on theler file as “StartRule”. It is

important to define it; otherwise the rule won'tassigned.

1: Footprintl --> extrude (world.y, 20)

Next, thecomp operation is applied (Line 2 of the code). Tdwmmp operation
splits the mass model into faces, edges or vertices

The components can be selected using either itia#x or a set of semantic selection

22

keywords. The selected components are transformachew shape and processed by a

sequence of shape operations.

2: comp (f) {object.front: EastFacade. | object.bac k: SouthFacade
(conp.index) | objectleft: SouthEastFacadel. | object.right:
WestFacade (conp. i ndex)| object.top: Roof }

Usually, the comp operation is used first to gl mass model into facades, in
this case using the selectors: object.front; oljack; object.right;object.left; and
object.top. In further rules different selectorslivwie used, such as, world.north,

world.south, worl.east and world.west.

The names given to the facades are completely mradw dependent on the user
decision. At some point, it became difficult to ose which expression to give to the

new shapes since they are so many.

The “SouthFacade” had to be split again usingdbeap.index operation. This
will happen in other occasions throughout the desy process. Probably, due to the
drawing of the building footprint originates distimued facades. Figure 10 illustrates
the “SouthFacade” with discontinued facades. Anxt tfee respective rule used to solve
this issue.

L—@'

Figure 12: On the right, the output of the “Comg@éar”o peration. The left image shows discontinued
facade.

23

: SouthFacade(id) -->
caseid==0

: color (1,0,0)

: SouthEastFacadel.
caseid==1:

: color (1,0,0)

. texture

10: caseid==11:

11: color (1,0,0)

12: Shapell.

13: caseid==12:

14: color (1,0,0)

15: ShapelLateralWindow?2.
16: caseid==13:

17: color (1,0,0)

18: texture

19: el se:

20: SouthFacadeComplete.

©ONOUTAW

The comp.index is a zero-based index that assigns an index tb shape that
composes the facade. This operation allows the tassubdivide the facades in many
shapes as possible and work on them individualhe Tcolor” operation was used to
identify the right facade while working on it.

Once the facades are correctly split, it is possibl apply textures whether is a
simple wall or a facade with floors and then windowither way, it is important to
specify in the code the correct path of the texducebe used. Usually, all the texture
files (jpg., png., etc.) are located on the folderages and/or assets. This location isn't

mandatory. In the CGA rule file, the textures aseally written in the beginning of the

code.

TEXTURES

MainTexture = "assets/facades_uiji/ladrillo_caravist a_det.png"
WindowTexture = "assets/facades_uji/VENHO_Tl.jpg"

MidTileTextureRed = "assets/facades_uji/GRANATE MAT E.jpg"
SideWindowTexture = "assets/facades_uji/VENHOC_TI_c ropped.jpg"

LateralWindowTexture ="assets/facades_uji/VEN.jpg"
UjiBlueTexture = "assets/facades_uji/MORADO UJI.jpg
GreenTileTex = "assets/facades_uji/VERDE UJI.jpg"
DoorESTCE = "images/DoorESTCE.jpg"

Usually in the beginning of the design process,téx¢ures for the wall, windows
and doors are the first rules to be created. Tliisoe important since when applying
the rules for creating floors, windows and dodng, textures are already created. Below,

on lines 10 to 18 the rule for the wall texture @mel window is created.

24

10: Walltexture -->

11: setupProjection(0, world.xy, 1.5, 1, 1.5)
12: texture(MainTexture)

13: TileUV(0, ~1, ~1)

14: projectUV(0)

15: window -->

16: setupProjection(0,scope.xy, scope. sX, scope. sy)
17: texture(WindowTexture)

18: projectUV(0)

To apply and perfectly display a specific texturea facade, a window or any
other architectural element, it is essential toaustind at least six types of operations:

setupProjection, projectUV, translateUV, scaleUMiV, roatateUV.

The setupProjection operation initializes a proggctimatrix for the chosen uv-set
based on the reference coordinates system spewiiiechxesSelector. It can be chosen
between scope and world coordinate systems. (CifiyienHelp, 2011) Both were used

in many rules, the parameters change but the oigpié same.

The projectUV operation creates the final textuverdinates of the selected uv-
set by applying the corresponding projection matfikus, this operation ‘bakes' the
texture projection into the texture coordinatestlté geometry of the current shape.
The projection is based on the uvw-coordinate systpecified by the setupProjection
operation. (CityEngine Help, 2011)

The tileUV operation rescales the texture coordisaif the selected uv-set such
that the uv space gets tiled with tiles of a giweidth and height (the last two
parameters on the parenthesis). The textureWidihiextureHeight parameters support
usage of the floating and relative operators toichvammplex calculations with the
texture space dimension. (CityEngine Help, 2011)

Continuing with the design of the Footprintl, tresteorientated facade is a very
good example of how to divide the facade into ffpowindows and applying the

textures.

25

Next on lines number 1 till number 7 are the twtit sples. When assigned to the
facade, it will split it into floors and windows @nn this case in particular, with red
column between each window.

The most common subdivision scheme used was:

» Facade > Floor > Wall > Window > Door

Wall Texture

Wall Texture

Wall Texture

Wall Texture

Figure 13: On the right, CityEngine Web Scene dedaiiew of ESTCE's South Facade. On the left, a
Split Operation along the Y axis on a basic facdekign.

The generic expression for a XYZ Split (Cartesigrac®) is: split(splitAxis) {sizel:
operationsl | size2 :operations?2 | ... }.

1: EastFacade. -->

2: split(y) { ~1: Walltexture | ~1: wallSplit | ~1: Walltexture |

3: ~1: wallSplit| ~1: Walltexture | ~1: wallSplit| ~1: Walltexture |

4: ~1:wallSplit | ~1: Walltexture}

5: wallSplit -->

6: split(x) {~1: Walltexture | ~1: window | 1: colu mn | ~1: window
7 |1: column | ~1: window | 2: Walltexture }

8: column -->

9: color ("#ff0000")

The Split operation is in my point of view onetbé most important operations
in procedural modeling. It is quite important tdlfuunderstand it since, from the

moment it is understood; it is possible to desigmost every building.

26

The split operation subdivides the current facaddegthe specified scope axis
(X, Y, 2) into a set of smaller shapes, as mangessrable.
The name of the shapes: Wall Texture (rule thaindefas wall texture the light-

brown bricks) and Wall Split (the shape that wélteive the windows).

Wall Texture

Wall Texture

v G oo

Wall Texture
Windo Windo

Wall Texture

Figure 14: On the right, CityEngine Web Scene tdaview of ESTCE's South Facade. The image on

the left is the Split Operation along the X axisaibasic facade design.

The “WallSplit” rule (line 5 to 7) splits the shep along the Y axis, again as
many times as desirable. This is called “The Par&épeat Split”.

At some point, depending on the direction of theafle, it was possible to
visualize some distortion of the wall and windowttges. These problems were

solved by changing the parameters on the textup@gations, previously explained.

The ESTCE building entire code is on the appersd{@enex 1) for further
analysis. Hopefully, the most important part of tlessign and creation of this building

were clearly exposed. The others footprints foltbes same designing process.

27

2.4.2 The Students Residence Building

The student’s residence building is the secondtore® modelled in 3D using

procedural modeling language. In reality, this thaig was one of the hardest to

create, since it has architectural components sischolumns, railings and facades
with different colours. Figure 13 shows photographthe building. And on figure 14
the 3D model of the building.

Figure 15: On the left North West view of the Resice. (tuestudios.com. Residencia Universitaria
Campus — Castellon. January 2013. http://www.tuséss.com/content/residencia-universitaria-campus-
castellon-2). On the right image: South view of Residence. (Jiménez, Olivia.
oidocozina.blogspot.com.eMay2012.January2013.
http://oidocozina.blogspot.com.es/2012/05/indepeanideuniversitaria.html)

Figure 16 : CityEngine Web Scane 3D model represiamt of the North West and South facades of the
Student’s Residence Building.

For the Student's Residence the same design agbpvees taken. The complete
CGA rule is on the annexes (Annex 2). However istimoto explain some operations

that made this building different.
Firstly, on the upper image in figure 14, is poksib visualizecolumns and a two

facades have a certain pattern of colours.

28

The design of the columns footprint was createth WitctMap, using the building
footprint. So far, CityEngine doesn't supply totdscreate circles, only polygons and
rectangles. Once the columns footprint was credtedys imported into CityEngine and
by applying a simple extrusion operation, the calarwere created.

Next, the facade with the colour pattern was crbafdove, the code on lines 4
and 5 create the first floor were the columns weesigned. Since they overlay the
building - “footprintlaa” - the NIL operation wased.

The NIL operation basically creates holes. Sineeablumns were on top of the
building footprint and to avoid the overlaying, thiest floor, which in reality it isn't the
first floor, has to be NIL.

The following floors are split accordingly to th@lour segments of the real
building (lines 4 to 14). Note that specificallyr these facades, the floor split operation

was done along the Z axis.

Footprintlaa --> extrude(world.y, 24)
split (y) {~1: FirstFloor| ~1: SecondFloor | ~ 1: ThirdFloor |
~1: FourthFloor | 2: FifthFloor }

Fi rst Fl oor -->
split (z) {~1: NI L|~1: NIL|~1: NI L}
SecondFl oor -->
split(z) { ~1: pinkWindowSegment | ~1: yellowWi ndowSegment | ~1:
yellowWindowSegment }
Thi r dFl oor -->
0: split(z) { ~1: yellowWindowSegment | ~1: yello wWindowSegment |
~1: pinkWindowSegment }
11: Fourt hFl oor -->
12: split(z) { ~1: yellowWindowSegment | ~1: pinkW indowSegment | ~1:
pinkWindowSegment }
13: FifthFl oor -->
14: split (z) {~1: yellowRoofSegment | ~1: yellow RoofSegment | ~1:
pinkRoofSegment }

BoNoaR

15: pi nkW ndowSegnent -->

16: split(y) {~1: color("#ff9999") X | 2: windowTex}

17: yel | owW ndowSegnent --> B

18: split(y) {~1: color("#ffff66") X | 2: windowTex}

19: yel | owRoof Segrment --> comp (f){top: color ("#b7b7b7") X | side:
20: color("#ffff66") X

21: pi nkRoof Segnment -->comp (f) {top: color ("#b7b7b7") X _ | side: 22:
color("#ff9999") X -}

29

In the West facade of the building, an identigalagion happened with the

ground floor. Figure 15 illustrates that issue.

WallTexture

WallTexture

[| K [T EN & [FN_

| W) | | W] g PR

(TN KN

WallTexture

GroundFloor

Figure 17: On the left image: CityEngine Web Sceiegv of the West facade 3D Model. On the right,
SideFacade Rule, split along the y axis on a as&de design.

1: SideFacade -->
2: split(y) {~2: GroundFloor | ~0.5: wallSplit| ~1 : Walltexture
3: |~0.5: wallSplit| ~1: Wall2 | ~0.5: wallSplit | ~0.5:
4: Walltexture}
5wallSplit -->
6: split(x) { 2: Walltexture | ~ 1: windowTex | ~ 1: windowTex |
7: ~1: windowTex | ~1: windowTex | ~1: windowTex | ~1: windowTex
8: | ~1: windowTex | ~1: windowTex | 2: Walltextu re}
WallTexture
Coral2 NIL WallTexture

Figure 18: Ground Floor rule on a basic facadegesi

9: G oundFl oor --> split (y) {~4: F | ~1.5: Walltexture }
10: F --> split (x) {12: C| 5: Coral2 | 12: NI L | 32: Wall2}
11: C --> split (y) {~3: Coral2 | ~1: windowTex}

30

In this building real photographs of the windowsres taken “in-situ” and
applied in the facade. Further, in the section tlisrg the model” it will be

explained how this procedure works and the besttoes.

Lastly, the design of the railings was createdising the following code:

1: Extra -
2: s(1,'1,0.3)
3: i("builtin:cube™)

4: Railing -

5: [t(0, scope. sy- bar Di anet er /1,0) HBar]
6: set(trimvertical, false)

7: split(x){ 3: VBar }*

8: VBar-->s(bar Di anet er,'0, barDi aneter) t(0,0,- bar Di anet er)
9: i(cyl _v) color("#6E6A6B")
10: HBar --> s('1par Di anet er, bar Di anet er) t(0,0,- barDi aneter) i(cyl_h)

11: color("#6E6AGB")

Figure 19: CityEngine Web Scene model of the rgdion the main entrance of the Student’s Residence
building.

The creation of the railings is an example of a glem procedural modeling
language. Attributes such as barDiameter are mbagaliby the ands operations. The
operation sets the size vector scope.s. {T$tands for translation and the operatgis
relative to the scope axes.

Basically the user has to learn the concepts ssithet ands operations in order
to learn how to manipulate the bar shape for thmga element.

Another approach could have been made in thistetuéy creating the railings

using manual shape creation tools.

31

2.4.3 Agora Buildings

The Agora is the main central square of the Udias. It is an open space in
the center of the campus where social and culiewvahts take place. Around the
Agora there are many shops, bars and restaurantsyalteries. In the buildings
adjacent to the Agora it is possible to find theid®int Association and other

university services.

I ED .l""""""""""""""E
1

Am | oo | o

Figure 20: CityEngine Web Scene of the Agora buijgi

Next, are some samples of the CGA rule file for Agera buildings (Annex 3),
more specifically for the back facade (see figude Since some of the Agora buildings
have a half-circular shape, the footprint had d@eglairge number of vertices to give this
format to the buildings. After running the clean-spape tool to the footprint and
assigning the extrusion operation, the back fadq&@dest direction) had discontinued
facades, identical to the ESTCE building (See &git).

e — NN -

Figure 21: Discontinued facades in Agora building€ityEngine.

32

1 Footprintl --> extrude (world.y, 7.50)

2: comp (f) { world.north: north | world.south: W all |
3: |world.east: east(conp. i ndex) | world.west: west (conp. i ndex) |
4: world.up: Roof }

Figure 22: CityEngine Web Scene of the Agora Wasaéle 3D model.

To solve the problem the West facade had to bewsgihg the comp index
operation, resulting the shapes “A”, “L” and “wingdBrame”.

1: A --> split (x) {~0.5: Wall | ~0.8: SplitA |

2: ~0.5: Wall}

3: SplitA-->split (y) {~0: Wall | ~1: Window?2 |~1: Window 2 |
~0.2: Wall}

15: L-->

16: split (x) {~0.3: Wall | ~0.8: SplitA | ~0.5: Wa II'] ~1: SplitL |

17: ~0.5: Wall | ~1: SplitL | ~0.2: Wall}

18: SplitL --> split (y) {~0: Wall | ~1.8: Doorl | 2: Wall | ~1:
19: WindowFrame | ~0.5: Wall}

20: WindowFrame --> split (x) {~1: Window?2 | ~0.2: Wall | ~1:
21: Window?2}

Wall Wall |Wall Wall Wall Wall

_g? wn

— ©

= 5 Wall
Door

Figure 23: Basic facade design for the rules Apd ®WindowFrame of the West facade in the Agora
buildings.

From all the design of the Agora this was the ncostiplex facade. The Agora

building entire code is on the appendices (AnnefoRjurther analysis.

33

2.4.4 The Workshops Building

The next building on my analysis is the Workshoff@leres”) building. It is
placed on the South side of the campus and igisita easy building to create in 3D.
However, for this building it was decided to usen approach of both modelling
methods. For the lateral buildings, which look lik@rkshop rooms, the building
texturing was accomplished by using the Static Tiexg Tool (see section 2.6.2) and
real photographs were taken in order to be apphethe facades. The main and
central part of the building was created by usingcpdural modelling language. On

annex 3 is the building complete code for furthsailgsis.

Figure 24: CityEngine Web Scene of the 3D WorksHmgkling model.

In the section “texturing the model” the texturieghniques will be explained
more thoroughly, as well as, the tools CityEnginevjgle for the manipulation and

editing of photographs.

34

2.5 Manual Modeling

This section details an introductory example ofdeling without CGA shape
grammayri.e. using the polygonal modeling tools. Actuatlye first part of this project
was learning how to use these tools, mainly bectheseare very easy to comprehend

and learn about CityEngine’s dynamic.

The polygonal modeling tools allow the user to twe@ectangular or polygons
shapes, modifying their shape, size, height, catémt. It is possible to add windows,
doors by only drawing them and applying texture.

With these tools, CityEngine allows the user tackly design and built a
building with textures associated. For this projecparticular, it took more time, since
it had to look as close as possible to the redtimg. However, it can be very amusing
if there are no “rules to follow”, to build whatevelesired. The following figure,

extracted from CityEngine Help Guide, shows thdsased for manual modeling.

SELECT TRANSFORM STREETS
Selection Mode Menu [q] Move [w) Scale [¢] Rotate (1] Freehand Polygonal Edit Cleanup Align 1o Terrain

T N
2P| (k-0 5@ LZLE e B23
2 5 M
Pan Tumbie Zoom wiorid Objeet Loek Numerical Input Polygonsl Reclanguiar Separate Combine Cleanup Texture Align
NAVIGATE CAMERA TRANSFORM SHAPES

Figure 25: Creating and Editing shapes manuallipardan CityEngine (CityEngine Help, 2011).

The select tool provides selection of shapes,cestand edges. The shapes can be
transformed using the Move, Scale and Rotate tddis set of tools in particular was
very useful when importing static models (Wavefr@®J. files) into the scene. (See
section 2.7)

The polygon shape creation tool is the main sethfermanual modeling. It has an
extremely useful snapping property and includesufea such as90 degree angles,
parallel lines, extensions of lines and line midp®i All snapping features are
automatically intersected to form combined snappéasylts. While moving the mouse,

an orange dashed line is shown whenever snappsgctoa feature occurs.

35

Figure 26: Examples created on the fly to showusege of the polygon shape modeling tools in the
ViscaUJi CityEngine scene.

Another important component of this section isgshape manipulation operations.
These operations work directly on the componenthapes: Polygons (faces), vertices
and edges. Th8eparate Facesperationcreates an individual shape for every face. All
new shapes are put in the layer of the originalpshavhich means that, it makes
possible to apply CGA rule files. So far, the sisapeated under this tools are classified
asfaces(of the polygons), when separated they became sh@pmbine Shapegeates
one shape containing all components of the selettades.

The CleanUp Shape tool cleans the geometry of teelexshapes or/and faces. It is
a very useful operation especially after workinghwthe previously explained tools.
This tool will merge vertices, if the distance beem two vertices is lower than the
threshold; removes coplanar edges; removes multipiices on one straight line;
removes double faces and Zero faces (with zerg;siatersect edges; polygons that

overlap on the same plane are split along all edgks multiple non-overlapping

36

polygons; and it is distance and angle tolerancalways best to perform a CleanUp
operation before applying textures.
The following section talks about two universityildings created exclusively

with the polygonal modeling tools.

2.5.1 The Sports Building

The University Jaume | offer many sports actigtigithin the campus. Besides

having a sports pavilion, it offers outdoor aresiszh as, football fields, tennis courts,

basketball courts, and many more.

Figure 27: The image on the left is the CityEndieb Scene of the 3D model of the entrance facade of
the Sports building. On the right, a photographmfrahe Sports building. (Arga.com. Pabellén
polideportivo de la Universidad Jaume | de CastellodNovember 2004. January 2013.
http://arga.com/arquitectura/internacional/pabellqolideportivo-de-la-universidad-jaume-i-de-
castellon.htm)|

Figure 28: CityEngine Web Scene 3D Sports Buildimagel.

The creation of the 3D building was exclusively bsing the polygonal shape
creation tools and the static texturing tool foplgmg the textures. The building model is
not entirely accurate to what it looks like in tigal However, for the purpose of

demonstrating the abilities of such tools it issgattory and sufficient.

37

2.5.2 Paranimfo/Auditorium Building

Uji's auditorium is a multi-purpose building desighto host academic events
and performing arts. It has three floors, whichludes a theatre, conference room, an
outdoor terrace and various social sites.

The auditorium is a unique, attractive and modefrastructure that serves both

university population as well as, and the poputatib Castellon.
In addition, it provides a regular schedule of eikions, music concerts, film and

performing arts during the academic year.

Figure 29: On top a photograph of the Auditoriunag@llon Convention Bureau - Turismo y negocios
en Castellon. 2010. January 2013.
http://www.castelloncongresos.com/web/index.php@opicom_onestabliments&task=listTipo&id=21&lI
temid=33). And below, CityEngine Web Scene from Alelitorium building.

38

2.6 Texturing the model

Texturing the buildings is the final part of thB Bnodel creation and design
process and is considered to be mhest important technique in geovisualization in

order to make geographic data visible.

For this project, two types of textures were usddjital textures and
photographs. Digital textures were created preWote this study using Autodesk
3ds Max.

Textures for 3D models depend heavily upon thgial photographs from
which they are derived. Such photographs shoultetdaken in a perspectiveless
manner. Perspectiveless means that the photogaaph has to be fully perpendicular
to the subject. For efficient modeling, texturesdd be perspectiveless when we

apply them to a model.

During this study, many photographs were takethefuniversity buildings.
This task it was sometimes difficult to achieve. s¥lof the building facades were
partially blocked by trees and cars, making hatbertask of taking the photographs
as straight as possible. Mid morning sun and shadeere sometimes a problem.
Other inconvenient was the frequent reflection ebgle and other elements on the
photographs due to reflective glass windows andsda® high degree of scene detail
and complexity can be achieved through the usesta#ildd textures on the buildings.
With CityEngine, pictures of actual buildings amojpcted onto the surfaces of the

building geometry. This method reproduces the rdesdiled facade.

A high-resolution, photo-realistic 3D environmextiows university planners
to see how a proposed building would interact witle existing environment,
ensuring that the size, scale, and style of a m@gduilding are harmonious with the

existing built environment. (Esri Smart Faciliti@911)

39

2.6.1 Crop Image Tool

The Crop Image Tool is one of City Engine’s toolasamost used throughout
the project. This tool has the wonderful abilityallow to crop the photographs taken,
giving them the right depth and orientation. Inliearversions, the user had to be very
careful how to take the picture of a real facad®.ifRstance, the user had to be aware of
certain rules such us taking it from the groundspective otherwise the photograph and

thus, the facade would look distorted.

Overall, it is an effective tool for the preparatiof facade textures from ground

based facade images; and the perspective corrergotione in one step.

Figure 30: CityEngine’s Crop Image tool. On the &fle a photograph as input and on the rightekalt
output.

40

2.6.2 Static Texturing Tool

The Static Texturing tool is a very simple anduitive interface to apply
textures, such as photographs or digital texturebe facades or faces of the shapes.

For the exact texture mapping, several modes aiahle.

From the Navigator menu it possible to have actesdl the images and after
the selection of one, it is possible to rotate thmage and flip it vertically or
horizontally, and the most important definitiong ander the “Textures Coordinates
Mapping” menu. Four modes are possible to manipulatorder to get the perfect

display of the image on the face/facade.

This was a very useful tool throughout the projadten modeling manually. It

is intuitive and elementary.

S EE@ @ % - k-

Figure 31: Use of City Engine’s Shape Texturing [Modhe Auditorium Building.

This chapter would not be complete without meritigrthe Facade Wizard.
Although it was not used within this project, itasvery interesting and useful tool for
the textures practical application and display.

The singularity of this interactive tool is in tatput. The Facade Wizard is
somehow similar to the Crop Tool, with the additibat after cropping the image, the
output is a CGA. Rule file that can be importedbiiat rule file and generate the
facade.

41

2.7 Model Export and Integration

This project, as it was mentioned in the beginnimas divided into two parts:
the street network and the buildings creation. ihien of both models caused some
difficulty. So far, the need for a more powerful chame wasn't an issue, till the
moment came to join both 3D data. A part from thissees, the model export and

subsequently, its publication online has brougmesdlifficulties.

When the 3D scene is finalized, it can be expoaeCityEngine Web Scene
so it can be visualised in CityEngine Web Vieweweb application for viewing 3D
city scenes and other 3D scenes in a browserbdsed on WebGL technology which
allows you to view 3D content in web browsers withmstalling additional plug-ins
(ArcGIS Resources, 2013).

The user interacts with 3D city scenes by navigatmthe scene by panning
and zooming and changing perspective, select spdayers, swipe the scene to
reveal different proposals and scenarios; and kBeaoene content for features,

attributes, and metadata.

So far, some major problems have occurred whangrio export the final
scene of ViscaUJi as CityEngine Web Scene, moreifggaly, CityEngine shuts

down before it can export the scene.

Apart from the Web Scene viewer, CityEngine's nhedeort offers other file
format options, such as: KML, Collada, Autodesktaddesk 3DS, Wavefront OBJ.,
ESRI File Geodatabase, among others. The most ddotenat is the Esri File
Geodatabase format so it can be loaded into AreSoerArcGlobe for further data
analysis. City Engine’s primary strength is in 3@nhtent creation. Most other 3D GIS
tasks, such as visualizing large numbers of 3D féé®ures, running 3D analysis, and
maintaining 3D databases, are best performed tseércGIS 3D Analyst extension
tools. (Esri CityEngine, 2012)

The data created in CityEngine is exported asG#®database layer and added
into ArcScene/ArcGlobe. The attribute table onlytains the ObjectID and Shape
fields, and no other information. And that happéméhen CityEngine rebuilds the
data in the Multipatch format. Multipatch is a gexig used as a boundary

42

representation for 3D objects in ArcGis and camiagle up of a collection of triangle
strips, triangle fans and/or triangles, circles anck. Multipatch is a 3D geometry
used to represent the outer surface, or shelkatiifes that occupy a discrete area or
volume in three-dimensional space. Multipatchesymise 3D rings and triangles that
are used in combination to model a three-dimensisimall. Multipatches can be used
to represent simple objects such as spheres args aubcomplex objects such as
isosurfaces, buildings, and trees. (Esri White R&408)

The data in multipatch format in ArcScene allows, ihstance, adding fields
(attributes), move the objects/shapes, but noingdit

This issue needs further development, especialynterstand how far the user

can manipulate the data in order to query it aatlze spatial analysis.

Another issue worth mention is the OBJ. buildingsefore this project begins,
there were already 3D university buildings creaiedAutodesk 3D Studio Max.
These buildings are supposed to be part of thigegrosince it is 3D data already

created.

1
1]

T
g

Figure 32: Autodesk 3D Studio Max university builgs. On the left, the Humanities Faculty and on the
right, the Library. (Geotech, Uji Data)

43

Figure 33: Autodesk 3D Studio Max university builgé: on the left image the Technology &
Experimental Sciences building and on the rightEhenomics Faculty. (Geotech, Uji Data)

The only possible file format that when importedoifCitEngine had “less”
errors was Wavefront OBJ. Sitill, it presented magorors, for instance, missing

walls, overlaying walls with windows, and so forth.

The buildings on the figure 33 are the perfect gxarof the problems mentioned
above. To sum up, these buildings need a seri@asiclg process and hopefully they

will be fit to integrate the final model.

44

3 DISCUSSION

This chapter pretends to analyse two modeling amtres applied in this project
and give some insight from the user perspectivés Thapter is developed accordingly
to my own singular experience with CityEngine alne ability to understand the quality
of the software. Comparison analysis between @Bemodeling software is out of the

scope of this study.
In table 1, the two modeling approaches are aedlgsnd classified accordingly

to some general properties of 3D geovisualisatizer interface; model; manipulation;

navigation; visualisation; and time-consuming & thain tasks.

CityEngine's User Analysis Manual Modeling Procedural Modeling

User Interface - Toolbar for creating and editir] - CGA Shape Grammar;
shapes manually; - Using the CGA Editdr
- Buttons shortcuts; window;
- Mainly Usage of the mouse |- Mainly usage of the keyboard
device. device.

Model 2D Geometry Extrusion usif- 2D Geometry Extrusion
Polygonal or Rectangular Shg- Operation Extrusion:
Creation tool extrude éxisWorld, height

Manipulation Track, Create, Move, RotalTrack and Zoom
Scale and Zoom

Navigation Orthogonal view, PerspectiOrthogonal view, Perspectie,
Top, Front and Side Top, Front and Side

Visualization Realistic Textures applied usi|Realistic textures applied wi

shape texturing tool interface |the CGA shape grammar

Time-taking Modeling Short Medium to Long
Time-taking Texturing Short Medium to Long
General level of complexity |Easy to Medium Medium to Difficult

Table 1: CityEngine's user analysis applied te sidy.

The user interface is the medium through whichitiiermation flows between
the system and the user; it consists of a comlpinabf graphics and text, a
representation in a monitor and same manipulatimough interaction devices, like a

keyboard and a mouse.

45

Interaction is a somewhat generic temamprising the process of a human
communicating with the computer. Interaction andigetion are thus not exactly
separable but for the following considerationsriatéion is defined to be the process of
interaction with the data and display aiming ahgaj insight.

Navigation is an important part of 3D geovisuali@atas it allows the user to
overcome occlusion (e.g. making hidden objectsbigsithrough a change of the
viewpoint) or to look at the information from a féifent angle (a form of re-expression)
(Nielsen, 2007).

Firstly, regarding the use of procedural modeliagguage, it revealed to be
somehow easy to pick-up and efficient. All the 3&ign and modeling is made through
the CGA shape grammar and using the CGA editor wietlive program.

The main advantage over the manual modeling idléxility that gives to the
user. When creating a 3D model of a building, aettand/or street furniture, the user
can always go back and modify parameters in thesrulikewise, the same CGA rule
can be assigned to many buildings, if in realityytihave the same architectural style,
for instance, some CityEngine examples for thesitf Paris or New York.

Perhaps for a user with few programming skillsaih ®@e a bit alarming. Definitely
it can take a certain amount of time to understdmudv Computer Generated
Architecture works and the shape grammar. HoweWyEngine can be considered as
user-friendly software, and when the user acquire knowledge of procedural
language, there are many things to create andrddsiig a new world! And the best of
it is that it is in 3D!

Finally, regarding the manual modelling, this methases polygon shape
creation/editing tools and it's known to be mor¢uitive and faster to comprehend.
Indeed, this method can be somewhat similar toratienual procedures used in other
3D softwares such as Google SketchUp.

The manual modeling main characteristic is theitives and simple set of tools
that the user can and should use. It's less timstoning, the opposite of the other
method, it is faster and can generate beautiful l2dings, but not in a mass-
production way. So it is less time-consuming if tlser is working on minor dimension
objects or working with details. To produce enfi2 urban cities manual modeling is

definitely out of question.

46

While working with the CityEngine's set of manuabls, in particular the main
disadvantages are: 1) there isn't a measuring teelonly notion a user might have
while drawing a building is when using the polygrape creation it has a counter that
is measuring while you are drawing; 2) there iscitale or arc creation tool, when
designing urban landscapes elements such as commmsportant.

In general, the main advantage of the manual moglelpproach is the fact that
isn't dynamic, as the procedural modeling langu&ge instance, after a 3D building is
finalized, the user needs to change the measureseoWindows, with CGA shape
grammars that can easily be modified in the rde éind press to generate again. If
using manual tools the user will need to draw agfaenobject.

In summary both methods have their strengths amakmesses. Nevertheless,
procedural modeling language is the best withityEigine environment to model 3D
models. In the majority of the cases, the optinpgdraach is to mix both methods, for
instance finishing details in a building using mahtools (in case the shape grammars

become too complex or impossible to reproduce siatil).

4 CONCLUSION

The University Jaume | have made a major investméih the project Smart
Campus. ViscaUJi not only models the existing knltironment but also looks into the
future; it has allowed the university to centralz@mpus maps, plans, and planning
content. Further, it has improved data access tdturé development planning and
review. Using Esri products such as City Enginghesfoundation for a 3D campus

designing helps a pioneer the usage of 3D GIS-bssiedions.

The project outlined here and the resulting 3D ersity buildings will hopefully
be used as a resource for 3D visualizations andjatan, as well as, a source of data —
3D data. 3D visualization and navigation of 3D mppsvide a powerful way to explore

the campus information by visualizing the data tigito different points of view.

From 2008 till nowadays, CityEngine has been gnowand developing into 3D
GIS program. Nonetheless, CityEngine still hasra lvay to go.

47

So, where does CityEngine stands in GIS world? Whtedly CityEngine’s
main power is to rapidly build accurate and vispatbmpelling city models. However,
that doesn’t make CityEngine GIS software, but @erage 3D model creator/designer.
What makes CityEngine “GIS efficient” is allowing&S user to use its own GIS data.

The software allows to import and export attributets data such as streets
network, buildings footprints, or 3D buildings ugirthe Esri file geodatabase or
shapefile format. However, to perform further splatanalysis after working in
CityEngine the user will have to export it and &ud ArcGis 3D analyst set of tools.

Regarding the practical experience of this studgrkimg with CityEngine was
quite an exceptional and new experience. From that of view of a Geographer,
understanding and working with procedural modelargguage was very challenging.

In the beginning the learning process was someHhow, sbut in the end, the
difficulties were overcame and now consider myaatbmpetent user of CityEngine.

In conclusion, CityEngine is amazing 3D modellingteare for geographers and
professionals who work daily in Urban Planning dépants and need sophisticated and
reliable software to help planning and managinga tising software like CityEngine
in Smart Cities or Smart Campus projects is a dtmward into progress and

development of the today’s urban reality.

4.1 Future Work
Further work on this topic should focus on thedwling:

* Integration with other Smart Campus projects. Usagklinkage of the 3D data
created in this project with the applications deped or to be developed in the

future.
» Finish the designing and creation of the remaininyersity buildings.

* Indoor Mapping using the available CAD files foetbuildings at Uiji.
Architectural drawings are essential to designimagrating, and executing a
construction project. Most drawings take the forfrflaor plans, which portray
an orthographic top-down projection of each buidievel. Floor plans have

various levels of detall, including the rooms, Walys, stairs and architectural

48

components. CAD files manage to cover the buildirggmplete layout, which
is sufficient to build a model for most applicaton(Yin & Wonka & Razdan,
2013)

Creating a Query tool with 3D visualizatid8D city information modeling
exploration through 3D navigating and queryingastigularly crucial since its
purpose is to extract the relevant informatiorhie &vailable data. (Fredericque
& Lapierr, 2010)

In the end, while researching for the theoretichework of this study, a
considerable amount of literature was found regaythe topic 3D
Geovisualisation. More specifically, a framework éwvaluating the usefulness
and appropriateness of 3D geovisualization. It wdad very interesting to make
a deeper and qualitative analysis of the work pcedwvithin this study to assess
the data quality produced. The analysis would tat@account, for instance, the
concepts of evaluating usability and usefulnesghéamore, a review of
different parameters to help the purpose-baseditiefi of tasks for the
evaluation of usefulness. Generally, it would Reriesting to look at non-

technical aspects of this study.

49

BIBLIOGRAPHIC REFERENCES

BACH, B., WILHELMER, D., PALENSKY, P. Smart buildgs, smart cities and
governing innovation in the new millennium. (Onbne URL:
http://lwww.researchgate.net/publication/22416765@a® buildings_smart_cities_a
nd_governing_innovation_in_the_new_millennium (AsszeOcotober 2012)

BAO, F., SCHWARZ, M., WONKA, P. 2013. Proceduradade Variations from a
Single Layout. (Online) URL:
http://peterwonka.net/Publications/2012. TOG.Bao &de&Variations.pdf. (Access:

January 2013)

CARAGLIU, A., DEL BO, C., NIJKAMP., P. Smart Cisein Europe. 3rd Central
European Conference in Regional Science — CERS,9.2@®nline) URL:
http://www.cers.tuke.sk/cers2009/PDF/01_03_Nijkadp(Access: October 2012)

CHOURABI, H., GIL-GARCIA, J.R., PARDO, T.A., NAMT., MELLOULI, S.,
Jochen Scholl, H., Walker, S., Nahon, K. Understan&mart Cities: An Integrative
Framework. 2012 45th Hawaii International Confeezno System Sciences (Online)
URL:

http://www.ctg.albany.edu/publications/journalssc 2012_smartcities/hicss_2012__
smartcities.pdf(Access: October 2012)

ELWANNAS, R. 3D GISlIt's a Brave new WorldFIG Working Week 2011.
Bridging the Gap between Cultures. Marrakech, Moopd 8-22 May 2011. (Online)
URL: http://www.gdmc.nl/3dcadastres/literature/3Dcad_20@4.pdf (Access:

January 2013)

ESRI. Smart Facilities.2011. 3D Edition (Online) RU
http://www.esri.com/library/newsletters/smart_féais/smart-facilities-spring11.pdf
(Access: October 2012)

ESRI White Paper. The Multipatch Geometry Type. éweler 2008. (Online) URL:
http://lwww.esri.com/library/whitepapers/pdfs/mudtiph-geometry-type.pd{Access:
February 2013)

FREDERICQUE, B., LAPIERR, A. 3D City GIS — A MajoBtep Towards
Sustainable Infrastructure. 2010 (Online) URL:
http://www.fig.net/pub/fig2010/papers/ts08b%5Cts(8dericque_lapierre_4703.pd
f (Access September 2012)

50

FREDERICQUE, B., LAPIERR, A. The Benefits of a 3ty GIS for Sustaining
City Infrastructure. (Online) URL:
http://ftp2.bentley.com/dist/collateral/docs/prelestbenefits-of-a-3d-city-gis-for-
sustaining-city-infrastructure_archtecture-updat#.fAccess: September 2012)

HARRISON, C., ABBOTT, DONNELLY, I. A. Theory of SmiaCities (Online)YRL:
http://journals.isss.org/index.php/proceedings5aititle/view/1703 (Access:
September 2012)

LIPP, M., WONKA, P., WIMMER, M. 2008. Interactiveistal Editing of Grammars
for Procedural Architecture. (Online) URL:
http://peterwonka.net/Publications/2008.SG.Lipghactive%20Visua%?20Editing.pd
f (Access: January 2013).

LAITON, A. Esri buys Procedural City Engine. (Ordéin

http://andrewlainton.wordpress.com/2011/07/20A4mrys-procedural-city-engine/
Access: December 2012

MATHIAS, M., MARTINOVIC, A., WEISSENBERGY, J., VANGOOL, L. 2011.
Procedural 3D Building Reconstruction using Shapen@nars and Detectors.
Computer Vision Laboratory. Zirich, Switzerland. n{idbe) URL:
http://www.vision.ee.ethz.ch/publications/papersfgedings/eth_biwi_00875.pdf
(Access: January 2013)

MULLER, P., PARISH, Y | H. Procedural Modeling f@ities. 2001. (Online) URL:
http://graphics.ethz.ch/Downloads/Publications/Pegf2001/p_Par01.pdf (Access:
October 2012)

MULLER, P., PARISH, HAEGLER, S., ULMER, A., VAN GOQ L. Procedural
Modeling of Buildings. 2006. (Online) URL:
http://peterwonka.net./Publications/mueller.procead%20modeling%200f%20buildi
ngs.SG2006.final-web.p@iccess: January 2013)

NAGARAJAN, S., SUDALAIMUTHU, K. Web 3DS Business ddels. 2012.
(Online) URL:
http://www.gisdevelopment.net/application/urbanfeien/urbano047pf.htm
(Access: September 2012)

51

NIELSEN, A., 2007. A Qualification of 3D Geovisigdtion.PhD. Aalborg
University. (Online) URL:
http://vbn.aau.dk/ws/files/16918248/phdafhandlinget®e 20Nielsen.pdf. A¢cess:
January 2013)

ROCHE, S., NABIAN, N., KLOECKL, K., and RATTI, C. #& ‘Smart Cities’ Smart
Enough? (OnlineYRL: http://www.gsdi.org/gsdiconf/gsdil3/papers/&# (Access:
September 2012)

SANCHIS, A., ARNAL, A., MOLINA, W., SANCHIS, V., DAZ, L., HUERTA, J.,
GOULD, M. smartUJIl: campus inteligente como IDE local. btrdadas Ibéricas de
las Infraestructuras de Datos Espaciales (JIIDE2R0Madrid, October 2012.
(Online) URL:
http://www.ign.es/resources/jilde2012/jueves/taideiador/6.viscaUJl.pdf (Access:
January 2012)

SAMAD, A., HUSSEIN, S, M., KARNADI, M, S., BOHARIS.N., SULDI, A, M.,
MAAROF, I. Web GIS Solution and 3D Visualizationwards Sustainability of
Georgetown as World Heritage Site. 2012 IEEE 8tterfrational Colloquium on
Signal Processing and its Applications. (OnlingRL: www.asprg.net/cspa2012
(Access: October 2012)

SENGUPTA, S. 2011. GIS-based Smart Campus Systarg 89 Modeling (Online)
URL:
http://www.geospatialworldforum.org/2011/proceedpuf/Smita%20Sengupta.pdf
(Access: October 2012)

Smart Cities Project. Creating Smarter Cities sdoms from the Smart Cities
Projects. 2011. (OnlineYRL: http://www.epractice.eu/en/library/53900@Bccess:
October 2012)

STINY, G., GIPS, J. 1972. Shape Grammars and teeefative Specification of
Painting ans Sculpture. (Online) URLhttp://shapegrammar.org/ifip/ifipl.html
(Access: January 2013)

STOTER, J., ZLATANOVA, S. 2003. 3D GIS, where are standing? Section GIS
technology, Delft University of Technology, The RKetlands. (Online) URL:
http://libra.msra.cn/Publication/11431320/3d-gis-@rk-are-we-standing (Access:
Januray 2013)

52

VAN MAREN, G., SHEPHARD, N., SCHUBIGER, S. 2012. &#oping with Esri
CityEngine (Online) URL:
http://proceedings.esri.com/library/userconf/devsuith2/papers/developing_with_es
ri_cityengine.pdfAccess: October 2012)

WATSON, B., MULLER, P., WONKA, P., SEXTON, C., VERYVKA, O,
FULLER, F. 2008. Procedural Urban Modeling in Piaet (Online) URL:
http://peterwonka.net/Publications/2008. CG&A.Watssncedural%20Modeling%?2
OTutorial.pdf.Access: January 2013

WONKA, P., WIMMER, M., SILLION, F., RIBARSKY, W. 203. “Instant
Architecture”. (Online) URL:
http://www.cg.tuwien.ac.at/research/vr/instantateliure/instant_architecture.pdf.
(Access: January 2013)

YIN, X., WONKA, P., RAZDAN, A. Generating 3D Buildg Models from

Architectural Drawings: a survey 2009 (Online) URL:
http://peterwonka.net/Publications/2009.CGA.Yindff@danExtrusionSurvey.|EEEDI

gitalLibrary.pdf. (Access: January 2013)

ZHOU L., SUN Jia-long, WEI-XIAO, Li., HE, B., WEI-\EI, C. The Study on the
technique of the 3D GIS modeling based on the aighotogrammetry. (Online)
URL: http://www.isprs.org/proceedings/XXXVIl/congs&8b _pdf/118.pdf (Access:

October 2012)

ArcGIS Resources, < http://resources.arcgis.comsitgd: January 2013)

CityEngine Offical Documentation: CityEngine Helpui@e, CityEngine Tutorials
and Examples.

GEOTEC: Geospatial Technologies Research Grobfp://www.geotec.uji.es
(Visited: December 2012 and January 2013)

H. KOLBE, T. CityGML Project, < http://www.citygnorg>, (Visited: January
2013)

University Jaume |, Castelld, < www.uji.es>, (Végit January 2013)

YouTube, CityEngineTV, <http://www.youtube.com/uséyenginetv> (Visited:
September/October 2012)

53

Annexes

Annex 1: CGA Rule File for the ESTCE Building.

File: ESTCE.cga
Created: 5 Dec 2012 14:57:52 GMT
Author: Sara Antunes

#ATTRIBUTES

attr tile width=3
attr wi ndowi dth=2
attr fl oor Nunber =-1
attr floorheight =3

#TEXTURES

MainTexture = "assets/facades_uji/ladrillo_caravista_det.png"
WindowTexture = "assets/facades_uji/VENHO_Tl.jpg"
MidTileTextureRed = "assets/facades_ujiilGRANATE MATE.jpg"
MidTileTexture = "assets/facades_uji/VERDE UJl.jpg"
Shapel3WindowTexture = "assets/facades_uji/VENHOC_TI.jpg"
SideWindowTexture = "assets/facades_uji/VENHOC_TI_cropped.jpg"
LateralWindowTexture = "assets/facades_Uji/VEN.jpg"

RoofTexture = "assets/facades_uiji/flatroof5.png"
WestEntranceWindTexture = "assets/facades_uji/VENHO_TI_2.jpg"
UjiBlueTexture = "assets/facades_uji/MORADO UJI.jpg"
GreenTileTex = "assets/facades_uji/VERDE UJl.jpg"

DoorESTCE = "images/DoorESTCE.jpg"

#CODE FOR THE TWO TRIANGULAR-SHAPE BUILDINGS

@t art Rul e

Footprintl --> extrude (world.y, 20)

comp (f) {object.front: EastFacade. | object.back: SouthFacade
(conp. i ndex) | object.left: SouthEastFacadel. | object.right:
WestFacade (conp. i ndex)| object.top: Roof }

#FOOTPRINT1 FACADES RULES

EastFacade. -->

split (y) { ~1: Walltexture | ~1: wallSplit | ~1: Walltexture | ~1:
wallSplit | ~1: Walltexture | ~1: wallSplit | ~1: Walltexture | ~1:
wallSplit | ~1: Walltexture }

wallSplit -->

split (x) {~1: texture | ~1: window | 1: column |{ ~1: window }| 1:
column | ~1: window | 2: texture }

column -->

color ("#ff0O00")

Walltexture -->
setupProjection (0, world.xy, 1.5, 1, 1.5)

54

setupProjection (1, world.xy, scope. sx, Sscope. sy)
texture (MainTexture)

tleUV (0, ~1, ~1)

projectUV (0)

SouthFacade (id) -->
case id ==0:
#color (1,0,0)
SouthEastFacadel.
case id == 1:
#color (1,0,0)
Walltexture
case id == 11:
#color (1,0,0)
Shapell.
case id == 12:
#color (1,0,0)
ShapelateralWindow?2.
case id == 13:
#color (1,0,0)
Walltexture
el se:
SouthFacadeComplete.

#SHAPES THAT RESULTED FROM THE SPLIT.INDEX OPERATION

SouthEastFacadel. --> split (x){~0.5: WallTexture | ~1:

~0.7: WallTexture }

window -->
setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (WindowTexture)
projectUV (0)

windowSplit ~ -->

split (y) {~1: WallDoor | ~1: Sidewindow | ~1: Sidewindow

~1: Sidewindow | ~0.5: WallTexture }

windowSplit |

#SHAPE NUMBER ELEVEN FROM THE SPLIT INDEX HAS A DIF FERENT RULE WAS

APPLIED TO SOLVE THE BRICKS DISTORTION

Shapell. -->
setupProjection (0, world.xy, 1, 1, 1)
setupProjection (1, world.xy, scope. sx, Sscope. sy)

texture (MainTexture)
tleUV (0, ~1, ~1)
split (xX){~ floorheight : Floor }

ShapelLateralWindow?2. >

split (x) {~2: Wall texture | ~1.5: LateralwindowSplit | ~0: Wall texture }

55

LateralwindowSplit >

split (y){~1: Lateralwindow | ~1: Lateralwindow | ~1: Lateralwindow
~1: Lateralwindow | ~1: Lateralwindow | ~0.5: Wall texture }
SouthFacadeComplete. --> split (X){~ floorheight: Floor }

Floor --> split (y){~1.5: Wall texture | {~5: Tile }*|~1: Wwall texture
Tile --> split (y) {0.5: Wall texture | ~1: window | 0.5: Wall texture }

#LAST FACADE RULE
WestFacade (id) -->
caseid==0:
#color (1,0,1)
EastFacadelnverse.

caseid==1:

#color (1,0,1)

ShapelateralWindowl.

el se:

#color (1,0,1)

ShapelateralWindowl.

EastFacadelnverse. > split (y) {~1: texture | ~1: wallSplitinverse
~1: texture |~1: wallSplitinverse | ~1: texture |~1: wallSplitinverse
~1: texture |~1: wallSplitinverse | ~1: texture }
wallSplitinverse -->
split (x) {~0.2: Wall texture | ~1: window | 1: columnYellow |{ ~1:
window }| 1: columnYellow | ~1: window | 10: Wall texture }

columnYellow --> color ("#ffb00O0")

ShapelateralWindowl. >
split (x) { ~0.5: Wall texture | ~1.5: LateralwindowSplit | ~2:
Wall texture }

#ROOF RULE COMMON FOR ALL THE FACADES
Roof -->
setupProjection (1, world.xy, scope. Sx, scope. sy)
texture (RoofTexture)
tileUV (1, ~1, ~1)
projectUV (0)

#SECOND RULE FOR THE TRIANGULAR-SHAPE BUILDING
Footprint2 --> extrude (world.y, 20)

comp (f) {object.front: NorthEastFacade (conp. i ndex)| object.back:
EastFacadelnverse. | object.left: NorthEastFacadeb (conp. i ndex) |
object.right: EastFacade. | object.top: Roof }

56

}

NorthEastFacade (id) -->
caseid==0:
color (1,0,0)
SouthEastFacadel.
caseid==1:
#color (1,0,0)
texture
case id == 6:
Shapell.
caseid==7:
#color (1,0,0)
ShapelateralWindow?2.
el se:
SouthFacadeComplete.

SouthEastFacadel. >
split (x) { ~0.5: Wall texture | ~1: windowSplit

Sidewindow -->

setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (SideWindowTexture)

projectUVv (0)

WallDoor -->

setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (DoorESTCE)

projectUV (0) projectUv (0)

Lateralwindow -->

setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (LateralWindowTexture)

projectUV (0)

NorthEastFacadeb (id) -->

case id==0:
#color (1,0,0)
ShapelateralWindow?2.

case id==1:
#color (1,0,0)
SouthEastFacadel.
case id == 2:
#color (1,0,0)
Shapell.

caseid==8:

#color (1,0,0)
texture

el se:

SouthFacadeComplete.

57

| ~0.7: Wall

texture

}

#FOOTPRINT 3

#TWO CENTRAL BLOCKS AND CIRCLE

Footprint3 --> extrude (world.y, 24)

comp (f) {world.south : LateralSide | world.west : WestEntrance |
world.east: EastEntrance | world.north: LateralSide | world.up: Roof }

@Location (1120,1493)

LateralSide -->
setupProjection (1, world.xy, scope. SX, scope. sy)
texture (MainTexture)
projectUV (0)

WestEntrance -->

split (x) { ~0.3: Wall texture | ~1: TileWestEntrance | ~0.3: Wall texture
TileWestEntrance -->

split ~ (y) { ~0.5: Wall texture | ~1: windowWestEntrance | ~1: Wall texture
| ~1: windowWestEntrance | ~1: Wall texture | ~1: windowWestEntrance |
~1:Wall texture |~1: windowWestEntrance | ~1: Wall texture | ~0.2:

Wall texture }

windowWestEntrance — -->
setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (WestEntranceWindTexture)
projectUV (0)

EastEntrance --> split (x) {~1: Walltexture | ~2: TileEastEntrance | ~1:
Walltexture }

TileEastEntrance > split (y) {~2.5: t|~1: windowWestEntrance | ~1:
Wall texture| ~1: windowWestEntrance | ~1: Walltexture | ~1:
windowWestEntrance | ~2: Walltexture }

#RULE FOR THE BLOCK IN THE CENTER

Footprint3b --> extrude (world.y, 24)

comp (f) {world.south : Wall texture | world.west : Shape00. |
world.east: Entrance2 (conp. i ndex) | world.north: LateralSide |
world.up: Roof }

Entrance2 (id) -->
case id ==0:
#color (1,0,0)
Shape00.
case id == 1:
color ("#0000ff")
TheWall. #UJI BLUE WALL
case id == 2:
#color (1,0,0)
Shape00.

el se:

LateralSide

58

Shape00. --> split (x) {1: Wall texture | ~1: TileSplit | 1:
Wall texture }

TileSplit -->
split (y) {~0.4: WallDoor | ~0.8: Sidewindow00 | ~0.1: GreenTile
| ~0.5: Sidewindow00 |~0.2: GreenTile | ~0.1: Wall texture }

GreenTile -->

setupProjection (1,scope.xy, scope. sx, scope. sy)
projectUVv (0)

texture (GreenTileTex)

Sidewindow00 -->
setupProjection (0,scope.xy, scope. Sx, scope. sy)
texture (SideWindowTexture)
projectUV (1) projectUv (0)

Footprint3circle ->
extrude (world.y, 24)
setupProjection (1, world.xy, scope. sX, Sscope. sy)

texture (MainTexture)
projectUV (0)

59

Annex 2: CGA Rule File for the Students Residenagdig

* File: Residence.cga
* Created: 25 Nov 2012 17:42:09 GMT
* Author: Sara Antunes

attr floorheight =3
attr wi ndowwi dth =2
attr groundfl oor hei ght =3
attr floornunber =4
attr tile width=1
attr tile_wi dthanother =3

const barDi aneter =0.1
const cyl _v = "general/primitives/cylinder.vert.8.notop.tex.obj"
const cyl _h = "general/primitives/cylinder.hor.8.notop.tex.obj"

#TEXTURES

windowResidence = "images/DSC02187_cropped.JPG"

wallTexture = "assets/facades_uiji/ladrillo_caravista_det.png"

wallcolor = "assets/facades_uji/GRANATE MATE.jpg"

GlassDoor2 = ‘“images/GlassDoor2_cropped.png"

@t art Rul e

Footprintl --> extrude (world.y, 24)

comp(f) {world.south : SouthFacade (conp.index) | world.west:
world.east: Wall2 | world.north: NorthFacade | world.up: color
("#777") R}

SouthFacade (id) -->
caseid==0:
BackWall
caseid==1:

Wall2

el se:

MainFacade

NorthFacade -->

split (y){~1.5: Wall2 | ~0.5: wallSplitNorth |~1: Wall2 |~0.5:
wallSplitNorth |~1: Wall2 | ~0.5: wallSplitNorth | ~1: Wall2 | ~0.5:
wallSplitNorth | ~0.5: Wall2 }

wallSplitNorth -->

split (x) { ~1: windowTex |~1: windowTex | ~1: windowTex | ~1:

windowTex | ~1: windowTex | ~1: windowTex | ~1: windowTex | ~1:
windowTex | ~1: windowTex | ~1: windowTex | ~1: windowTex | ~1:
windowTex }

#EAST MAIN BLOCK WITH FLOORS SPLITED ACCORDING TO C OLORS!
Footprintlaa --> extrude (world.y, 24)

60

S|

split (y){~1: FirstFloor |~1: SecondFloor |~1: ThirdFloor | ~1:
FourthFloor | 2: FifthFloor }

FirstFloor -->
split (z) {~1: NIL | ~1: NIL | ~1: NI L}

SecondFloor -->
split (z){~1: pinkWindowSegment | ~1: yellowWindowSegment | ~1:
yellowWindowSegment }

ThirdFloor — -->
split (z){~1: yellowWindowSegment | ~1: yellowWindowSegment | ~1:
pinkWindowSegment }

FourthFloor — -->

split (z){~1: yellowWindowSegment | ~1: pinkWindowSegment | ~1:
pinkWindowSegment }

FifthFloor -->

split (z) {~1: yellowRoofSegment | ~1: yellowRoofSegment | ~1:

pinkRoofSegment }

pinkWindowSegment -->

split (y) {~1: color ("#ff9999") X|2: windowTex }
yellowWindowSegment -->

split (y) {~1: color ("#ffff66") X|2: windowTex }
yellowRoofSegment --> comp (f){top : color ("#b7b7b7") X]| side:

color ("#ffff66") X

pinkRoofSegment --> comp (f) {top : color ("#b7b7b7") X|side:
color ("#ff9999") X}

@Location (567,906)
Footrprintlbb --> extrude (world.y, 5.5)
comp(f) {
0: color ("#b7b7b7") X| [Iroof
1: color ("#b7b7b7") X| //botom
3: color ("#ff6699") X /Iside facade
}

windowTex -->
texture (windowResidence)
projectUVv (0)
tileUV (0,0,0)

Column --> extrude (world.y, 6)
color ("#ffffff")

/IMAIN BLOCK WEST DIRECTION
Footprint2 --> extrude (world.y, 24)

61

comp (f) {world.south : Wall2 | world.west : SideFacade | world.east:

Wall2 | world.north: MainEntrance2 | world.up: color ("#777") R}
MainEntrance2 --> split (x) {~O: Coral2 |~1.5: CoralSplit | ~1: Coral2
}

CoralSplit -> split (y) {~O0: Coral2 | ~2: DoorGlassent | ~0.8: Coral2

| ~1.5: DoorGlassent | ~0.8: Coral2 |~1.8: DoorGlassent | ~0.8: Coral2
| ~1.5: DoorGlassent | ~1: Coral2 }

#MAIN FACADE WITH UNIQUE COLOR
MainFacade -->

texture (wallcolor)

projectUV (0) projectUv (1)

@Location (977,525)
SideFacade -->

split (y){~2: GroundFloor | ~0.5: wallSplit | ~1: Wall2 | ~0.5:
wallSplit | ~1: Wall2 |~0.5: wallSplit | ~0.5: Wall2 }

wallSplit ->

split (x){2: Wall2 |~1: windowTex | ~1: windowTex | ~1:
windowTex | ~1: windowTex | ~1: windowTex | ~1: windowTex | ~1:
windowTex | ~1: windowTex |2: Wall2 }

Wall2 -->

texture (wallTexture)
projectUV (1) projectUv (0)

GroundFloor -->

split — (y) {~4: F|~1.5: Wall2 }

F--> split (x){12: Cl5: Coral2 |12: NI L|32: Wall2 }
C--> split (y){-3: Coral2 | ~1: windowTex }

BackWwall -->

texture (wallTexture)
projectUV (1) projectUv (0)
color ("#ff9999")

DoorGlassent -->
texture (GlassDoor2)
projectUVv (0)

tileUV (0,~7,0)

#FOOTPRINT 3

#ENTRANCE BUILDING WITH RAILING
Footprint3 --> extrude (world.y, 30)

comp (f) { side: Coral2 | world.up: R}

62

Coral2 -->
color ("#E55B3C")

MainEntrance --> extrude (world.y, 6.1)
comp (f) {world.north: split (y) { ~1: Railing | ~1: NI L } | world.west:
NI L | world.up: Extra }

Extra -->
s('1,'1,0.3)
i ("builtin:cube")

Railing -->
[t(0, scope.sy-barDi aneter/1,0) HBar]
set (trimvertical, false)
split (X){3: VBar }*

VBar --> s(barDi aneter,0, barDi aneter) t(0,0,- barDi anmeter) i(cyl_v)
color ("#6E6A6B")

HBar --> s('1, barDi aneter, barDi aneter) t(0,0,- barDi ameter) i(cyl _h)
color ("#6E6A6B")

@Location (1094,183)
/ISideFacade
S-->
setupProjection (0, world.xy, 1.5, 1, 1)
setupProjection (2, world.xy, scope. sX, Sscope. sy)

@Location (904,328)

R-->
setupProjection (1, world.xy, scope. sX, Sscope. sy)
projectUVv (0)

63

Annex 3: CGA rule file for the Workshops building

* File: Talleres.cga
* Created: 23 Nov 2012 12:27:26 GMT
* Author: Sara Antunes

#ATTRIBUTES

attr w ndoww dt h =0
@Location (-442,437)
attr floorheight =2

#TEXTURES

walltexture = '"assets/facades_uiji/ladrillo_caravista_det.png"

WindowTexture = "assets/facades_uji/VEN.jpg"

Ujiwall = "assets/facades_uji/MORADO UJl.jpg"

Window2 = "assets/facades_uji/TalleresWindow?2.png"

TalleresBackDoor ="images/WorkShopsBuilding/TalleresBackDoor_cropped. JPG
BackWindow = "images/WorkShopsBuilding/TalleresWindow.JPG"

MainDoor = ‘"images/WorkShopsBuilding/DoorTalleres.jpg"

#TRIANGULAR-SHAPE BUILDINGS

@t art Rul e

Footprint2 --> extrude (world.y, 5)

comp(f) {world.south: South | world.west: SouthWest | world.east:
NorthEast | world.north: North (conp. i ndex) | world.up: color

("#c0c0c0") Roof }

South -->
split (x) {3: Wall | ~2: Tile2 | ~2: Wall }
Tile2 --> split (y) {~0.1: Wall | ~1: window?2 | 1: Wall }

SouthWest -->
split (x) { 4: Wall | ~4: Tile2 | ~3: Wall }

NorthEast -->
split (x) {~1: Wall | ~1: Tile |~1: Tile |~0: Wwall }

Tile --> split (y) {~O0: Wall | ~2: window | ~2: window | ~1: Wall }

NorthWest -->
split (x) {O: Wall | ~1: Tile |~1: Tile |~1: Wall }

North (id) -->

case id ==0:
#color (0,0,1)
South
caseid==1:
#color (0,0,1)
NorthWest

el se:

South

64

#MAIN TEXTURE FOR THE WALL - LIGHT BROWN BRICKS
wall -->

setupProjection (1, world.xy, 1.5, 1, 1.5)

setupProjection (1, world.xy, scope. sX, Sscope. sy)
texture (walltexture)

projectUV (0) projectUv (0)

tleUV (0,1,1)

#TEXTURES FOR THE WINDOWS

window --> setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (WindowTexture)
projectUVv (0)

window2 --> setupProjection (0,scope.xy, scope. Sx, scope. sy)
texture (Window?2)
projectUv (0)

window3 --> setupProjection (0,scope.xy, scope. Sx, scope. sy)
texture (BackWindow)
projectUVv 0)

#DOOR TEXTURES

EntranceDoor -->

setupProjection (0,scope.xy, scope. SX, scope. sy)
texture (MainDoor)

projectUv (0)

DoorTex -->

setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (TalleresBackDoor)

projectUVv (0)

#MAIN BLOCKS IN THE CENTER WITH BLUE UJI WALL
Footprint4 --> extrude (world.y, 8)

comp (f) { world.north: A| side: Wall | world.up: Roof }

A--> split (y) {~0.5: MidTile | ~1.5: Wall |~1.5: TileA |~1.5:
|~4: Wall }

TileA --> split (x) {~3: Wall | 1.5: window | 1.5: window | 1.5:

| 0.2: MidTile | 1.5: window | 1.5: window | 1.5: window | ~2:

MidTile --> color ("#FFFFFF")

#ROOF RULE
Roof -->
setupProjection (1, world.xy, scope. sx, Scope. sy)

projectUVv (0)

Footprint4b --> extrude (world.y, 12)
comp(f) {world.south: SouthFacade | world.west: S| world.east:
world.north: Main | world.up: Roof }

65

TileA

window
Wwall }

S|

SouthFacade --> split (x) {~1: Wall | ~1: BackDoor | ~1: Wall }

BackDoor --> split (y) {~0.05: Wall | ~1.8: DoorTex | ~4: Wall }
Footprint4a --> extrude (world.y, 12)

comp(f) {world.south: SouthFacade2 | world.west: Wall | world.east:

Wall | world.north: NorthEast2 | world.up: R}

SouthFacade2 --> split (x) {~O: Wall | ~1: WindowSplit | ~1: Wall | ~1:

WindowSplit | ~0: Wall }

WindowSplit --> split (y) {~0.5: Wall | ~2.5: window3 | ~1.5: Wall |
~2.5: window3 | ~2: Wall }

NorthEast2 --> split (x) {~0: Wall |~1: VenSplit |~1: DoorSplit | ~1:
VenSplit | ~1: DoorSplit |~1: VenSplit | ~1: DoorSplit | ~1: VenSplit |
~0: Wall }

DoorSplit --> split (y) {~0: Wall | ~1.5: EntranceDoor | ~1.5: window |
~1.5: window | ~2: Wall }

VenSplit --> split (y) {~O0: Wall | ~1.5: window | ~1.5: window | ~1.5:
window | ~2: Wall }

66

Annex 4: CGA rule file for the Agora buildings

* File: Agora.cga
* Created: 16 Jan 2013 13:26:28 GMT
* Author: Sara

#TEXTURES

WindowAgora = "assets/facades_uji/lVENHO_AGORA.jpg"

WallTex = "assets/facades_uji/CARAVISTA_ BLANCO.jpg"

SmallWindowAgora = "assets/facades_uji/VENHO_AZUL.jpg"

ShopDoor = "assets/facades_uji/shopdoor.png"

Azul = "assets/facades_uji/VEN_AZUL_GRANDE.jpg"

VenhoAgora = "assets/facades_uji/VENHO_AGORA_cropped.jpg"
PublicityDoorl = "images/Agora/PublicityDoorl.jpg"

PublicityDoor2 = "images/Agora/PublicityDoor2.jpg"

RealWindow = "images/Agora/RealWindow.jpg"

@t art Rul e

Footprintl --> extrude (world.y, 7.50)

comp (f) { world.north: north | world.south : Wall | world.east: east
(conp. i ndex) | world.west: west (conp. i ndex) | world.up: Roof }
Column -->

extrude (world.y, 7)

#LATERAL WALLS

north --> split (x) {~0.1: Wall | ~0.4: WallSplit | ~0.2: Wall | ~0.4:
WallSplit | ~0.2: Wall | ~0.4: WallSplit | ~0.2: Wall | ~0.4:

WallSplit | ~0.2: Wall }

WallSplit --> split (y) {~O0: Wall | ~0.4: Window?2 | ~0.4: Window?2 | ~O0:
Wall }

#FRONT WALL TOWARDS AGORA SQUARE
east (id)-->
caseid==0:
#color (1,0,0)
eastl

case id ==
#color (1,0,1)
east4
caseid==2:
#color (1,0,2)
eastl

case id ==
#color (1,1,0)
east3

case id ==
#color (1,0,3)
east4

case id ==5:

67

eastl

case id == 6:

#color (1,0,0)

east6

el se:

Wall

eastl --> split (y){0.2: Wall | ~3: FirstSplit | ~1: Wall }
FirstSplit > split () {~1: Wall | ~4: Window | ~0.5: Wall }
east2 --> split (y){0.2: Wall | ~3: SecondSplit | ~1: Wall }
SecondSplit --> split (x){2: Wall | ~0.1: Window | 2: Wall |~0.1:
Window | 4: Wall }

east3 --> split (y){0.2: Wall | ~3: ThirdSplit | ~1: Wall }
ThirdSplit --> split (x) {0.5: Wall | ~0.3: Window | 1: Wall | ~0.3:
Window | 0.5 : Wwall }

east4 --> split (y){0.2: Wall | ~3: FourthSplit | ~1: Wall }
FourthSplit -> split (x){~0.5: Wall | ~1: Window | ~0.5: Wall | ~1:
Window | ~0.5: Wall }

east6 --> split (y){0.2: Wall | ~3: SixSplit | ~1: Wall }

SixSplit --> split (x) {~0.2: Wall | ~0.5: Window | ~0.5: Wall }

#BACKSIDE WALL
west (id) -->
case id ==

A

case id == 8:
K

case id ==

L

case id == 10:
A

el se:

K

#SplitA ITS FOR THE TWO VERTICAL WINDOWS

A--> split (x){~0.5: Wall | ~0.8: SplitA | ~0.5: Wall }
SplitA --> split (y) {~0: Wall | ~1: Window?2 | ~1: Window2 | ~0.2: Wall
}

#SplitL IS FOR THE DOOR AND THE TWO HORIZONTAL SMAL L WINDOWS
L -->

split (x) {~0.3: Wall | ~0.8: SplitA | ~0.5: Wall | ~1: SplitL | ~0.5:
Wall | ~1: SplitL | ~0.2: Wall }
SplitL --> split (y) {~0: Wall |~1.8: Doorl | 2: Wall | ~1:

WindowFrame | ~0.5: Wall }

K-->
split (x) {~0.3: Wall |~0.8: SplitA | ~0.5: Wall | ~1: SplitL | ~0.5:
Wall | ~1: SplitL | ~0.2: Wall | ~0.8: SplitA '}

68

WindowFrame --> split () {~1: Window?2 | ~0.2:
Doorl -->

setupProjection (0,scope.xy, scope. sX, scope. sy)
texture (PublicityDoorl)

projectUV (0)

Door2 -->

setupProjection (0,scope.xy, scope. sX, scope.
texture (PublicityDoor2)

projectUVv (0)

Window -->

setupProjection (0,scope.xy, scope. sX, scope.
texture (WindowAgora)

projectUVv (0)

Window2 -->

setupProjection (0,scope.xy, scope. sX, scope.
texture (SmallWindowAgora)

projectUVv (0)

Window3 -->

setupProjection (0,scope.xy, scope. sX, scope.
texture (Azul)

projectUV (0)

Window4 -->

setupProjection (0,scope.xy, scope. sX, scope.
texture (VenhoAgora)

projectUV (0)

Window5 -->

setupProjection (0,scope.xy, scope. sX, scope.
texture (RealWindow)

projectUV (0)

Wall -->

setupProjection (1,scope.xy, scope. sX, scope.
texture (WallTex)

tileUV (1,~1,~1)

projectUV (0) projectUV (1)

Footprint2 -->

t (0,7,0)

extrude (world.y, 1)

#LITTLE HOUSES NEXT TO THE MAIN BUILDINGS
Footprint3 --> extrude (world.y, 6)

comp (f) { world.north : Wall | world.south :

| world.east : BackWall | world.up : Roof }

69

sy)

sy)

sy)

sy)

sy)

sy)

sy)

wall | ~1:

Wall | world.west :

Window?2 }

Wall

BackWall --> split (x) {~0.3: Wall | ~0.5: Split | ~0.2: Wall | ~0.5:
Split | ~0.2: Wall | ~0.5: Split | ~0.2: Wall | ~0.5: Split | ~0.2:
Wall | ~0.5: Split | ~0.2: Wall }

Split --> split (y) {~0.7: Wall | ~0.5: Window2 | ~0.4: Wall }

WallDoor --> split (x){~0.3: Wall | ~0.8: Splitboor | ~0.2: Wall |
~0.8: Splitboor | ~0.5: Wall | ~0.8: SplitDoor | ~0.3: Wwall }

SplitDoor --> split (y) { ~0: Wall | ~1: Doorl | ~0.3: Wall }

Footprint3b --> extrude (world.y, 6)
comp (f) { world.north: BackWall | world.south: BackWall | world.west:
Wall | world.east: Wall | world.up: Roof }

#AGORA INVERSE BUILDING

Footprint4 --> extrude (world.y, 8)

comp (f) { world.north: N (conp. i ndex)| world.south : S(conp. i ndex) |
world.east : E (conp. i ndex) | world.west : W(conp. i ndex) | world.up :
Roof }

E (id) -->
caseid ==0:
#color (1,0,1)
eastl

case id ==
#color (1,0,1)
Wall

el se:

Wall

S (id) -->
case id ==
#color (1,0,1)
north

case id ==
#color (1,0,1)
east7
caseid==2:
#color (1,0,1)
east3

case id ==
#color (1,0,1)
east7

case id ==
#color (1,0,1)
east7
caseid==5:
#color (1,0,1)
east4

case id ==
#color (1,0,1)
east7

el se:

Wall

70

east7 --> split (y){0.2: Wall | ~3: SevenSplit | ~1: Wall }
SevenSplit --> split (x) {~0.5: Wall | ~1: Window | ~0.5: Wwall }

W(id) -->
caseid==0:
#color (1,0,1)
DoubleA
case id == 1:
A

el se:

Wall

#BACK WALL FOR THE OTHER AGORA BUILDING
N (id) -->
case id ==
#color (1,0,2)
A

case id ==
#color (1,0,2)
LInverse
caseid==2:
#color (1,0,2)
K

case id ==
#color (1,0,1)
SimpleK

el se:
K

DoubleA --> split (x) {~0.5: Wall | ~0.3: DoubleSplitA | ~0.5: Wall }
DoubleSplitA --> split (y) {~0: Wall | ~1: Window?2 | ~1: Window2 |
~0.2: Wall }

Linverse -->
split (x) {~O: Wall | ~0.5: Wall | ~1: SplitLInverse | ~0.5: Wall |
~1: SplitLInverse | ~0.5: Wall | ~0.8: SplitA | ~0.2: Wall }

SplitLInverse -->
split (y) { ~0: Wall | ~1.8: Door2 | 2: Wall | ~1: WindowFrame | ~0.5:
Wall }

SimpleK -->
split (x) {~0.1: Wall | ~0.3: SplitL | ~0.3: Wall | ~0.2: SplitA }

#BUILDINGS BEHIND

Footprint5 --> extrude (world.y, 10)

comp (f) {world.south: southSouth | world.west : southSouth |
world.east: eastEast | world.north: northNorth |world.up : Roof }

Footprint5B --> extrude (world.y, 10)

comp (f) {world.south: eastEast | world.west: southSouth | world.east:
northNorth | world.north: southSouth |world.up : Roof }

71

southSouth --> split (x) {~0.1: Wall |~0.2: SouthSplit | ~1: Wall |

~0.2: SouthSplit | ~0.1: Wall }

SouthSplit --> split (y){~0.2: Wall | ~1: Windows5 | ~0.2: Wall | ~1:
Window5| ~0.2: Wwall }

eastEast --> split (x) {~0.1: Wall | ~0.2: SouthSplit | ~0.5: Wall |
~0.7: eastEastSplit | ~0.05: Wwall }

eastEastSplit -> split (y) {~0.1: Wall | ~0.4: Window3 | ~0.05: Wall
| ~0.4: Window3 | ~0.1: Wwall }

northNorth --> split (x) {~0.05: Wall | ~0.7: eastEastSplit | ~0.5:

Wall | ~0.2: SouthSplit | ~0.1: Wwall }

#RECTANGULAR SHAPE##AGORA RESTAURANT
Footprint6 --> extrude (world.y, 6)

comp (f) {world.north: NORTH conp. i ndex) | world.south: Wall |
world.east: Entrance | world.west: ToHumanas | world.up : Roof }
NORTHid) -->

caseid ==0:
#color (1,0,1)
Logo

el se:
LogoSplit

Logo --> split (x) {~0.3: Wall | ~0.2: Splittogo | ~0.2: Wall | ~0.2:
Splittogo | ~1: Wall | ~1.5: LogoSplit | ~0.3: Wall |~1.5: LogoSplit |
~0.3: Wall }

LogoSplit --> split (y) {~1: Wall | ~1: Window4 | ~0.3: Wall }

Splittogo --> split (y) {~1.2: Wall |~0.5: Window?2 | ~1: Wall }
Entrance -->

split (x) { ~0.05: NI L | ~0.05: Wall | ~0.4: EntranceSplit | ~0.1: Wall
| ~0.4: EntranceSplit | ~0.3: Wall | ~0.1: Splittogo | ~0.2: Wall |

~0.1: Splittogo |~0.2: Wall | ~0.2: SplitDoor | ~0.2: Wall | ~0.1:
Splittogo | ~0.2: Wall | ~0.1: Splittogo | ~0.2: Wall }

EntranceSplit -->

split ~ (y) {~0.05: Wall | ~0.3: Window4 | ~0.3: Window4 | ~0.1: Wall }
ToHumanas -->

split (x) {~0.1: Wall | ~0.3: LogoSplit | ~0.1: Wall | ~0.3: LogoSplit
| ~0.1: Wall }

FootprintéB ~ --> extrude (world.y, 6)

comp (f) {world.north: Logo | world.south: OutDoor (conp. i ndex) |
world.east: Agoral (conp.i ndex) | world.west: ToHumanas | world.up:
Roof }

OutDoor (id) -->
caseid==0:
#color (1,2,0)
OutDoor_door

72

el se:

Wall

OutDoor_door --> split (x) {~0.3:
Agoral (id) -->

caseid==0:

AgoralSplit

el se:

Wall

AgoralSplit -->
split (x) {~0.2:
Window2Split
Window2Split

Wall | ~0.1:
Wall | ~0.1:
Wall | ~0.1:

| ~0.2:
|~0.2:

Window2Split -->

split (y) {~0.05: Wall |~0.5:

Wall | ~0.4:

Window2Split

Window2Split

Window2Split

SplitDoor | ~0.5:
| ~0.2: Wall | ~0.1:
|~0.2: Wall | ~0.1:
| ~0.2: Wall }
Wall }

Window?2 | ~0.05:

73

wall }

Masters
Program

in Geospatial
Technologies

Q

ERASMUS MUNDUS

