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Abstract
Given a Counting Monadic Second Order (CMSO) sentence ψ, the CMSO[ψ] problem is defined
as follows. The input to CMSO[ψ] is a graph G, and the objective is to determine whether G |= ψ.
Our main theorem states that for every CMSO sentence ψ, if CMSO[ψ] is solvable in polynomial
time on “globally highly connected graphs”, then CMSO[ψ] is solvable in polynomial time (on
general graphs). We demonstrate the utility of our theorem in the design of parameterized
algorithms. Specifically we show that technical problem-specific ingredients of a powerful method
for designing parameterized algorithms, recursive understanding, can be replaced by a black-box
invocation of our main theorem. We also show that our theorem can be easily deployed to show
fixed parameterized tractability of a wide range of problems, where the input is a graph G and the
task is to find a connected induced subgraph of G such that “few” vertices in this subgraph have
neighbors outside the subgraph, and additionally the subgraph has a CMSO-definable property.
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1 Introduction

Algorithmic meta-theorems are general algorithmic results applicable to a whole range of
problems. Many prominent algorithmic meta-theorems are about model checking; such
theorems state that for certain kinds of logic L, and all classes C that have a certain property,
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135:2 Reducing CMSO Model Checking to Highly Connected Graphs

there is an algorithm that takes as input a formula φ ∈ L and a structure S ∈ C and
efficiently determines whether S |= φ. Results in this direction include the seminal theorem
of Courcelle [8, 7, 9] for model checking Monadic Second Order Logic (MSO) on graphs
of bounded treewidth (see also [1, 2, 4, 10, 14]), as well as a large body of work on model
checking first-order (FO) logic [5, 12, 16, 18, 19, 21, 20, 23, 28].

Another kind of algorithmic meta-theorems reduce the task of designing one type of
algorithm for a problem, to one of designing a different kind of algorithm for the same
problem. The hope is, of course, that the second type of algorithms are significantly easier
to design than the first. A prototype example of such results is Bidimensionality [13], which
reduces the design of sub-exponential time parameterized algorithms for a problem on planar
(or H-minor free) graphs, to the design of single exponential time algorithms for the same
problem when parameterized by the treewidth of the input graph.

In this paper we prove a result of the second type for model checking Counting Monadic
Second Order Logic (CMSO), an extension of MSO with atomic sentences for determining
the cardinality of vertex and edge sets modulo any (fixed) integer. For every CMSO sentence
ψ define the CMSO[ψ] problem as follows. The input is a graph G on n vertices, and the
task is to determine whether G |= ψ.

Our main result states that for every CMSO sentence ψ, if there is a O(nd) time algorithm
(d > 4) for CMSO[ψ] for the special case when the input graph is required to be “highly
connected everywhere”, then there is a O(nd) time algorithm for CMSO[ψ] without any
restrictions. In other words, our main theorem reduces CMSO model checking to model
checking the same formula on graphs which are “highly connected everywhere”.

In order to complete the description of our main result we need to define what we mean
by “highly connected everywhere”. For two integers s and c, we say that a graph G is
(s, c)-unbreakable if there does not exist a partition of the vertex set into three sets X, C,
and Y such that

C is a separator: there are no edges from X to Y ,
C is small: |C| ≤ c, and
X and Y are large: |X|, |Y | ≥ s.

For example, the set of (1, c)-unbreakable graphs contains precisely the (c+ 1)-connected
graphs, i.e. the connected graphs for which removing any set of at most c vertices leaves the
graph connected. We can now state our main result:

I Theorem 1. Let ψ be a CMSO sentence. For all c ∈ N, there exists s ∈ N such that if
there exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable graphs in time O(nd)
for some d > 4, then there exists an algorithm that solves CMSO[ψ] on general graphs in
time O(nd).

For Theorem 1 to be useful, there must exist problems that can be formulated in CMSO,
for which it is easier to design algorithms for the special case when the input graphs are
unbreakable, than it is to design algorithms that work on general graphs. Such problems
can be found in abundance in parameterized complexity. Indeed, the recursive understanding
technique, which has been used to solve several problems [6, 22, 24, 25, 27, 26] in parameterized
complexity, is based precisely on the observation that for many graph problems it is much
easier to design algorithms if the input graph can be assumed to be unbreakable.

Designing algorithms using the recursive understanding technique typically involves a
technical and involved argument akin to doing dynamic programming on graphs of bounded
treewidth (see Chitnis et al. [6] for an exposition). These arguments reduce the original
problem on general graphs to a generalized version of the problem on (s, c)-unbreakable
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graphs, for appropriate values of s and c. Then an algorithm is designed for this generalized
problem on (s, c)-unbreakable graphs, yielding an algorithm for the original problem.

For all applications of the recursive understanding technique known to the authors [6,
22, 24, 25, 27, 26], the problem in question (in which recursive understanding has been
applied) can be formulated as a CMSO model checking problem, and therefore, the rather
cumbersome application of recursive understanding can be completely replaced by a black
box invocation of Theorem 1. Using Theorem 1 in place of recursive understanding has the
additional advantage that it reduces problems on general graphs to the same problem on
unbreakable graphs, facilitating also the last step of designing an algorithm on unbreakable
graphs.

As an example of the power of Theorem 1 we use it to give a fixed parameter tractable
(FPT) algorithm for the Vertex Multiway Cut Uncut problem. Details can be found in
the full version of the paper on arXiv.org. Here, we are given a graph G together with a set
of terminals T ⊆ V (G), an equivalence relation R on the set T , and an integer k, and the
objective is to test whether there exists a set S ⊆ V (G) \ T of at most k vertices such that
for any u, v ∈ T , the vertices u and v belong to the same connected component of G \ S if
and only if (u, v) ∈ R. Since finding the desired set S satisfying the above property can be
formulated in CMSO, we are able to completely sidestep the necessity to define a technically
involved annotated version of our problem, and furthermore, we need only focus on the base
case where the graph is unbreakable. To solve the base case, a simple procedure that is based
on the enumeration of connected sets with small neighborhood is sufficient. For classification
purposes, our approach is significantly simpler than the problem-specific algorithm in [6].
Finally, we show how Theorem 1 can be effortlessly deployed to show fixed parameterized
tractability of a wide range of problems, where the input is a graph G and the task is to find
a connected induced subgraph of G of bounded treewidth such that “few” vertices outside
this subgraph have neighbors inside the subgraph, and additionally the subgraph has a
CMSO-definable property.

Our techniques. The proof of Theorem 1 is based heavily on the idea of graph replacement,
which dates back to the work of Fellows and Langston [17]. We combine this idea with
Courcelle’s theorem [8, 7, 9], which states that every CMSO-definable property σ has finite
state on a bounded-size separation/boundary. In other words, for any CMSO-definable
property σ and fixed t ∈ N, there is an equivalence relation defined on the set of all t-
boundaried graphs (graphs with a set of at most t distinguished vertices) with a finite
number, say ζ (where ζ depends only on σ and t) of equivalence classes such that if we
replace any t-boundaried subgraph H of the given graph G with another t-boundaried graph,
say H ′, from the same equivalence class to obtain a graph G′, then G has the property σ if
and only if G′ has the property σ. In case of (s, c)-unbreakable graphs, t = 2c. Let R1, . . . , Rζ
denote a set containing one “ minimal” 2c-boundaried graph from each equivalence class
(for the fixed CMSO-definable property σ). Let r denote the size of the largest among these
minimal representatives.

The main technical content of our paper is in the description of an algorithm for a
generalization of our question. To be precise, we will describe how one can, given a 2c-
boundaried graph G, locate the precise equivalence class in which G is contained and how
one could compute the corresponding smallest representative from the set {R1, . . . , Rζ}. We
refer to this task as “understanding” G.

In order to achieve our objective, we first give an algorithm A that allows one to
understand 2c-boundaried (s− r, c)-unbreakable graphs (for a choice of s which is sufficiently
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135:4 Reducing CMSO Model Checking to Highly Connected Graphs

large compared to r and c). This algorithm is built upon the following observation. The
equivalence class of any 2c-boundaried graph G is determined exactly by the subset of
{G⊕R1, G⊕R2, . . . , G⊕Rζ} on which σ evaluates to true. Here, the graph G⊕Ri is the
graph obtained by taking the disjoint union of the graphs G and Ri and then identifying
the vertices of the boundaries of these graphs with the same label. Since s is chosen to be
sufficiently large compared to c and r, it follows that for every i ∈ {1, . . . , ζ}, the graph G⊕Ri
is (s, c)-unbreakable and we can use the assumed algorithm for CMSO[ψ] on (s, c)-unbreakable
graphs to design an algorithm that understands 2c-boundaried (s− r, c)-unbreakable graphs.
This constitutes the ‘base case’ of our main algorithm.

In order to understand a general ((s − r, c)-breakable) 2c-boundaried graph, we use
known algorithms from [6] to compute a partition of the vertex set of G into X,C, and
Y such that C is a separator, |C| ≤ c and |X|, |Y | ≥ s−r

2c . Let G1 = G[X ∪ C] and let
G = G[Y ∪ C]. Without loss of generality, we may assume that at most half the vertices in
the boundary of G lie in X ∪C. Consequently, the graph G1 is a 2c-boundaried graphs where
the boundary vertices are the vertices in C along with the boundary vertices of G contained
in X ∪ C. We then recursively understand the strictly smaller 2c-boundaried graph G1 to
find its representative R̂ ∈ {R1, . . . , Rζ}. Since the evaluation of σ on G is the same as the
evaluation of σ on G2 ⊕ R̂ (where the gluing happens along C), we only need to understand
the 2c-boundaried graph G2 ⊕ R̂ (where the boundary is carefully defined from that of G
and R̂) and we do this by recursively executing the “understand” algorithm on this graph.

At this point we also need to remark on two drawbacks of Theorem 1. The first is that
Theorem 1 is non-constructive. Given an algorithm for CMSO[ψ] on (s, c)-unbreakable
graphs, Theorem 1 allows us to infer the existence of an algorithm for CMSO[ψ] on general
graphs, but it does not provide us with the actual algorithm. This is due to the subroutine S
requiring a representative 2c-boundaried subgraph for each equivalence class, to be part of its
‘source code’. Thus, the parameterized algorithms obtained using Theorem 1 are non-uniform
(see Section 4), as opposed to the algorithms obtained by recursive understanding.

The second drawback is that Theorem 1 incurs a gargantuan constant factor overhead in
the running time, where this factor depends on the formula ψ and the cut size c. We leave
removing these two drawbacks as intriguing open problems.

2 Preliminaries

In order to present a rigorous proof of our lemmas in a way that is consistent with existing
notation used in related work, we follow the notation from the paper [3].

Graphs and treewidth. Throughout this paper, we use the term “graph” to refer to a
multigraph rather than only a simple graph. Given a graph G, we let V (G) and E(G) denote
the vertex and edge sets of G, respectively. When G is clear from the context, we denote
n = |V (G)| and m = |E(G)|. Given two subsets of V (G), A and B, we let E(A,B) denote
the set of edges of G with one endpoint in A and the other endpoint in B. Given U ⊆ V (G),
we let G[U ] denote the subgraph of G induced by U , and we let N(U) and N [U ] denote the
open and closed neighborhoods of U , respectively. Moreover, we denote G\U = G[V (G)\U ].
Given v ∈ V (G), we denote N(v) = N({v}) and N [v] = N [{v}]. Given E ⊆ E(G), we
denote G \ E = (V (G), E(G) \ E). Moreover, we let V [E] denote the set of every vertex in
V (G) that is incident to at least one edge in E, and we define G[E] = (V [E], E). A graph G
is a cluster graph if there exists a partition (V1, V2, . . . , Vr) of V (G) for some r ∈ N0 of V (G)
such that for all i ∈ [r], G[Vi] is a clique, and for all j ∈ [r] \ {i}, E(Vi, Vj) = ∅.
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I Definition 2. A tree decomposition of a graph G is a pair (T, β) of a tree T and β : V (T )→
2V (G), such that (a)

⋃
t∈V (T ) β(t) = V (G), and (b) for any edge e ∈ E(G), there exists a

node t ∈ V (T ) such that both endpoints of e belong to β(t), and (c) for any vertex v ∈ V (G),
the subgraph of T induced by the set Tv = {t ∈ V (T ) : v ∈ β(t)} is a tree.

The width of (T, β) is maxv∈V (T ){|β(v)|} − 1. The treewidth of G is the minimum width
of a tree decomposition of G.

Unbreakability. To formally introduce the notion of unbreakability, we rely on the definition
of a separation:

I Definition 3 (Separation). A pair (X,Y ) where X ∪ Y = V (G) is a separation if E(X \
Y, Y \X) = ∅. The order of (X,Y ) is |X ∩ Y |.

Roughly speaking, a graph is breakable if it is possible to “break” it into two large parts
by removing only a small number of vertices. Formally,

I Definition 4 ((s, c)-Unbreakable graph). Let G be a graph. If there exists a separation
(X,Y ) of order at most c such that |X \ Y | > s and |Y \X| > s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

The following lemma implies that it is possible to determine (approximately) whether a
graph is unbreakable or not, and lemmata similar to it can be found in [6].

I Lemma 5. There exists an algorithm, Break-ALG, that given s, c ∈ N and a graph G,
in time 2O(c log(s+c)) · n3 logn either returns an ( s2c , c)-witnessing separation or correctly
concludes that G is (s, c)-unbreakable.

Boundaried Graphs. Roughly speaking, a boundaried graph is a graph where some vertices
are labeled. Formally,

I Definition 6 (Boundaried graph). A boundaried graph is a graph G with a set δ(G) ⊆ V (G)
of distinguished vertices called boundary vertices, and an injective labeling λG : δ(G)→ N.
The set δ(G) is the boundary of G, and the label set of G is Λ(G) = {λG(v) | v ∈ δ(G)}.

We remark that we also extend the definition of (s, c)-(un)breakability from graphs,
to boundaried graphs in the natural way. That is, we ignore the boundary vertices when
considering the existence of an (s, c)-witnessing separation. For ease of presentation, we
sometimes abuse notation and treat equally-labeled vertices of different boundaried graphs,
as well as the vertex that is the result of the identification of two such vertices, as the same
vertex. Given a finite set I ⊆ N, FI denotes the class of all boundaried graphs whose label
set is I, and F⊆I =

⋃
I′⊆I FI′ . A boundaried graph in F⊆[t] is called a t-boundaried graph.

Finally, F denotes the class of all boundaried graphs. The main operation employed to unite
two boundaried graphs is the one that glues their boundary vertices together. Formally,

I Definition 7 (Gluing by ⊕). Let G1 and G2 be two boundaried graphs. Then, G1 ⊕G2 is
the (not-boundaried) graph obtained from the disjoint union of G1 and G2 by identifying
equally-labeled vertices in δ(G1) and δ(G2).4

4 Each edge in G1 (or G2) whose endpoints are boundaried vertices in G1 (or G2) is preserved as a unique
edge in G1 ⊕ G2.
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Structures. We first define the extension of graphs to structures in the context of our paper.

I Definition 8 (Structure). A structure α is a tuple whose first element is a graph, denoted
by Gα, and each of the remaining elements is a subset of V (Gα), a subset of E(Gα), a vertex
in V (Gα) or an edge in E(Gα). The number of elements in the tuple is the arity of the
structure.

Given a structure α of arity p and an integer i ∈ [p], we let α[i] denote the i’th element
of α. Note that α[1] = Gα. By appending a subset S of V (Gα) (or E(Gα)) to a structure
α of arity p, we produce a new structure, denoted by α′ = α � S, of arity p + 1 with the
first p elements of α′ being the elements of α and α′[p+ 1] = S. For example, consider the
structure α = (Gα, S, e) of arity 3, where S ⊆ V (Gα) and e ∈ E(Gα). Let S′ be some subset
of V (Gα). Then, appending S′ to α results in the structure α′ = α � S′ = (Gα, S, e, S′).

Next, we define the notions of a type of a structure and a property of structures.

I Definition 9 (Type). Let α be a structure of arity p. The type of α is a tuple of
arity p, denoted by type(α), where the first element, type(α)[1], is graph, and for every
i ∈ {2, 3, . . . , p}, type(α)[i] is vertex if α[i] ∈ V (Gα), edge if α[i] ∈ E(Gα), vertex set if
α[i] ⊆ V (Gα), and edge set otherwise.5

I Definition 10 (Property). A property is a function σ from the set of all structures to
{true, false}.

Finally, we extend the notion of unbreakability to structures.

I Definition 11 ((s, c)-Unbreakable structure). Let α be a structure. If Gα is an (s, c)-
unbreakable graph, then we say that α is an (s, c)-unbreakable structure, and otherwise we
say that α is an (s, c)-breakable structure.

Counting Monadic Second Order Logic. The syntax of Monadic Second Order Logic
(MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges,
sets of vertices and sets of edges, the quantifiers ∀ and ∃, which can be applied to these
variables, and five binary relations: (a) u ∈ U , where u is a vertex variable and U is a
vertex set variable; (b) d ∈ D, where d is an edge variable and D is an edge set variable;
(c) inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is
that the edge d is incident to u; (d) adj(u, v), where u and v are vertex variables, and the
interpretation is that u and v are adjacent; (e) equality of variables representing vertices,
edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic
sentences testing whether the cardinality of a set is equal to q modulo r, where q and r are
integers such that 0 ≤ q < r and r ≥ 2. That is, CMSO is MSO with the following atomic
sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We refer
to [2, 8, 9] for a detailed introduction to CMSO.

Evaluation. To evaluate a CMSO-formula ψ on a structure α, we instantiate the free
variables of ψ by the elements of α. In order to determine which of the free variables of ψ
are instantiated by which of the elements of α, we introduce the following conventions. First,
each free variable x of a CMSO-formula ψ is associated with a rank, rx ∈ N \ {1}. Thus, a

5 Note that we distinguish between a set containing a single vertex (or edge) and a single vertex (or edge).
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CMSO-formula ψ can be viewed as a string accompanied by a tuple of integers, where the
tuple consists of one integer rx for each free variable x of ψ.

Given a structure α and a CMSO-formula ψ, we say that type(α) matches ψ if (i) the
arity of α is at least max rx, where the maximum is taken over each free variable x of ψ, and
(ii) for each free variable x of ψ, type(α)[rx] is compatible with the type of x. For example,
if x is a vertex set variable, then type(α)[rx] = vertex set. Finally, we say that α matches ψ
if type(α) matches ψ. Given a free variable x of a CMSO sentence ψ and a structure α that
matches ψ, the element corresponding to x in α is α[rx].

I Definition 12. [Property σψ] Given a CMSO-formula ψ, the property σψ is defined as
follows. Given a structure α, if α does not match ψ, then σψ(α) equals false, and otherwise
σψ(α) equals the result of the evaluation of ψ where each free variable x of ψ is instantiated
by α[rx].

Note that some elements of α may not correspond to any variable of ψ. However, ψ may
still be evaluated on the structure α—in this case, the evaluation of ψ does not depend on
all the elements of the structure. If the arity of α is 1, then we use σψ(Gα) to denote σψ(α).

I Definition 13. [CMSO-definable property] A property σ is CMSO-definable if there exists
a CMSO-formula ψ such that σ = σψ. In this case, we say that ψ defines σ.

Structures. The notion of a boundaried structure is an extension of the notion of a boundaried
graph and is defined as follows.

I Definition 14 (Boundaried structure). A boundaried structure is a tuple whose first element
is a boundaried graph G, denoted by Gα, and each of the remaining elements is a subset of
V (G), a subset of E(G), a vertex in V (G), an edge in E(G), or the symbol ?. The number
of elements in the tuple is the arity of the boundaried structure.

Given a boundaried structure α of arity p and an integer i ∈ [p], we let α[i] denote the
i’th element of α. We remark that we extend the definition of (s, c)-(un)breakability of
structures, to boundaried structures.

I Definition 15 (Type). Let α be a boundaried structure of arity p. The type of α is a tuple
of arity p, denoted by type(α), where the first element, type(α)[1], is boundaried graph, and
for every i ∈ {2, 3, . . . , p}, type(α)[i] is vertex if α[i] ∈ V (Gα), edge if α[i] ∈ E(Gα), vertex
set if α[i] ⊆ V (Gα), edge set if α[i] ⊆ E(Gα) and ? otherwise.

Now, given a boundaried structure and a CMSO-formula ψ, we say that type(α) matches
ψ if (i) the arity of α is at least max rx, where the maximum is taken over each free variable
x of ψ, and (ii) for each free variable x of ψ, type(α)[rx] is compatible with the type of x.
Moreover, we say that α matches ψ if type(α) matches ψ.

Given p ∈ N, Ap denotes the class of all boundaried structures of arity p, and given a
finite set I ⊆ N, ApI (Ap⊆I) denotes the class of all boundaried structures of arity p whose
boundaried graph belongs to FI (resp. F⊆I). A boundaried structure in Ap⊆[t] is called a
t-boundaried structure. Finally, we let A denote the class of all boundaried structures.

I Definition 16 (Compatiblity). Two boundaried structures α and β are compatible (nota-
tionally, α∼cβ) if the following conditions are satisfied.

α and β have the same arity p.
For every i ∈ [p]:

type(α)[i] = type(β)[i] 6= ?, or
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type(α)[i] ∈ {vertex,edge} and type(β)[i] = ?, or
type(β)[i] ∈ {vertex,edge} and type(α)[i] = ?.

For every i ∈ [p] such that both α[i] and β[i] are vertices: α[i] ∈ δ(Gα), β[i] ∈ δ(Gβ) and
λGα(α[i]) = λGβ (β[i]).
For every i ∈ [p] such that both α[i] and β[i] are edges: α[i] ∈ E(Gα[δ(Gα)]), β[i] ∈
E(Gβ [δ(Gβ)]) and {λGα(xα[i]), λGα(yα[i])} = {λGβ (xβ[i]), λGβ (yβ[i])}, where
α[i] = (xα[i], yα[i]) and β[i] = (xβ[i], yβ[i]). That is, xj and yj are the endpoints of the
edge j ∈ {α[i], β[i]}.

I Definition 17 (Gluing by ⊕). Given two compatible boundaried structures α and β of
arity p, the operation α⊕ β is defined as follows.

α⊕ β is a structure γ of arity p.
Gγ = Gα ⊕Gβ .
For every i ∈ [p]:

if α[i] and β[i] are sets, γ[i] = α[i] ∪ β[i];
if α[i] and β[i] are vertices/edges, γ[i] = α[i] = β[i];
if α[i] = ?, γ[i] = β[i];
if β[i] = ?, γ[i] = α[i].

State. This subsection states a variant of the classical Courcelle’s Theorem [8, 7, 9] (see
also [10]), which is a central component in the proof of our main result. To this end, we first
define the compatibility equivalence relation ≡c on boundaried structures as follows. We say
that α ≡c β if Λ(Gα) = Λ(Gβ) and for every boundaried structure γ, α ∼c γ ⇐⇒ β ∼c γ.
Now, we define the canonical equivalence relation ≡σ on boundaried structures.

I Definition 18 (Canonical equivalence). Given a property σ of structures, the canonical
equivalence relation ≡σ on boundaried structures is defined as follows. For two boundaried
structures α and β, we say that α ≡σ β if (i) α ≡c β, and (ii) for all boundaried structures
γ compatible with α (and thus also with β), we have σ(α⊕ γ) = true⇔ σ(β ⊕ γ) = true.

It is easy to verify that ≡σ is indeed an equivalence relation. Given a property σ of
structures, p ∈ N and I ⊆ N, we let E≡σ [Ap⊆I ] denote the set of equivalence classes of ≡σ
when restricted to Ap⊆I .

I Definition 19 (Finite state). A property σ of structures is finite state if, for every p ∈ N
and I ⊆ N, E≡σ [Ap⊆I ] is finite.

Given a CMSO sentence ψ, the canonical equivalence relation associated with ψ is ≡σψ ,
and for the sake of simplicity, we denote this relation by ≡ψ. We are now ready to state the
variant of Courcelle’s Theorem which was proven in [3] (see also [8, 7, 9]) and which we use
in this paper.

I Lemma 20 ([3]). Every CMSO-definable property on structures has finite state.

Parameterized Complexity. An instance of a parameterized problem is a pair of the form
(x, k), where k is a non-negative integer called the parameter. Thus, a parameterized problem
Π is a subset of Σ∗ × N0, for some finite alphabet Σ.

Two central notions in parameterized complexity are those of uniform fixed-parameter
tractability and non-uniform fixed-parameter tractability. In this paper, we are interested in
the second notion, which is defined as follows.
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I Definition 21 (Non-uniform fixed-parameter tractability (FPT)). Let Π be a parameterized
problem. We say that Π is non-uniformly fixed-parameter tractable (FPT) if there exists a
fixed d such that for every fixed k ∈ N0, there exists an algorithm Ak that for every x ∈ Σ∗,
determines whether (x, k) ∈ Π in time O(|x|d).

Note that in Definition 21, d is independent of k. We refer the reader to the books [15, 11]
for a detailed introduction to parameterized complexity.

3 CMSO Model Checking

Given a CMSO formula ψ, the CMSO[ψ] problem is defined as follows. The input of
CMSO[ψ] is a structure α that matches ψ, and the objective is to output σψ(α). In this
section, we prove the following result, which then implies Theorem 1.

I Theorem 22. Let ψ be a CMSO formula. For all c ∈ N, there exists s ∈ N such that if
there exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable structures in time O(nd)
for some d > 4, then there exists an algorithm that solves CMSO[ψ] on general structures in
time O(nd).

In the context of parameterized complexity, min-CMSO[ψ] (min-Edge-CMSO[ψ]) is
defined as follows. The input of min-CMSO[ψ] is a structure α, where for all S ⊆ V (Gα)
(resp. S ⊆ E(Gα)), α � S matches ψ, and a parameter k. The objective is to determine
whether there exists S ⊆ V (Gα) (resp. S ⊆ E(Gα)) of size at most k such that σψ(α � S) is
true. Similarly, we define max-CMSO[ψ] (resp. max-Edge-CMSO[ψ]), where the size of
S should be at least k, and eq-CMSO[ψ] (resp. eq-Edge-CMSO[ψ]), where the size of S
should be exactly k. Then, as a consequence of Theorem 22, we derive the following result.

I Theorem 23. Let x∈ {min,max,eq,min-Edge,max-Edge,eq-Edge}, and let ψ̂ be a
CMSO sentence. For all ĉ : N0 → N0, there exists ŝ : N0 → N0 such that if x-CMSO[ψ̂] para-
meterized by k is FPT on (ŝ(k), ĉ(k))-unbreakable structures, then x-CMSO[ψ̂] parameterized
by k is FPT on general structures.

From now on, to prove Theorem 22, we assume a fixed CMSO formula ψ and a fixed
c ∈ N. Moreover, we fix p as the number of free variables of ψ, and I = [2c]. We also let
s ∈ N be fixed, where its exact value (that depends only on ψ and c) is determined later.
Finally, we assume that there exists an algorithm, Solve-Unbr-ALG, that solves CMSO[ψ] on
(s, c)-unbreakable structures in time O(nd) for some d > 4.

3.1 Understanding an instance of the CMSO[ψ] Problem
To solve CMSO[ψ], we consider a generalization of CMSO[ψ], called Understand[ψ].
The definition of this generalization is based on an examination of E≡ψ [Ap⊆I ]. Given a
boundaried structure α ∈ Ap⊆I , we let Eα denote the equivalence class in E≡ψ [Ap⊆I ] that
contains α. For every equivalence class Eq ∈ E≡ψ [Ap⊆I ], let αEq denote some boundaried
structure in Eq such that there is no boundaried structure α ∈ Eq where the length of the
string encoding α is smaller than the length of the string encoding αEq . Accordingly, denote
R≡ψ [Ap⊆I ] = {αEq : Eq ∈ E≡ψ [Ap⊆I ]}. These will be the representatives of the equivalence
classes induced by ≡ψ. By Lemma 20, there is a fixed r ∈ N (that depends only on ψ and c)
such that both |R≡ψ [Ap⊆I ]| and the length of encoding of any boundaried structure in R≡ψ
are upper bounded by r as well as c ≤ r. Note that the encoding explicitly lists all vertices
and edges. By initially choosing s appropriately, we ensure that s ≥ 2r2c + r.
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The Understand[ψ] problem is defined as follows. The input is a boundaried structure
α ∈ Ap⊆I that matches ψ, and the objective is to output a boundaried structure β ∈ R≡ψ [Ap⊆I ]
such that Eα = Eβ . We proceed by showing that to prove Theorem 22, it is sufficient to
prove that there exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd).

I Lemma 24. If there exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd), then there exists an algorithm that solves CMSO[ψ] on general
structures in time O(nd).

In light of Lemma 24, the rest of this section focuses on the proof of the following result.

I Lemma 25. There exists an algorithm that solves Understand[ψ] on general boundaried
structures in time O(nd).

3.2 Understand[ψ] on Unbreakable Structures
Recall that s ≥ 2r2c + r. In this subsection, we show that Algorithm Solve-Unbr-ALG can be
used as a subroutine in order to efficiently solve Understand[ψ] on (s− r, c)-unbreakable
boundaried structures. For this, we follow the method of test sets (see for example, [Section
12.5, [15]]). The high level idea here is as follows. We first enumerate the relevant subset
of the finite set of minimal representatives. In other words, we simply list those minimal
representatives which can be glued in a meaningful way to the structure under consideration,
call it α. We now observe that gluing each of these representatives to α results in an
(s, c)-unbreakable structure, which is what we need to call Solve-Unbr-ALG. In this way we
solve the instance obtained by gluing α to each minimal representative.

Now, for every (not necessarily distinct) pair of minimal representatives, we glue them
together and do the same. This way, we can identify the specific minimal representative
whose behaviour when glued with every minimal representative, precisely resembles that
of the structure α when we do the same with α. Consequently, we obtain a solution for
Understand[ψ]. We now formalize this intuition in the following lemma.

I Lemma 26. There exists an algorithm Understand-Unbr-ALG, that solves Understand[ψ],
where it is guaranteed that inputs are (s− r, c)-unbreakable boundaried structures, in time
O(nd).6

Proof. We design the algorithm Understand-Unbr-ALG as follows. Let α be an input, which is
an (s− r, c)-unbreakable boundaried structure. Moreover, let C = {γ ∈ R≡ψ [Ap⊆I ] : γ ≡c α},
and let T denote the set of boundaried structures in R≡ψ [Ap⊆I ] that are compatible with α.
In the first phase, the algorithm performs the following computation. Notice that for every
β ∈ T , since |V (Gβ)| ≤ r, it holds that α⊕ β is an (s, c)-unbreakable structure. Thus, for
every β ∈ T , Understand-Unbr-ALG can call Solve-Unbr-ALG with α⊕ β as input, and it lets
ans(α, β) denote the result.

In the second phase, the algorithm performs the following computation. Notice that for
every γ ∈ C and β ∈ T , since |V (Gβ)|, |V (Gγ)| ≤ r, it holds that γ⊕β is a (2r, c)-unbreakable
structure. Thus, since s ≥ 2r2c + r, for all β ∈ C and γ ∈ T , Understand-Unbr-ALG can call
Solve-Unbr-ALG with γ ⊕ β as input, and it lets ans(γ, β) denote the result.

6 Here, Understand-Unbr-ALG is not required to verify whether the input is an (s − r, c)-unbreakable
boundaried structure.
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Finally, in the third phase, for every β ∈ C, the algorithm performs the following
computation. It checks whether for every γ ∈ T it holds that ans(α, γ) = ans(β, γ), and
if the answer is positive, then it outputs β. Since α ∈ Ap⊆I , there exists β′ ∈ C such that
Eα = Eβ′ , and therefore, at the latest, when β = β′, the algorithm terminates. Thus, the
algorithm is well defined, and it is clear that it runs in time O(nd).

To conclude that the algorithm is correct, it remains to show that for all β ∈ C \ {β′},
there exists γ ∈ T such that ans(α, γ) 6= ans(β, γ), as this would imply that the algorithm
necessarily outputs β′. For this purpose, suppose by way of contradiction that there exists
β ∈ C \ {β′} such that for all γ ∈ T it holds that ans(α, γ) = ans(β, γ). We now argue
that Eβ = Eβ′ which leads to a contradiction since each boundaried structure in R≡ψ [Ap⊆I ]
belongs to a different equivalence class.

For all γ ∈ T , since it holds that ans(α, γ) = ans(β, γ), it also holds that ans(β′, γ) =
ans(β, γ). This implies that σψ(β′ ⊕ γ) = σψ(β ⊕ γ). Consider some boundaried structure
γ (not necessarily in T ) that is compatible with β′ (and thus also with β). We claim that
σψ(β′ ⊕ γ) = σψ(β ⊕ γ). Indeed, let γ′ be the (unique) boundaried structure in R≡ψ [Ap⊆I ]
such that Eγ′ = Eγ . Then, σψ(β′ ⊕ γ′) = σψ(β′ ⊕ γ) and σψ(β ⊕ γ′) = σψ(β ⊕ γ). Note that
since γ′ is compatible with β′, it is also compatible with α, and hence γ′ ∈ T . Therefore,
σψ(β′ ⊕ γ′) = σψ(β ⊕ γ′). Overall, we obtain that indeed σψ(β′ ⊕ γ) = σψ(β ⊕ γ).

Note that β ≡c β′, and thus, since we have shown that for every boundaried structure γ
compatible with β′ it holds that σψ(β′ ⊕ γ) = σψ(β ⊕ γ), we derive that Eβ = Eβ′ . However,
each boundaried structure in R≡ψ [Ap⊆I ] belongs to a different equivalence class, and thus we
have reached the desired contradiction. J

3.3 Understand[ψ] on General Structures
The Algorithm Understand-ALG. We start by describing an algorithm called
Understand-ALG, which is based on recursion. Given an input to Understand[ψ] on
general boundaried structures, which is a boundaried structure α, the algorithm works as
follows. First, it calls Break-ALG (given by Lemma 5) with Gα as input to either obtain an
(s− r2c , c)-witnessing separation (X,Y ) or correctly conclude that Gα is (s−r, c)-unbreakable.
In the second case or if n < 2(s − r), it calls Understand-Unbr-ALG (given by Lemma
26), and returns its output. Next, suppose that Understand-ALG obtained an (s− r2c , c)-
witnessing separation (X,Y ) and that n ≥ 2(s− r). Without loss of generality, assume that
|X ∩ δ(Gα)| ≤ |Y ∩ δ(Gα)|. Denote ∆ = {v ∈ X ∩ Y : v /∈ δ(Gα)}.

Now, we define a boundaried structure, β ∈ Ap⊆I , which can serve as an instance of
Understand[ψ]. First, we let the graphGβ beGα[X], and we define δ(Gβ) = (X∩δ(Gα))∪∆.
Now, for all v ∈ X ∩ δ(Gα), we define λGβ (v) = λGα(v). Since |X ∩ δ(Gα)| ≤ |Y ∩ δ(Gα)|,
α ∈ Ap⊆I and |X ∩Y | ≤ c, we have that |(X ∩ δ(Gα))∪∆| ≤ 2c. Thus, to each v ∈ ∆, we can
let λGβ (v) assign some unique integer from I\λGα(X∩δ(Gα)). Hence, Gβ ∈ F⊆I . Now, for all
i ∈ {2, . . . , p}, we set β[i] as follows. If type(α)[i] ∈ {vertex,edge}: If α[i] ∈ V (Gβ) ∪E(Gβ),
then β[i] = α[i], and otherwise β[i] = ?. Else: β[i] = α[i] ∩ (V (Gβ) ∪ E(Gβ)).

Understand-ALG proceeds by calling itself recursively with β as input, and it lets β′ be
the output of this call. Now, we define another boundaried structure, γ ∈ Ap⊆I , which
can serve as an instance of Understand[ψ]. First, we define the boundaried graph Gγ as
follows. Let H be the disjoint union of Gβ′ and G[Y ], where both Gβ′ and G[Y ] are treated
as not-boundaried graphs. For all v ∈ X ∩ Y , identify (in H) the vertex v of G[Y ] with
the vertex u of Gβ′ that satisfies λGβ′ (u) = λGβ (v), and for the sake of simplicity, let v
and u also denote the identity of the resulting (unified) vertex. The graph Gγ is the result
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of this process. Moreover, let ∆′ denote the set of vertices in Gβ′ whose labels belong to
Gβ(∆). Next, set δ(Gγ) = (Y ∩ δ(Gα))∪ (δ(Gβ′) \∆′). Now, for all v ∈ Y ∩ δ(Gα), we define
λGγ (v) = λGα(v), and for all v ∈ δ(Gβ′) \∆′, we define λGγ (v) = λGβ′ (v) (note that if a
vertex belongs to both Y ∩ δ(Gα) and δ(Gβ′) \∆′, we still assign it the same label). Hence,
Gγ ∈ F⊆I . For the sake of simplicity, if two vertices have the same label (one in Gα and
the other in Gγ), we let the identity of one of them also refer to the other and vice versa.
For all i ∈ {2, . . . , p}, we set γ[i] to have the same type as α[i], and define it as follows. If
type(α)[i] ∈ {vertex,edge}: If α[i] ∈ V (Gγ)∪E(Gγ), then γ[i] = α[i], and otherwise γ[i] = ?.
Else: γ[i] = α[i] ∩ (V (Gγ) ∪ E(Gγ)). Finally, Understand-ALG calls itself recursively with γ
as input, and it returns γ′, the output of this call.

Correctness and running time. Finally, we prove the following two results. Along with
Lemma 27, these complete the proof of Lemma 25.

I Lemma 27. If Understand-ALG terminates, then it correctly solves Understand[ψ] on
general boundaried structures.

I Lemma 28. Understand-ALG runs in time O(nd).

4 Applications

In this section, we first show how Theorem 23 can be easily deployed to show the fixed
parameter tractability of a wide range of problems of the following kind. The input is a graph
G and the task is to find a connected induced subgraph of G of bounded treewidth such that
“few” vertices outside this subgraph have neighbors inside the subgraph, and additionally the
subgraph has a CMSO-definable property. Then, we show that technical problem-specific
ingredients of a powerful method for designing parameterized algorithms called recursive
understanding, can be replaced by a black-box invocation of Theorem 23.

4.1 “Pendant” Subgraphs with CMSO-Definable Properties
Formally, given a CMSO sentence ψ and a non-negative integer t, the t-Pendant[ψ] problem
is defined as follows. The input of t-Pendant[ψ] is a graph G and a parameter k, and the
objective is to determine whether there exists U ⊆ V (G) such that G[U ] is a connected graph
of treewidth at most t, |N(U)| ≤ k and σψ(G[U ]) is true.

It is straightforward to define a CMSO formula ϕ with free variable S such that the
t-Pendant[ψ] problem is equivalent to min-CMSO[ϕ] as follows.

I Observation 4.1. Let G be a graph, and let k be a parameter. Then, (G, k) is a Yes-
instance of t-Pendant[ψ] if and only if ((G), k) is a Yes-instance of min-CMSO[ϕ].

Next, we solve t-Pendant[ψ] on unbreakable graphs with the appropriate parameters.
Define c : N0 → N0 as follows. For all k ∈ N0, let ĉ(k) = k + t. Let s : N0 → N0 be the
function ŝ in Theorem 23 with ψ̂ = ϕ and ĉ = c. We first prove the following lemma.

I Lemma 29. Let (G, k) be a Yes-instance of t-Pendant[ψ] parameterized by k on (s(k), k+
t)-unbreakable graphs. Then, there exists U ⊆ V (G) such that G[U ] is a connected graph of
treewidth at most t, |N(U)| ≤ k, σψ(G[U ]) is true and |U | < 3(s(k) + t).

Proof. Since (G, k) is a Yes-instance, there exists U ⊆ V (G) such that G[U ] is a connected
graph of treewidth at most t, |N(U)| ≤ k and σψ(G[U ]) is true. Moreover, since the
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treewidth of G[U ] is at most t, it is easy to see that there exists a separation (X,Y ) of order
at most t of G[U ] such that |X|, |Y | ≥ |U |/3 (see, e.g., [11]). Then, set X ′ = X ∪N(U) and
Y ′ = (V (G)\X)∪(X∩Y ). Note that (X ′, Y ′) is a separation of order |X∩Y |+|N(U)| ≤ k+t.
Moreover, X \ Y ⊆ X ′ \ Y ′ and Y \ X ⊆ Y ′ \ X ′. Thus, (X ′, Y ′) is a (|U |/3 − t, k + t)-
witnessing separation. Since G is (s(k), k+t)-unbreakable graph, we have that |U |/3−t < s(k).
Therefore, |U | < 3(s(k) + t), which concludes the correctness of the lemma. J

I Lemma 30. t-Pendant[ψ] parameterized by k is FPT on (s(k), k + t)-unbreakable graphs.

Finally, by Theorem 23, Observation 4.1 and Lemma 30, we derive the following result.

I Theorem 31. t-Pendant[ψ] parameterized by k is FPT on general graphs.
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