1,674 research outputs found

    Semiautomated Skeletonization of the Pulmonary Arterial Tree in Micro-CT Images

    Get PDF
    We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel\u27s axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    3D reconstruction of coronary artery using biplane angiography

    Get PDF
    In this paper, we present a new method for the 3D reconstruction and visualization of coronary arteries in biplane angiography. The proposed method performs direct reconstruction of 3D coronary artery pathways without computing the 2D or 3D vessel centerlines. A front propagation algorithm is used to reconstruct the coronary artery pathways in 3D space. Starting from one or more 3D points, the front is expanded with a propagation speed controlled by the combined image information from two 2D projections. Then the reconstructed 3D coronary artery pathways are smoothed to reflect the real situation of a smoothed vessel surface. As shown in the experiment result, the coronary artery can be successfully reconstructed from two projections of biplane angiograms.published_or_final_versio

    Reconstruction of coronary arteries from X-ray angiography: A review.

    Get PDF
    Despite continuous progress in X-ray angiography systems, X-ray coronary angiography is fundamentally limited by its 2D representation of moving coronary arterial trees, which can negatively impact assessment of coronary artery disease and guidance of percutaneous coronary intervention. To provide clinicians with 3D/3D+time information of coronary arteries, methods computing reconstructions of coronary arteries from X-ray angiography are required. Because of several aspects (e.g. cardiac and respiratory motion, type of X-ray system), reconstruction from X-ray coronary angiography has led to vast amount of research and it still remains as a challenging and dynamic research area. In this paper, we review the state-of-the-art approaches on reconstruction of high-contrast coronary arteries from X-ray angiography. We mainly focus on the theoretical features in model-based (modelling) and tomographic reconstruction of coronary arteries, and discuss the evaluation strategies. We also discuss the potential role of reconstructions in clinical decision making and interventional guidance, and highlight areas for future research

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation of the coronary angiogram is important in computer-assisted artery motion analysis or reconstruction of 3D vascular structures from a single-plan or biplane angiographic system. Developing fully automated and accurate vessel segmentation algorithms is highly challenging, especially when extracting vascular structures with large variations in image intensities and noise, as well as with variable cross-sections or vascular lesions.</p> <p>Methods</p> <p>This paper presents a novel tracking method for automatic segmentation of the coronary artery tree in X-ray angiographic images, based on probabilistic vessel tracking and fuzzy structure pattern inferring. The method is composed of two main steps: preprocessing and tracking. In preprocessing, multiscale Gabor filtering and Hessian matrix analysis were used to enhance and extract vessel features from the original angiographic image, leading to a vessel feature map as well as a vessel direction map. In tracking, a seed point was first automatically detected by analyzing the vessel feature map. Subsequently, two operators [e.g., a probabilistic tracking operator (PTO) and a vessel structure pattern detector (SPD)] worked together based on the detected seed point to extract vessel segments or branches one at a time. The local structure pattern was inferred by a multi-feature based fuzzy inferring function employed in the SPD. The identified structure pattern, such as crossing or bifurcation, was used to control the tracking process, for example, to keep tracking the current segment or start tracking a new one, depending on the detected pattern.</p> <p>Results</p> <p>By appropriate integration of these advanced preprocessing and tracking steps, our tracking algorithm is able to extract both vessel axis lines and edge points, as well as measure the arterial diameters in various complicated cases. For example, it can walk across gaps along the longitudinal vessel direction, manage varying vessel curvatures, and adapt to varying vessel widths in situations with arterial stenoses and aneurysms.</p> <p>Conclusions</p> <p>Our algorithm performs well in terms of robustness, automation, adaptability, and applicability. In particular, the successful development of two novel operators, namely, PTO and SPD, ensures the performance of our algorithm in vessel tracking.</p

    Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography

    Get PDF
    Purpose: Combining the functional information of SPECT myocardial perfusion imaging (SPECT-MPI) and the morphological information of coronary CT angiography (CTA) may allow easier evaluation of the spatial relationship between coronary stenoses and perfusion defects. The aim of the present study was the validation of a novel software solution for three-dimensional (3D) image fusion of SPECT-MPI and CTA. Methods: SPECT-MPI with adenosine stress/rest 99mTc-tetrofosmin was fused with 64-slice CTA in 15 consecutive patients with a single perfusion defect and a single significant coronary artery stenosis (≥50% diameter stenosis). 3D fused SPECT/CT images were analysed by two independent observers with regard to superposition of the stenosed vessel onto the myocardial perfusion defect. Interobserver variability was assessed by recording the X, Y, Z coordinates for the origin of the stenosed coronary artery and the centre of the perfusion defect and measuring the distance between the two landmarks. Results: SPECT-MPI revealed a fixed defect in seven patients, a reversible defect in five patients and a mixed defect in three patients and CTA documented a significant stenosis in the respective subtending coronary artery. 3D fused SPECT/CT images showed a match of coronary lesion and perfusion defect in each patient and the fusion process took less than 15min. Interobserver variability was excellent for landmark detection (r = 1.00 and r = 0.99, p < 0.0001) and very good for the 3D distance between the two landmarks (r = 0.94, p < 0.001). Conclusion: 3D SPECT/CT image fusion is feasible, reproducible and allows correct superposition of SPECT segments onto cardiac CT anatom

    Suivi temporel 3D de vaisseaux coronaires dans les projections rayons X

    Get PDF
    International audienceFusing pre-operative CT angiography with per-operative an-giographic and fluoroscopic images is considered by physicians as a potentially useful tool for improved guidance. To be adopted, this tool requires the development of tracking methods adapted to the deformations of the arteries caused by the cardiac motion. Here, we propose a 3D/2D temporal tracking of one coronary vessel, based on a spline deformation, using pairings with a controlled 2D stretching or contraction along the paired curves and a preservation of the length of the 3D curve. Experiments were conducted on a database of 10 vessels from 5 distinct patients, with dedicated metrics assessing both the global registration and the local coherency of the position along the vessel. The proposed results demonstrate the efficiency of the proposed method, with an average standard deviation of 2 mm for the localization of landmarks
    • …
    corecore