305 research outputs found

    Systems for Safety and Autonomous Behavior in Cars: The DARPA Grand Challenge Experience

    Get PDF

    AN INTELLIGENT NAVIGATION SYSTEM FOR AN AUTONOMOUS UNDERWATER VEHICLE

    Get PDF
    The work in this thesis concerns with the development of a novel multisensor data fusion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous underwater vehicle (AUV) navigation system, formed by an integration of global positioning system and inertial navigation system (GPS/INS). The Kalman filter has been a popular method for integrating the data produced by the GPS and INS to provide optimal estimates of AUVs position and attitude. In this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is proposed. The former is used to fuse the data from a variety of INS sensors whose output is used as an input to the later where integration with GPS data takes place. The use of an adaptation scheme based on fuzzy logic approaches to cope with the divergence problem caused by the insufficiently known a priori filter statistics is also explored. The choice of fuzzy membership functions for the adaptation scheme is first carried out using a heuristic approach. Single objective and multiobjective genetic algorithm techniques are then used to optimize the parameters of the membership functions with respect to a certain performance criteria in order to improve the overall accuracy of the integrated navigation system. Results are presented that show that the proposed algorithms can provide a significant improvement in the overall navigation performance of an autonomous underwater vehicle navigation. The proposed technique is known to be the first method used in relation to AUV navigation technology and is thus considered as a major contribution thereof.J&S Marine Ltd., Qinetiq, Subsea 7 and South West Water PL

    Robust Multi-sensor Data Fusion for Practical Unmanned Surface Vehicles (USVs) Navigation

    Get PDF
    The development of practical Unmanned Surface Vehicles (USVs) are attracting increasing attention driven by their assorted military and commercial application potential. However, addressing the uncertainties presented in practical navigational sensor measurements of an USV in maritime environment remain the main challenge of the development. This research aims to develop a multi-sensor data fusion system to autonomously provide an USV reliable navigational information on its own positions and headings as well as to detect dynamic target ships in the surrounding environment in a holistic fashion. A multi-sensor data fusion algorithm based on Unscented Kalman Filter (UKF) has been developed to generate more accurate estimations of USV’s navigational data considering practical environmental disturbances. A novel covariance matching adaptive estimation algorithm has been proposed to deal with the issues caused by unknown and varying sensor noise in practice to improve system robustness. Certain measures have been designed to determine the system reliability numerically, to recover USV trajectory during short term sensor signal loss, and to autonomously detect and discard permanently malfunctioned sensors, and thereby enabling potential sensor faults tolerance. The performance of the algorithms have been assessed by carrying out theoretical simulations as well as using experimental data collected from a real-world USV projected collaborated with Plymouth University. To increase the degree of autonomy of USVs in perceiving surrounding environments, target detection and prediction algorithms using an Automatic Identification System (AIS) in conjunction with a marine radar have been proposed to provide full detections of multiple dynamic targets in a wider coverage range, remedying the narrow detection range and sensor uncertainties of the AIS. The detection algorithms have been validated in simulations using practical environments with water current effects. The performance of developed multi-senor data fusion system in providing reliable navigational data and perceiving surrounding environment for USV navigation have been comprehensively demonstrated

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Fusion de données multi capteurs pour la détection et le suivi d'objets mobiles à partir d'un véhicule autonome

    Get PDF
    La perception est un point clé pour le fonctionnement d'un véhicule autonome ou même pour un véhicule fournissant des fonctions d'assistance. Un véhicule observe le monde externe à l'aide de capteurs et construit un modèle interne de l'environnement extérieur. Il met à jour en continu ce modèle de l'environnement en utilisant les dernières données des capteurs. Dans ce cadre, la perception peut être divisée en deux étapes : la première partie, appelée SLAM (Simultaneous Localization And Mapping) s'intéresse à la construction d'une carte de l'environnement extérieur et à la localisation du véhicule hôte dans cette carte, et deuxième partie traite de la détection et du suivi des objets mobiles dans l'environnement (DATMO pour Detection And Tracking of Moving Objects). En utilisant des capteurs laser de grande précision, des résultats importants ont été obtenus par les chercheurs. Cependant, avec des capteurs laser de faible résolution et des données bruitées, le problème est toujours ouvert, en particulier le problème du DATMO. Dans cette thèse nous proposons d'utiliser la vision (mono ou stéréo) couplée à un capteur laser pour résoudre ce problème. La première contribution de cette thèse porte sur l'identification et le développement de trois niveaux de fusion. En fonction du niveau de traitement de l'information capteur avant le processus de fusion, nous les appelons "fusion bas niveau", "fusion au niveau de la détection" et "fusion au niveau du suivi". Pour la fusion bas niveau, nous avons utilisé les grilles d'occupations. Pour la fusion au niveau de la détection, les objets détectés par chaque capteur sont fusionnés pour avoir une liste d'objets fusionnés. La fusion au niveau du suivi requiert le suivi des objets pour chaque capteur et ensuite on réalise la fusion entre les listes d'objets suivis. La deuxième contribution de cette thèse est le développement d'une technique rapide pour trouver les bords de route à partir des données du laser et en utilisant cette information nous supprimons de nombreuses fausses alarmes. Nous avons en effet observé que beaucoup de fausses alarmes apparaissent sur le bord de la route. La troisième contribution de cette thèse est le développement d'une solution complète pour la perception avec un capteur laser et des caméras stéréo-vision et son intégration sur un démonstrateur du projet européen Intersafe-2. Ce projet s'intéresse à la sécurité aux intersections et vise à y réduire les blessures et les accidents mortels. Dans ce projet, nous avons travaillé en collaboration avec Volkswagen, l'Université Technique de Cluj-Napoca, en Roumanie et l'INRIA Paris pour fournir une solution complète de perception et d'évaluation des risques pour le démonstrateur de Volkswagen.Perception is one of important steps for the functioning of an autonomous vehicle or even for a vehicle providing only driver assistance functions. Vehicle observes the external world using its sensors and builds an internal model of the outer environment configuration. It keeps on updating this internal model using latest sensor data. In this setting perception can be divided into two sub parts: first part, called SLAM(Simultaneous Localization And Mapping), is concerned with building an online map of the external environment and localizing the host vehicle in this map, and second part deals with finding moving objects in the environment and tracking them over time and is called DATMO(Detection And Tracking of Moving Objects). Using high resolution and accurate laser scanners successful efforts have been made by many researchers to solve these problems. However, with low resolution or noisy laser scanners solving these problems, especially DATMO, is still a challenge and there are either many false alarms, miss detections or both. In this thesis we propose that by using vision sensor (mono or stereo) along with laser sensor and by developing an effective fusion scheme on an appropriate level, these problems can be greatly reduced. The main contribution of this research is concerned with the identification of three fusion levels and development of fusion techniques for each level for SLAM and DATMO based perception architecture of autonomous vehicles. Depending on the amount of preprocessing required before fusion for each level, we call them low level, object detection level and track level fusion. For low level we propose to use grid based fusion technique and by giving appropriate weights (depending on the sensor properties) to each grid for each sensor a fused grid can be obtained giving better view of the external environment in some sense. For object detection level fusion, lists of objects detected for each sensor are fused to get a list of fused objects where fused objects have more information then their previous versions. We use a Bayesian fusion technique for this level. Track level fusion requires to track moving objects for each sensor separately and then do a fusion between tracks to get fused tracks. Fusion at this level helps remove false tracks. Second contribution of this research is the development of a fast technique of finding road borders from noisy laser data and then using these border information to remove false moving objects. Usually we have observed that many false moving objects appear near the road borders due to sensor noise. If they are not filtered out then they result into many false tracks close to vehicle making vehicle to apply breaks or to issue warning messages to the driver falsely. Third contribution is the development of a complete perception solution for lidar and stereo vision sensors and its intigration on a real vehicle demonstrator used for a European Union project (INTERSAFE-21). This project is concerned with the safety at intersections and aims at the reduction of injury and fatal accidents there. In this project we worked in collaboration with Volkswagen, Technical university of Cluj-Napoca Romania and INRIA Paris to provide a complete perception and risk assessment solution for this project.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Spatial combination of sensor data deriving from mobile platforms for precision farming applications

    Get PDF
    This thesis combines optical sensors on a ground and on an aerial platform for field measurements in wheat, to identify nitrogen (N) levels, estimating biomass (BM) and predicting yield. The Multiplex Research (MP) fluorescence sensor was used for the first time in wheat. The individual objectives were: (i) Evaluation of different available sensors and sensor platforms used in Precision Farming (PF) to quantify the crop nutrition status, (ii) Acquisition of ground and aerial sensor data with two ground spectrometers, an aerial spectrometer and a ground fluorescence sensor, (iii) Development of effective post-processing methods for correction of the sensor data, (iv) Analysis and evaluation of the sensors with regard to the mapping of biomass, yield and nitrogen content in the plant, and (v) Yield simulation as a function of different sensor signals. This thesis contains three papers, published in international peer-reviewed journals. The first publication is a literature review on sensor platforms used in agricultural research. A subdivision of sensors and their applications was done, based on a detailed categorization model. It evaluates strengths and weaknesses, and discusses research results gathered with aerial and ground platforms with different sensors. Also, autonomous robots and swarm technologies suitable for PF tasks were reviewed. The second publication focuses on spectral and fluorescence sensors for BM, yield and N detection. The ground sensors were mounted on the Hohenheim research sensor platform Sensicle. A further spectrometer was installed in a fixed-wing Unmanned Aerial Vehicle (UAV). In this study, the sensors of the Sensicle and the UAV were used to determine plant characteristics and yield of three-year field trials at the research station Ihinger Hof, Renningen (Germany), an institution of the University of Hohenheim, Stuttgart (Germany). Winter wheat (Triticum aestivum L.) was sown on three research fields, with different N levels applied to each field. The measurements in the field were geo-referenced and logged with an absolute GPS accuracy of ±2.5 cm. The GPS data of the UAV was corrected based on the pitch and roll position of the UAV at each measurement. In the first step of the data analysis, raw data obtained from the sensors was post-processed and was converted into indices and ratios relating to plant characteristics. The converted ground sensor data were analysed, and the results of the correlations were interpreted related to the dependent variables (DV) BM weight, wheat yield and available N. The results showed significant positive correlations between the DVs and the Sensicle sensor data. For the third paper, the UAV sensor data was included into the evaluations. The UAV data analysis revealed low significant results for only one field in the year 2011. A multirotor UAV was considered as a more viable aerial platform, that allows for more precision and higher payload. Thereby, the ground sensors showed their strength at a close measuring distance to the plant and a smaller measurement footprint. The results of the two ground spectrometers showed significant positive correlations between yield and the indices from CropSpec, NDVI (Normalised Difference Vegetation Index) and REIP (Red-Edge Inflection Point). Also, FERARI and SFR (Simple Fluorescence Ratio) of the MP fluorescence sensor were chosen for the yield prediction model analysis. With the available N, CropSpec and REIP correlated significantly. The BM weight correlated with REIP even at a very early growing stage (Z 31), and with SAVI (Soil-Adjusted Vegetation Index) at ripening stage (Z 85). REIP, FERARI and SFR showed high correlations to the available N, especially in June and July. The ratios and signals of the MP sensor were highly significant compared to the BM weight above Z 85. Both ground spectrometers are suitable for data comparison and data combination with the active MP fluorescence sensor. Through a combination of fluorescence ratios and spectrometer indices, linear models for the prediction of wheat yield were generated, correlating significantly over the course of the vegetative period for research field Lammwirt (LW) in 2012. The best model for field LW in 2012 was selected for cross-validation with the measurements of the fields Inneres Täle (IT) and Riech (RI) in 2011 and 2012. However, it was not significant. By exchanging only one spectral index with a fluorescence ratio in a similar linear model, it showed significant correlations. This work successfully proves the combination of different sensor ratios and indices for the detection of plant characteristics, offering better and more robust predictions and quantifications of field parameters without employing destructive methods. The MP sensor proved to be universally applicable, showing significant correlations to the investigated characteristics such as BM weight, wheat yield and available N.Diese Arbeit kombiniert optische Sensoren auf einer Sensorplattform (SPF) am Boden und in der Luft bei Messungen in Weizen, um die Stickstoff-(N)-Werte zu identifizieren, während gleichzeitig die Biomasse (BM) geschätzt und der Ertrag vorhergesagt wird. Erstmals wurde hierfür der Fluoreszenzsensor Multiplex Research (MP) in Weizen eingesetzt. Die Ziele dieser Dissertation umfassen: (i) Bewertung verfügbarer Sensoren und SPF, die in der Präzisionslandwirtschaft zur Quantifizierung des Ernährungszustandes von Nutzpflanzen verwendet werden, (ii) Erfassung von Daten mit zwei Spektrometern am Boden, einem Spektrometer auf einem Modellflugzeug (UAV) und einem Fluoreszenzsensor am Boden, (iii) Erstellung effektiver Nachbearbeitungsmethoden für die Datenkorrektur, (iv) Analyse und Evaluation der Sensoren für die Abbildung der BM, des Ertrags und des N-Gehaltes in der Pflanze, und (v) Ertragssimulation als Funktion von Merkmalen unterschiedlicher Sensorsignale. Diese Arbeit enthält drei Artikel, die in international begutachteten Fachzeitschriften publiziert wurden. Die erste Veröffentlichung ist eine Literaturrecherche über SPF in der Agrarforschung. Ein detailliertes Kategorisierungsmodell wird für eine allgemeine Unterteilung der Sensoren und deren Anwendungsgebiete herangenommen, die Stärken und Schwächen bewertet, und die Forschungsergebnisse von Luft- und Bodenplattformen mit unterschiedlicher Sensorik diskutiert. Außerdem werden autonome Roboter und für landwirtschaftliche Aufgaben geeignete Schwarmtechnologien beschrieben. Die zweite Publikation fokussiert sich auf Spektral- und Fluoreszenzsensoren für die Erfassung von BM, Ertrag und N. In der Arbeit wurden die Bodensensoren auf der Hohenheimer Forschungs-SPF Sensicle und der Sensor auf dem UAV in dreijährigen Feldversuchen auf der Versuchsstation Ihinger Hof der Universität Hohenheim in Renningen für die Bestimmung von Pflanzenmerkmalen und des Ertrags eingesetzt. Auf drei Versuchsfeldern wurde Winterweizen ausgesät, und in einem randomisierten Versuchsdesign unterschiedliche N-Düngestufen angelegt. Die Sensormessungen im Feld wurden mit einer absoluten GPS Genauigkeit von ±2,5 cm verortet. Die GPS Daten des UAVs wurden mittels der Nick- und Rollposition lagekorrigiert. Im ersten Schritt der Datenanalyse wurden die Sensorrohdaten nachbearbeitet und in Indizes und Ratios umgerechnet. Die Bodensensordaten wurden analysiert, und die Ergebnisse der Korrelationen in Bezug zu den abhängigen Variablen (DV) BM-Gewicht, Weizenertrag, verfügbarer sowie aufgenommener N dargestellt. Die Ergebnisse zeigen signifikant positive Korrelationen zwischen den DVs und den Sensicle-Sensordaten. Für die dritte Publikation wurden die Sensordaten des UAV in die Auswertungen miteinbezogen. Die Analyse der UAV Daten zeigte niedrige signifikante Ergebnisse für nur ein Feld im Versuchsjahr 2011. Ein Multikopter wird als zuverlässigere Luftplattform erachtet, der mehr Präzision und eine höhere Nutzlast ermöglicht. Die Sensoren auf dem Sensicle zeigten ihren Vorteil bedingt durch einen kürzeren Messabstand zur Pflanze und eine kleinere Messfläche. Die Ergebnisse der beiden Sensicle-Spektrometer zeigten signifikant positive Korrelationen zwischen dem Ertrag und den Indizes von CropSpec, NDVI (Normalised Difference Vegetation Index) und REIP (Red-Edge Inflection Point). Auch FERARI und SFR (Simple Fluorescence Ratio) des MP-Sensors wurden für die Analyse des Ertragsvorhersagemodells ausgewählt. Mit dem verfügbaren N korrelierten CropSpec und REIP hochsignifikant. Das BM-Gewicht korrelierte bereits ab einem sehr frühen Wachstumsstadium (Z31) mit REIP und im Reifestadium (Z85) mit SAVI (Soil-Adjusted Vegetation Index). REIP, FERARI und SFR zeigten hohe Korrelationen mit dem verfügbaren N, insbesondere im Juni und Juli. Die Ratios und Signale des MP Sensors sind vor allem ab Z85 gegenüber dem BM-Gewicht hochsignifikant. Durch eine Kombination von Fluoreszenzwerten und Spektrometerindizes wurden lineare Modelle zur Vorhersage des Weizenertrags erstellt, die im Verlauf der Vegetationsperiode für das Versuchsfeld Lammwirt (LW) im Jahr 2012 signifikant korrelierten. Das beste Modell für das Feld LW im Jahr 2012 wurde für die Kreuzvalidierung mit den Messungen der Versuchsfelder Inneres Täle (IT) und Riech (RI) in den Jahren 2011 und 2012 ausgewählt. Sie waren nicht signifikant, jedoch zeigten sich durch den Austausch nur eines Spektralindexes mit einem Fluoreszenzratio in einem ähnlichen linearen Modell signifikante Korrelationen. Die vorliegende Arbeit zeigt erfolgreich, dass sich die Kombination verschiedener Sensorwerte und Sensorindizes zur Erkennung von Pflanzenmerkmalen gut eignet, und ohne den Einsatz destruktiver Methoden die Möglichkeit für bessere und robustere Vorhersagen bietet. Vor allem der MP-Fluoreszenzsensor erwies sich als universell einsetzbarer Sensor, der signifikante Korrelationen zu den untersuchten Merkmalen BM-Gewicht, Weizenertrag und verfügbarem N aufzeigte

    Algorithms for sensor validation and multisensor fusion

    Get PDF
    Existing techniques for sensor validation and sensor fusion are often based on analytical sensor models. Such models can be arbitrarily complex and consequently Gaussian distributions are often assumed, generally with a detrimental effect on overall system performance. A holistic approach has therefore been adopted in order to develop two novel and complementary approaches to sensor validation and fusion based on empirical data. The first uses the Nadaraya-Watson kernel estimator to provide competitive sensor fusion. The new algorithm is shown to reliably detect and compensate for bias errors, spike errors, hardover faults, drift faults and erratic operation, affecting up to three of the five sensors in the array. The inherent smoothing action of the kernel estimator provides effective noise cancellation and the fused result is more accurate than the single 'best sensor'. A Genetic Algorithm has been used to optimise the Nadaraya-Watson fuser design. The second approach uses analytical redundancy to provide the on-line sensor status output μH∈[0,1], where μH=1 indicates the sensor output is valid and μH=0 when the sensor has failed. This fuzzy measure is derived from change detection parameters based on spectral analysis of the sensor output signal. The validation scheme can reliably detect a wide range of sensor fault conditions. An appropriate context dependent fusion operator can then be used to perform competitive, cooperative or complementary sensor fusion, with a status output from the fuser providing a useful qualitative indication of the status of the sensors used to derive the fused result. The operation of both schemes is illustrated using data obtained from an array of thick film metal oxide pH sensor electrodes. An ideal pH electrode will sense only the activity of hydrogen ions, however the selectivity of the metal oxide device is worse than the conventional glass electrode. The use of sensor fusion can therefore reduce measurement uncertainty by combining readings from multiple pH sensors having complementary responses. The array can be conveniently fabricated by screen printing sensors using different metal oxides onto a single substrate
    corecore