
On Canonical Models for Rational Functions over
Infinite Words
Emmanuel Filiot
Université Libre de Bruxelles, Belgium
efiliot@ulb.ac.be

Olivier Gauwin
LaBRI, Université de Bordeaux, France
olivier.gauwin@labri.fr

Nathan Lhote
LaBRI, Université de Bordeaux, France and Université Libre de Bruxelles, Belgium
nlhote@labri.fr

Anca Muscholl
LaBRI, Université de Bordeaux, France
anca@labri.fr

Abstract
This paper investigates canonical transducers for rational functions over infinite words, i.e., func-
tions of infinite words defined by finite transducers. We first consider sequential functions, defined
by finite transducers with a deterministic underlying automaton. We provide a Myhill-Nerode-
like characterization, in the vein of Choffrut’s result over finite words, from which we derive an
algorithm that computes a transducer realizing the function which is minimal and unique (up to
the automaton for the domain).

The main contribution of the paper is the notion of a canonical transducer for rational func-
tions over infinite words, extending the notion of canonical bimachine due to Reutenauer and
Schützenberger from finite to infinite words. As an application, we show that the canonical
transducer is aperiodic whenever the function is definable by some aperiodic transducer, or equi-
valently, by a first-order transduction. This allows to decide whether a rational function of infinite
words is first-order definable.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases transducers, infinite words, minimization, aperiodicty, first-order logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.30

Related Version A full version of the paper is available at https://hal.archives-ouvertes.
fr/hal-01889429.

Funding This work was supported by the French ANR projects ExStream (ANR-13-JS02-0010)
and DeLTA (ANR-16-CE40-0007), the Belgian FNRS CDR project Flare (J013116) and the ARC
project Transform (Fédération Wallonie Bruxelles).

Introduction

Machine models, such as automata and their extensions, describe mathematical objects
in a finite way. Finite automata, for instance, describe languages (of words, trees, etc).
A canonization function C is a function from and to machine models (not necessarily of
the same type) such that, whenever two machines M1,M2 describe the same object, then

© Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, and Anca Muscholl;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:efiliot@ulb.ac.be
mailto:olivier.gauwin@labri.fr
mailto:nlhote@labri.fr
mailto:anca@labri.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.30
https://hal.archives-ouvertes.fr/hal-01889429
https://hal.archives-ouvertes.fr/hal-01889429
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 On Canonical Models for Rational Functions over Infinite Words

1 2

a|a
a|a

b|a

b|a

3 4
b|ε

a, b|ε b|b

F = {{1} , {1, 2} , {4}}

Figure 1 Transducer with Muller sets F realizing the function f#a mapping any word with
infinitely many a to aω, otherwise to bω.

C(M1) = C(M2). Accordingly, C(M1) is called the canonical model of the object described by
M1, and it does not depend on the initial representation of the object. A classical example of
canonization is the function which associates with a finite automaton its equivalent minimal
deterministic automaton. A canonization function becomes interesting when it satisfies
additional constraints like being computable, preserving some algebraic properties, and
enjoying minimal models. Canonical models not only shed light on the intrinsic characteristics
of the class of objects they describe, but can also serve to decide definability problems. For
instance, it is well-known that the minimal DFA of a word language L is aperiodic if and only
if L is definable in first-order logic [17, 21]. Hence, this allows to decide whether a monadic
second-order formula has an equivalent first-order one over words. This result has been
extended to infinite words [23, 24, 1, 18], although there is no unique minimal automaton for
languages of infinite words (see also [10] for a survey).

Rational functions are functions defined by word transducers. A canonical model for
rational functions over finite words has been introduced in [20]. This result, which can be
considered as one of the jewels of transducer theory, states the existence of a procedure
that computes from a given transducer a canonical input-deterministic transducer with
look-ahead, called bimachine. For the subclass of functions realized by input-deterministic
transducers, called sequential functions, it is even possible to compute a unique and minimal
transducer realizing the function [8]. For rational functions, the procedure of [20], though
it preserves aperiodicity of the transition congruence of the transducer, does not preserve
other congruence varieties, in general. In [14, 15] it was shown how to adapt [20] to obtain a
canonization procedure which overcomes this issue. Later it was shown that the first-order
definability problem for rational functions is PSpace-c [13]. In a different setting, functions
with origin information realizable by two-way transducers were shown to have decidable
first-order definability [4]. In this paper, we extend the results of [20] and the decidability of
first-order definability of [13] to rational functions of infinite words.

Rational functions of infinite words. We consider rational functions of infinite words, i.e.
functions defined by transducers with Muller acceptance condition. Such machines map
any ω-word for which there exists an accepting run to either a finite or an ω-word. Take
as example the function f#a over alphabet {a, b} mapping any word containing an infinite
number of a to aω, and to bω otherwise. This function is realized by the transducer of Fig. 1.

The class of sequential functions is of particular interest: they are realized by transducers
whose underlying input Muller automaton is deterministic. Note that the function f#a is not
sequential, unlike the function fab of Fig. 2. Sequential functions over infinite words have
been studied e.g. in [2]. One difference between our setting and [2] is that in the latter paper
infinite words are mapped to infinite words, whereas we need also functions that map infinite
words to finite words. Deciding whether a rational function is sequential can be done in

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:3

qb qa

a|ε
b|ε

b|ab

a|ε

Figure 2 Sequential transducer with Muller condition F = {{qb}} realizing the function fab

which maps any word containing a finite number of a’s to the subsequence of ab factors, and is
undefined otherwise.

PTime, as shown in [2]. Bimachines for infinite words were introduced in [25] to define the
particular class of total letter-to-letter rational functions, and in their counter-free versions,
a connection with linear temporal logic was established.

To the best of our knowledge, nothing is known about canonical models for sequential
and rational functions over infinite words, and their applications to definability problems in
logics.

Contributions.
(1) We provide a characterization of sequential functions by means of the finiteness of a

congruence. We give a PTime procedure which, for any sequential function f given as
a transducer whose domain is topologically closed, produces the minimal (and hence
canonical) sequential transducer Tf realizing f . When the domain of f is not topologically
closed, we extend f to a domain-closed sequential function f which coincides with f on
its domain. By intersecting Tf with some automaton D recognizing the domain of f ,
one obtains a canonical transducer for f , as long as D can be obtained in a canonical
way (such a procedure exists, see e.g. [7]).

(2) Our main contribution (Theorem 29) is a notion of canonical sequential transducer
with look-ahead for any rational function. This canonical transducer is an effectively
computable bimachine. Hence we lift results of Reutenauer and Schützenberger [20] on
rational transductions from finite to infinite words.

(3) As a side result we lift a result by Elgot and Mezei [11] from finite to infinite words,
stating that a function f is rational if and only if f = g1 ◦ h1 (resp. f = g2 ◦ h2)
such that h1, h2 are letter-to-letter, g1, h2 are sequential and h1, g2 are right-sequential
(i.e., realized by a transducer whose underlying input automaton is prophetic [6]). The
existence of such g1, h1 was already shown in [5], but the one of g2, h2 was left open.

(4) Finally, we show that our procedure which computes a canonical bimachine for any
rational function given by a transducer, preserves aperiodicity. As an application, after
showing some correspondences between logics and transducers, we obtain the decidability
of FO-transductions in MSO-transductions over infinite words.

Overview of the canonization procedure for rational functions. The main idea to get
a canonical object for a rational function, inspired by [20], is to add a canonical look-
ahead information to the input word, so that the function can be evaluated in a sequential
(equivalently, deterministic) manner. We say that the look-ahead “makes the function
sequential”. By doing so, we can reduce the problem to computing canonical machines for
sequential functions. The main difficulty is to define a canonical (and computable) notion of
look-ahead which makes the function sequential. Over finite words, the look-ahead information
is computed by a co-deterministic automaton, or equivalently, a deterministic automaton
reading the input word from right to left (called a right automaton). On infinite words we

FSTTCS 2018

30:4 On Canonical Models for Rational Functions over Infinite Words

need something different, so we use prophetic automata [6] to define look-aheads (called right
automata in this paper). Prophetic automata are a special form of co-deterministic automata
over infinite words. In Section 3, sequential transducers with look-ahead are formalized via
the notion of bimachines, consisting of a left automaton and a right automaton. We show
that bimachines over infinite words capture exactly the class of rational transductions. Our
goal is to obtain a canonical bimachine, fine enough to realize the function, but coarse enough
to preserve algebraic properties like aperiodicity.

Unlike the setting of finite words, some difficulties arise when prefix-independent properties
matter (such as for instance that a suffix contains an infinite number of a’s). We overcome
this issue by defining two kinds of look-ahead information which we combine later on. This
decomposition simplifies the overall proof.

The first look-ahead information we define allows one to make any rational function
almost sequential, in the sense that it can be implemented by a transducer model which
can additionally output some infinite word after processing the whole input, depending
on the run (similar to so-called subsequential transducers in the case of finite words). We
call quasi-sequential functions realized by such transducers. They constitute a class with
interesting properties. We show that they correspond precisely to transducers satisfying
the weak twinning property, a syntactic condition defined in [2]. On the algebraic side, we
exhibit a congruence having finite index exactly for quasi-sequential functions.

We then define another kind of canonical look-ahead which makes any quasi-sequential
function sequential. Combined together, these two look-aheads turn any rational function
into a sequential one: the first one from rational to quasi-sequential, and the second one
from quasi-sequential to sequential.

The whole procedure does not yield a minimal bimachine in general. While the minimality
question is an important and interesting (open) question, our procedure still has the strong
advantages of being canonical, effective, and of preserving aperiodicity. This allows one to
answer positively the important question of the decidability of first-order definability for
rational functions of infinite words. Detailed proofs are provided in a long version of this
paper, available online.

1 Regular languages and rational functions

Finite words, infinite words and languages. An alphabet A is a finite set of symbols called
letters. A finite word is a finite sequence of letters, the empty sequence is called the empty
word and is denoted by ε. The set of (resp. non-empty) finite words over A is denoted by
A∗ (resp. A+). An infinite sequence of letters is called an ω-word (or just an infinite word),
we denote by Aω the set of ω-words and we write A∞ = A∗ ∪ Aω. For a word x ∈ Aω we
denote by Inf(x) the set of letters of x which appear an infinite number of times. The length
of a word w is written |w|, with |w| =∞ if w ∈ Aω. Throughout the paper, we often denote
finite words by u, v, . . . and infinite words by x, y . . .

For a non-empty word w and two integers 1 ≤ i ≤ j ≤ |w| we denote by w(i) the ith letter
of w, by w(i:) the suffix of w starting at the ith position, by w(:i) the prefix of w ending at
the ith position and by w(i:j) the infix of w starting at the ith position and ending at the
jth, both included. For two words u ∈ A∗ and v ∈ A∞, we write u ≺ v if u is a strict prefix
of v, i.e. there exists a non-empty word w ∈ A∞ such that uw = v, and we write u−1v for
w. For u, v ∈ A∞, we write u � v if either u ≺ v, or u = v. We denote by u ∧ v the longest
common prefix of u and v. The delay del(u, v) between two words u, v ∈ A∞ is the unique
pair (u′, v′) such that u = (u ∧ v)u′ and v = (u ∧ v)v′. For example, del(aab, ab) = (ab, b)
and del(aω, aω) = (ε, ε).

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:5

1 2

a

a

b

b

3 4

a

a

b

b

F = {{1} , {1, 2} , {4}}

Figure 3 A right automaton (with Muller condition) recognizing (b∗a)ω. Words with finitely
many b’s have final run with {1}, words with finitely many a’s have final run with {4}, and those
with infinitely many a’s and infinitely many b’s have final run with {1, 2}.

A language is a set of words L ⊆ A∞, and by
∧
L we denote the longest common prefix of

all words in L (if L 6= ∅). The closure L of L is {u ∈ A∞ |∀i ∈ N, i ≤ |u|, ∃w s.t. u(:i)w ∈ L},
i.e. the set of words for which any finite prefix has a continuation in L. For instance
a∗bω = a∗bω ∪ aω. A word is called regular if it is of the form uvω with u, v ∈ A∗. In
particular any finite word is regular (since εω = ε) and regular ω-words are also called
ultimately periodic. We say that a regular word uvω is in normal form if v has minimal
length and is minimal in the lexicographic order among all possible decompositions of uvω,
and v is not a suffix of u (if v 6= ε). E.g. the normal form of (ba)ω is b(ab)ω. In the sequel
we often assume regular words are in normal form.

Automata. A Muller1 automaton over an alphabet A is a tuple A = (Q,∆, I, F) where Q
is a finite set of states, ∆ ⊆ Q× A×Q is the set of transitions, I ⊆ Q is the set of initial
states, and F ⊆ P(Q) is called the final condition. When there is no final condition, so
F = P(Q), we will omit it. A run of A over a word w ∈ A∞ is itself a word r ∈ Q∞ of
length |w|+ 1, (with the convention that ∞+ 1 =∞) such that for any 1 ≤ i < |r|, we have
(r(i), w(i), r(i+ 1)) ∈ ∆. A run r is called initial if r(1) ∈ I, final if r ∈ Qω and Inf(r) ∈ F ,
and accepting if it is both initial and final. For a finite word u and two states p, q, we write
p
u−→A q to denote that there is a run r of A over u such that r(1) = p and r(|r|) = q. For an

ω-word x, a state p and a subset of states P ⊆ Q, we write p x−→A P to denote that there is a
run r of A over x such that r(1) = p and Inf(r) = P . A word is accepted by A if there exists
an accepting run over it, and the language recognized by A is the set of words it accepts,
denoted by JAK ⊆ Aω. A state p is accessible (resp. co-accessible) if there exists a finite
initial (resp. infinite final) run r such that r(|r|) = p (resp. r(1) = p), and an automaton
A is called accessible (resp. co-accessible) if all its states are. An automaton which is both
accessible and co-accessible is called trim.

An automaton is called deterministic if its set of initial states is a singleton, and any
word has at most one initial run. We define a left automaton as a deterministic automaton
L = (Q,∆, I) with no acceptance condition. We call a right automaton an automaton for
which any ω-word has exactly one final run2. A language is called ω-regular if it is recognized
by an automaton. It is well-known that every ω-regular language can be recognized by a
deterministic (Muller) automaton. Moreover, [6] shows that every ω-regular language can
be recognized by a right automaton (even with Büchi condition). Figure 3 shows a right
automaton accepting the words with infinitely many a’s. Throughout the paper, all automata
– except for right automata – are assumed trim, without loss of generality.

1 We consider the Muller condition since it is more general than Büchi or parity for instance, but most of
our results hold for other conditions as well.

2 Such automata are called prophetic and were introduced in [6].

FSTTCS 2018

30:6 On Canonical Models for Rational Functions over Infinite Words

Transductions. Given two alphabets A,B, we call transduction a relation R ⊆ Aω ×B∞
whose domain is denoted by dom(R). A transducer over A,B is a tuple T = (A, i, o) with
A = (Q,∆, I, F) the underlying automaton, i : I → B∗ the initial function and o : ∆→ B∗

the output function.
Let u be a finite word of length n, let r be a run of A over u with r(1) = p, r(n+ 1) = q,

and let v be the word o(p, u(1), r(2)) · · · o(r(n), u(n), q) then we write p u|v−−→T q to denote that
fact. Similarly, for p ∈ Q and P ⊆ Q we write p x|v−−→T P to denote that there is a run r of A
over the ω-word x such that r(1) = p, Inf(r) = P and v = o(p, u(1), r(2))o(r(2), u(2), r(3)) · · · .
In that case, if p ∈ I and P ∈ F , let w = i(p) · v, then we say that the pair (x,w) is realized
by T . We denote by JT K the set of pairs realized by T , which we call the transduction realized
by T . A transducer is called functional if it realizes a (partial) function, and in that case
we write JT K(x) = w rather than (x,w) ∈ JT K. Functionality is a decidable property, see
e.g. [16], and it can be checked in PTime (see e.g. [19]). In the following all the transductions
we consider are functional, and when we speak about functions, we tacitly assume that they
are partial. A transduction is rational if it is realized by a transducer. A transducer with a
deterministic underlying automaton is called sequential, as well as the function it realizes.
A transducer with a left (resp. right) underlying automaton is called left-sequential (resp.
right-sequential), and again we extend this terminology to the function it realizes.

Congruences. Given an equivalence relation ∼ over a set L, we denote by [w]∼ (or simply
[w]) the equivalence class of an element w ∈ L. We say that ∼ has finite index if the set
L/∼ = {[w] | w ∈ L} is finite. Given two equivalence relations ∼1,∼2 over the same set
we say that ∼1 is finer than ∼2 (or that ∼2 is coarser than ∼1) if for any u, v we have
u ∼1 v ⇒ u ∼2 v. Equivalently we could say that the equivalence classes of ∼2 are unions of
equivalence classes of ∼1 or that ∼1 is included (as a set of pairs) in ∼2, which we denote
by ∼1v∼2. A right congruence over A∗ is an equivalence relation ∼ such that for any
letter a and any words u, v we have u ∼ v ⇒ ua ∼ va. A left congruence over A∗ (resp.
Aω) is an equivalence relation ≈ such that for any letter a and any words u, v we have
u ≈ v ⇒ au ≈ av. We say that a left congruence is regular if it has finite index and any
equivalence class is an ω-regular language. In the following all the left congruences will be
regular. A congruence over A∗ is a left and right congruence. A congruence ≡ is aperiodic if
there exists an integer n such that ∀u ∈ A∗, un ≡ un+1.

Given an automaton A with state space Q, the right congruence associated with A is
defined for u, v ∈ A∗ by u ∼A v if ∀q ∈ Q, there is an initial run of A over u reaching q if and
only if there is one over v. Note that for a trim deterministic automaton, there is a bijection
(up to adding a sink state) between Q and the equivalence classes of A. Similarly, the left
congruence associated with A is defined for x, y ∈ Aω by x ≈A y if ∀q ∈ Q there is a final
run of A over x from q if and only if there is one over y. Given a right automaton there is a
bijection between Q and the equivalence classes of ≈A. Finally, the transition congruence of
A is defined for u, v ∈ A∗ by u ≡A v if ∀p, q ∈ Q, there is a run over u from p to q if and
only if there is one over v. An automaton is called aperiodic if its transition congruence is
aperiodic. A language is called aperiodic if there exists an aperiodic automaton recognizing
it. A transducer is aperiodic if its underlying automaton is aperiodic and in that case the
transduction it realizes is called aperiodic.

Given a right congruence ∼, the left automaton associated with ∼ is A∼ = (Q∼,∆∼, I∼):
Q∼ = A∗/∼, ∆∼ = {([u] , a, [ua]) | u ∈ A∗}, I∼ = {[ε]}. Given a left congruence ≈ and a
right automaton R, if ≈Rv≈ then we say that R recognizes ≈. The existence of a canonical
automaton for a left congruence is less obvious. From [6] we know that every ω-regular

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:7

language can be recognized by a right automaton. We rely on the construction of [6] and,
abusing language, we denote the right automaton obtained in the next proposition as the
canonical right automaton recognizing a left congruence:

I Proposition 1. Given a (regular) left congruence, we can compute in 2-ExpTime a right
automaton recognizing it. Furthermore, this automaton is aperiodic if the congruence is
aperiodic.

2 Sequential and quasi-sequential transductions

We define the syntactic congruence associated with any functional transduction over infinite
words. Sequential functions are exactly the rational functions having a syntactic congruence
of finite index, and being continuous over their domain. When removing this last condition
on continuity, we obtain the class of quasi-sequential transductions. These transductions are
also characterized by the weak twinning property [2].

We will show that for any sequential function, like in the case of finite words [8], we
can define a canonical transducer, with a minimal underlying automaton. This minimal
transducer extends the domain of the function to its closure.

I Definition 2 (f̂ and f). Let f : Aω → B∞ be a function, we define f̂ : A∗ → B∞ by
f̂(u) =

∧
{f(ux) | ux ∈ dom(f)}. In other words, f̂ outputs the longest possible output

that f could produce on any word that begins with u. We also define f : Aω → B∞ by
setting f(x) = limn f̂(x(:n)), for x ∈ dom(f).

We refer to f as the sequential extension of f . Note that if f is sequential, then f extends f
over the closure dom(f) of the domain of f .

I Example 3. We illustrate these definitions on three rational transductions, described in
Table 1.

I Definition 4 (syntactic congruence ∼f). The syntactic congruence associated with a
transduction f is defined over A∗ by u ∼f v if:
1. ∀x ∈ Aω, ux ∈ dom(f)⇔ vx ∈ dom(f), and
2. either f̂(u) and f̂(v) are both ultimately periodic with the same period (in normal form) or

they are both finite and ∀x ∈ Aω such that ux, vx ∈ dom(f), f̂(u)−1f(ux) = f̂(v)−1f(vx).

I Example 5. Let us illustrate the definition of ∼f on fab, as defined in Table 1. The
syntactic congruence ∼fab

has only two classes: [ε] and [a]. Indeed, if we consider two
finite words u and v, condition (1) on the domain is always true, and f̂ab(u) and f̂ab(v)
are finite (ab-factors in u and v, respectively). Hence u ∼fab

v if and only if ∀x ∈ Aω,
f̂ab(u)−1fab(ux) = f̂ab(v)−1fab(vx).

Let us analyze f̂ab(u)−1fab(ux). If u does not end with an a, then f̂ab(u)−1fab(ux) =
((ab)n)−1((ab)n+k) = (ab)k where n and k are the number of ab-factors in u and x, respectively.
Now, if u ends with an a and x starts with a b, then a new ab-factor appears in ux and
we get f̂ab(u)−1fab(ux) = ((ab)n)−1((ab)n+k+1) = (ab)k+1. This means that ∼fab

contains
exactly two classes: one for the words ending with an a, and one for the others.

The resulting transducer Tfab
is depicted in Figure 4. Let us check for instance the

transition from [a] to [ε] when reading b. We have [ab] = [ε], so ([a] , b, [ε]) ∈ ∆fab
. From the

definition, ofab
([a] , b, [ε]) = f̂ab(a)−1f̂ab(ab) = ε−1.ab = ab.

I Proposition 6. Let f be a functional transduction, then ∼f is a right congruence.

FSTTCS 2018

30:8 On Canonical Models for Rational Functions over Infinite Words

Table 1 Examples of rational transductions, and their associated f̂ and f functions.

fab f#a fblocks

definition maps a word over {a, b}
with a finite number of
a’s to the subsequence of
ab-factors.

maps a word x over {a, b}
to aω if x contains an in-
finite number of a’s, and
to bω otherwise.

maps u1# . . .#un#v where
v does not contain #, to
a
|u1|
1 # . . .#a|un|

n #w where
ui ∈ {a, b}∗, ai is the last
letter of ui (if any), w = aω

if v has an infinite number of
a’s, and w = bω otherwise.

A and B A = B = {a, b} A = B = {a, b} A = B = {a, b,#}
dom(f) words over {a, b} with a

finite number of a’s
{a, b}ω words over {a, b,#} with a fi-

nite (non-zero) number of #’s
examples fab(abbabω) = abab,

fab(bω) = ε

f#a(abω) = bω,
f#a((ab)ω) = aω

fblocks((ab#)nbω) =
(bb#)nbω, fblocks(#(ab)ω) =
aω.

f̂ f̂ab extracts the ab-
factors, for instance
f̂ab(abbabb) = abab.

reading a finite prefix
u does not give any in-
sight on the output, thus
f̂#a(u) = ε

f̂blocks(u1# . . .#un#v) =
a
|u1|
1 # . . .#a|un|

n # whenever
v does not contain #.

f fab is defined over
dom(fab) = {a, b}ω

and fab((ba)ω) =
limn f̂ab((ba)n) =
limn(ab)n−1 = (ab)ω.

f#a(x) = ε for every x ∈
{a, b}ω as it is based on
f̂#a

fblocks(u1# . . .#un#v) =
a
|u1|
1 # . . .#a|un|

n # whenever
v does not contain #.

class sequential quasi-sequential not quasi-sequential

[ε] [a]

a | ε
b | ε

b | ab

a | ε

Figure 4 Transducer Tfab .

From ∼f we define3 the transducer Tf = (Af , if , of) with Af = (Qf ,∆f , If) and:
Qf = A∗/∼f

and If = {[ε]}
∆f = {([u] , a, [ua]) | u ∈ A∗, a ∈ A,∃x s.t. uax ∈ dom(f)}

of ([u] , a, [ua]) =

 f̂(u)−1f̂(ua) if f̂(ua) is finite
β if f̂(u) = αβω, β 6= ε

α if f̂(u) is finite and f̂(u)−1f̂(ua) = αβω, β 6= ε

if ([ε]) =
[
f̂(ε) if f̂(ε) is finite
α if f̂(ε) = αβω, β 6= ε

I Remark. Note that, in general, ∼f may have an infinite index, thus Tf may be infinite. This
is the case for fblocks: for two words u = u0#w and v = u0#w′ with u0ww

′ not containing
#, u ∼fblocks v if and only if |w| = |w′| and they end with the same letter. We will define
below a subclass of rational transductions, which captures exactly finite ∼f (Theorem 12).

3 We check in the long version that Tf is well-defined.

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:9

As shown below, the sequential transducer Tf computes the sequential extension f of f . If f
is sequential then f and f coincide on dom(f).

I Proposition 7. Given a function f , the transducer Tf realizes f .

We now focus on sequential transductions, and show first that Tf can be built in PTime.

I Proposition 8. There is a PTime algorithm that, for a given sequential transducer T
realizing the function f , computes the transducer Tf .

For sequential transductions we get a characterization, as stated in the next theorem. We
will see that the first condition is equivalent to the weak twinning property. Thus, the next
theorem adapts a result from [2] to the case where transducers may output finite words.

I Theorem 9. A rational function f is sequential if and only if the following conditions
hold:
∼f has finite index
f |dom(f) = f

If we remove the last restriction f |dom(f) = f in Theorem 9, we obtain a class of transductions
where the output can be still generated deterministically (as for sequential transductions),
although not necessarily in a progressive manner:

I Definition 10. A function f is called quasi-sequential if it is rational and ∼f has finite
index.

Intuitively, quasi-sequential functions generalize the so-called subsequential functions on finite
words to infinite words. For subsequential functions there is a final output associated with
final states. Quasi-sequential functions can be shown to correspond to sequential transducers
where final sets may have an associated word in A∞. The output of an accepting run with
such a final set is obtained by appending the associated word to the output word obtained
through the transitions (if finite). Since we do not use this model in the present paper, we
do not provide more details in the following. The following property and construction are
now taken directly from [2]. As in the latter article, a state is called constant if the set of
words produced by final runs from this state is a singleton.

I Definition 11 (weak twinning property). A transducer T is said to satisfy the weak twinning
property (WTP) if for any initial runs p1

u|α1−−−→ q1
v|β1−−−→ q1 and p2

u|α2−−−→ q2
v|β2−−−→ q2 the

following property holds:
If q1, q2 are not constant then del(i(p1)α1, i(p2)α2) = del(i(p1)α1β1, i(p2)α2β2)
If q1 is not constant, q2 is constant and produces the regular word γ, then either β1 = ε

or i(p1)α1β
ω
1 = i(p2)α2β2γ

Note that if q2 is constant and β2 6= ε then γ = βω2 .

The authors of [2] provide a determinization procedure – which we call subset construction
with delays– which terminates if and only if the transducer satisfies the WTP. We show that
actually the procedure gives a transducer realizing the sequential extension of the function
and we use this fact in Sec. 4 in order to compute a canonical look-ahead.

I Theorem 12. Let T be a transducer realizing a function f , let S be the transducer obtained
by subset construction with delays. The following statements are equivalent:
1. The transducer T satisfies the WTP
2. The transducer S is finite
3. f is quasi-sequential
Furthermore, if T is aperiodic then S is aperiodic as well.

FSTTCS 2018

30:10 On Canonical Models for Rational Functions over Infinite Words

3 Rational transductions

Bimachines over infinite words. A bimachine over alphabets A,B is a tuple B = (L,R, i, o)
where L = (QL,∆L, {l0}) is a left automaton, R = (QR,∆R, I, F) is a right automaton,
i : I → B∗ is the initial function and o : QL×A×QR → B∗ is the output function. We have
a semantic restriction that JLK = JRK. The output produced on an infinite word w ∈ JRK
at position i ≥ 1 is αi = o(l, a, r), where l is the state reached in L after reading the prefix
w(:i − 1) of w up to position i − 1 (if defined), r is the state of the unique final run of R
on w (if defined) reached by the suffix w(i+ 1:) of w from position i+ 1 on, and a = w(i).
In other words, the output at position i is determined by the left context up to position
i− 1, the right context from position i+ 1 onwards, and the letter at position i. The output
produced on w is i(r0)α1α2 · · · , with r0 ∈ I the state from which there is a final run of R on
w (if defined). Thus, the right automaton R provides a look-ahead and the output depends
both on the state of L and the unique final run of R on the given word. The transduction
realized by B is denoted by JBK. Note that JBK is defined over JRK. A bimachine is called
aperiodic if both its automata are aperiodic.

I Example 13. Let us define a bimachine for fab, the function that outputs ab-factors of
the input over {a, b}, if this input has a finite number of a’s. We use as left automaton the
underlying automaton of the transducer in Figure 2, without its Muller acceptance condition.
This automaton will only be used to store the last letter read. The domain has to be checked
by the right automaton, and we choose the one in Figure 3. As output functions, we let
i(q) = ε for the initial states of the right automaton, and let o(qa, b, r) = ab for r ∈ {1, 2},
and o(l, c, r) = ε for all other states l, r of the left and right automata, and letter c ∈ {a, b}.

Left minimization. We show how to minimize the left automaton of a bimachine with
respect to a right automaton R. The procedure is very similar to the minimization for
sequential transducers. The objects we use are the same as in Section 2, but relativized to the
right context defined by the look-ahead provided by the right automaton R. The bimachine
with minimal left automaton with respect to the right automaton R is the bimachine BRf
defined below.

Recall that the left congruence ≈R of a right automaton R sets x ≈R y if the unique state
from which there is a final run on x is the same as for y. Let f : Aω → B∞ be a function and
let R = (QR,∆R, I, F) be a right automaton recognizing dom(f). We write [x]R for the class
of a word x with respect to ≈R, and, abusing notations, for the state of QR from which words
of [x]R have a final run. We define f̂x : A∗ → B∞ by setting f̂x(u) =

∧
{f(uy) | y ≈R x}.

Note that there are finitely many functions f̂x, one for each equivalence class of ≈R. We
also define fR : Aω → B∞, by setting fR(x) = limn f̂x(n+1:)(x(:n)). The transduction fR is
defined over dom(f).

I Definition 14 (R-syntactic congruence). The R-syntactic congruence of f is defined over
A∗ by letting u ∼Rf v if:
1. ∀x ∈ Aω, ux ∈ dom(f)⇔ vx ∈ dom(f), and
2. for any x ∈ Aω, either f̂x(u) and f̂x(v) are both infinite with the same ultimate period

(in normal form) or they are both finite and f̂x(u)−1f(ux) = f̂x(v)−1f(vx).
Similarly to the sequential case, we define from ∼Rf a bimachine BRf =

(
LRf ,R, iRf , oRf

)
with right automaton R, and left automaton LRf =

(
QRf ,∆Rf , IRf

)
corresponding to ∼Rf . To

simplify notations we denote the congruence class of a word u with respect to ∼Rf by [u].
Abusing notations we also write [x]R for the state of R from which x has an accepting run.

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:11

QRf = A∗/∼R
f

and IRf = {[ε]}
∆Rf = {([u] , a, [ua]) | u ∈ A∗, a ∈ A, uax ∈ dom(f) for some x ∈ Aω}

of ([u] , a, [x]R) =

f̂ax(u)−1f̂x(ua) if f̂x(ua) is finite
β if f̂ax(u) = αβω, β 6= ε

α if f̂ax(u) is finite, f̂ax(u)−1f̂(ua) = αβω

and β 6= ε

if ([x]R) =
[
f̂x(ε) if f̂x(ε) is finite
α if f̂x(ε) = αβω, β 6= ε

We show in the long version of this paper that BRf is well-defined, and exhibit some of its
properties. We also describe in the long version a polynomial time algorithm that computes
BRf from a bimachine with right automaton R, with a technique similar to the sequential
case.

From transducers to bimachines. For the theorem below, recall that ∼A denotes the right
congruence of an automaton A. The left congruence ≈A of an automaton A sets x ≈A y if
for every state q of A, there is some final run on x from q if and only if there is one on y.

I Theorem 15. Given a transducer with underlying automaton A and a right automaton R
with ≈R v ≈A. Then ∼A v ∼Rf and the bimachine BRf realizes f .

In particular any aperiodic transduction can be realized by an aperiodic bimachine.

The other direction also holds: from a bimachine we can build an equivalent (unambiguous)
transducer, by taking the product of the left and right automata of the bimachine. The
construction is not hard but given in the long version. By Theorem 15 and Proposition 1 we
obtain:

I Theorem 16. A function is rational (resp. rational and aperiodic) if and only if it can be
realized by a bimachine (resp. aperiodic bimachine).

Labelings and bimachines. We define the labeling function associated with a right auto-
maton R = (Q,∆, I, F) by the right transducer `(R) = (R, i, o), with i(q) = ε and
o(p, a, q) = (a, q). Intuitively, the labeling function labels each position with the look-ahead
information about the suffix provided by R. For a transduction f we define fR = f ◦J`(R)K−1.
Note that fR is a function, since the labeling is injective (because R is unambiguous). Thus,
fR corresponds to f defined over words enriched by the look-ahead information of R.

I Proposition 17. Let f be a transduction and let R be a right automaton. There exists
a bimachine B realizing f with R as a right automaton if and only if fR is left-sequential.
Furthermore, assuming that R is aperiodic, then ∼Rf is aperiodic if and only if fR is aperiodic.

We say that a transducer is letter-to-letter if its initial output function always outputs the
empty word and its output function always outputs a single letter. The following corollary
states the classical result of [11] but over infinite words, and generalizes a result of [5].

I Corollary 18. For any rational function f , there exists a left-sequential (right-seq. resp.)
function g and a letter-to-letter right-sequential (left-seq. resp.) function h such that f = g◦h.

FSTTCS 2018

30:12 On Canonical Models for Rational Functions over Infinite Words

4 Canonical machines

The goal of this section is to define a canonical bimachine for any rational function. By
canonicity we mean that it should be machine-independent. Our ultimate goal is to show
that the canonical bimachine suffices to decide the algebraic properties we are interested
in. To get a canonical bimachine, we need a right automaton for the look-ahead that is 1)
canonical, 2) coarse-grained enough to preserve algebraic properties, and 3) fine-grained
enough to obtain a deterministic left automaton (and hence a bimachine).

We define the delay congruence and show that it is the coarsest left congruence such
that any automaton R recognizing it satisfies that fR is quasi-sequential (Proposition 21).
However, this congruence is, in general, too coarse to make fR sequential. We then introduce
the ultimate congruence, and show how to combine these two congruences to build a canonical
bimachine.

Let f be a transduction. We define the delay between x, y ∈ Aω with respect to f by:
delf (x, y) = {del(f(ux), f(uy)) | ux, uy ∈ dom(f)}. The following definition is taken from
[20, 3].

I Definition 19 (delay congruence). The delay congruence of f is defined by setting x ∆
≈f y

for x, y ∈ Aω if (1) for all u ∈ A∗, ux ∈ dom(f)⇔ uy ∈ dom(f), and (2) |delf (x, y)| <∞.

I Example 20. Let us illustrate the above definition on fblocks (recall Example 3). We
consider x = u1# . . .#un#v and y = u′1# . . .#u′n#v′ where v and v′ are infinite words
not containing #. Note that x ∆

≈fblocks y if and only if u1, u
′
1 are either both empty, or end

with the same letter. Indeed, if the latter holds then del(f(ux), f(uy)) = del(f(x), f(y)).
Conversely, if both u1, u

′
1 are non-empty but end with different letters, then for any u without

#, del(fblocks(ux), fblocks(uy)) = (f(ux), f(uy)). If u1 = ε and u, u′1 end with different letters,
then again, del(fblocks(ux), fblocks(uy)) = (f(ux), f(uy)). There are two more classes with
respect to ∆

≈fblocks , one for infinitely many #, and one for no #.
The look-ahead ∆

≈fblocks provides enough information to transform the blocks determin-
istically (we only need the last letter before the next #), but not enough information to
produce the output after the last # deterministically.

The following proposition shows that the delay congruence, when used as a look-ahead (see
the definition of fR page 11), transforms any rational function into a quasi-sequential one.

I Proposition 21. Let f be a transduction and let R be a right automaton recognizing
dom(f). Then fR is quasi-sequential iff ≈Rv

∆
≈f . In particular, if f is aperiodic then ∆

≈f is
aperiodic.

The delay congruence is minimal, i.e. coarsest, among right congruences of bimachines
realizing a function, and we show in the long version that it can be computed in PTime
from a bimachine.

I Proposition 22. Given a transducer T (resp. a bimachine B) with underlying automaton
A (resp. right automaton R) realizing a function f , we have that ≈A (resp. ≈R) is finer
than ∆

≈f .

Canonical machine for quasi-sequential functions. As noted in [2], the class of quasi-se-
quential functions, or equivalently, the class of functions satisfying the WTP, is strictly larger
than the class of sequential functions. The last left congruence that we define now will be fine
enough to make a quasi-sequential function sequential. By taking the intersection between

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:13

this congruence and the left delay congruence we will obtain a congruence that is fine enough
to make any rational function sequential. However, it should be noted that this look-ahead
is not minimal, in the sense that it is not necessarily coarser than any look-ahead that is fine
enough to realize the function.

I Definition 23 (Ultimate congruence). We define the ultimate congruence of a rational
function f by setting x ∪

≈f y for x, y ∈ Aω if the following conditions hold:
For all u ∈ A∗, ux ∈ dom(f)⇔ uy ∈ dom(f)
If ux ∈ dom(f) then f̂(u) = f(ux) ⇔ f̂(u) = f(uy) Moreover, if f̂(u) = f(ux) then
f(ux) = f(uy).

Observe that f̂(u) � f(ux) for every ux ∈ dom(f). So the intuition behind f̂(u) = f(ux) is
that no finite look-ahead on x can help to output f(ux) deterministically after u. And the
intuition behind f(ux) = f(uy) is that the missing outputs f̂(u)−1f(ux) and f̂(u)−1f(uy)
have to be equal, which is equivalent to f(ux) = f(uy). Now, for a given class of ∪

≈f as
look-ahead, a left automaton would know the missing output and start producing it. We
show in the long version that ∪

≈f is a left congruence.

I Example 24. Recall the function fblocks defined in Example 3. f̂blocks maps every block
to its output and stops at the last #. Hence f̂blocks(u) = fblocks(ux) if and only if x does not
contain #. When f̂blocks(u) = fblocks(ux), we have f(ux) = f(uy) if and only if x and y both
contain an infinite number of a’s, or none of them does. The congruence classes of ∪

≈fblocks

are thus: a) words x with an infinite number of # (yielding ux outside the domain), b) words
x with a finite (non-zero) number of #, c) words without #, with an infinite number of a’s,
d) words without #, with a finite number of a’s. This is precisely the information lacking
in the look-ahead provided by ∆

≈fblocks (see Example 20) to obtain a look-ahead allowing a
sequential processing of the input.

I Proposition 25. For a quasi-sequential transduction f , the ultimate congruence ∪
≈f has

finite index. If f is given as a bimachine, ∪
≈f can be computed in 2-ExpTime. Furthermore,

if f is aperiodic then ∪
≈f is aperiodic.

Let R be a right automaton recognizing ∪
≈f . We define the bimachine URf = (Af ,R, if , oR)

with Af and if (as in Section 2), and for oR we take:

oR([u] , a, [x]R) =

 f̂(u)−1f̂(ua) if f̂(ua) ≺ f(uax)
β if f̂(u) = f(uax) and f̂(u)−1f(uax) = αβω

α if f̂(u) ≺ f̂(ua) = f(uax) and f̂(u)−1f(uax) = αβω

The following lemma states that URf realizes f .

I Lemma 26. Let f be a quasi-sequential transduction, and let R be a right automaton
recognizing the ultimate congruence ∪

≈f , then URf realizes f .

Let R be the canonical right automaton of ∪
≈f . By the previous lemma, there exists a

bimachine with R as right automaton realizing f . By minimizing its left automaton with
respect to R, we obtain a canonical bimachine for f .

I Corollary 27. Let f be a quasi-sequential transduction, and let R be the canonical right
automaton of the ultimate congruence ∪

≈f , then BRf realizes f (and is finite).

FSTTCS 2018

30:14 On Canonical Models for Rational Functions over Infinite Words

Canonical bimachine. We finally show that by composing the information given by the delay
and the ultimate congruences, we obtain a canonical bimachine for any rational function. Let
us make clear what we mean by composition. Let R1 = (Q1,∆1, I1, F1) be a right automaton
and let R2 = (Q1,∆2, I2, F2) be a right automaton over A×Q1 . The automaton R1 ./ R2 is
defined as (Q1 ×Q2,∆{1,2}, I1 × I2, F1 × F2) with F1 × F2 = {P1 × P2 | P1 ∈ F1, P2 ∈ F2}
and ∆{1,2} = {((s1, s2), a, (r1, r2) | (s1, a, r1) ∈ ∆1, (s2, (a, r1), r2) ∈ ∆2}, which is a right
automaton.

I Lemma 28. Let R1 = (Q1,∆, I, F) be a right automaton and let R2 be a right automaton
over A × Q1. Then J`(R2)K ◦ J`(R1)K = J`(R1 ./ R2)K (up to the isomorphism between
(A×Q1)×Q2 and A× (Q1 ×Q2)).

We can now state our main result. In our construction we focused on clarity and composition-
ality and we obtain a several-fold exponential complexity. At the cost of greater technicality,
one should obtain a tighter result.

I Theorem 29 (Canonical Bimachine). Let f be a transduction given by a bimachine, let R1

be the canonical automaton of the delay congruence ∆
≈f , and let R2 be the canonical automaton

of the ultimate congruence ∪
≈(fR1). Then the bimachine BR1./R2

f realizes f . Furthermore if
f is aperiodic then BR1./R2

f is aperiodic.

Proof. Let f be a transduction, let R1 be the canonical automaton of the delay congruence
∆
≈f and let R2 be the canonical automaton of the ultimate congruence ∪

≈(fR1). Since R1

recognizes ∆
≈f , we know according to Proposition 22 that fR1 is quasi-sequential. Hence since

R2 is finer than ∪
≈(fR1), we know from Cor. 27 that the bimachine BR2

fR1
realizes f . From

Proposition 17 we obtain that (fR1)R2 , the function obtained by composing the labelings
`(R2) and `(R1), is left-sequential. We use Lemma 28 to obtain that fR1./R2 is left-sequential
and thus, again by Proposition 17 we know there is a bimachine with R1 ./ R2 as right
automaton which realizes f . In particular, BR1./R2

f realizes f .
If we assume that f is aperiodic, we obtain from Proposition 22 that R1 is aperiodic and

from Proposition 17 that fR1 is aperiodic. Hence from Proposition 25 we have that R2 is
aperiodic. Again from Proposition 17, we have that (fR1)R2 = fR1./R2 is aperiodic. A third
time from Proposition 17 we have that BR1./R2

f is aperiodic. J

Note that the right automaton constructed in Proposition 1 is actually a right Büchi
automaton. So our result would still hold for bimachines with Büchi right automata.

5 First-Order Definability Problem

In this section, we show that given a transducer T realizing a transduction JT K : Aω → B∞,
one can decide whether JT K is first-order definable (FO-definable). First, let us recall the
notion of FO-definability for word languages. Any word w ∈ A∞ is seen as a structure of
domain {1, . . . , |w|} linearly ordered by � and with unary predicates a(x), for all a ∈ A. By
FO we denote the first-order logic over these predicates, and by MSO the extension of FO
with quantification over sets and membership tests x ∈ X (see for instance [22] for a detailed
definition). We write w |= φ if some word w satisfies a formula φ, and φ(x1, . . . , xn) any
formula φ with n free first-order variables x1, . . . , xn. Interpreted over words in Aω (resp.
A∞), any sentence φ defines a language JφK ⊆ Aω (resp. JφK ⊆ A∞) defined as the set of
words satisfying φ. E.g. the sentence φ0 = ∀x, y · a(x) ∧ b(y) → x � y, interpreted on Aω,
defines the language aω ∪ a∗bω. Interpreted on A∞, it defines the language aω ∪ a∗bω ∪ a∗b∗.
A language L is said to be FO-definable (resp. MSO-definable) if L = JφK for some sentence
φ ∈ FO (resp. φ ∈ MSO).

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:15

Definability of transductions. An MSO-transducer is a tuple F = (A,B, φdom, V, µ) where
φdom is an MSO-sentence, V is a finite subset of B∗ and µ a function mapping any word
v ∈ V to some MSO-formula (over alphabet A) denoted φv(x), with one-free variable. An
FO-transducer is an MSO-transducer which uses only FO-formulas. Any MSO-transducer
defines a transduction denoted JFK ⊆ Aω × B∞ such that (u, v) ∈ JFK if u |= φdom and
there exists (vi)i≥1 such that v = v1v2v3 . . . and for all i ≥ 1, vi ∈ V and u |= φvi(i). We
say that f : Aω → B∞ is MSO- (resp. FO-) definable if there exists some MSO- (resp. FO-)
transducer F such that JFK = f .

For example the functional transduction which erases all a’s of any input ω-word over
{a, b} is defined by φdom = > and the two formulas φε(x) = a(x) and φb(x) = b(x). The
functional transduction mapping any word of the form anbω to abn/2cbω is not FO-definable,
even though its domain is. Intuitively, the formula φa(x) would have to decide whether
x is an odd or even position, which is a typical non FO-definable property. It is one of
the goal of this paper to automatically verify that such a property is indeed not FO. It is
however MSO-definable with φdom = φ0 ∧ ∃x · b(x), where φ0 has been defined before, and
the three formulas φε(x) = a(x) ∧ odd(x), φa(x) = a(x) ∧ even(x) (properties which are
MSO-definable) and φb(x) = b(x).

As a remark, Courcelle has defined in the context of graph transductions the notion of
MSO-transducers [9], which can also be restricted to FO-transducers. Cast to infinite words,
Courcelle’s formalism is strictly more expressive than rational functions, as they allow to
mirror factors of the input word for instance. Restricted to the so called order-preserving
Courcelle transducers [4, 12], they are equivalent to our MSO- and FO-transducers, however
with a more complicated definition. This equivalence can be seen, for finite words, in the
proof of Theorem 4 in [12]. The same proof works for infinite words as well.

We first exhibit a correspondence between logics and transducers, the proof of which is
similar to the finite case [12], but requires some additional results on aperiodic automata on
ω-words.

I Theorem 30 (Logic-transducer correspondences). Let f : Aω → B∞. Then:
f is MSO-definable if and only if it is realizable by some transducer.
f is FO-definable if and only if it is realizable by some aperiodic transducer.

We obtain the following decidability result (in elementary complexity if the input is a
transducer).

I Theorem 31. It is decidable whether a rational function f : Aω → B∞, given as a
transducer or equivalently as an MSO-transducer, is definable in FO.

Proof. By Theorem 30, it suffices to show that f is aperiodic, i.e. definable by some aperiodic
transducer. By Theorem 16, one can construct a bimachine which is aperiodic if and only if
f is. So, it suffices to construct this bimachine and to test its aperiodicity, i.e., whether its
left and right automata are both aperiodic, a property which is decidable [10]. J

References
1 André Arnold. A Syntactic Congruence for Rational ω-Languages. Theoretical Computer

Science, 39(2–3):333–335, August 1985. Note.
2 Marie-Pierre Béal and Olivier Carton. Determinization of Transducers over Infinite Words:

The General Case. Theory Comput. Syst., 37(4):483–502, 2004.
3 Adrien Boiret, Aurélien Lemay, and Joachim Niehren. Learning Rational Functions. In

Developments in Language Theory - 16th International Conference, DLT 2012, Taipei,
Taiwan, August 14-17, 2012. Proceedings, pages 273–283, 2012.

FSTTCS 2018

30:16 On Canonical Models for Rational Functions over Infinite Words

4 Mikolaj Bojanczyk. Transducers with Origin Information. In Javier Esparza, Pierre Fraigni-
aud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Program-
ming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 26–
37. Springer, 2014.

5 Olivier Carton. Right-Sequential Functions on Infinite Words. In Computer Science -
Theory and Applications, 5th International Computer Science Symposium in Russia, CSR
2010, Kazan, Russia, June 16-20, 2010. Proceedings, pages 96–106, 2010.

6 Olivier Carton and Max Michel. Unambiguous Büchi automata. Theor. Comput. Sci.,
297(1-3):37–81, 2003.

7 Olivier Carton, Dominique Perrin, and Jean-Eric Pin. Automata and semigroups recogniz-
ing infinite words. In Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas]., pages 133–168, 2008.

8 Christian Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci.,
292(1):131–143, 2003.

9 Bruno Courcelle. Monadic Second-Order Definable Graph Transductions: A Survey. Theor.
Comput. Sci., 126(1):53–75, 1994.

10 Volker Diekert and Paul Gastin. First-order definable languages. In Jörg Flum, Erich
Grädel, and Thomas Wilke, editors, Logic and Automata, volume 2 of Texts in Logic and
Games, pages 261–306. Amsterdam University Press, 2008.

11 Calvin C. Elgot and Jorge E. Mezei. On Relations Defined by Generalized Finite Automata.
IBM Journal of Research and Development, 9(1):47–68, 1965.

12 Emmanuel Filiot. Logic-Automata Connections for Transformations. In Indian Conference
on Logic and Its Applications (ICLA), volume 8923 of Lecture Notes in Computer Science,
pages 30–57. Springer, 2015.

13 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Aperiodicity of Rational Functions Is
PSPACE-Complete. In 36th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2016, December 13-15, 2016, Chennai,
India, pages 13:1–13:15, 2016.

14 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. First-order definability of rational
transductions: An algebraic approach. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS, pages 387–396. ACM, 2016.

15 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Logical and Algebraic Charac-
terizations of Rational Transductions. CoRR, abs/1705.03726, 2017. Available from:
http://arxiv.org/abs/1705.03726.

16 Françoise Gire. Two Decidability Problems for Infinite Words. Inf. Process. Lett., 22(3):135–
140, 1986.

17 Robert McNaughton and Seymour Papert. Counter-free automata. M.I.T. Press, 1971.
18 D. Perrin. Recent results on automata and infinite words. In M. P. Chytil and V. Koubek,

editors, Proceedings of the 11th Symposium on Mathematical Foundations of Computer
Science, volume 176 of LNCS, pages 134–148, Praha, Czechoslovakia, September 1984.
Springer.

19 Christophe Prieur. How to decide continuity of rational functions on infinite words. Theor.
Comput. Sci., 276(1-2):445–447, 2002.

20 Christophe Reutenauer and Marcel Paul Schützenberger. Minimization of Rational Word
Functions. SIAM J. Comput., 20(4):669–685, 1991.

21 Marcel-Paul Schützenberger. On Finite Monoids Having Only Trivial Subgroups. Inform-
ation and Control, 8(2):190–194, 1965.

22 W. Thomas. Languages, Automata and Logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, Beyond Words. Springer, Berlin, 1997.

http://arxiv.org/abs/1705.03726

E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:17

23 Wolfgang Thomas. Star-Free Regular Sets of omega-Sequences. Information and Control,
42(2):148–156, August 1979.

24 Wolfgang Thomas. A Combinatorial Approach to the Theory of omega-Automata. Inform-
ation and Control, 48(3):261–283, 1981.

25 Thomas Wilke. Past, Present, and Infinite Future. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
pages 95:1–95:14, 2016.

FSTTCS 2018

	Regular languages and rational functions
	Sequential and quasi-sequential transductions
	Rational transductions
	Canonical machines
	First-Order Definability Problem

