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Abstract
Deterministic polynomial-time computation of a representation of a transversal matroid is a
longstanding open problem. We present a deterministic computation of a so-called union rep-
resentation of a transversal matroid in time quasipolynomial in the rank of the matroid. More
precisely, we output a collection of linear matroids such that a set is independent in the trans-
versal matroid if and only if it is independent in at least one of them. Our proof directly implies
that if one is interested in preserving independent sets of size at most r, for a given r ∈ N, but
does not care whether larger independent sets are preserved, then a union representation can be
computed deterministically in time quasipolynomial in r. This consequence is of independent
interest, and sheds light on the power of union representation.

Our main result also has applications in Parameterized Complexity. First, it yields a fast
computation of representative sets, and due to our relaxation in the context of r, this computation
also extends to (standard) truncations. In turn, this computation enables to efficiently solve
various problems, such as subcases of subgraph isomorphism, motif search and packing problems,
in the presence of color lists. Such problems have been studied to model scenarios where pairs
of elements to be matched may not be identical but only similar, and color lists aim to describe
the set of compatible elements associated with each element.
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1 Introduction

Matroids are widely-studied mathematical objects. In the context of computer science, these
objects are of particular importance to algorithm design, combinatorial optimization and
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32:2 Quasipolynomial Representation of Transversal Matroids

computational complexity. Specifically, from the viewpoint of algorithm design, analysis
of these objects often leads to the discovery of algorithmic meta theorems. Such theorems
unify classical results such as polynomial-time solvability of a wide-variety of problems as
central as Minimum Weight Spanning Tree and Perfect Matching. In fact, if a
problem admits a greedy algorithm, then it can be embedded in a matroid – solutions are
thus associated with maximum independent sets in the matroid. Recently, matroids also
stand in the forefront of studies of approximation algorithms, parameterized algorithms and
kernels.

A matroid is a pair M = (E, I), where I is a family of subsets of E (called independent
sets), that satisfy three conditions called matroid axioms (see Section 2). As the size of
I can be exponential in the size of E, the explicit listing of all independent sets is often
rendered prohibitive. Then, it is necessary to have an independence oracle that, given a
subset I of E, determines (in polynomial time) whether I is present in I. For a wide class of
matroids, known as linear matroids, such oracle is given by a matrix called a representation.
Roughly speaking, the columns of the matrix are in bijection with the elements in E, and
a set of columns is linearly independent if and only if the set of corresponding elements is
independent. Unfortunately, for several important linear matroids, efficient computations of
the desired representations are not known.

Specific well-known classes of matroids are those of uniform matroids, partition matroids,
graphic matroids, cographic matroids, transversal matroids and gammoids. A common
property of all of these classes is that all of them are contained in the wider class of linear
matroids. However, for the last two classes in this list a polynomial-time deterministic com-
putation of a representation is not known. Developing such a computation is a longstanding
open problem. In this paper, we make significant progress towards the resolution of this
question. We remark that as the dual of a transversal matroid is a gammoid and vice versa,
a polynomial-time computation of a representation for one also yields such a computation
for the other [13]. We specifically focus on the class of transversal matroids. Formally, a
transversal matroid is a matroid derived from a bipartite graph G with a fixed bipartition
(A,B) as follows: the ground set E is simply A, and a subset X ⊆ A is independent if and
only if G has a matching that saturates it. Matching constraints are ubiquitous in problems
arising in all fields of research. Indeed, such constraints model scenarios where some set of
objects relevant to our solution should be partitioned into pairs. Transversal matroids are
precisely the translation of these constraints (in the bipartite setting) into the language of
matroids.

To tackle the question above, we introduce the notion of union representation, which we
believe to be worthy of independent study. For algorithmic purposes, such representation is
as good as standard representation, given that the number of members in the union is small,
and it may be useful also in cases where not only an efficient computation of a standard
representation is not known, but a standard representation simply does not exist. Before we
further discuss the power of this notion, let us first present it properly. Roughly speaking,
a union representation of a matroid M = (E, I) is a collection of matrices such that a
subset X of E is independent in M if and only if for at least one of the matrices, the set of
columns corresponding to X is linearly independent. Standard representation is precisely
union representation where the size of the collection is one. While only linear matroids admit
standard representations, note that all matroids admit union representations: to see this,
for every base of the matroid, create one matrix with a set of linearly independent columns
corresponding to the base, and vectors having only 0 entries as the rest of the columns.
However, this procedure may create a huge number of matrices, and in order to make the
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notion of union representation relevant to algorithmic purposes, we desire the number of
matrices to be as small as possible.

In this work, we present a deterministic computation of a union representation of a
transversal matroid consisting of a quasipolynomial (in the rank of the matroid) number of
matrices in quasipolynomial time. Prior to our work, the fastest such computation was only
slightly better than trivial brute-force. More precisely, Misra et al. [14] showed that given a
bipartite graph G with a fixed bipartition (A,B), a representation of the transversal matroid
can be computed deterministically in (exponential) time

(|A|
r

)
|A|O(1) where r is the rank

of the matroid, which equals the maximum size of a matching in G. In this context, it is
important to note that a randomized polynomial-time algorithm to compute a representation
of a transversal matroid is well known (see, e.g., [13, 17]). Here, randomization means that
with some (low) probability, the algorithm may output a matrix that is not a representation
of the matroid. This algorithm utilizes the Schwartz-Zippel lemma [2, 22, 25], and hence
it is inherently randomized. The above mentioned trivial brute-force, which runs in time
2O(|A|2|B|) (see [14]), refers to a loop through all choices made by the randomized algorithm.

Our technique builds upon recent powerful derandomization tools, particularly a con-
struction given by Fenner et al. [4]. This construction is essentially a (quasipolynomial-time)
derandomization of a special case of the isolation lemma [15], namely, the isolation of a
perfect matching (if one exists). Roughly speaking, given a positive integer n ∈ N, the
construction is a collection of 2O(log2 n) weight functions such that for any bipartite graph G
on 2n vertices that has a perfect matching, there exists a weight function w in the collection
such that, when the edges of G are assigned weights according to w,1 G has a unique perfect
matching of minimum weight. Fenner et al. [4] utilized this construction to prove that
Perfect Matching on bipartite graphs is in quasi-NC. Soon after this paper was published,
significant generalizations of it followed [10, 7, 24]. Briefly, Gurjar et al. [10] showed that
Linear Matroid Intersection is in quasi-NC, Goldwasser et al. [7] showed that Perfect
Matching on bipartite graphs is in pseudo-deterministic NC, and Svensson et al. [24] showed
that Perfect Matching on general graphs is in quasi-NC.

We introduce the above derandomization tools (specifically, the construction of [4]) to
the context of representation, incorporating a flavor of Parameterized Complexity to the
representation itself. Indeed, the computation we derive can be viewed as a (quasipolynomial-
time) fixed-parameter tractable algorithm with respect to r. Consequently, we also introduce
these tools to Parameterized Complexity, as we observe that our union representation
computation can be incorporated in the method of representative sets by Fomin et al. [5] (see
below). On a high-level, our proof consists of the use of a splitter [16] to “color” vertices of
the input graph G using “small” integers. Then, we view a weight function not as a function
that assigns weights to edges of some specific graph, but as a function that assigns weights
to pairs of integers (that are simultaneously associated to a possibly exponential number of
induced subgraphs of G). This allows us to compose splitters functions with weight functions.
For each composition, we are then able to define a matrix, in the spirit of [15], that is one
member of our union representation. The crux of the correctness is that both a splitter and
a collection of [4] are universal in the sense that neither of them is tailored to a specific input
graph to highlight structures of that graph (such as a perfect matching, in the case of the
collection). Specifically, the same splitter and collection are relevant simultaneously to an
exponential number of graphs that are of interest to our purpose, namely, all the induced

1 Informally, each weight function assigns weights to the edges of a complete bipartite graph on 2n vertices
that has a perfect matching, and the assignment of weights to the edges of G can be derived from this.
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32:4 Quasipolynomial Representation of Transversal Matroids

subgraphs of our input graph G that are sufficient to witness the independence of all sets in
I (the family of independent sets of the transversal matroid at hand).

Our main theorem is in fact slightly stronger than described above. Suppose that for
algorithmic purposes, we would like to obtain a union representation of a structure where
all independent sets are also independent in our transversal matroid of interest (i.e., we do
not introduce false independent sets), and where all independent sets of size up to k in our
transversal matroid are also independent in our structure. In other words, we are pleased
with a structure that may “throw away” some large independent sets. For this purpose, we
introduce the appropriate notion of a structure that is in fact a weakening of the well-known
notion of a k-truncation of a matroid. Such a structure is useful for applications to problems
where solution size is at most k, which can be significantly smaller than the rank of the
matroid. Then, our computation of union representation runs in time quasipolynomial in
k rather than the rank, and thereby enables the design of parameterized algorithms with
respect to k.

Applications. Our main result also has applications in Parameterized Complexity. First,
it yields a fast computation of representative sets (integrated in the framework of [5, 12]).
Formally, given a matroid M = (E, I) and a family S of subsets of E, a subfamily Ŝ ⊆ S
is q-representative for S if the following holds: for every set Y ⊆ E of size at most q, if
there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint
from Y with X̂ ∪ Y ∈ I. Fomin et al. [5, 12] showed that if one is given a representation of
the matroid M , then small representative sets can be computed efficiently (see Section 4).
This computation has led, since its introduction in 2013, to the development of dozens of
parameterized algorithms that are the current state-of-the-art for their respective problems.
We observe that our computation of a union representation of a transversal matroid can
be composed with the algorithm of Fomin et al. [5, 12] to obtain small representative sets
efficiently also with respect to transversal matroids. As matching constraints naturally arise
in various scenarios, we find it important that the powerful tool of representative sets can
now be employed to handle them as well.

To illustrate the usefulness of the computation above using a simple didactic example,
we consider the List k-Path problem, informally defined as follows. The input consists of
an undirected graph G such that each of its vertices has its own list of compatible colors, and
the objective is to determine whether G has a (simple) path on k vertices such that one can
assign a compatible color to each vertex on this path to make it colorful. This problem is a
natural generalization of the classical k-Path problem to the presence of color lists, and it
was studied (in a slightly more general form) in [18] in the setting of randomized algorithms.
Previously, to solve this problem using representative sets, we remark that one would have
to use the direct sum of two uniform matroids, one to ensure distinctness of vertices and one
to ensure distinctness of colors, which would result in running time O(6.86k · nO(1)) – this
would be, to the best of our knowledge, the state-of-the-art. We show that simply by using a
transversal matroid rather than a direct sum of two uniform matroids, one obtains a running
time of O(5.18k · nO(1)).

We stress that the choice of List k-Path is only done for illustrative purposes. Indeed,
by only considering transversal matroids rather than direct sums of two uniform matroids, a
wide variety of problems can now immediately be solved in time O(5.18k · nO(1)) rather than
O(6.86k · nO(1)) in the presence of color lists. Such problems have been studied to model
scenarios where pairs of elements to be matched may not be identical but only similar, and
color lists aim to describe the set of compatible elements associated with each element. This
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includes, for example, graph problems such as subcases of subgraph isomorphism, which
are of relevance (in the presence of color lists) to bioinformatics [19, 21, 23, 3]. We remark
that this approach is applicable not only to graph problems, but also to various packing and
matching problems (such as those studied in [8]) in the presence of list colors. The Graph
Motif problem, in particular, was extensively studied also in the presence of color lists (see
[20, 1, 9, 11] and references therein), where the previous fastest deterministic algorithm run
in time O(6.86k · nO(1)) [20]. By simply using a transversal matroid rather than a direct
sum of two uniform matroids in the algorithm of [20], we immediately derive an improved
running time of O(5.18k · nO(1)).

Proofs of results marked by an asterisk (’*’) are omitted.

2 Preliminaries

Given t ∈ N, we use [t] as a shorthand for {1, 2, . . . , t}. Given a function f : A→ B and a
subset A′ ⊆ A, we denote f(A′) = {f(a) : a ∈ A′}, and we define f |A′ as the restriction of f
to A′. We slightly abuse notation, and given a function g : A→ N, called a weight function,
and a subset A′ ⊆ A, we denote g(A′) =

∑
a∈A′ g(a). Whenever we refer to a function that

is a weight function, we use the second notation.
Given a graph G, we say that (A,B) is a vertex bipartition of G if it is a partition of

V (G) such that A and B are independent sets. Moreover, we say that G is a bipartite graph
if it has a vertex bipartition. A matching µ is a family of pairwise-disjoint subsets of E(G).

2.1 Matroids
Let us begin by presenting the definition of an independence system.

I Definition 1 (Independence System). A pair P = (I, E), where E is a ground set and I is
a family of subsets of E (called independent sets), is an independence system if it satisfies
the following conditions:
(I1) φ ∈ I.
(I2) If X ⊆ Y and Y ∈ I, then X ∈ I.

A matroid is an independence system with an additional property, formally defined as
follows.

I Definition 2 (Matroid). An independence system M = (I, E) is a matroid if it satisfies
the following condition:
(I3) If X,Y ∈ I and |X| < |Y |, then there exists e ∈ (Y \X) such that X ∪ {e} ∈ I.
The rank of M is the maximum size of a set in I.

We remark that conditions (I1), (I2) and (I3) are called matroid axioms. We say that two
independence systems P = (E, I) and P ′ = (E′, I ′) are isomorphic if there exists a bijection
ϕ : E → E′ such that for every X ⊆ E, X ∈ I if and only if ϕ(X) ∈ I ′. In this paper, we
are specifically interested in transversal matroids, defined as follows.

IDefinition 3 (Transversal Matroid). LetG be a bipartite graph with a fixed vertex bipartition
(A,B). The transversal matroid M of G is the pair (A, I) where I is the family that consists
of every subset X ⊆ A such that there exists a matching that saturates X.

ITCS 2018



32:6 Quasipolynomial Representation of Transversal Matroids

It is well-known that a transversal matroid is indeed a matroid [17]. Having a repres-
entation of a matroid, given by a matrix that compactly encodes the matroid, is a central
component in many algorithmic applications. Matroids having a representation are called
linear, as formally defined below.

I Definition 4. Let A be a matrix over an arbitrary field F, and let C be the set of columns
of A. The matroid represented by A is the pair M = (C, I), where a subset X ⊆ C belongs
to I if and only if the columns in X are linearly independent over F.

It is well-known that the pair M = (C, I) in Definition 4 indeed defines a matroid [17].

I Definition 5 (Linear Matroid, Representation). A matroid M = (E, I) is a linear matroid
if there exists a matrix A, called a representation of M , such that M and the matroid
represented by A are isomorphic. Furthermore, M is representable over a field F if it has a
representation A over F.

We introduce a generalization of the concepts above, resulting in the notion of union
representation, which is sufficient for many algorithmic purposes and may be of independent
interest.

I Definition 6. Let A1, A2, . . . , At be t matrices over an arbitrary field F, let E be a ground
set, and for all i ∈ [t], let ϕi : E → Ci be a bijection, where Ci is the set of columns of Ai.
The independence system represented by (E, {Ai, ϕi}|i∈[t]) is given by P = (E, I), where a
subset X ⊆ E belongs to I if and only if there exists i ∈ [t] such that the columns in ϕi(X)
are linearly independent over F.

It should be clear that P = (E, I) in Definition 6 is indeed an independence system, but
we remark that it might not be a matroid since it may not satisfy axiom (I3) in Definition 2.
If the bijective functions ϕi, i ∈ [t], are clear from context, we do not specify them explicitly.

I Definition 7 (Union Representation). Let P = (E, I) be an independence system. Let
(E, {Ai, ϕi}|i∈[t]) be defined as in Definition 6. Then, (E, {Ai, ϕi}|i∈[t]) is a t-union repres-
entation of P if the independence system represented by (E, {Ai, ϕi}|i∈[t]) is isomorphic to
P . Furthermore, we say that (E, {Ai, ϕi}|i∈[t]) is defined over F if F is the field over which
A1, A2, . . . , At are defined.

Finally, we present the definition of a k-truncation of a matroid, which comes in handy in
various algorithmic applications. Our main result directly captures structures that we call
weak k-truncations of transversal matroids rather than only transversal matroids, and hence
we present it in this context (see Section 3). Let us first present the standard definition of
truncation.

I Definition 8 (Truncation). Let M = (E, I) be a matroid, and let k ∈ N. The k-truncation
of M is the matroid M ′ = (E, I ′) where I ′ = {I ∈ I : |I| ≤ k}.

We now turn the present the definition with whom we will be working. This definition
is sufficient for our algorithmic purposes, since the motivation underlying the use of a k-
truncation is to obtain a matrix of small rank (i.e. kO(1)), which is also attainable by a weak
k-truncation.

I Definition 9 (Weak Truncation). Let M = (E, I) be a matroid, and let k ∈ N. A weak
k-truncation of M is an independence system P ′ = (E, I ′) where {I ∈ I : |I| ≤ k} ⊆ I ′ ⊆ I.
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2.2 Isolation
For the sake of clarity, let us first introduce the following notation. Given n ∈ N, let G be
a bipartite graph with a fixed bipartition (A,B) such that |A|, |B| ≤ n, and fixed injective
functions γA : A→ [n] and γB : B → [n]. Given a weight function w : [n]× [n]→ N, we define
the weight of an edge {a, b} ∈ E(G), where a ∈ A and b ∈ B, by w̃({a, b}) = w(γA(a), γB(b)).
Thus, w̃ can be thought of as a function from E(G) to N. Let us remind that for a subset
U ⊆ E(G), w̃(U) =

∑
e∈U w̃(e).

We remark that we need to define a weight function via injective functions of the form
γA and γB as above (rather than letting the domain directly be an edge set) in order to
prove the correctness of our main result, particularly in its general form. Now, for perfect
matchings, isolating weight functions are defined as follows.

IDefinition 10 (Isolating Weight Function). LetG be a bipartite graph with a fixed bipartition
(A,B) such that |A|, |B| ≤ n, and fixed injective functions γA : A→ [n] and γB : B → [n].
A weight function w : [n]× [n]→ N is isolating if it satisfies the following condition: If G has
a perfect matching, then G also has a unique perfect matching µ of minimum weight (i.e. for
every perfect matching µ′ 6= µ, w̃(µ) < w̃(µ′)).

Such isolating weight functions are particularly relevant to the detection of a perfect
matching. To see this, we first need to define the matrix associated with an isolating weight
function.

I Definition 11. Let G be a bipartite graph with a fixed bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let
w : [n]× [n]→ N be a weight function. Then, W(G,w) is the matrix on |A| columns indexed
by the vertices in A and |B| rows indexed by the vertices in B, where

W(G,w)[b, a] =
{

2w̃({b,a}) if {b, a} ∈ E(G)
0 otherwise

for all a ∈ A and b ∈ B.

The following well-known result, due to Mulmuley et al. [15], reveals a connection between
isolating weight functions, determinants and perfect matchings.

I Proposition 1 ([15]). Let G be a bipartite graph with a fixed bipartition (A,B) such that
|A| = |B| ≤ n, and fixed injective functions γA : A→ [n] and γB : B → [n]. In addition, let
w : [n]× [n]→ N be a weight function. If det(W(G,w)) 6= 0, then G has a perfect matching.
Moreover, if w is isolating and G has a perfect matching, then det(W(G,w)) 6= 0.

Fenner et al. [4] presented a (deterministic) computation of a collection of weight functions
that, for any bipartite graph, has at least one isolating weight function. Formally,

I Definition 12 (Isolating Collection). Let n ∈ N. An n-isolating collection is a set Wn of
weight functions w : [n]×[n]→ N with the following property: For any bipartite graph G with
a fixed bipartition (A,B) such that |A|, |B| ≤ n, and fixed bijective functions γA : A→ [n]
and γB : B → [n], there exists a weight function w ∈ Wn such that w is isolating.

I Proposition 2 ([4]). Let n ∈ N. An n-isolating collection Wn of 2O(log2 n) weight functions
with the following property can be obtained in time 2O(log2 n): For any weight function
w ∈ Wn, every weight assigned by w can be represented (in binary) using O(log2 n) bits.

ITCS 2018
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2.3 Splitters, Representative Families

Splitters are well-known tools in derandomization, formally defined as follows.

I Definition 13 (Splitter). Let n, k, ` ∈ N where k ≤ `. An (n, k, `)-splitter is a family F of
functions from [n] to [`] such that for every S ⊆ [n] of size k, there is a function f ∈ F that
satisfies f(i) 6= f(j) for all distinct i, j ∈ S.

We are specifically interested in an (n, k, k2)-splitter. The following lemma asserts that
such a small splitter can be computed efficiently.

I Proposition 3 ([16]). Given n, k ∈ N, an (n, k, k2)-splitter of size kO(1) logn can be
constructed in time kO(1)n logn.

The notion of a representative family (implicitly linked to that of a splitter), introduced
by Fomin et al. [5], plays a central role in the design of fast deterministic parameterized
algorithms.

I Definition 14 (Representative Family). Given a matroid M = (E, I) and a family S of
subsets of E, a subfamily Ŝ ⊆ S is q-representative for S, denoted by Ŝ ⊆qrep S, if the
following holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from
Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I.

3 Representation

The purpose of this section is to compute a union representation of a transversal matroid
consisting of a quasipolynomial (in the rank of the matroid) number of matrices. As our
proof directly works for weak truncations of transversal matroids rather than only transversal
matroids, we present the statement of our result in the following more general form, and the
objective above as a corollary.

I Theorem 15. Let G be an n-vertex bipartite graph with a fixed vertex bipartition (A,B),
and let r ∈ N. A t-union representation (E, {Ai, ϕi}|i∈[t]) of some weak r-truncation of the
transversal matroid of G over Q, where t = 2O(log2 r) logn and every entry in Ai, i ∈ [t], is
an integer of bit-length 2O(log2 r), can be computed in time 2O(log2 r)n logn.

Let us remind that the maximum size of a matching in a graph G is denoted by κ(G),
and that it upper bounds the rank of the transversal matroid of G. In the theorem above,
if r = κ(G), then any weak r-truncation of the transversal matroid of G is equal to the
transversal matroid of G. Hence, we have the following corollary.

I Corollary 16. Let G be an n-vertex bipartite graph with a fixed vertex bipartition (A,B),
and denote r = κ(G). A t-union representation (E, {Ai, ϕi}|i∈[t]) of the transversal matroid
of G over Q, where t = 2O(log2 r) logn and every entry in Ai, i ∈ [t], is an integer of bit-length
2O(log2 r), can be computed in time 2O(log2 r)n logn.

For the sake of clarity, we first analyze the special case where |A|, |B| ≤ (2r)2. More
precisely, we prove a weaker version of Corollary 16, but it is conceptually convenient to think
of this proof as the above special case given that we later map integers in [2n] to integers in
[(2r)2]. Then, we present a more involved construction that handles the general case.
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3.1 Special Case
For our analysis of the special case, we introduce the following definition.

I Definition 17. Let G be a bipartite graph with a fixed vertex bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A→ [n] and γB : B → [n]. A weight function
w : [n]× [n]→ N is good for a subset X ⊆ A if det(W(G,w)[Y,X]) 6= 0 for some Y ⊆ B.

The heart of the proof of the special case is based on the two following lemmas.

I Lemma 18 (*). Let G be a bipartite graph with a fixed vertex bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition,
let Wn be an n-isolating collection. For every subset X ⊆ A, if X is independent in the
transversal matroid of G, then there exists w ∈ Wn that is good for X.

I Lemma 19 (*). Let G be a bipartite graph with a fixed vertex bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let
Wn be an n-isolating collection. For every subset X ⊆ A, if there exists w ∈ Wn that is good
for X, then X is independent in the transversal matroid of G.

Lemmas 18 and 19 lead us to the following result.

I Lemma 20 (*). Let G be a bipartite graph with a fixed vertex bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let
Wn be an n-isolating collection. Then, (A, {W(G,w)}|w∈Wn

) is a t-union representation of
the transversal matroid of G over Q, where t = |Wn|.

Due to Proposition 2, we have the following consequence of Lemma 20.

I Lemma 21 (*). Let G be an n-vertex bipartite graph with a fixed vertex bipartition (A,B).
A t-union representation (E, {Ai, ϕi}|i∈[t]) of the transversal matroid of G over Q, where
t = 2O(log2 n) and every entry in Ai, i ∈ [t], is an integer of bit-length 2O(log2 n), can be
computed in time 2O(log2 n).

3.2 General Case
We begin by adapting the definition of the matrix W(G,w) to the presence of a “splitter
functions”, which is a function from [2n] to [(2r)2] where n, r ∈ N will be clear from context.

I Definition 22. Let G be a bipartite graph with a fixed bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In addition, let
w : [(2r)2]× [(2r)2]→ N be a weight function and f : [2n]→ [(2r)2] be a splitter function for
some r ∈ N. Then, W(G,w,f) is the matrix on |A| columns indexed by the vertices in A and
|B| rows indexed by the vertices in B, where

W(G,w,f)[b, a] =
{

2w(f(γA(a)),f(n+γB(b))) if {b, a} ∈ E(G)
0 otherwise

for all a ∈ A and b ∈ B.

In order to proceed, we need to generalize Definition 17 to pairs of a weight function and
a splitter function.
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I Definition 23. Let G be a bipartite graph with a fixed vertex bipartition (A,B) such
that |A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B → [n]. In
addition, let r ∈ N. For a weight function w : [(2r)2]× [(2r)2]→ N and a splitter function
fA : [2n]→ [(2r)2], the pair (w, f) is good for a subset X ⊆ A if det(W(G,w,f)[Y,X]) 6= 0 for
some Y ⊆ B.

We first need to establish the following lemma.

I Lemma 24 (*). Let G be a bipartite graph with a fixed vertex bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A→ [n] and γB : B → [n]. In addition, let W
be a (2r)2-isolating collection, and F be a (2n, 2r, (2r)2)-splitter for some r ∈ N. For every
subset X ⊆ A of size at most r, if X is independent in the transversal matroid of G, then
there exist w ∈ W and f ∈ F such that (w, f) is good for X.

I Lemma 25 (*). Let G be a bipartite graph with a fixed vertex bipartition (A,B) such that
|A|, |B| ≤ n, and fixed injective functions γA : A→ [n] and γB : B → [n]. In addition, let W
be a (2r)2-isolating collection, and F be a (2n, 2r, (2r)2)-splitter for some r ∈ N. For every
subset X ⊆ A, if there exist w ∈ W and f ∈ F such that (w, f) is good for X, then X is
independent in the transversal matroid of G.

Lemmas 24 and 25 lead us to the following result.

I Lemma 26 (*). Fix r ∈ N. Let G be a bipartite graph with a fixed vertex bipartition
(A,B) such that |A|, |B| ≤ n, and fixed injective functions γA : A → [n] and γB : B →
[n]. In addition, let W be a (2r)2-isolating collection, and F be a (2n, 2r, (2r)2)-splitter.
Then, (A, {W(G,w,f)}|w∈W,f∈F ) is a t-union representation of some weak r-truncation of the
transversal matroid of G over Q, where t = |W| · |F|.

We are now ready to prove Theorem 15.

Proof. First, we apply Proposition 2 to obtain a (2r)2-isolating collection W of size 2O(log2 r)

in time 2O(log2 r). Second, we apply Proposition 13 to obtain a (2n, 2r, (2r)2)-splitter F of size
rO(1) logn in time rO(1)n logn. We select arbitrary bijective functions γA : A → [|A|] and
γB : B → [|B|]. By Lemma 26, (A, {W(G,w,f)}|w∈W,f∈F ) is a t-union representation of some
weak r-truncation of the transversal matroid of G over Q, where t = |W|·|F| = 2O(log2 r) logn.
By Proposition 2 and Definition 11, every entry in W(G,w,f), w ∈ W and f ∈ F , is an integer
of bit-length 2O(log2 r). Thus, the time to construct (A, {W(G,w,f)}|w∈W,f∈F ) is bounded by
2O(log2 r)n logn. This concludes the proof. J

4 Representative Families

In this section, we give applications of Theorem 15 in the design of parameterized algorithms.
First, we give a fast deterministic algorithm to compute representative families over a
transversal matroid. Prior to our work, only randomized algorithms were known from the
works of Fomin et al. [5] and Lokshtanov et al. [12], since no fast deterministic algorithm was
known for computing a linear representation of transversal matroids. Later in this section,
we will use this deterministic algorithm to give a deterministic parameterized algorithm
for the List k-Path problem. We remind that, as explained in Introduction, we selected
List k-Path for illustrative purposes, and that the approach described to solve it is readily
applicable to problems such as Graph Motif, d-Dimensional k-Matching and d-Set
k-Packing in the presence of color lists.
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We begin by stating the following known results about the computation of representative
families over linear matroids.

I Proposition 4 ([12]). Let M = (E, I) be a linear matroid of rank n, and let S be a family
of ` independent sets, each of size p. Let A be an n × |E| matrix representing M over a
field F, and let ω < 2.373 be the exponent of matrix multiplication [6]. Then, there are
deterministic algorithms computing Ŝ ⊆qrep S as follows.
(i) A family Ŝ of size

(
p+q
p

)
in O

((
p+q
p

)2
`p3n2 + `

(
p+q
q

)ω
np
)

+ (n + |E|)O(1) operations
over F.

(ii) A family Ŝ of size np
(
p+q
p

)
in O

((
p+q
p

)
`p3n2 + `

(
p+q
q

)ω−1(pn)ω−1
)

+ (n+ |E|)O(1) op-
erations over F.

I Proposition 5 ([5]). Let M = (E, I) be a matroid and S be a subset of I. If S ′ ⊆qrep S
and Ŝ ⊆qrep S ′, then Ŝ ⊆qrep S.

Now we will apply the above results to prove the following theorem.

I Theorem 27 (*). Let M = (E, I) be a transversal matroid of rank n and let S be a
family of ` independent sets, each of size p. Let q be a positive integer, r = p+ q and ω be
the exponent of matrix multiplication. Then, there are deterministic algorithms computing
Ŝ ⊆qrep S as follows.
(i) A family Ŝ of size 2O(log2 r)(r

p

)
logn in time

((
r
p

)2
`p3n2 + `

(
r
q

)ω
np
)

2O(log2 r) logn+(n+

|E|)O(1)2O(log2 r).
(ii) A family Ŝ of size 2O(log2 r)(r

p

)
np logn in time

((
r
p

)
`p3n2 + `

(
r
q

)ω−1(pn)ω−1
)

2O(log2 r) logn+ (n+ |E|)O(1)2O(log2 r).

Now we will use Theorem 27 to design a deterministic algorithm for List k-Path, which
is defined as follows.

List k-Path Parameter: k

Input: A graph G, a set of colors C, a function L : V (G)→ 2C , and k ∈ N,
Question: Is there a path P on k vertices and an injective map g : V (P )→ C such that
g(v) ∈ L(v) for all v ∈ V (P )?

Note that, unlike k-Path where the objective is to check whether there is a path P on k
vertices in a given input graph, in List k-Path we must also find an injective map g that
assigns distinct colors to the vertices on P from their respective lists of colors. Towards
that, we create an auxiliary bipartite graph H with bipartition V (G) ]C, such that for each
v ∈ V (G), the neighborhood NH(v) of v in H is L(v). The following lemma states that any
solution to the instance (G,C,L, k) is also an independent set in the transversal matroid of
H.

I Lemma 28 (*). Let (G,C,L, k) be an instance of List k-Path. Let H = (V (G) ] C,F )
be a bipartite graph such that NH(v) = L(v) for all v ∈ V (G). Let P be a path on k vertices
in G. Then, P is a solution to List k-Path if and only if V (P ) is an independent set in the
transversal matroid M of H over the ground set V (G).

Using Lemma 28, a dynamic programming (DP) algorithm for List k-Path can be
designed using representative families. This algorithm will follow the outline of the algorithm
of Fomin et al. [5] for k-Path. In the rest of this section, we will present this DP algorithm
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for List k-Path. Recall that (G,C,L, k) is the input and M = (V (G), I) is the transversal
matroid of H over the ground set V (G), where H = (V (G) ] C,F ) is the bipartite graphs
such that NH(v) = L(v) for all v ∈ V (G). For any i ∈ [k] and v ∈ V (G), define the following.

Piv =
{
X
∣∣∣ X ⊆ V (G), v ∈ X, |X| = i,X ∈ I, and G has a path of

length i− 1 whose vertex set is precisely X and whose end vertex is v
}

The following lemma gives an efficient computation of P̂iv ⊆k−irep Piv for all i ∈ [k] where
the underlying matroid is M , i.e. the transversal matroid of H over the ground set V (G).

I Lemma 29 (*). For every i ∈ [k] and v ∈ V (G), P̂iv ⊆k−irep Piv of size 2O(log2 k)(k
i

)
n · i logn

can be computed in time 2ωk2O(log2 k)nO(1).

I Theorem 30 (*). List k-Path can be solved in time 2ωk2O(log2 k)nO(1), where ω < 2.373
is the exponent of matrix multiplication [6].

We remark that in the theorem above, 2ωk2O(log2 k)nO(1) = 5.18knO(1). If the computation
in Proposition 4 is sped-up or the bound on ω is improved, then our algorithm is automatically
sped-up as well.
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