53 research outputs found

    VLDL Satisfiability and Model Checking via Tree Automata

    Get PDF
    We present novel algorithms solving the satisfiability problem and the model checking problem for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduction to the emptiness problem for tree automata with B\"uchi acceptance. Since VLDL allows for the specification of important properties of recursive systems, this reduction enables the efficient analysis of such systems. Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables leveraging the mature algorithms and tools for that problem in order to solve the satisfiability problem and the model checking problem for VLDL.Comment: 14 page

    Reasons for Hardness in QBF Proof Systems

    Get PDF
    We aim to understand inherent reasons for lower bounds for QBF proof systems, and revisit and compare two previous approaches in this direction. The first of these relates size lower bounds for strong QBF Frege systems to circuit lower bounds via strategy extraction (Beyersdorff & Pich, LICS\u2716). Here we show a refined version of strategy extraction and thereby for any QBF proof system obtain a trichotomy for hardness: (1) via circuit lower bounds, (2) via propositional Resolution lower bounds, or (3) `genuine\u27 QBF lower bounds. The second approach tries to explain QBF lower bounds through quantifier alternations in a system called relaxing QU-Res (Chen, ICALP\u2716). We prove a strong lower bound for relaxing QU-Res, which also exhibits significant shortcomings of that model. Prompted by this we propose an alternative, improved version, allowing more flexible oracle queries in proofs. We show that lower bounds in our new model correspond to the trichotomy obtained via strategy extraction

    On Canonical Models for Rational Functions over Infinite Words

    Get PDF
    This paper investigates canonical transducers for rational functions over infinite words, i.e. functions of infinite words defined by finite transducers. We first consider sequential functions, defined by finite transducers with a deterministic underlying automaton. We provide a Myhill-Nerodelike characterization, in the vein of Choffrut’s result over finite words, from which we derive an algorithm that computes a transducer realizing the function which is minimal and unique (up to the automaton for the domain). The main contribution of the paper is the notion of a canonical transducer for rational functions over infinite words, extending the notion of canonical bimachine due to Reutenauer and Schützenberger from finite to infinite words. As an application, we show that the canonical transducer is aperiodic whenever the function is definable by some aperiodic transducer, or equivalently, by a first-order transduction. This allows to decide whether a rational function of infinite words is first-order definable.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Quasipolynomial Representation of Transversal Matroids with Applications in Parameterized Complexity

    Get PDF
    Deterministic polynomial-time computation of a representation of a transversal matroid is a longstanding open problem. We present a deterministic computation of a so-called union representation of a transversal matroid in time quasipolynomial in the rank of the matroid. More precisely, we output a collection of linear matroids such that a set is independent in the transversal matroid if and only if it is independent in at least one of them. Our proof directly implies that if one is interested in preserving independent sets of size at most r, for a given rinmathbb{N}, but does not care whether larger independent sets are preserved, then a union representation can be computed deterministically in time quasipolynomial in r. This consequence is of independent interest, and sheds light on the power of union~representation. Our main result also has applications in Parameterized Complexity. First, it yields a fast computation of representative sets, and due to our relaxation in the context of r, this computation also extends to (standard) truncations. In turn, this computation enables to efficiently solve various problems, such as subcases of subgraph isomorphism, motif search and packing problems, in the presence of color lists. Such problems have been studied to model scenarios where pairs of elements to be matched may not be identical but only similar, and color lists aim to describe the set of compatible elements associated with each element

    Parameterized Games and Parameterized Automata

    Get PDF
    We introduce a way to parameterize automata and games on finite graphs with natural numbers. The parameters are accessed essentially by allowing counting down from the parameter value to 0 and branching depending on whether 0 has been reached. The main technical result is that in games, a player can win for some values of the parameters at all, if she can win for some values below an exponential bound. For many winning conditions, this implies decidability of any statements about a player being able to win with arbitrary quantification over the parameter values.While the result seems broadly applicable, a specific motivation comes from the study of chains of strategies in games. Chains of games were recently suggested as a means to define a rationality notion based on dominance that works well with quantitative games by Bassett, Jecker, P., Raskin and Van den Boogard. From the main result of this paper, we obtain generalizations of their decidability results with much simpler proofs.As both a core technical notion in the proof of the main result, and as a notion of potential independent interest, we look at boolean functions defined via graph game forms. Graph game forms have properties akin to monotone circuits, albeit are more concise. We raise some open questions regarding how concise they are exactly, which have a flavour similar to circuit complexity. Answers to these questions could improve the bounds in the main theorem

    Regular Methods for Operator Precedence Languages

    Get PDF
    The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time

    Reducing CMSO model checking to highly connected graphs

    Get PDF
    Given a Counting Monadic Second Order (CMSO) sentence psi, the CMSO[psi] problem is defined as follows. The input to CMSO[psi] is a graph G, and the objective is to determine whether G |= psi. Our main theorem states that for every CMSO sentence psi, if CMSO[psi] is solvable in polynomial time on "globally highly connected graphs", then CMSO[psi] is solvable in polynomial time (on general graphs). We demonstrate the utility of our theorem in the design of parameterized algorithms. Specifically we show that technical problem-specific ingredients of a powerful method for designing parameterized algorithms, recursive understanding, can be replaced by a black-box invocation of our main theorem. We also show that our theorem can be easily deployed to show fixed parameterized tractability of a wide range of problems, where the input is a graph G and the task is to find a connected induced subgraph of G such that "few" vertices in this subgraph have neighbors outside the subgraph, and additionally the subgraph has a CMSO-definable property

    The Complexity of Transducer Synthesis from Multi-Sequential Specifications

    Get PDF

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter
    • …
    corecore