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Abstract
The transducer synthesis problem on finite words asks, given a specification S ⊆ I × O, where
I and O are sets of finite words, whether there exists an implementation f : I → O which (1)
fulfils the specification, i.e., (i, f(i)) ∈ S for all i ∈ I, and (2) can be defined by some input-
deterministic (aka sequential) transducer Tf . If such an implementation f exists, the procedure
should also output Tf . The realisability problem is the corresponding decision problem.

For specifications given by synchronous transducers (which read and write alternately one
symbol), this is the finite variant of the classical synthesis problem on ω-words, solved by Büchi
and Landweber in 1969, and the realisability problem is known to be ExpTime-c in both finite
and ω-word settings. For specifications given by asynchronous transducers (which can write a
batch of symbols, or none, in a single step), the realisability problem is known to be undecidable.

We consider here the class of multi-sequential specifications, defined as finite unions of sequen-
tial transducers over possibly incomparable domains. We provide optimal decision procedures
for the realisability problem in both the synchronous and asynchronous setting, showing that it
is PSpace-c. Moreover, whenever the specification is realisable, we expose the construction of a
sequential transducer that realises it and has a size that is doubly exponential, which we prove
to be optimal.

2012 ACM Subject Classification Theory of computation → Logic and verification, Theory of
computation → Transducers

Keywords and phrases Transducers, Multi-Sequentiality, Synthesis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.46

Acknowledgements We warmly thank the anonymous reviewers for their helpful comments and
Christof Löding for pointing us to some related references.

1 L. Exibard is a PhD student funded by a FRIA fellowship from the F.R.S.-FNRS.
2 E. Filiot is a research associate of F.R.S.- FNRS. He is supported by the ARC Project Transform

Fédération Wallonie-Bruxelles and the FNRS CDR project J013116F.
3 I. Jecker is an “aspirant FNRS” PhD student, funded by the F.R.S.-FNRS.

© Léo Exibard, Emmanuel Filiot, and Ismaël Jecker;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160672487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:leo.exibard@ulb.ac.be
mailto:efiliot@ulb.ac.be
mailto:ismael.jecker@ulb.ac.be
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


46:2 Transducer Synthesis from Multi-Sequential Specifications

1 Introduction

The realisability and synthesis problem. In general, the realisability problem is given by
some input and output data domains Di, Do, a specification S ⊆ Di × Do defining for
every d ∈ Di the set of allowed outputs {d′ ∈ Do | (d, d′) ∈ S} (assumed to be non-empty)
and a class of target implementations I consisting of (total) functions Di → Do. It asks
whether there exists f ∈ I such that for all d ∈ Di, (d, f(d)) ∈ S, i.e., the implementation f
satisfies the specification. The synthesis problem asks to generate (a representation of) f .
So, instead of designing f and verifying its correctness a posteriori, a synthesis algorithm
automatically generates f from it, making it correct by construction. The underlying idea
behind synthesis is that the specification may be written in a high-level language, e.g. a
logic, and an implementation is a low-level computational model e.g. an automaton. It is
based on the assumption that it is less error-prone to design a specification, i.e. to describe
what a system has to do, than designing the system itself, i.e. describing how it must do it.

Synchronous transducer synthesis. In the original setting defined by Church [7, 29], Di, Do

are sets of ω-words over two alphabets Σi,Σo respectively, and the specification S is given
by an ω-language L ⊆ (Σi×Σo)ω as follows: S = {(π1(w), π2(w)) | w ∈ L}, where πi is the
projection on the ith component. The language L is represented by an MSO-sentence or,
equivalently, an automaton. Such automata are also called (non-deterministic) synchronous
transducers, as they can be seen as machines alternately reading one input symbol and
synchronously producing one output symbol. In Church’s setting, the target implementations
are synchronous sequential transducers (also called input-deterministic): they alternately read
one input symbol and deterministically produce a symbol to output. Determinism is required
because implementations are required to use only finite-memory. The Church’s instance of
the realisability problem is decidable if the specification is given in MSO and ExpTime-c
if it is given by a synchronous transducer [21]. For LTL specifications, it is 2ExpTime-c
[27]. Motivated by reactive systems, the synthesis problem from LTL specifications has been
revisited recently with efficient symbolic methods [20, 28, 14, 10, 18]. The synthesis problem
in general has also motivated an active research on infinite games [1, 9, 5].

Asynchronous transducer synthesis. In the asynchronous setting, specifications may not
strictly alternate between input and output symbols, hence they can no longer be seen as
languages over Σi × Σo. Similarly, the target implementations may not be synchronous: the
system can delay its production of outputs, or produce several symbols at once. Transducers,
in contrast to synchronous transducers, are by definition asynchronous: their transitions are
labelled by pairs (i, w) where i ∈ Σi is a symbol and w ∈ Σ∗

o
a word, possibly empty. Since they

are generally non-deterministic, to a single input word may correspond several output words,
and thus transducers define subsets of Σ∗

i
× Σ∗

o
. Therefore, they are well-suited to represent

(asynchronous) specifications, and in their sequential version, asynchronous implementations.
Any asynchronous specification is realisable by some unambiguous (functional) asynchronous
transducer [24, 11, 3]. However, evaluating unambiguous transducers on arbitrarily long or
even infinite input words may require arbitrarily large memory. Therefore, just as in Church’s
setting, a sequentiality requirement can be put on implementations for efficient memory
usage. However, the realisability of asynchronous specifications by (asynchronous) sequential
transducers, which is called the sequential uniformisation problem in transducer-theoretic
terms, is undecidable for finite words [4, 12]. If the specification is finite-valued (i.e. any
input word has a constant number of output words), the problem is in 3ExpTime [12]. The
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proof of [12] is based on Ramsey’s theorem and word combinatorics arguments, and it is not
clear how to reduce the complexity. This raises the question of whether there are natural
and non-trivial subclasses of asynchronous specifications with better complexity.

Multi-sequential specifications. In this paper, we consider a class of specifications S on
finite words, i.e. S ⊆ Σ∗

i
× Σ∗

o
, which strictly restricts the class of finite-valued specifications

to so-called multi-sequential specifications. Such class is obtained by closure under finite
unions of graphs of sequential functions. Precisely, S =

⋃n
i=1 Si where Si is the graph

of a (partial) function fi : Σ∗
i
→ Σ∗

o
defined by a sequential transducer. Likewise, a

transducer is multi-sequential if it is a union of state-disjoint sequential transducers. For
instance, consider the specification S consisting of the pairs (w,w′) such that w′ is a
subword of w of fixed length k. This specification is multi-sequential: S =

⋃
w′∈Σk

i

Sw′

where Sw′ = {(w,w′) | w′ subword of w}. Clearly, Sw′ can be represented by a sequential
transducer, because w′ is fixed: once the first symbol of w′ is met in w, output it, and proceed
to the second symbol of w′, etc., until the last symbol of w′ is produced, reject otherwise.
The notion of multi-sequentiality has been introduced for functions in [6] and studied for
relations in [19]. An important property of the class of multi-sequential specifications is
its decidability in PTime: Given a transducer, it is decidable in PTime whether it defines
a multi-sequential specification [19]. This fact and their natural definition as closure of
sequential functions under union make multi-sequential specifications a good candidate for a
class of specifications with better complexity than the known results of the literature.

Contributions. We investigate the complexity of sequential transducer synthesis from
specifications defined by multi-sequential transducers on finite words. We show that both in
the synchronous and asynchronous settings, the realisability problem is PSpace-complete. To
the best of our knowledge, it is the first non-trivial class of specifications which admits a
realisability test below ExpTime. If the specification is realisable, we show how to extract an
implementation as a winning strategy in a two-player game called the synthesis game. It is
parameterised by a value k ∈ N which bounds the maximal number of output symbols which
can be queued before being outputted, allowing for an incremental synthesis algorithm. To
keep track of such output symbols, we use the notion of delay [2].

Difficulties and examples. Let us briefly explain what are the main difficulties to overcome.
Consider S =

⋃
i Si a multi-sequential specification. If all of the Si have disjoint domains,

then S is a function, which is realisable by a sequential transducer iff it is sequential. The
latter can be tested in PTime [2]. The problem becomes more interesting and challenging
when the Si have domains which are not necessarily disjoint. Consider for example the
2-sequential transducer D1 ∪ D2 of Fig. 1. The transducer D1 accepts the words containing
at least two a’s, and replaces b’s with a’s, and D2 accepts the words containing at least one b,
and replaces a’s with b’s. This specification can be realised by a sequential transducer which
waits two steps before outputting something, since it then knows whether the input contains
at least one b or two a’s. It then behaves as D1 in the first case, and as D2 in the second.

This example shows that a sequential realiser may have to wait before reacting, keeping
in memory what remains to be output in the future. Take on the contrary the 2-sequential
transducer D′1 ∪ D′2 of Fig. 1, which is the same as D1 ∪ D2 except that it can additionally
read and copy c’s at any moment. In that case, a sequential realiser would have to store
arbitrary long sequences of c’s before outputting them, for instance when processing words
in ac∗{a, b, c}∗. In particular, this specification is not sequentially realisable.

MFCS 2018



46:4 Transducer Synthesis from Multi-Sequential Specifications

1D1 : 2 3
a|a a|a

b|a b|a a|a, b|a

4D2 : 5
b|b

a|b a|b, b|b

1D′1 : 2 3
a|a a|a

b|a, c|c b|a, c|c a|a, b|a, c|c

4D′2 : 5
b|b

a|b, c|c a|b, b|b, c|c

Figure 1 Four synchronous sequential transducers.

Structure of the paper. After a formal definition of transducer synthesis (Section 2), we
solve the synchronous case and provide a characterisation of realisable synchronous multi-
sequential specifications, decidable in PSpace (Section 3). Then, we present the notion of
synthesis game (Section 4), which is a useful tool for the proofs and also to get a synthesis
procedure. For the asynchronous setting, we define a recursive characterisation of realisable
multi-sequential specifications and show that it can be decided in PSpace (Section 5).

Related work. Games with delays have been used in [4, 15]. Perhaps the closest formulation
to ours is that of [4]. However, it is tailored to automatic relation. Our game structure is
more general, as it is defined for uniformising any transducer (defining a rational relation).
In particular, our game structure is exponentially larger that the one of [4].

We would also like to mention an interesting related line of works on ω-words, where
the specification is synchronous, but the implementation may be asynchronous [15, 17, 22,
23, 30, 31, 32]. Unlike the setting where the specification and implementations are both
asynchronous, the realisability problem is decidable here, for ω-regular specifications (i.e.,
regular ω-languages over Σi × Σo), and ExpTime-c if the specification is given by a parity
automaton [22]. In this setting, the authors often consider a notion of delay games. In these
games, the delay is a quantitative notion, corresponding to the waiting time before outputting
a symbol, while for us, a delay is a word that still remains to be output (this is a standard
terminology in transducer theory). It is known in particular that constant “waiting time”
(depending on the specification) is always sufficient to win, for ω-regular specifications. This
is different to our setting: for instance, the function f mapping any word of the form anσ,
for n > 0 and σ ∈ {a, b}, to σ is realisable by a sequential transducer, but the production of
a and b might have to be delayed for an unbounded amount of time.

2 Transducer synthesis problem

Words. For an alphabet Σ, we denote by Σ∗ the set of finite words over it, and by ε the
empty word. The length |w| of a word w is its number of symbols. For k ∈ N, we denote by
Σk (resp. Σ≤k) the set of words of length k (resp. at most k). For u, v ∈ Σ∗, we write u � v
if u is a prefix of v, and denote by u−1v the word such that u(u−1v) = v. For L ⊆ Σ∗, the
residual language u−1L is u−1L = {u′ | uu′ ∈ L}. Given S ⊆ Σ∗×Γ∗, and (u, v) ∈ Σ∗×Γ∗,
the residual relation (u, v)−1S is defined by (u, v)−1S = {(u′, v′) | (uu′, vv′) ∈ S}.

Automata. In this paper, finite (non-deterministic) automata over an alphabet Σ are
denoted as tuples A = (Σ, Q, I, F,∆) where Σ is the alphabet, Q the set of states, among
which I (resp. F ) denotes the initial (resp. final or accepting) states, and ∆ ⊆ Q× Σ×Q
is the transition relation. A is deterministic if there is only one initial state and for all
(q, σ) ∈ Q× Σ, there exists at most one q′ ∈ Q such that (q, σ, q′) ∈ ∆.
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A run of A on a word w = σ1 . . . σn consists in either a single state q ∈ Q if n = 0,
or a sequence r ∈ ∆∗ of n transitions t1 . . . tn such that the target state of ti equals the
source state of ti+1 for all 1 ≤ i < n. It is said to be initial if the source state of t1 is initial,
and accepting if the target state of tn is accepting. If p is the source state of t1 and q the
target state of tn, we may write p w−−→A q to mean that there exists a run from p to q on
w. The language accepted by an automaton A, denoted L(A), is the set of words admitting
an accepting run. A state q ∈ Q is reachable (resp. co-reachable) if there is a run from
an initial state (resp. to a final state) for some u ∈ Σ∗. A state is said to be useful if it
is both reachable and co-reachable, and A is said to be trim if all its states are useful. It
is well-known that any automaton can be transformed into an equivalent trim automaton
in PTime. Given two automata A1 = (Σ, Q1, I1, F1,∆1) and A2 = (Σ, Q2, I2, F2,∆2), their
disjoint union A1 ] A2 is the automaton (Σ, Q1 ]Q2, I1 ] I2, F1 ] F2,∆1 ]∆2).

Transducers. A transducer4 over two alphabets Σ,Γ is a tuple T = (A, ρ, τ) such that
A = (Σ, Q, I, F,∆) is an automaton over Σ, called the input automaton, ρ : ∆ → Γ∗ is a
mapping, called the output function, associating with every transition an output word, and
τ : F → Γ∗ is a terminal function associating with every accepting state an output word.
Given a run r of A on a word w, its output out(r) ∈ Γ∗ is defined by ε if w = ε, and by
ρ(t1) . . . ρ(tn) if r = t1 . . . tn for some n ≥ 1. We write p u|v−−−→T q whenever there exists a
run r of A on u from p to q, such that v = out(r), and say that r produces v. The relation
defined by T is the set JT K of pairs (u, vτ(q)) ∈ Σ∗ × Γ∗ such that p u|v−−−→T q for p ∈ I and
q ∈ F . We define dom(T ) by dom(T ) = dom(JT K) = L(A).

A transducer is trim if its input automaton is trim. It is called sequential if its input
automaton is deterministic, and functional if JT K is a function, i.e. for all u ∈ dom(T ), there
exists at most one pair (u, v) ∈ JT K. In that case we let T (u) = v. Note that any sequential
transducer is functional. A transducer T = (A, ρ, τ) is called synchronous (or sometimes
letter-to-letter in the literature) if, whenever it reads an input symbol, it produces exactly one
output symbol, i.e. for all transition t, |ρ(t)| = 1, and τ(q) = ε for all accepting state q. For
example, consider the transducer D1 on Fig. 1 (the terminal function is assumed to output ε
and is not depicted). It is sequential and synchronous. Its domain is L = b∗ab∗a(a+ b)∗.

Two transducers are said to be equivalent if they define the same relation. Finally, the
disjoint union of transducers is naturally defined as the disjoint union of their input automata
and the disjoint union of their output functions (seen as graphs). For all transducers T1, T2,
we have JT1 ] T2K = JT1K ∪ JT2K.

Transducer Synthesis Problem. Let Σi,Σo be two alphabets of input and output symbols
respectively. They may not necessarily be disjoint. A specification is a subset of Σ∗

i
×Σ∗

o
, and

an implementation is a function, possibly partial, from Σ∗
i
to Σ∗

o
. The transducer realisability

problem asks, given a specification S defined by a transducer T , i.e. S = JT K, whether there
exists a sequential transducer I such that (1) dom(I) = dom(T ) and (2) for all u ∈ dom(T ),
(u, I(u)) ∈ JT K. In that case, we say that I realises S (or T ), and that S is realisable
by a sequential transducer, or sequentially realisable. We also say that I is a realiser of
S. The synthesis problem asks to output I. The realisability problem is undecidable in
general [4, 12], but decidable, in 3ExpTime, if T is finite-valued, i.e. there exists k ∈ N such
that for all u ∈ dom(T ), |{v | (u, v) ∈ JT K}| ≤ k [12].

4 Our definition is sometimes called real-time transducer in the literature, in contrast to transducers with
ε-input transitions. For the purpose of this paper, this does not make a difference.

MFCS 2018



46:6 Transducer Synthesis from Multi-Sequential Specifications

Multi-sequential specifications. A transducer T is called k-sequential if it is the disjoint
union of k sequential transducers. It is called multi-sequential if it is k-sequential for some k.
Observe that when the k sequential transducers have pairwise disjoint domains, then T is
functional, but it may not be the case in general. Deciding whether given a transducer T , there
exists an equivalent multi-sequential transducer T ′, can be done in PTime; however, T ′ may
be exponentially larger than T [19]. Minimising the number of sequential transducers of the
disjoint union is also doable: deciding whether T is equivalent to some k-sequential transducer
for k given in unary is decidable in PSpace [8]. In this paper, we consider multi-sequential
specification, i.e. relations S ⊆ Σ∗

i
× Σ∗

o
defined by multi-sequential transducers.

PSpace-hardness. In both the synchronous and asynchronous case, the realisability problem
of multi-sequential specifications by (a)synchronous sequential transducers is PSpace-hard.

We build a reduction from the emptiness problem of the intersection of n DFA A1, . . . ,An
on some alphabet Σ, proven PSpace-c in [25]. We define a specification S over Σ ∪ {#, a, b}
by S =

⋃n
i=1(Si ∪ Ni) where Si = {(w#mσ,wσ#m) | σ ∈ {a, b},m ≥ 0, w ∈ L(Ai)} and

Ni = {(w#mσ,w#mσ) | σ ∈ {a, b},m ≥ 0, w /∈ L(Ai)}. If there exists w ∈
⋂n
i=1 L(Ai),

then on the domain w#∗{a, b}, the specification is a function which is not definable by any
sequential transducer, thus not sequentially realisable, since it would imply counting the #s
(in the synchronous setting, it suffices to take m = 1 since a synchronous transducer would
be forced to guess the future). Conversely, if

⋂n
i=1 L(Ai) = ∅, then the identity function

(trivially definable by a synchronous sequential transducer) realises the specification.
It is readily seen that each Si (resp. Ni) is definable by a 2-(resp. 1-)sequential transducer,

hence S is multi-sequential, concluding the proof.

3 The synchronous setting

In this section, we consider first the synchronous setting, where the specification is given as
a disjoint union of synchronous sequential transducers, and the target implementations are
synchronous sequential transducers. Not only is this setting interesting in itself, but it helps
to understand the asynchronous setting. First, we characterise the realisable specifications
through a property called the residual property, then we show it is decidable in PSpace.

Residual property. Let T =
⊎n
i=1Di be an n-sequential transducer on Σi,Σo. Intuitively,

the residual property says that if on some input prefix u, two sequential transducers of the
union disagree on their outputs, i.e. produce different outputs, then a synchronous realiser
of JT K must “drop” one of the two transducers. However, it must do so while preserving the
residual domain u−1dom(T ), i.e., the realiser must still accept any word of u−1dom(T ). For
example, consider again Fig. 1 and the specification defined by D1 ] D2. On input a, the
two transducers disagree, hence, since we want a synchronous realiser, a choice has to be
made and therefore one of the two transducers must be dropped. However, by doing so, the
residual domain will not be fully covered by the remaining transducer. For example, if a
realiser chooses to output a when reading a, the residual language b∗ is not covered anymore.
As a matter of fact, D1 ] D2 is not realisable by any sequential and synchronous transducer.

Formally, let u ∈ Σ∗
i
and let ri, rj be runs of some Di,Dj respectively, on u. We say that

ri and rj agree on their output if out(ri) = out(rj). Now, u is called smooth if every Di
admits an initial run on input u, and all these runs agree on the corresponding output. The
word u is called critical if it is not smooth.
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We say that T satisfies the residual property if for every critical prefix u ∈ Σ∗
i
of a word

of dom(T ), there exists a subset P ( {1, . . . , n} satisfying:
1. All the transducers Di, i ∈ P , produce the same output φ(u) on u;
2. u−1dom(T ) =

⋃
i∈P u

−1dom(Di);
3.

⊎
i∈P (u, φ(u))−1JDiK is realisable by a synchronous and sequential transducer.

I Theorem 1. A specification S defined by a synchronous multi-sequential transducer T is
realisable by a synchronous sequential transducer iff T satisfies the residual property.

Sketch. If JT K is realised by a synchronous sequential transducer U , for every critical prefix
u, let P be the set of i such that Di and U map the same output to u. Property 1 is satisfied
by definition, and the other two follow from the fact that U is sequential and realises JT K.

Conversely, if the residual property is satisfied, we can construct a synchronous and
sequential realiser. The idea is to make a synchronised product of all the transducers Di,
and, whenever on some input symbol σ at least two of them disagree on the output, we know
by the residual property that there exists a subset P of them having the good properties
1, 2, 3. Then, the realiser just goes on simulating all the transducers Di corresponding to P
in parallel.

It also shows that if the property is satisfied, then we can synthesise a realiser, which
might however be exponentially larger than T . J

I Theorem 2. The realisability problem of synchronous multi-sequential specifications by
synchronous sequential transducers is PSpace-complete.

Sketch. The PSpace-hardness is obtained by reducing the problem from the emptiness
problem of the intersection of n DFAs (cf Section 2 p. 6).

To show membership to PSpace, given a transducer T =
⊎n
i=1Di, we show that the

residual property can be tested by a non-deterministic algorithm running in polynomial space.
First, we bound the size of witnesses of the negation of the property: roughly, if there is such
witness, namely a critical prefix u, then there exists a critical prefix v of exponential length
(in T ) such that for any subset P ( {1, . . . , n}, one of the conditions 1, 2, 3 is falsified. Then,
the algorithm guesses the prefix v on the fly, simulating all transducers Di in parallel and
keeping their states in memory (it also needs a counter for the length of v). As soon as the
transducers disagree on an output symbol, for each subset P ( {1, . . . , n} (they can obviously
be enumerated using only polynomial space), the algorithm checks whether property 1, 2
or 3 is falsified. Checking property 1 is easy: it suffices to look at the symbols produced
when reading the last input symbol. Checking property 2 can be done using the current
set of states reached by the transducers on input v, and by using any PSpace algorithm for
automata inclusion. Finally, to check property 3, it suffices to recursively apply the PSpace
algorithm described so far on a smaller set of transducers. The stack of recursive calls is
linear in n, hence the memory used by the whole procedure remains polynomial. J

4 The synthesis game

We now define a 2-player safety game from a transducer T such that if Eve wins the game
then T is realisable by a sequential transducer. This game notion will prove useful to show the
correctness of the characterisation of Theorem 5, and may also be used as a practical way to
synthesise implementations, as winning strategies of this game. In the asynchronous setting,
two different runs of a transducer on the same input word may not only produce different
outputs, but also the same output at different rates (i.e. one run is ahead, output-wise, of
the other for some time). This leads us to the notion of delays, a classical tool to compare
outputs in transducer theory. Let us define this notion formally.

MFCS 2018
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Delays. Given two words u1, u2 ∈ Σ∗, their longest common prefix ` is denoted by u1 ∧ u2.
The delay between u1 and u2 is an element of Σ∗×Σ∗ defined by del(u1, u2) = (`−1u1, `

−1u2).
Intuitively, if a transducer produces u1 and another one produces u2, then u1 ∧ u2 is
what can safely be output by the two transducers and del(u1, u2) what remains to be
produced by each of them respectively. This notion is naturally extended to tuples of words:
del(u1, . . . , un) = (`−1u1, . . . , `

−1un) where ` =
∧n
i=1 ui.

We now introduce notations that are useful when comparing the outputs of different
runs on the same input of a transducer T = (A, ρ, τ) over Σi,Σo with A = (Σi, Q, I, F,∆).
Given a pair (q, w) ∈ Q × Σ∗

o
, where w is intended to be some delay associated with

state q, given a transition t = (q, σ, q′) ∈ ∆ and some output word u prefix of wρ(t), we
denote by next((q, w), t, u) the “next” pair (state,delay), assuming that u is output, i.e.
next((q, w), t, u) = (q′, u−1wρ(t)). More generally, given a (total) function D : Q → 2Σ∗

o

associating each state with a set of delays, we let live(D) = {q ∈ Q | D(q) 6= ∅}. For
σ ∈ Σi, next(D,σ) maps every state which can be reached from dom(D) by reading σ to the
corresponding delays obtained by outputting the longest common prefix of the words that
can be formed from the previous delays and the output on these transitions. Formally, we
call safe output of D for σ the word ` =

∧
{wρ(t) | q ∈ live(D), w ∈ D(q), t = (q, σ, q′) ∈ ∆}.

Then next(D,σ) = {next((q, w), t, `) | q ∈ live(D), w ∈ D(q), t = (q, σ, q′) ∈ ∆}.

The synthesis game. In the synchronous setting, synthesis problems are classically solved
by reduction to two-player games in which the players alternately choose one input symbol
(the adversary, whom we call Adam) and one output symbol (the protagonist, called Eve).
Their interaction induces a pair of input and output words by concatenating their respective
symbols, and the protagonist wins if such pair satisfies the specification, or if the input word
is out of the domain. Then, a finite-memory winning strategy in the game corresponds to an
implementation of the specification.

In the asynchronous setting, the protagonist may choose arbitrary output words at each
round instead of a single symbol, and one needs to introduce output delays in the game in
order to define the winning condition in a regular manner. The game we now present follows
this idea. Given a transducer T = (A, ρ, τ) with A = (Σi, Q, I, F,∆), ρ : ∆ → Σ∗

o
and

τ : F → Σ∗
o
, we build a two-player safety game GT = (V∀, V∃, A∀, A∃, T∀, T∃, Safe), called the

synthesis game, whose vertices keep track of the runs in T and the associated delays. More
precisely, it consists of two disjoint sets of vertices V∀ = 2Q × (Q→ 2Σ∗

o ) and V∃ = V∀ × Σi,
respectively controlled by Adam and Eve. The initial vertex is v0 = (I,D0) ∈ V∀ where
D0(q) = ∅ if q 6∈ I, and D0(q) = {ε} otherwise.

Eve’s vertices are Adam’s vertices extended with the last input symbol picked by Adam.
Suppose now that the game has been played for some rounds and is currently in some vertex
(C,D) of Adam. Along these rounds, Adam has chosen a sequence u of input symbols, and
Eve has chosen a set of runs over u from the initial states. C is the set of states in which
these runs end. Each run induces some delays compared to the longest common prefix of
all the outputs they can produce. D maps each state to the delays of the runs ending in it.
Eve’s actions consist in selecting some of these runs to prevent some delays to grow too high,
i.e., she can drop from any set D(q) some of its elements. By restricting the set of possible
runs, Eve can be in a situation where some state q of C is accepting while none of the states
of live(D) is, in which case she loses, as none of the runs she has selected accepts the input
word chosen by Adam. Such vertices constitute the set of unsafe vertices she needs to avoid.

More precisely, the set of Adam’s transitions T∀ and Eve’s transitions T∃ are defined as
follows. From any game position (C,D), Adam can pick a symbol σ ∈ Σi and the game
evolves to the position (C,D, σ). From (C,D, σ), Eve’s actions is a subset α ⊆ next(D,σ)
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(she can “drop” some pairs of next(D,σ)), and the game evolves to (C ′, Dα) where C ′ is the
set of states reached from C by reading σ, and Dα maps any q ∈ Q to the set {w | (q, w) ∈ α}.

Given K ∈ N, we define the K-synthesis game as the restriction of GT to delays of length
at most K: GT ,K = (V K∀ , V K∃ , vK0 , AK∀ , AK∃ , TK∀ , TK∃ , SafeK), where V K∀ = 2Q× (Q→ 2Σ≤K

o ),
A∃ ⊆ Q× Σ≤K

o
, etc. There is no deadlock in GT ,K because Eve can always play ∅, at the

risk of going to an unsafe position.

Example. First, note that by definition of the game, any reachable vertex (C,D) or (C,D, σ)
satisfies live(D) ⊆ C. Figure 2 represents the 1-synthesis game for D1 ∪ D2 (cf Figure 1).
The states depicted in a vertex correspond to C, together with their values by D (thanks to
the previous remark, there is no need to represent the values D assigns for the states outside
C). The circle vertices are Eve’s positions, whose labels are not depicted, as they are just the
label of their predecessor vertex extended with Adam’s action. Bold nodes correspond to the
unsafe states. Let us now explain how the game proceeds in more detail. First, since both
D1 and D2 are complete and sequential, for each state (C,D) of Adam, C contains exactly
one state of D1 and one state of D2. Eve’s actions in the synthesis game, which consist in
dropping a subset of pairs (state,delay), actually correspond here to “dropping” one of the
two sequential transducers: at any moment, she can choose to drop D2, which leads her into
the red part of the game, or to drop D1, which leads her into the blue part of the game. Note
that once she has dropped one of the transducers, she is stuck in the corresponding part.

The initial vertex, owned by Adam, corresponds to being in the initial states of both D1
and D2, with no delays. If Adam chooses to play a as the first input letter, Eve has four
choices. Either she keeps both transducers, with a delay of length 1, or she drops one of
them, or both (not depicted). If Eve chooses to drop D2, respectively D1, Adam can then
play a b, respectively an a, which leads her into an unsafe state. Note that this proves that
Eve cannot win the 0-synthesis game corresponding to D1 ∪ D2. If Eve keeps both, she has
to drop one of them once Adam plays a second letter, since otherwise the delay would grow
larger than 1. However, in both cases she has a move which ensures her a win: if Adam plays
a second a, Eve can safely drop D2 since the accepting state of D1 has been reached, and if
Adam plays b, Eve can safely drop D1 since the accepting state of D2 has been reached. If
Adam chooses to play a b in the first place, Eve can immediately drop D1 and win. Hence,
Eve wins the 1-synthesis game associated to D1 ∪ D2. The described strategy then directly
induces a sequential transducer realising the specification.

I Proposition 3. Let S be a specification defined by some transducer T . If Eve wins the
K-synthesis game GT ,K for some K, then S is realisable by a sequential transducer.

Sketch. If Eve wins the K-synthesis game, then, since it is a safety game, she can win with
a positional strategy. Thus, her actions only depend on the last visited vertex. This allows
to reconstruct a realiser for S, whose states are the possible vertices of Adam visited by the
strategy. Then, when Adam chooses an input symbol σ in a vertex (C,D) and Eve decides
to go to some vertex (E,F ) from (C,D, σ), then in the realiser, we add a transition from
(C,D) to (E,F ) on σ, outputting the safe output of D for σ. J

Synthesis algorithm. It is worth noting that the synthesis game allows for a synthesis
procedure: for ascending values of K, test whether Eve wins the K-synthesis game (this
can be done in PTime in the size of the game). If it is the case, then by Proposition 3 the
specification is realisable, and we can even extract an implementation corresponding to a
winning strategy of Eve. If it is not the case, then increment K and try again, until K
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Figure 2 The 1-synthesis game corresponding to the union of D1 and D2 (cf Figure 1).

reaches some given upper bound B. The K-synthesis game is exponentially large in general
(in the transducer defining the specification, and in K). Solving this game efficiently, using
for instance symbolic methods, as done for LTL synthesis in the synchronous case [10, 13], is
beyond the scope of this paper, but is an interesting research direction.

This algorithm is not complete in general: it is shown for instance in [12] that some
specifications defined by transducers are realisable by sequential transducers while Eve
has no winning strategy in GT ,K for any K. Still, the converse of Proposition 3 holds for
some subclasses of specifications JT K. For example, in the synchronous setting, where we
want to synthesise a synchronous sequential transducer, it suffices to take K = 0. This
gives an ExpTime procedure to check the realisability of JT K by a synchronous sequential
transducer. If T is finite-valued, then by taking K large enough (triply exponential in T ),
we get completeness [12]. Finally, if T is functional, then Eve wins GT ,K for some K iff T is
equivalent to a sequential transducer, and a polynomial K (in T ) suffices [2].

In this paper, we obtain completeness for multi-sequential specifications by taking K
exponential in T (Proposition 6). While this allows us to decide realisability using the
game approach, the time complexity will not be optimal (2ExpTime). We indeed devise, in
Section 5, a PSpace realisability-checking procedure based on an effective characterisation
of realisable multi-sequential specifications. If the PSpace procedure concludes that the
specification is realisable, one can run the former game-solving procedure to synthesise a
realiser, for ascending values of K. This way, one may hope to synthesise a “small” realiser.

5 The asynchronous setting

We first characterise recursively the multi-sequential specifications which are sequentially
realisable (Theorem 5). Then, we provide an equivalent characterisation, non-recursive and
easier to check algorithmically, but more technical.

Similarly to the synchronous case, we define a notion of critical situation to which a
realiser must react. In the synchronous case, it was just a prefix on which at least two
sequential transducers were producing different outputs. In the asynchronous case, two
sequential transducers may produce different outputs on the same prefix, but this may not
be problematic in the case where one is ahead of the other, i.e., the output of one run is
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a prefix of the output of the other. A critical situation is rather a prefix where the delays
between all the outputs of the sequential transducers are too large. Since no bound is known
a priori to define “too large”, we formalise a critical situation as a prefix of the form uv, such
that at least two sequential transducers loop on v, and have a different delay before and after
the loop. By iterating this loop, i.e. by taking a prefix uvn, the delay between these two
transducers will grow unboundedly when n increases. For such loops, the situation will get
critical if a realiser does not react.

I Definition 4 (critical loop). Let T =
⊎n
i=1Di be an n-sequential transducer. A critical

loop for T is a triple (u, v,X ) ∈ Σ∗
i
× Σ∗

i
× 2{1,...,n} such that

1. for all i ∈ X , there exists an initial run pi
u|αi−−−→ qi

v|βi−−→ qi of Di on uv;
2. for all i ∈ {1, . . . , n} \ X , there is no run of Di on u;
3. There exists i, j ∈ X such that del(αi, αj) 6= del(αiβi, αjβj).

Our characterisation echoes the one of the synchronous setting. It says that whenever
there is a critical situation (a critical loop), a realiser must be able to drop some of the
sequential transducers, in order to prevent the delays to grow unboundedly, while preserving
the residual domain. Formally:

I Theorem 5 (recursive characterisation). Let T =
⊎n
i=1Di be a multi-sequential transducer

over Σi,Σo. Then JT K is realisable by a sequential transducer, iff, for all critical loops
(u, v,X ), there exists Y ( X such that
1. ∀i, j ∈ Y, del(αi, αj) = del(αiβi, αjβj) (following the notations of Definition 4),
2. u−1dom(T ) =

⋃
i∈Y u

−1dom(Di),
3.

⋃
i∈Y(u, `)−1JDiK is realisable by a sequential transducer, where ` =

∧
i∈X αi.

Sketch. ⇒ Let U be a sequential transducer realising JT K. For every critical loop (u, v,X )
of T , the corresponding set Y is obtained by getting rid of all the transducers that stray
arbitrarily far from U on the input words of the form uv∗. Then, the first property is
immediate, and the other two follow from the fact that U is sequential and realises JT K.
⇐ Conversely, assuming that whenever a critical loop is met there exists a set Y satisfying

the three conditions, we prove by induction on the degree n of sequentiality of JT K that
Eve has a winning strategy in the KT -synthesis game for T , for some well-chosen value KT
depending on T . By Proposition 3, this entails the existence of a sequential realiser.

Note that in the synthesis game, since T is a union of sequential transducers, for each
accessible vertex (C,D) of Adam, and for every i ∈ {1, . . . , n}, there is at most one state qi
of Di occurring in live(D), and if there exists such a state, |D(qi)| = 1. As a consequence,
Eve’s actions in the synthesis game, which consist in dropping a subset of pairs (state,delay),
actually correspond here to “dropping” a subset of sequential transducers.

If n = 1, then T is sequential, and the strategy of Eve that consists in never dropping
T is winning. Now, suppose that n > 1. In order to demonstrate that Eve has a winning
strategy, we show that for every input word chosen by Adam, either Eve can keep track of
all the transducers in the KT -synthesis game, which ensures her a win, or she can drop some
transducers on the way, while reaching a state from which she has a winning strategy.

Let u ∈ Σ∗
i
, and let (C0, D0) be the state reached by Eve on input u if she drops nothing.

If (C0, D0) is not part of the KT -synthesis game, i.e., for some q ∈ C0, D0(q) = {w} with
|w| > KT , this implies the existence of a decomposition u1u2u3 of u such that (u1, u2,X ) is a
critical loop for some X ⊆ {1, . . . , n}. Then, by hypothesis, there exists a subset Y ( X which
satisfies the three conditions of the theorem, hence T ′ =

⊎
i∈Y(u1, `)−1JDiK is realisable by a

sequential transducer. In particular, T ′ satisfies the conditions on critical loops (implication
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⇒ shown before), and, by the induction hypothesis (since T ′ is |Y|-sequential and |Y| < n),
Eve has a winning strategy in the KT ′ -synthesis game for T ′ from the initial vertex. Lifting
this strategy to the KT -synthesis game for T yields a winning strategy for Eve from the
state (C,D′), where (C,D) is the state reached by Eve on input u1u2 if she drops nothing,
and D′ is obtained from D by dropping all the transducers that are not part of Y. J

The proof of Theorem 5 shows that if a multi-sequential specification is realisable, Eve
wins theK-synthesis game forK computable from the specification, as stated in Proposition 6.
As explained in Section 4, solving the k-synthesis game for ascending values of k then provides
a practical way to synthesise a realiser, but the complexity is not optimal.

I Proposition 6 (bounded delay). Let S be a specification defined by an n-sequential transducer
T . Then S is realisable by some sequential transducer iff Eve wins the K-synthesis game for
K = L(6M)n2 , where L is the longest output occurring on a transition of T , and M is the
maximal number of states of a sequential transducer of T .

I Theorem 7. A realisable specification S defined by a multi-sequential transducer T with
m states admits a realiser of size doubly exponential in m. Moreover, there exists a family
(Sn)n∈N of realisable specifications such that for every n ∈ N, Sn is definable by a multi-
sequential transducer of size polynomial in n, and every sequential transducer realising Sn
has a size that is doubly exponential in n.

Proof. Let S ⊂ Σ∗ × Γ∗ be a realisable specification defined by an n-sequential transducer
T with a set of states Q of size m. Note that n ≤ m, hence, by Proposition 6, Eve wins the
K-synthesis game for some K exponential in m. Then, the construction presented in the
proof of Proposition 3 exposes a realiser whose set of states Q′ consists of Adam’s vertices
that are reachable in the K-synthesis game. For every such vertex (C,D) ∈ 2Q × (Q→ 2Γ∗),
since T is n-sequential, there is at most n sates q ∈ Q satisfying D(q) 6= ∅. Moreover, for
every such state we have D(q) = {w} for some w ∈ Γ∗ satisfying |w| ≤ K. Therefore, the
size of Q′ is bounded by 2m(m(|Γ|K+1))n, which is doubly exponential in m.

In order to expose the family (Sn)n∈N, we use the notion of j-pairs, presented in [22].
For every n ∈ N, let us consider the alphabet In = {1, . . . , n}. A bad j-pair of a word
u = i1 . . . im ∈ I∗n is a pair of positions 1 ≤ k < k′ ≤ m such that ik = ik′ = j, and for all
k < ` < k′, i` ≤ j. Then every u ∈ I∗n satisfying |u| ≥ 2n admits a bad j-pair for some
1 ≤ j ≤ n, and there exists a word, denoted by ψn, that has size 2n − 1, and contains no
j-pair (see [22]). We now consider the finite alphabet Σ = {a, b}. For every n ∈ N, let Σn

denote the alphabet In×Σ. We denote by π1 : Σ∗n → I∗n and π2 : Σ∗n → Σ∗ the projections on
the first, respectively second component. Let f : Σ∗n → Σ∗ be the function mapping w ∈ Σ∗n
to the word obtained by taking the last letter of π2(w) and putting it at the beginning, i.e.,
f(w) = σv where σ ∈ Σ and v ∈ Σ∗ satisfy π2(w) = vσ. We consider the specification

Sn = {(w, f(w))|w ∈ Σ∗n} ∪ {(w, ε)|w ∈ Σ∗n contains a bad j-pair for some 1 ≤ j ≤ n}.

Then Sn is definable by an (n + 2)-sequential transducers with 3(n + 2) states, since the
function f is definable by the union of 2 sequential transducers of size 3, and for every
1 ≤ j ≤ n, the set of words w ∈ I∗n containing a bad j-pair is recognisable by a deterministic
automaton of size 3. Moreover, since every word u ∈ I∗n of size greater than 2n admits a bad
j-pair for some j, Sn is realised by the sequential transducer mapping every word w ∈ Σ∗n
satisfying |w| < 2n to f(w), and every w ∈ Σ∗n satisfying |w| ≥ 2n to ε.

We now show that every sequential transducer D realising Sn has at least 22n−1 states.
Let D = ((Σ, Q, I, F,∆), ρ, τ) be a sequential transducer realising Sn. For every v ∈ Σ∗ such
that |v| = 2n − 1, let ψv ∈ Σ∗n denote the word satisfying π1(ψv) = ψn and π2(ψv) = v. We
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now show that for every pair of distinct words v1, v2 ∈ Σ∗ of size 2n−1, the states reached by
D on input ψv1 and ψv2 are distinct. This allows us to conclude the proof, since Σ∗ contains
22n−1 such words. Given v ∈ Σ∗ satisfying |v| = 2n − 1, let ρv : p0

ψv|v′−−−−→ pv denote the
accepting run of D on input ψv. Then v′ = ε, since if the first letter of v′ was an a, D would
not be able to produce an acceptable output on input ψv · (1, b), and a similar contradiction
would be reached if the first letter of v′ was a b. Therefore, the output associated to ψv is
produced by the terminal function of D, i.e., τ(pv) = f(ψv). Since f is injective, for every
pair of distinct words v1, v2 ∈ Σ∗ of size 2n − 1, pv1 6= pv2 . J

We are now ready to show how to decide the realisability of multi-sequential specifications
in PSpace. Consider the characterisation given in Theorem 5. We rely on the notion of witness
for the non-satisfaction of this characterisation, and we show how to decide the existence of
a witness, using a reduction to the emptiness of reversal-bounded counter machines.

The notion of witness intuitively consists in the following ingredients: (1) an unfolding
(modeled as a tree) of the recursive characterisation of Theorem 5 and (2) an explicit
formulation of delay differences using simple properties of words. Formally, given an n-
sequential transducer T =

⊎n
i=1Di, where each Di is sequential, a witness for T is a finite

tree t whose nodes are labelled in Σ∗
i
×Σ∗

i
× (2{1,...,n} \ {∅}). For any node x of t, we denote

by (ux, vx, Sx) its label. For all nodes x, y, z of t, it is required that:
1. (maximality) if x is the root, Sx = {1, . . . , n};
2. (consistency) Sx can be split into two disjoint sets Nx, Lx such that for all i ∈ Nx there

is no run of Di on ux, and for all i ∈ Lx there is a run of Di on uxvx from its initial state
qi0, of the form qi0

ux|αx,i−−−−−−→ px,i
vx|βx,i−−−−−−→ px,i;

3. (monotonicity) if y is a child of x, then Sy ( Lx and ux is a prefix of uy;
4. (partition) if Y is the set of children of x, then {Sy | y ∈ Y } partitions Lx;
5. (delays) if y and z are different children of x, for all i ∈ Sy and j ∈ Sz, either |βx,i| 6= |βx,j |

or, βx,iβx,j 6= ε and, αx,i and αx,j mismatch5;
6. (leaves) if x is a leaf, then there is w ∈ Σ∗

i
such that uxw ∈ dom(T ) and uxw 6∈ dom(Di)

for all i ∈ Sx.
Intuitively, conditions 2 and 5 require that the words ux, vx are critical loops. The delay
difference required in the definition of critical loops is not explicit here, but rather replaced
by simple properties of words (condition 5), which are easier to check algorithmically. These
properties are not strictly equivalent to delay difference, but up to iterating the loop on vx
a sufficient number of times, they are. Conditions 1, 3, 4 correspond to properties of the
subsets met when unfolding the recursive characterisation of Theorem 5. They also allow
us to bound linearly the number of nodes of a witness. As announced, all these conditions
characterise the unrealisable multi-sequential specifications:

I Lemma 8. A multi-sequential specification defined by a trim transducer T is not realisable
by a sequential transducer if and only if there exists a witness for T .

I Theorem 9. The realisability problem by some sequential transducer of a specification
defined by a multi-sequential transducer is PSpace-c.

Sketch. PSpace-hardness has been shown in Section 2. To show PSpace-easyness, we reduce
the problem to deciding the emptiness of the language of a counter machine, whose counters
make at most 1 reversal (i.e. move from increasing to decreasing mode). This is known to

5 Two words u, v mismatch if there is a position i such that i ≤ |u|, |v| and the ith letter of u differs from
the ith letter of v.
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be in NLogSpace [16]. Our machine is exponentially large (in the transducer defining the
specification), but can be constructed on the fly, hence we get PSpace.

A bit more precisely, we first define the notion of skeleton s, which is a witness without the
words ux, vx, hence there are finitely many skeletons, each one of polynomial size. Given an
enumeration x1 . . . xn in depth-first order of the nodes of s, we construct a counter machine
Ms which recognises sequences of the form x1wx1#vx1 . . . xnwxn#vxn such that if we extend
any label of a node x in s with the pair of words (wy1 . . . wyk

, vx), where y1 . . . yk is the path
from the root to x, we get a witness. Hence, there exists a witness iff there exists a skeleton
s such that L(Ms) is non-empty. Our algorithm non-deterministically guesses a skeleton and
runs a procedure to check in PSpace the emptiness of Ms.

Let us intuitively explain how Ms works. Conditions 1, 3, 4 and 6 are regular, so no
counter is needed there. Counters are only necessary to check Condition 5, for instance to
compute the length of the words βx,i, and to check the existence of a mismatch between a
word αx,i and a word αx,j . First, a mismatch position m is guessed, by incrementing for
some time two counters ci,x and cj,x in parallel. Then, they are decremented according to the
length of outputs produced by simulating the transitions of Di and Dj respectively. When
one of them reaches 0, say ci,x, we store the mth symbol of the output of Di on ux in memory.
We do the same for cj,x and later on check that the two stored symbols are different. J

6 Conclusion

We have identified a class of specifications (whose membership is decidable in PTime),
for which the sequential realisability problem is PSpace-c, both in the asynchronous and
synchronous settings. This is in contrast to the general case, which is ExpTime-c for
synchronous specifications, and undecidable in the asynchronous case. Our procedure allows
to synthesise a sequential transducer whenever the specification is realisable, and allows for
incremental testing, via the solvability of a two-player game parameterised by the longest
output allowed to be queued by a realiser before being output.

While the class of multi-sequential specifications is natural, as the closure of graphs of
sequential functions under finite unions, we believe that it may also be interesting for practical
applications. In particular, Vardi and Lustig have defined the concept of synthesis from
component libraries [26], in the synchronous setting, over infinite words. In this setting, given
a set of components (synchronous sequential transducers over finite words), a specification
S over infinite words, the question is whether the components can be arranged in such a
way which realises the specification (by linking the final states of the components to the
initial state of another component). This problem was shown to be decidable. We would
like to investigate another way of reusing existing components, which is tightly related
to multi-sequential specifications: given components C1, . . . , Cn represented as sequential
transducers and a specification S, decide whether there exists a sequential function f such
that f and S have the same domain, f ⊆

⋃
i Ci and f satisfies S. This is beyond the scope

of this paper but we plan to investigate further this question in the near future.
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