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ABSTRACT 

We present a simple and robust approach that utilizes planar images at different angular rotations combined with 
unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected 
interactively by the user. The computer calculates a sub-volume unfiltered back-projection orthogonal to the vector 
connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the 
vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces 
this point with the newly computer-calculated point. A second back-projection is calculated around the original point 
orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel 
within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the 
darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3-
dimensional points along the vessel's axis, the computer continues this skeletonization process until stopped by the user. 
The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full 
width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances 
between the current point and all previously determined points along different vessels are determined. If the difference is less 
than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the 
vascular tree has been skeletonized. 

Keywords: micro-CT imaging, 3D image processing, 3D image analysis, angiography 

1. INTRODUCTION 

High-resolution micro-CT scanners permit the generation of three-dimensional digital images containing extensive 
vascular networks such as found within the lung. Segmentation of these vascular tree structures for quantitative vascular 
morphometry can be difficult and time consuming. This is due, in part. to the complexity of the networks and the fact that 
the vessel axis has no distinguishing features in a fully reconstructed 3D image. The proposed method is based on the 
premise that the latter problem can be circumvented by using the original planer images at different angular rotations to 
locate the central axis within the contrast-enhanced vessels. This method is exemplified on images of the pulmonary arterial 
tree. 

2. METHODS 

1 Further author information: (Send correspondence to C.H.) 
Research Service 151A, Zablocki VA Medical Center, 5000 W. National Ave .• Milwaukee. WI 53295 
E-mail changer@mcw.edu 
Phone (414) 3842000 x41440 
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2.1. Development Environment 
The algorithm runs under the Windows 95.™Windows 98. TMWindows 2000 TM or Windows NT™ operating 

systems. The computer program is written in Microsoft Visual c++ Version 6.0. Visual C++ was chosen for its portability 
between different PC platforms. its rapid. user-friendly development environment and its ability to generate efficient code 
running under the well-understood Microsoft Windows TM user-interface. 

2.2. Image Acquisition 
The lung preparation has been described previouslyl. A lung 

from an anesthetized rat was isolated and placed within an x-ray 
lucent tube on a computer driven turntable between the focal spot of 
an x-ray source (FeinFocus FXEl00.20) and an image intensifier 
(North American Image Intensifier Corp.) so that it could be rotated 
360·. The pulmonary arterial tree was filled with 
perflourooctylbrornide at 20 mmHg with the airway pressure fixed at 
6 mmHg. As the rat lung was rotated over 360 degrees. images were 
recorded using a digital CCD camera connected to a computer via a 
parallel RS422 interface. Each monochrome image was 512 x 512 x 8 
bits. The set of 360 images was stored on the computer's hard disk. 

2.3. Identification of a starting point 
The software allows the user to cycle through the 360 planar 

images to choose a vessel segment from which to begin following the 
central axis. At any given view. the user identifies (mouse-clicks) a 
point on the vessel. The computer constructs a projection vector (VI) 

through object space originating at the x-ray source and ending at the 
image intensifier. This vector. when viewed edge-on. appears as a 
point on the planar image (Fig. 2). An overhead representation of the 
same vector is shown (Fig. 3). 

Source 

Figure 3. Schematic representation of II 
a vector originating at the x-ray source, 
passing through a vessel of interest, 
and tenninating at the image intensifier 
(II). 

The user then chooses an image captured at a different angle 
of rotation. The computer superimposes VI • which now appears as a 
line. onto this rotated image (Figs. 4-5). 

Source 

Figure 4. Schematic representati 
vector v I rotated along with object. 

II 

Figure 2. X-ray planar image of a left rat lung lobe. 
Pulmonary arteries have been filled with contrast media 
and appear dark. The dot vI represents a view through the 
axis of a vector originating at the x-ray source and ending 
at the image intensifier. The dark region at the bottom 
center of the image is a calibration phantom near the center 
of rotation of the object stage. 

Figure 5. A different orientation of the rat lung rotated 
approximately 70 degrees by the user. As a different 
orientation of the lung image is displayed v, appears to 
rotate with the object. 
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The same location ofthe original vessel is identified (second 
mouse-click) where it intersects the projection of VI' The computer 
constructs a second projection vector (vz) originating at the x-ray source 
and ending at the image intensifier. 

A three-dimensional point (Po) is constructed at the intersection 
of VI and V2' Po represents the user-initiated initial guess of the three
dimensional coordinates of the vessel center point. This process is 
illustrated graphically in figures 6 and 7. 

Figure 6. Schematic ofveC1ors 
VI and V2 and the point at their 
intersection, Po. 

II 

The same simultaneous vector technique is applied to create 
a second estimation of the vessel's center axis (PI)' The user has the 
ability to confirm the points' position by rotating through the set of 
planar images as Po and PI are continuously projected onto the images. 
Rotated image of vessel tree with Po and PI projected onto image is 
shown (Fig. 8). 

2.4. Back projection 
The computer calculates coefficients of a plane orthogonal to 

the vector passing through Po and PI' Points on this orthogonal plane, 
centered. at Po, are back-projected in 360 orientations to create an 
image in which the true vessel axis lies. The back projection is 
carried out on a bounded subset of image-space encompassing the 
whole vessel cross section. The user interactively specifies the 
diameter of this orthogonal plane, typically approximately twice the 
diameter of the back-projected vessel's image. 

The minimum intensity within this back projection is 
determined and the XYZ coordinates corresponding with minimum 
intensity are stored as the improved approximation to the point on the 
central axis (Po*). The back projection process and 3D plot of pixel 
intensities are shown (Fig. 9). A key element of the method is that the 
unfiltered back-projection results in a single point of minimum 
intensity located very near the central axis of the vessel. 
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Figure 7. Three-dimensional point Po is superimposed on 
the image. Here Po is the intersection of vectors VI and V2· 

Figure 8. User has selected two three-dimensional points 
pO, and p I within the vicinity of the vessel center. These 
points are projected onto the original planar image 

c 



Figure 9. Top: Back-projections centered on Po. lying in a plane orthogonal to 
vector between po and PI. Bottom: three-dimensional representation of pixel 
intensities along back projected plane after 360 projections. Pixel with minimum 
intensity (Po*) is assumed to be true center of vessel. 

2.4. Determining second point (Pl*) 
Having computed Po*, a vector originating at the newly determined 

point Po* and ending at the original user defined point PI is determined. The 
plane orthogonal to this vector is computed and Pl* represents the XYZ 
coordinates of the minimum pixel within this plane. 

2.5. Automated Skeletonization of entire vessel 
All subsequent points (Po *) are determined based on a moving average 

of vectors derived from previously determined points (Po* - PO-l*)' An 
orthogonal plane generated around Po and Po * is calculated from the XYZ 
coordinates corresponding to the minimum intensity pixel on that plane_ This 
skeletonization process continues in user-defined increments until stopped by the 
user (Fig. 10)_ 

Figure 10. First vessel has been skeletonized 
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2.6. Diameter Estimation 
The central axis of any arterial branch can be obtained in the same manner. However, to interconnect the central axes of 
neighboring vessels at branch points, a boundary, centered along each vessel's central axis and proportional to the vessel's 
diameter is required. This boundary is obtained by beginning at the central point Pn *, and working outward. All pixels 
within the back-projection plane are replaced with brightest pixel for every given distance. The radius of this boundary is the 
distance between the center point and a ring located at the level of steepest descent. This is graphically depicted in Figure 11. 

Figure 11. Top: Pixel intensities within back projection surrounding vessel. Bottom: All pixel intensities 
at every distance from center have been replaced with brightest pixel at that distance. The method computes 
boundary radius as the distance between center pixel and a ring located at the level of steepest decent. 

514 Proc. SPIE Vol. 4321 



2.7. Connecting subsequent vessels 
The user identifies two 3D points (using methods described above) along a different vessel and skeletonization is 

once again performed. However, as each point is determined, the distances between points on all previously skeletonized 
vessels and the current point are determined. If this distance falls within the radius of the previously determined vessel 
boundary, the skeletonization process for the current vessel ends and the new point's coordinates are changed to the 
coordinates of the point on the existing vessel corresponding to the smallest distance. This is shown diagrammatically in Fig. 
12. 

Boundary 

... . ---- ...... ·0 
- ...... ····0 
- ...... ·······0 
e······ ···········0 ..... 

L--___ ._-1 ............ 0 

'"'"--..l. __ -..::I. ............... 0 

Figure 12. Connection process. New points along a vessel axis are detennined (in direction 
of arrows). Distances between all new points (open circles). and points along central axis of 
previously detennined vessels (filled circles) are detennined. If distance (dashed line 00 right 
diagram) falls within previous vessel's boundary. this new point's position is set to the 
coordinates of the vessel axis point corresponding with the nearest distance. 

3. Results and Discussion 

Figures 13-14 shows the 3-dimensional skeleton of 
several orientations of a left rat lung obtained as 
described. 

The concept upon which this method is based is 
illustrated in Fig. 15 which compares the image of the 
vessel cross section generated by cone beam 
reconstruction using a Feldkamp algorithm with a 
vessel cross section generated by simple unfiltered 
backprojection. A graph of pixel intensities along a line 
transecting the central axis of the vessel image is also 
shown. While the unfiltered back projection has an 
easily discernable center, the fully reconstructed CT 
image (top) has no easily discernable center. 

Many approaches have been proposed based 
upon, to the best of our knowledge, a completed CT 
reconstruction23456

• This present approach uses raw 
images and unfiltered back-projection to reconstruct the 

Figures 13, 14. The central axes of several skeletonized arteries of a left 
rat lung. Two different orientations are shown 

central axis of vessels within the pulmonary arterial tree. Because the method does not rely on CT reconstruction, it allows a 
rapid "turn around time" between data acquisition and data analysis. Also, only a few images (usually < 10) captured at 
differing rotations are necessary to differentiate vessel from non-vessel and to identify the central pixel. Therefore, fewer 
image acquisitions may be necessary. This may facilitate faster data-acquisitions during studies requiring more physiologic 
conditions. Finally, once skeletonization information has been obtained, it can be superimposed on the full 3D reconstruction 
to aid in morphometric measurements. 
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Figure is. Comparison of vessel cross sections slices across identical location 
of vessel. Top slice taken from full CT reconstruction. Bottom slice from 
back projection. 
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