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DEBY LOEBIS 

AN INTELLIGENT NAVIGATION SYSTEM FOR 

AN AUTONOMOUS UNDERWATER VEHICLE 

ABSTRACT 

jjj 

The work in this thesis:concerns with the development of a novel multisensor data fu­

sion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic 

and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous 

underwater vehicle (AUV) navigation system, formed by an integration of global po­

sitioning system and inertial navigation system (GPS/INS). 

The Kalman filter has been a popular method for integrating the data produced 

by the GPS and INS to provide optimal estimates of AUVs position and attitude. In 

this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is 

proposed. The former is used to fuse the data from a variety of INS sensors whose 

output is used as. an input to the later where integration with GPS data takes place. 

The use of an adaptation scheme based on fuzzy logic approaches to cope with the 

divergence problem caused by the insufficiently known a priori filter statistics is also 

explored. The choice of fuzzy membership .functions for the adaptation scheme is first 

carried out using a heuristic approach. Single objective and multiobjective genetic 

algorithm techniques are then used to optimize the parameters of the membership 

functions with respect to a certain performance criteria in order to improve the over­

all accuracy of the integrated navigation system. Results are presented that show 

that the proposed algorithms can provide a significant improvement in the overall 

navigation performance of an autonomous underwater vehicle navigation. 

The proposed technique is known to be the first method used in relation to A UV 

navigation technology and is thus considered as a major contribution thereof. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

The most basic function of an underwater vehicle navigation system is to estimate 

accurately its position and orientation. In many existing underwater vehicles, this 

is typically achieved by a remote or on-board computer that continuously collects 

data from sensors that are mounted inside the vehicle and processes them to render 

results according to a certain navigation algorithm. These results are subsequently 

fed to a human operator or to an automatic·control system, which in turn produce an 

appropriate control action or control signal required to.drive the vehicle in accordance 

with a predetermined mission scenario. A block diagram to represent this type of 

system is shown in Figure 1.1. 

(a) 

(b) 

Figure 1.1: (a) TI.OV navigation and control system (b) AUV navigation and control 

system 
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The class of underwater vehicles controlled using the configuration represented in 

Figure l.l(a) are known as remotely operated vehicles (ROVs) , while the ones rep­

resented in Figure l.l(b) are known as autonomous underwater vehicles (AUVs). 

In both configurations, when an error occurs on the sensor, the input to the con­

troller will also contain error and this subsequently results in an incorrect control 

action/signal. This problem raises the idea of using multiple sensors in the system 

(see Figure 1.2, for example). The implementation of multiple-sensor algorithms to 

provide an enhanced accuracy to an A:UV (known as the Hammerhead) navigation 

system is the aim of this thesis, and consequently discussion henceforth is directed 

towards this topic. 

I REFERENCE I 

I CONTROL SYSTEM l' A.-

H SENSOR 1 ~ 
AUV H SENSOR2 J FUSION -

H SENSORN r 
Figure 1.2: AUV navigation and control system using multiple sensors 

Examples of navigation sensors in the Hammerhead AUV navigation system include a 

global positioning system (GPS) receiver, an electronic compass, a gyroscope and an 

accelerometer commonly assembled in an inertial measurement unit (IMU). Despite 

the fact that the purpose of the GPS is to provide the ability to compute location 

in 3D space, an AUV navigation system cannot, in general, continuously determine 

the vehicle's position using a GPS receiver alone. The main reason for this is that at 

times, the GPS position fixes are inaccurate, and for most underwater missions these 

are unavailable as the signals have only a limited water penetrating capability. The 

inaccuracies of a GPS receiver are caused by several factors. One of the most defining 

one is the requirement for the receiver to be able to lock onto signals from at least 4 

different satellites for a period of time that is long enough to receive the information 
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encoded in the transmission. 

Based on these facts, many AUV navigation systems utilise other navigation aids 

in conjunction with GPS fixes to enhance overall system performance. These aids 

mmally include some combination or fusion of multiple sensors. The technique is 

known as multisensor data fusion (MSDF). Any sensors other than GPS that are 

used to position the vehicle are collectively referred to as a dead reckoning unit. The 

key component in this unit is an IMU and the navigation technique utilises this is 

known as an inertial navigation system (INS). An INS is a self-contained system that 

continuously measures AUV acceleration and angular rates, from which its velocity 

and position vectors are computed. However, an INS cannot be used alone to provide 

an accurate AUV navigation solution for indefinitely long periods of time because 

the error in a position estimate computed thereby can grow without bound and oc­

casional measurements of absolute position with bounded errors are necessary. The 

errors that appear in a GPS and an INS are therefore complementary in nature. The 

INS smoothes out the short-term GPS errors, and GPS fixes calibrate or reset the 

INS drift over long time periods. Proper fusion of the G PS position fixes with the INS 

solution can take advantage of these complementary errors, producing a positioning 

performance that is better than could be obtained with either type of data alone. 

One of the most popular algorithms for combining data with complementary 

characteristics is the Kalman filter (Brown and Hwang, 1997; Grewal and An­

drews, 2001; Grewal et al., 2001). Introduced in 1960, Kalman filtering is a statistical 

technique developed to arrive at an estimate of the state of a system by combining a 

knowledge of system dynamics, represented as a state space model, with the statisti­

cal characteristics of system errors. The state estimate utilises a weighting function, 

called the Kalman.gain, which is optimized to produce a minimum error variance. For 

this reason, the Kalman filter is called an optimal filter. In order for a Kalman filter 

to produce a statistically optimal estimate of its state, the filter's model equations, 

measurement equations and covariancc matrices must exactly describe the actual dy­

namical and statistical properties of the AUV system of interest. In other words, 

the time-history of the system's state must be described precisely by known linear 

stochastic equations driven by white Gaussian noise with known statistical properties. 
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However, it is frequently the case that these are not available. It has been shown that 

the absence of this information can reduce the precision of the estimated filter states 

(Mehra, 1970; Mehra, 1971) or introduce biases to their estimates (Sangsuk-Iam and 

Bullock, 1990). In addition, incorrect a priori infonnation can lead to practical di­

vergence of the filter (Chaer et al., 1998). 

In GPS/INS applications, the estimation environment of the integrated system is 

non-stationary. In such an environment, imperfect a priori information will lead to 

the aforementioned problems. This implies that there is a major drawback in using 

a fixed Kalman filter designed by conventional methods. An adaptive filtering for­

mulation, therefore tackles the problem of imperfect a priori information and may 

provide a significant improvement in performance over the fixed filter through a filter 

learning process. 

In this thesis, the adaptation process is based on the detection of the dynamics 

of innovation sequences proposed by Mehra (1970) and Mehra (1971), coupled with 

fu1.1.y logic techniques. The fuzzy logic membership functions for the adaptation 

mechanisms are initially established by a combination of knowledge, experience and 

observation and therefore may not be optimal. Additionally, fine-tuning of its perfor­

mance is still a matter of trial and error. Single objective and multiobjective genetic 

algorithm (MOGA) techniques are therefore used to optimize the parameters of the 

membership functions with respect to a certain performance criteria in order to im­

prove the overall accuracy of the integrated navigation system. 

In particular, the work proposed in this thesis is designed for use on pure simu­

lated data and on navigational data gathered by the Hammerhead AUV developed 

and operated by the University of Plymouth and Cranfield University. Hammer­

head, shown in Figure 1.3, was developed from a deep mobile target (DMT) torpedo 

of 3.5(m) length and 35(cm) diameter that was purchased by Cranficld University. 

Initial modifications were made to transform the torpedo into a PC controlled AUV 

(Nay lies, 2000). Details of subsequent modifications on the vehicle are given in Chap­

ter 3. 



5 

(a) 

(b) 

F igure 1.3: (a) T he Hammerhead vehicle side view, (b) T he Hammerhead vehicle 

front-top view 
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(a) (b) (c) 

Figure 1.4: The Hammerhead laser viewing system experiments: (a) top view, (b) 

side view and (c) bottom view 

As part of the collaboration, the University of Plymouth research team was also re­

sponsible for designing an automatic control system for the vehicle. Details of this 

work can be found in Naeem (2004). The work undertaken by Cranfield University 

research team involved developing a visual navigation system (VNS) based on a laser 

stripe illumination methodology developed previously there (Tetlow and Alwood, 

1995), utilised to enhance the viewing below the vehicle as it gathers navigational 

data and underwater images for surveying purposes. Examples of the Hammerhead 

during an experiment to test the laser system are shown in Figure 1.4. Details of this 

work can be found in Dalgleish (2004) . 

Individual work from each research team is put together to achieve the overall ob­

jectives of the project, i.e., to design and develop an interactive navigat ion system 

consisting of the GPS/INS and VNS to interact with an appropriate control system. 

Interaction between the GPS/INS and VNS is driven by the requirement to have 

an underwater absolute positioning system to minimise the drift inherent in the INS 

solut ion. T his allows the vehicle to operate underwater without the need for fre­

quent excursions to the surface to obtain GPS fixes. The navigation solution from 

the GPS/INS and VNS integrated system is constantly passed to the control system 
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which in turn drives the vehicle reaching its predetermined set points more accurately 

than it does using a single sensor alone. 

1.2 AIM AND OBJECTIVES OF THE THESIS 

The main aim of this research is to enhance the performance of an AUV GPS/INS 

integrated system by a combination of Kalman filtering and artificial intelligence tech­

niques. 

To achieve the above aim, the following objectives were defined: 

1. To investigate AUV navigation systems, in general, and GPS/INS integrated 

systems, in particular, and to critically review the associated MSDF techniques 

used therein, with a particular attention given to Kalman filtering. 

2. To acquire a dynamic model of the Hammerhead AUV using a set of rela­

tively low cost sensors prior to developing a Kalman filtering algorithm thereof. 

This was accomplished through implementing system identification techniques 

to data sets .obtained from a series of full scale trials. 

3. To develop a novel method employing a synergistic use of soft computing tech­

niques in overcoming the drawbacks of utilising fixed Kalman filtering. 

4. To analyse the performance of the developed adaptive Kalman filtering against 

fixed Kalman filter in both simulation and pseudo real-time environment. 

1.3 AUTHOR'S CONTRIBUTION 

This thesis introduces a novel alternative to the widely used fixed Kalman filter for 

application in an AUV GPS/INS integrated system. The proposed method is built 

upon a synergistic combination between soft computing and Kalman filtering tech­

niques. The novelty factor originates from the use of MOGA approaches to optimize 

the membership functions of fuzzy inferenee systems which are i1sed to adjust the 

values of a priori statistical information of the filter to cope with the changes in 
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the estimation environment. This is known to be the first method used and is thus 

considered as a major contribution in relation to AUV technology. 

The analysis of this method is carried out thoroughly and implemented to differ­

ent AUV mission scenarios to show the effectiveness and suitability of the adaptive 

techniques. It is shown that the proposed techniques are not only able to relax the 

requirements to have a good a priori statistical information, but also able to out­

perform the fixed filter in both simulation and pseudo real-time environment, and 

consequently has the potential in enhancing the performance of an AUV navigation 

system. It is important to note that although the analysis techniques in this thesis are 

developed for AUVs, they can effortlessly be applied to other autonomous vehicles, 

which are employed in the aerospace, underground and land environments, Thus the 

adaptive Kalman filtering algorithms proposed herein will be valuable as a generic 

method for all types of navigation system designs. 

1.4 PUBLICATIONS 

To date the following papers have been published or accepted as a direct result of 

this research programme and can be found in Appendix A: 

1. Loebis, D,, Naeem, W., Sutton, R. and Chudley, J, (2004). The Navigation, 

Guidance and Control of the Hammerhead Autonomous Underwater Vehicle, 

(To appear in: Advances in Unmanned Marine Vehicle (Roberts, G. N. and 

Sutton, R. (Ed)). Peter Peregrinus Ltd., Herts.) 

2. Loebis, D., Sutton, R., Chudley, J. and Naeem, W. (2004). Adaptive Tuning 

of a Kalman Filter via Fuzzy Logic for an Intelligent AUV Navigation System. 

Control Engineering Practice, 12 (12), pp. 1531-1539. 

3. Loebis, D., Sutton, R. and Chudley, .J. (2004). A Fuzzy Kalman Filter Opti­

mized Using a Multiobjective Algorithm for Enhanced Autonomous Underwater 

Vehicle Navigation. Proceedings of the Institution of Mechanical Engineers Part 

M, 218 (M1), pp. 53-69. 
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4. Loebis, D., Sutton, R. and Chudley, J. (2004). A Soft Computing Method for 

an AUV Navigation System with Pseudo-Real-Time Applicability. Proc. 2004 

/FAG Conference on Control Applications in Marine Systems, Ancona, Italy, 

pp. 421-426. 

5. Loebis, D., Sutton, R., Chudley, J., Dalgleish, F. R. and Tetlow, S. {2004). The 

Application of Soft Computing Techniques to an Integrated Navigation System 

of an AUV. Proc. 5th /FAG Symposium on Intelligent Autonomous Vehicles, 

Lisbon, Portugal, MA-3-2 (CD-ROM Preprints) 

6. Loebis, D., Chudley, J. and Sutton, R. (2003). A Fuzzy Kalman Filter Opti­

mized Using a Genetic Algorithm for Accurate Navigation of an Autonomous 

Underwater Vehicle. Proc. 6th /FAG Conference on Manoeuvring and Control 

of Marine Craft, Girona, Spain, pp. 19-24. 

7. Loebis, D., Dalgleish, F. R., Sutton, R., Tetlow, S., Chudley, J., and Alwood, 

R. L. (2003). An Integrated Approach in the Design of a Navigation System for 

an AUV. Proc. 61h /FAG Conference on Manoeuvring and Control of Marine 

Craft, Girona, Spain, pp. 329-334. 

8. Loebis, D., Chudley, J. and Sutton, R. (2003). A Fuzzy Kalman Filter for Accu­

rate Navigation of an Autonomous Underwater Vehicle. A Proceedings Volume 

from the /FAG Workshop on Guidance and Control of Underwater Vehicles 

{ISBN: 0080442021), Newport, South Wales, UK, pp. 157-162. 

9. Loebis, D., Sutton, R. and Chudley, J. (2002). Review of Multisensor Data 

Fusion Techniques and Their Application to Autonomous Underwater Vehicle 

Navigation. Journal of Marine Engineering and Technology, Al, pp. 3-14. 

(This was given the Stanley Gray A ward for the most worthy Offshore Technol­

ogy paper in the journal during 2001/2002). 

1.5 THESIS ORGANISATION 

Chapter 2 discusses previous work and recent developments in AUV navigation and 

introduces MSDF techniques as a means of improving AUV navigation capability. 
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Problems and issues of the techniques are briefly discussed. The levels of representa­

tion in fusion processes are identified herein. The methods of MSDF are presented, 

followed by examples of their application in AUV navigation systems with special 

attention being given to Kalman filtering techniques. 

Chapter 3 introduces the Hammerhead vehicle in more detail. The evolution of the 

vehicle's hardware from its early stage as a DMT to a fully autonomous vehicle is 

presented. The sensors and their technical specifications, including the necessary 

electronics work undertaken to interface the sensors with a CPU are discussed. These 

are then associated with the system identification full scale trials discussed thereafter. 

Results and analysis of the identification are also presented. 

Chapter 4 supplies the theoretical background of the adaptive Kalman filtering tech­

niques followed by their applications to a set of simulated 2D/surface GPS/INS data. 

The proposed method is first applied to fuse data coming from,different INS measure­

ments. The results are subsequently used synergistically with other measurements to 

obtain a GPS/INS integrated navigation solution. A performance comparison be­

tween the fixed and the proposed Kalman filters are made. It will clearly be seen 

that the proposed method can significantly improve the performance of the Hammer­

head navigation system, 

Chapter 5 extends the work in Chapter 4 by implementing the adaptation mech­

anisms to a set of GPS/INS real data obtained from Hammherhead full scale trials. 

Both GPS/INS applications for 2D/surface and 3D/surface-depth mission scenarios 

are considered. 

Chapter 6 provides conclusions and recommendations for future work. 

Additionally, support of some of the above chapters are appendices. 



CHAPTER 2 

REVIEW OF MULTISENSOR DATA FUSION 

TECHNIQBES AND THEIR APPLICATION TO AUTONOMOUS 

UNDERWATER VEHICLE NAVIGATION 

2.1 INTRODUCTION 

11 

The oceans cover 70 per cent of the Earth's surface and contain an abundance of living 

and non-living resources that remain largely untapped and waiting to be discovered. 

However, a number of complex issues, mainly caused by the nature of underwater 

environments, make exploration and protection of these resources difficult to per­

form. In the past few decades, various worldwide research and development activities 

in undenvater robotic systems have increased in order to meet this challenge. One 

class of these systems is tethered and remotely operated and referred to as ROVs. 

Figure 2.1 shows an example of ROVs with a photomosaic obtained by the vehicle 

from a particular mission shown in Figure 2.2. The ROVs serve a range of military, 

scientific and commercial needs. The tether is used to send power and control signals 

and to receive data from the on-board sensors. However, as depth or speed increases, 

the drag of the tether becomes more significant and more effort is required from the 

operator to control the vehicle. This, if must be done for a long period of time, may 

degrade the ability of the operator to control the vehicle accnrately. The demand 

for a more sophisticated underwater robotic technology that eliminates the need for 

human operator and therefore capable of operating autonomously becomes apparent. 

These requirements lead to the development of AUVs. 

To achieve truly autonomous behaviour, an AUV must be able to navigate accu­

rately within an area of operation. In order to achieve this, an AUV needs to employ 

a navigation sensor with a high level of accuracy and reliability. However, in practice, 
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Figure 2.1: Jason ROV explores ancient artifacts (courtesy of WHOI web­

site www.whoi .edu) 

Figure 2.2: Photomosaic acquired by Jason ROV(courtesy of MIT-WHOI web­

site www.web.mit.edu/mit-whoi) 
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as will be discussed in the next section, a single sensor alone may not be sufficient to 

provide an accurate and reliable navigation system, as it can only operate efficiently 

under certain conditions or it has inherent limitations when operating in undenvater 

environments. It is therefore necessary to use a number of sensors and combine their 

information to provide the necessary navigation capability. To achieve this, a MSDF 

approach, which combines data from multiple sensors and related information from 

associated databases, can be used. 

The aim of this chapter is to survey previous work and recent development in AUV 

navigation and to introduce MSDF techniques as a means of improving AUVs naviga­

tion capability. The majority of the material presented in this chapter being based up 

on Loebis et al. (2002), which was given the Stanley Gray Award by The Institute of 

Marine Engineering, Science and Technology for the most worthy Offshore Technol­

ogy paper in the Journal of Marine Engineering and Technology during 2001/2002. 

The structure of this chapter is as follows: Section 2.2 describes the navigation sys­

tems that are currently being used in AUVs. MSDF is discussed in Section 2.3, whilst 

MSDF using specific sensor combinations applied to the navigation of AUVs are given 

in Section 2.4. Finally, concluding remarks are made in Section 2.5. 

2.2 AUTONOMOUS UNDERWATER VEHICLE NAVIGATION 

Navigation systems used by AUVs that are discussed here include dead reckoning, 

radio, optical, acoustic and terrain-relative navigation. 

2.2.1 Dead Reckoning Navigation 

Dead reckoning is a mathematical means to determine position estimates when the 

vehicle starts from a known point and moves at known velocities. The present posi­

tion is equal to the time integral of the velocity. Measurement of the vector velocity 

components of the vehicle is usually accomplished with a compass (to obtain direc­

tion) and a water speed sensor (to obtain magnitude). The principal problem is that 

the presence of an ocean current can add a veloeity component to the vehiele, which 
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is not detected by the speed sensor. 

An INS is a dead reckoning technique that obtains position estimates by integrat­

ing the signal from an accelerometer, which measures the vehicle's acceleration. The 

vehicle position is obtained in principle by double integration of the acceleration. The 

orientation of the accelerometer is governed by means of a gyroscope, which main­

tains either a fixed or turning position as prescribed by some steering function. The 

orientation may also in principle be determined by integration of the angular rates of 

the gyroscope. Both the accelerometer and the gyroscope depend on inertia for their 

operation 

A dead reckoning navigation system is attractive mainly because it uses sensors 

that are self-contained and able to provide fast dynamic measurements. Unfortu­

nately in practice, this integration leads to unbounded growth in position error with 

time due to the noise associated with the measurement and the nonlinearity {which 

takes form in bia~ and drift a~ the result of temperature change or external vibration 

(Titterton, 1997)) of the sensors, and there is no built-in method for reducing this er­

ror. Depending on the sensors used and the specific vehicle mission, the navigational 

error can grow rapidly to the point where either the mission will not produce useful 

data or it will not be achievable at all. 

Two types of dead reckoning sensors have been widely employed in AUVs: IMUs 

and Doppler velocity sonar (DVS) . Many very accurate lMUs have been developed 

for submarines. However, these are typically very expensive devices and are used only 

in naval vehicles. Lower cost IMUs have been used in AUVs (Cox and Wei, 1995). 

However, due to the low acceleration encountered in autonomous underwater vehicles, 

these units are not normally of sufficient accuracy to provide stand-alone navigation. 

DVS sensors provide measurement ofa velocity vector with respect to the sea floor. 

These sensors normally comprise of three or more separate sound beams allowing 

construction ofa full three-dimensional velocity vector. Typically, these instruments 

have specifications of about one per cent of the distance travelled (Bellingham, 1992). 

However, these results can only be achieved when the speed of sound in the AUV's 
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area of operation does not vary significantly as a result of changes in the salinity, 

temperature and density of the water. Therefore, as in the IMU case, these units are 

not normally used to provide stand-alone navigation. 

2.2.2 Radio Navigation 

Radio navigation systems mainly use the GPS (EIIowitz, 1992). The GPS is a satellite­

based navigational system that provides the most accurate open ocean navigation 

available. GPS consists of a constellation of 24 satellites that orbit the Earth in 12 

hours. There are six orbital planes (with nominally four satellites in each) equally 

spaced {60 degrees apart) and inclined at about 55 degrees with respect to the equato­

rial plane {EIIowitz, 1992). This constellation provides the user with between five and 

eight satellites visible from any point on the Earth. Improvement on the accuracy of 

ordinary GPS can be achieved using differential GPS (DGPS) techniques. The idea 

behind all differential positioning is to correct bias errors at one location with mea­

sured bias errors at a known position. A reference receiver, or base station, computes 

corrections for each satellite signal (Dana, 2000). There are several kinds of DGPS 

available; DGPS mode using a beacon receiver and DGPS mode using geostationary 

satellites. Wide area augmentation system (WAAS) in North America and its coun­

terpart, Euro geo.~tationary satellite augmentation system (EGNOS) in Europe and 

multi-functional satellite augmentation system (MSAS) in Asia fall into the second 

category of DGPS. It is worth noting that under ideal conditions, the accuracy of an 

ordinary GPS is typically 15(m), while the accuracy of DGPS using a beacon receiver 

and geostationary satellites are 3- 5(m) and less than 3(m) respectively. A detailed 

discussion on the G PS is out of the scope of this thesis and interested readers can 

refer to Yeazel (2003). 

The GPS-bascd navigation system is used extensively in surface vessels as these ve­

hicles can receive signals directly radiated hy the GPS. Unfortunately, these signals 

have a limited water penetrating capability. Therefore to receive the signals, an an­

tenna m;sociated with an AUV employing a GPS system must be clear and free of 

water. There are three possible antenna configurations to meet this requirement. 
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These are fixed, retractable, or expendable antennas (Kwak et al., 1992). A fixed 

antenna is a non-moving antenna placed on the outside of the AUV. The AUV has to 

surface to expose this antenna and stay surfaced until the required information has 

been received and processed adequately. A retractable antenna is one that the AUV 

would deploy while still submerged. When the required information is received, the 

antenna is retracted back to the AUV. The expendable antenna works along the same 

principle as the retractable antenna except that it is used once and discarded. When 

required, another antenna would be deployed. 

These antenna configurations require the AUV either to surface or to rise to a shal­

low depth, but there are several disadvantages (K wak et al., 1993). For an AUV to 

receive radio signals, it must interrupt its mission, expend time and energy climbing 

and/or surfacing, risk its safety for up to a minute on the surface or in a shallow 

depth of water getting the fix, which is especially dangerous in a hostile environment, 

then expend additional time and energy submerging to resume the mission. Even 

if an extremely accurate fix is obtained, the vehicle location uncertainty can grow 

significantly during descent before mission is ever resumed. Therefore there is a need 

to combine information obtained by a GPS navigation system with other underwater 

navigation sensors when the AUV operates underwater to maintain good navigation 

capability. 

2.2.3 Visual Navigation 

In the context of visual imaging for navigation, the underwater environment is a very 

special place. The reason for this is that in addition to visual-sensing issues that 

must be addressed in land and space-based veh ides, there are also issues specific to 

underwater imaging. These issues include limited range of visibility, brightness and 

contrast variation, and nonuniform illumination (Marks et al., 1994). Limited range 

of visibility is caused by the attenuation of light in water by absorption and scat­

tering by suspended matter. Light absorption and scattering cause the amount of 

reflected light to decay exponentially as a function of distance to scene surfaces. The 

absorption and scattering of light also affect image brightness and contrast. Objects 
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IMAGE AREA 

Figure 2.3: Error propagation in image chain as described by Huster et. al.(1998) 

far away appear dark; as they move nearer, their brightness and cont rast increase. 

Changes and image intensity brightness and cont rast can cause many image pro­

cessing techniques to fail. If some type of intensity normalisation is not performed, 

brightness and contrast differences between images make it difficult to realise that the 

same scenery or object is being viewed (Marks et al. , 1994). Nonuniform illumination 

refers to the limitation of artificial light sources to provide uniform illumination of the 

entire scene under observation. A classic example that demonstrates t he difficulties 

nonuniform lighting can cause is the imaging of a planar, perpendicular surface using 

a collocated camera/light source. In t his case, the image centre will appear brighter 

than the image border. If the camera and light source are moved relative to the scene, 

both t he absolute and relative brightness of each pixel in the image will change. Sim­

ple effects such as these can degrade correspondence (i mage matching) performance; 

more complicated effects such as shadowing can cause significant difficult ies for most 

image correspondence techniques (Marks et al. , 1994). 

VNS involves the estimation of 3D motion from time varying imagery (Victor and 

Sent ieiro, 1994; Hallset, 1992) . Most techniques for this purpose require knowledge of 

relevant 2D geometric informat ion in an image sequence. The current state-of- the­

art in VNS is essentially a form of dead reckoning . T his method works by creating a 
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mosaic where a series of images are taken from a video·stream and aligned with each 

other to form a chain of images along the vehicle path, When a new image is about 

to be added to a mosaic, it must be properly aligned with the last image in the chain 

of images comprising the mosaic. To accomplish this, the two images are compared, 

and the displacement vector between the two image centres is calculated. Therefore, 

to determine the current vehicle position, it would be possible to compute the total 

distance travelled by summing the image displacement measurements along the image 

chain (Huster et al., 1998). As with the INS discussed in Section 2,2.1, this method 

has a fundamental problem: the unbounded propagation of errors on vehicle position 

over time. This random walk-effect is due to the accumulation of image alignment 

errors as the length of mosaic increases (Figure 2.3). Therefore, as in the INS case, 

this navigation method is not normally used to provide stand-alone navigation. 

2.2.4 Acoustic Navigation 

Acoustic navigation is the most widely accepted form of AUV navigation, and a va­

riety of systems have been both researched and tested. Most require an engineered 

environment, meaning that something has been added to the environment to aid navi­

gation. The distance between acoustic baselines is generally used to define an acoustic 

positioning system, that is the distance between the active sensing elements. Three 

types of system have been primarily employed; ultra short baseline (USBL), short 

baseline (SBL) and long baseline (LBL) with distance between acoustic baselines less 

than 10 cm, between 20 to 50 metres and between 100 to 6,000 metres respectively 

(Vickery, 1998). 

USBL systems (Figure 2.4(a)) employ a single beacon on the bottom of the seaAoor 

which emits acoustic pulses without being interrogated from an AUV. The on-board 

AUV equipment consists of a two-dimensional hydrophone array mounted on the bot­

tom of the AUV. USBL systems measure the time or phase difference of the arrival 

of an acoustic pulse between individual elements of the hydrophones. This time or 

phase difference is used to determine the bearing from the USBL transceiver to the 

beacon. If a time-of-Aight interrogation technique is used, a range to that beacon 



19 

HYDROPHONEARRAY 

··, '. :.:'NG ANGL' 

SINGL' TRANS:~::: ~ 
(a) 

~~--~=) 
/ ··<·•·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·. 

MULTIPLE TRANSCEIVER 

(b) 

~------:-::---=) .··:·. 
SINGLE TRANSDUCER 

·. 

TRANSPONDER NET ········· .. ~ 

(c) 
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will also be available from the USBL system. In SBL (Figure2.4(c)) three or more 

transceivers are rigidly mounted on the hull of the AUV, making either an equilat­

eral or a right-angled triangle. The distance between each transceiver is precisely 

known. A bearing to the transponder is derived from the detection of the relative 

time-of-arrival as an acoustic pulse passes each of the transceivers. If the time-of-flight 

interrogation technique is used, a range to that beacon will also be available from the 

SBL system. Any range and bearing position derived from USBL and SBL systems 

are with respect to the transceivers mounted on the AUV and as such the systems 

need a vertical reference unit (VR.U), a gyroscope, and possibly a surface navigation 

system to provide a position that is seafloor (Earth) referenced (Vickery, 1998). 

In LBL navigation systems (Figure 2.4(c)), an array of acoustic beacons separated by a 

range of 100 metres to a few kilometres is deployed on the seabed (Vickery, 1998; Geyer 

et al., 1987). The vehicle determines its position by listening to the pulses emitted 

from the beacons and recording the arrival times. The location of these beacons 

must be provided, and the vehicle must be able to detect and distinguish between 

their signals. The two major types of LBL navigation are described as spherical and 

hyperbolic. In spherical navigation, the vehicle interrogates the array by emitting 

its own pulse and then listens for the responses from the beacons, In hyperbolic 

LBL navigation, the vehicle does not interrogate the array, but instead listens pas­

sively to the synchronised pulses emitted by the beacons (Bellingham et al., 1992). 

Any range/range position derived from a LBL system is with respect to relative or 

absolute seafloor co-ordinates. As such a LBL system does not require a VR.U or 

gyroscope (Vickery, 1998). 

2.2.5 Terrain-Relative Navigation 

For some applications of AUVs, the use of acoustic beacons is undesirable or imprac­

tical. In particular, the acoustic beacons must be pre-deployed for every mission and 

the vehicles can operate only over relatively short ranges, and they are far too expen­

sive to be practieal in low cost civilian AUV work. Also the accuracy of the acoustic 

signals tend to degrade due to noise and reverberation problem. This then motivates 
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Figure 2.5: SLAM algorithm as described by Majumder et al. 2000a; Majumder et 
al. 2000b; Majumder 2001 et al. 

the use of on-board terrain sensors for the purpose of navigation of an AUV. An on­

board sensor is used to obtain information on the terrain surrounding t he vehicle in 

the form of features or landmarks. The vehicle maintains a map of these landmarks 

which may or may not have been provided a priori. 

As t he vehicle moves through the environment the landmark observations obtained 

from the terrain sensor are matched to the landmarks maintained in t he map and 

used, in much t he same way as beacon observations, to correct and update the esti­

mated location of the vehicle. In underwater environments it is very rare that an a 

priori terrain map will exist Unlike surface applications, satellite or aircraft imagery 

cannot be used to build an underwater terrain map. This then precludes the common 

use of digital terrain elevation data (DTED) as employed by systems such as terrain 

contour matching (TERCOM) used for cruise missiles (Golden, 1980) . This limitation 

then motivates t he development of simultaneous localisation and mapping (SLAM) 

for AUV navigation (see Figure 2_5), which is the process of concurrent ly building a 

feature-based map of the environment and using this map to obtain estimates of the 

location of the vehicle. In essence, the vehicle relies l1eavily on its abi lity to extract 
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useful navigation information from the data returned by its, sensors. The vehicle typi­

cally starts at an unknown location with no a priori knowledge of landmark locations. 

From relative observations of landmarks, it simultaneously computes an estimate of 

vehicle location and an estimate of landmark locations. While continuing in motion, 

the vehicle builds a complete map of the landmarks and uses these to provide contin­

uous estimates of the vehicle location. By tracking the relative position between the 

vehicle and identifiable features in the environment, both the position of the vehicle 

and the position of the features can be estimated simultaneously. In Figure 2.5, the 

relationship between the vehicle, features and map at any time k is shown above. A 

Cartesian axes system is used to describe the vehicle location at any time k denoted 

by Xk· The vehicle states change as a result of the applied control input Uk· The 

map at any time k is defined as set of landmarks or features detected from the sensor 

observation zk relative to the vehicle location. The SLAM algorithm has recently seen 

a considerable amount of interest from the AUV community as a tool to .enable fully 

autonomous navigation (Majumder et al., 2000a; Majumder et al., 2000b; Majumder 

et al., 2001). 

2.3 MULTISENSOR DATA FUSION 

It is clear from the previous discussion that information from sensors used in one 

navigation system need to be combined or fused with information from sensors of other 

navigation systems to improve the overall accuracy of the system. To achieve this, 

MSDF techniques, which combine data from multiple sensors and related information 

from a'iSociated databases can be used (Llinas and Waltz, 1990; Hall, 1992). Varshney 

(1997) describes MSDF as the acquisition, processing and synergistic combination of 

information gathered by various knowledge sources and sensors to provide a better 

understanding of a phenomena. In this section, a general introduction to MSDF is 

provided. A description of the benefits,of l'viSDF, problems and issues, levels of MSDF 

where fusion takes place and MSDF algorithms are presented. 



23 

2.3.1 Benefits of Multisensor Data Fusion 

In general, fusion of multisensor data provides significant advantages.over single source 

data. The advantages can be summarised as follows (Varshney, 1997; Harris et al., 

1998): 

1. Improved system reliability and robustness, Multiple sensors have inherent re­

dundancy. Due to the availability of data from multiple sensors uncertainty can 

be reduced, noise can he rejected and sensor failure can be tolerated. 

2. Extended coverage. An increase in both spatial and temporal coverage of an 

observation is made possible by the use of multiple sensor systems. Multiple 

sensors can observe a region larger than the one observable by a single sensor. 

3. Increased confidence. Joint data from multiple sensors confirm the set of hy­

potheses about an object or event. The confirmation can be used to exclude 

some hypotheses to produce a reduced set of feasible options and as a result 

reduce the effort required to search for the hest solution. 

4. Enhanced resolution. Multiple sensors with different resolution can result in a 

greater resolution than a single sensor can achieve. 

2.3.2 Problems and Issues 

A technique for MSDF should consider several key issues, summarised below (Harris 

et al., 1998; Hall and Llinas, 1997): 

1. Re_qistration/data alignment. Each sensor provides data in its local frame. The 

data from different sensors must be converted into a common reference frame 

before combination. This problem of aligning sensor reference frames is often 

referred to as a registration problem. 

2. Correspondence/data a.~sociation. Once the sensors are registered, there is still 

a need to establish which data features in one sensor refer to the same aspect 

environment of the sensor. 
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3. Fusion. The fusion of data from multiple sensors or a single sensor over time 

can take place at different levels of representation. A useful categorisation is 

to consider MSDF as taking place at signal, pixel, feature and symbol levels of 

representation. 

4. Inference and estimation. Once the data has been fused, it is necessary to infer 

the-sensed data due to the inherent uncertainty in the combined measurements. 

5. Sensor Management. Sensor management can take the form of active data 

gathering where the sensors are directed via feedback to specific fusion stage, 

physical reconfiguration of the spatial pattern of the sensors and sensor type, 

or algorithmic changes to the combination of data. 

2.3.3 Levels of Multisensor Data Fusion 

The common fused representation may range from a low-level probability distribution 

for statistical inference to high level logical proposition used in production rules for 

logical inference. Luo and Kay (1990) and Luo et at (2002) divide the levels of 

representation of MSDF into signal, pixel; feature and symbol levels. 

1. Signal-level. Signal level fusion deals with the combination of signals from a 

group of similar sensors with the aim of deriving a single composite signal, usu­

ally of the same form as the original signals but with a higher quality. The 

signals produced by the sensors can be modelled as random variables corrupted 

by uncorrelated noise, with the fusion process considered as an estimation pro­

cedure. A high degree of spatial and temporal registration between the sensed 

data is necessary for fusion to take place. 

2. Pixel-level. Pixel level fusion deals with the combination of multiple images 

into a single image with a greater information content. The fused images can 

be modelled as a realisation of a stochastic process across the image, with the 

fusion process considered as an estimation procedure. In order for pixel-level 

to be feasible, the data provided by each sensor must be able to be registered 

at the pixel level and, in most cases, must be sufficiently similar in terms of its 

resolution and information content. 
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3. Feature-level. Feature level fusion deals with the combination of features de­

rived from signals and images into meaningful internal representations or more 

reliable features. A feature provides for data abstraction and is created either 

through the attachment of some type of semantic meaning to the results of 

the processing of some spatial and/or temporal segment of the sensory data 

or through a combination of existing features. As compared to the signal and 

pixel-level fusion, the sensor registration requirements for feature-level fusion 

are less stringent, with the result that the sensors can be distributed across 

different platform. 

4. Symbol-level. Symbol level fusion deals with the combination of symbols with an 

associated uncertainty measure, each representing some decision, into symbols 

representing composite decisions. A symbol derived from sensory information 

represents a decision that has been made concerning some aspect of the envi­

ronment. The decision is usually made hy matching features derived from the 

sensory information to a model. The Sensor registration is usually not explicitly 

considered in symbol-level fusion because the spatial and temporal extent of the 

sensory information upon which a symbol is ha.~ed has already been explicitly 

considered in the generation of the symbol. 

2.3.4 Multisensor Data Fusion Algorithms 

This section presents algorithms for MSDF. Luo et al. (2002) classify MSDF algo­

rithms a.~ follows: estimation methods, classification methods, inference methods and 

artificial intelligence methods. Each of these methods will be discussed here and 

applications to AUV navigation are presented in Section 2.4. 

1. Estimation methods. A general estimation method of fusion is to take a weighted 

average of redundant information provided by a group of sensors and use this 

as the fused value. While this method provides real-time processing capability 

of dynamic low-level data, the Kalman filter (KF) is generally preferred as it 

provides a method that is nearly equal in processing requirement and results 

in estimates for the fused data that are optimal in a statistical sense. Kalman 
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filtering is an. estimation method that combines all available measurement data, 

plus prior knowledge about the system and measuring devices, to produce an 

estimate of the state in such a manner as to minimise the error statistically 

(Brown and Hwang, 1997). A detailed formulation of the Kalman filter is given 

Appendix D. 

2. Classification methods. Classification methods involve partitioning of the mul­

tidimensional feature space (by geometrical or statistical boundaries) into dis­

tinct regions, each representing an identity class. In this method, the location 

of a feature vector to prespecified locations in feature space is compared. A 

similarity measure must be computed and each observation is compared to a 

priori classes. In the cluster analysis approach, geometrical relationships on a 

set of sample data in a training process are established (Bracio et al., 1997). 

Other approaches include unsupervised or self-organised learning algorithms 

such as K-means clustering and the associated adaptive update rule, the Koho­

nen feature map (Kohonen, 1988). To fuse sensory data in an adaptive manner 

and allow to adjust automatically the granularity of the classifier and to main­

tain stability against category proliferation in the presence of drifting inputs 

and changing environments, adaptive resonance theory (ART) (Carpenter and 

Grossberg, 2003) and Fuzzy ART network (Carpenter and Grossberg, 1996) 

approaches can be used. 

3. Inference methods. Bayesian inference and Dempster-Shafer evidential reason­

ing are the main approaches in inference methods. Bayesian inference provides 

formalism for MSDF that allows sensory data to be fused according to the rules 

of probability theory. This approach relies on the use of Bayes' rule where a 

relationship between the a priori probability of a hypothesis, the conditional 

probability of an observation given a hypothesis and the a posteriori proba­

bility of the hypothesis is provided (Hall, 1992). An immediate problem in 

this approach is that the required knowledge of the a priori probability and the 

conditional probability may not be always available. Also in defining these prob­

abilities, often subjective judgements are necessary (Brooks and Iyengar, 1998). 

An extension to the Bayesian inference method, Dempster-Shafer evidential rea­

soning, overcomes these drawbacks by keeping track of an explicit probabilistic 
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measure of the lack of information concerning a proposition's probability. The 

cost of this approach is the additional time required for computation. 

4. A rlificial intelligence methods. Artificial intelligence is a va.~t, loosely defined 

area encompassing various aspects of pattern recognition and image processing, 

natural language and speech processing, automated reasoning and a host of 

other disciplines. Fuzzy logic and neural networks are two of the most widely 

used approaches in artificial intelligence methods for combining multisensor 

data. Fuzzy logic involves the extension of Boolean set theory and Boolean 

logic to a continuous-valued logic via the concept of membership functions to 

quantify imprecise concepts. A neural network is a method designed to mimic 

how biological nervous systems work. In this method, an individual neuron 

takes weighted input from a number of sources, performs a simple function and 

then produces a single output when the required threshold is reached. Neurons 

can be trained to represent sensor data and, through associate recall, complex 

combinations of the neurons can be activated in response to different .sensor 

stimuli (Lno et al., 2002). 

2.4 APPLICATIONS OF MULTISENSOR DATA FUSION FOR 

AUTONOMOUS BNDERWATER VEHICLES 

The discussion here focuses on a variety of approaches to the fusion of information 

from combinations of different types of sensors. 

2.4.1 GPS and Inertial-Based Systems 

McGhee et al. (1995) describe a navigation system employed by the Phoenix AUV 

using an inertial and .differential DGPS navigational suite to conduct shallow water 

mine detection and coastal environment monitoring missions. In the course of its 

mission Phoenix combines signal-level information from a gyroscope, depth sensor, 

speed sensor, and a compass heading to predict its position while operating under­

water. The vehicle surfaces periodically to obtain an update of its position from a 

DGPS fix and then submerges Wigure 2.6(a)). Problems with this setup concern 
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the time required to acquire the DGPS data and the influence of water covering the 

DGPS antenna during position fixing were examined in Norton (1994). The inertial 

navigation sensors described in McGhee et al. (1995) obtain accelerations and an­

gular rates of change for the vehicle. A nine-state KF is used to process the data 

and to give the prediction of the vehicle position. The DGPS data is then used to 

update the predicted position resulting in an estimated position. The nine state KF 

can be divided into seven continuous-time states (three Euler angles, two horizontal 

velocities, and two horizontal positions) and two discrete-time states (estimated east 

and north current derived from the DGPS fixes). The method used to fuse sensory 

information discussed by McGhee et al. (1995) can be shown as in Figure 2.6(b). 

The main problem with the KF employed in McGhee et al. (1995) is the need for 

a tuning system to prevent filter divergence. This problem can be overcome by the 

use of artificial intelligence (AI) techniques as have been applied in helicopters (Doyle 

and Harris, 1996), automobiles (Kohayashi et al., 1998) and target tracking system 

(McGinnity and lrwin, 1997) applications. Kobayashi et al. (1998) wished to deter­

mine accurately the position of an automobile using DGPS. In their work, a fixed 

fuzzy rule based algorithm is used to tune the covariance factors of a KF. The shape 

and positioning of the various fuzzy sets on their respective universes of discourse 

having been decided by heuristic means. The main problem with the Kobayashi et 

al. (1998) methodology is the reliance on trial and error to generate the fuzzy rule 

based algorithms. Similar comments can also be made concerning the robot posi­

tioning work of Jetto et al. (1999). To overcome such drawbacks genetic algorithms 

(GAs) (Pham and Karaboga, 1991; Sutton and Marsden, 1997) have been used to op­

timise fuzzy systems. Other intelligent optimization techniques such as chemotaxis, 

alopex and simulated annealing have also been successfully employed in the design 

optimization of fuzzy control systems (Sutton et al., 1996; Sutton et al., 1997). 

2.4.2 Acoustic-Based Systems 

Atwood et al. (1995) have built and tested an AUV that utilises a LBL navigation sys­

tem with an innovative fix-finding algorithm and commercially available hardware. 
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They use a spherical navigation system, in which the vehicle actively interrogates 

acoustic transponders and calculate ranges from round trip transit times, resulting 

in a greater accuracy (about 1(m)) compared to the hyperbolic method proposed by 

Bellingham et al. (1994). In this system, the vehicle can use two operating modes, 

master mode and transponder mode; In the first mode, the vehicle triggers the acous­

tic transponders, which reply with an acoustic signal. The vehicle computer can then 

calculate distances and, applying acoustically measured depth, a position. Using the 

first mode, operation over an area of 1 (km) 2 is possible. In the second operating 

mode, a surface vessel triggers the vehicle, which in turn interrogates the transpon­

ders. Position of the AUV can then be calculated in the surface vessel through an 

established CPS position and knowledge of the relative positions of the AUV and 

the transponders. This procedure is called the fish solution, as it lets the operator 

on the ship monitor vehicle progress. The second mode is developed to have opera­

tional areas as large as 10(km)2
. In this work, Atwood et al. (1995) have solved the 

problem of fading or destructive interference of the acoustic signals produced by the 

transponders encountered by Bellingham et al. (1994). Atwood et al. (1995) princi­

pally combine sensor information at signal-level data. 

Ilendas and Lourtie (1994) combine LBL navigation with dead reckoning and calls it 

a hybrid system. The vehicle travels between deployed baseline arrays, each consist­

ing, for example, of four transponders, and uses acoustic navigation when in range 

of an array. Outside the range, it uses a sonar/Doppler sensor and depth informa­

tion for autonomous navigation. The distances between the arrays must be carefully 

planned, because the accuracy of navigation in the autonomous mode deteriorates 

with time, depending on the quality of the sensing systems. The transition from 

one mode to another takes place automatically. When the vehicle is leaving the area 

where a particular baseline array is located, the number of range measurements it is 

able to receive will gradually decrease to zero, entering, in this way, the autonomous 

navigation mode. On the contrary, when it approaches an area where transponders 

are located, it. receives an increasing number of distance measurements; switching 

from autonomous to local navigation mode. The system uses a variable dimension 

Kalman filter for both navigation modes. Where there is no detectable acceleration, 

the filter assumes uniform motion and estimates position and linear velocity. When 
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there is acceleration, the filter switches to a larger order (manoeuvring model) and 

extends its state vector to include the accelerations. In this work, however, Ren­

das and Lourtie {1994) have not taken into account the analytical approximations 

to the error evolution during autonomous navigation to determine the layout of the 

baseline arrays and to derive the constrains on path planning once a layout has been 

decided upon. Similar to Atwood et al. {1995), the MSDF method used by Rendas 

and Lourtie {1994) is an estimation method which fuses data from the navigation 

sensors at signal-level. 

2.4.3 Acoustic- and Visual-Based Systems 

Majumder et al. {2000a), Majumder et al. {2000b) and Majumder et al. {2001) re­

ported the use of sonar and underwater cameras to construct a complete environmen­

tal map for navigation. A generic, multi-layered data fusion scheme is used to combine 

information from the two sensors. The general principle is that all sensor information 

is projected into a common state-space before the extraction of sea bed features. Once 

projection has occurred, feature extraction and subsequent processing is based on a 

combined description of the environment. As robust features, such as points and lines 

turn out to be fragile in a natural undenvater environment, Majumder and eo-workers 

found that this approach is better than extracting features from a single piece of sen­

sor information followed by fusion. In this work, "blobs" and blob-like patches are 

used as scene descriptors to segregate feature information from background noise and 

other errors. Majumder et al. {2000a), Majumder et al. {2000b) and Majumder et al. 

{2001) discussed both the Bayesian and extended Kalman filter (EKF) approaches 

to map-building and localisation in autonomous navigation systems. It was shown in 

this work that a significant problem in. applying EKF is the difficulty of modelling nat­

ural environment features in a form that can be used in an EKF algorithm. Another 

formidable problem is the fragility of the EKF method when faced with incorrect 

associations of observations to landmarks. The limitations in using this to build a 

feature map. of landmarks describing the environment were then resolved through the 

use of the Bayesian approach. The fusion process can be shown as in Figure 2. 7. A 

significant problem with this approach lies on the stability of the algorithm when the 
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Figure 2.7: MSOF in SLAM algorithm as described by Majumder et al. 2000a; 
Majumder et al. 2000b; Majumder 2001 et al. 

vehicle is run over long distances and returning around a loop to t he initial vehicle 

location. This problem stems from the limitation in data association technique to 

correspond initially identified landmarks and the same landmarks viewed from the 

opposite side on the return visit. A potential solution to this problem is to use a prob­

abilistic model to provide a very general description of landmarks form and shape. 

Twin Burger 2, an AUV developed by the University of Tokyo, was designed to help 

monitor and carry out routine maintenance work of underwater cables (Balasuriya 

and Ura, 1999a; Balasuriya and Ura, 1999b). In so doing, the vehicle tracks the cable 

visually and provides human operators with visual informat ion about the condition of 

the cable accordingly. Initially the vehicle employed a visual servoing system to track 

the cable and to navigate t he AUV. However, due to undesirable optical behaviour 

underwater, t here were many occasions where the cable was not visible enough for the 

vision processor to track the cable. In addition the vehicle can lose t rack of the cable 

when there were many similar cables appearing in the image. In order to overcome 

these problems, a multisensor fusion technique is proposed. The proposed sensor fu­

sion technique uses dead reckoning position uncertainty with a 20 position model of 

the cable to predict the region of interest in t he image captured by a camera mounted 

on the AUV (Balasuriya and Ura, 1999a; Balasuriya and Ura, 1999b) The 20-posit ion 

model of t he layout of t he cable is generated by taking the position (xi, Yi) of a few 

points along the cable. The 20-position model of the cable is used to predict t he 

most likely region of the cable in the image, which leads to a reduction in the amount 

of image data and a decrease in the image processing time. Additionally, due to the 

narrowing of the region of interest in the image, the chances of misinterpretation of 

similar features appearing in the image can be avoided. The 20-position model is 
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also used to generate navigation commands when the vision processor cannot recog­

nise the cable in the environment. Similar to Majumder et al. (2000a), Majumder et 

al. (2000b) and Majumder et al. (2001), the fusion process takes place at feature-level. 

Scheizer and Petlevitch (1989) has reported a target detection and classification sys­

tem using side scan sonar data and vision. Objects are detected by searching for 

highlights, textures, statistical anomalies and shadowsc A neural network-based clas­

sification system is used to assist the image-processing component. The classification 

process does not identify objects but rather labels them as foreground, background, 

highlight, or shadow highlight. The level of correct classification is reported to be 95 

per cent using a training set of 62 images. This technique, however, does not address 

the issue of feature or object identification. 

2.5 CONCLUDING REMARKS 

It has been suggested in this chapter, from the various examples given in AUV nav­

igation, that information coming from a single navigation system is not ·Sufficient to 

provide a good navigation capability. Therefore MSDF techniques which combine 

sensory information from other navigation systems to improve the navigation capa­

bility is essential. These will underpin the theoretical and practical work of this thesis 

that aims to design and develop an interactive navigation system that consists of sev­

eral INS sensors integrated with a GPS to interact with an appropriate guidance and 

control system, implemented to the Hammerhead AUV. The next chapter presents 

an introduction to the vehicle, the hardware setup and sensors used within. System 

identification approaches and results obtained are also discussed in detail. 
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CHAPTER 3 

THE HAMMERHEAD AUTONOMOUS UNDERWATER VEHICLE 

This chapter presents a general int roduction to the structure of the Hammerhead 

AUV, followed by a description of its hardware setup and sensor configuration used 

therein. A thorough discussion of system identificat ion experiments and the results 

thereof are also given. T his forms the foundation of the proposed techniques discussed 

in the following chapters. 

3.1 THE EVOLUTION STRUCTURE 

Figure 3.1: The DMT deployed from a chute 

The Hammerhead AUV was built on the structure of a DMT used in training exercises 

by the Brit ish Admiralty in the 1960s and 1970s. T he DMT was originally deployed 

from a chute (see Figure 3.1). The gravity force exerted on t he vehicle was able to 

thrust the vehicle under t he water and to introduce an additional force to the initial 

velocity. In its original configuration, the DMT was powered at 130(V DC) and was 

able to move at 12(knots). The hydroplanes at t he rear of the vehicle were used to 

change t he direction of the vehicle vert ically, while t he rudder was used to change the 
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(a) (b) 

Figure 3.2: (a) Rudder and rear hydroplanes, (b) front hydroplanes 

direction horizontally (see Figure 3.2(a)). However, wi thout the presence of t he chute 

that enables the vehicle to get under the water at the beginning of an opera tion, the 

hydroplanes were unable to perform their function properly and this was observed 

during the ini t ial Hammerhead full scale t rials. It was then decided to modify the 

vehicle by adding a new set of hydroplanes constructed at the section adjacent to the 

nose of t he vehicle (see Figure 3.2(b)) and to lock the rear hydroplanes. Subsequent 

full scale t rials proved that the new structure made diving from the surface at a low 

speed of operat ion possible. The deflections for the rudder and hydroplanes being 

restricted to ±22.5( deg) and ± 25( deg) respectively and were deemed sufficient for 

heading and dept h cont rol purposes. The new shape, as it appears now, mimic the 

feature of a Hammerhead shark and this was one of the catalysts to name the AUV 

as Hammerhead. 

Another major modification to t he DMT was the addition of a camera port, shown 

in Figure 3.3(a), to t he same section where the new set of hydroplanes installed. T he 

camera is a charge couple device (CCD) type and work together with a laser scanning 

uni t, shown in Figure 3.3(b). This unit is used to provide an enhanced viewing below 

the vehicle as it performs an underwater operation. Together, t he CCD camera and 

the laser scanning uni t are used to provide navigation data and to gather underwater 

images for surveying purposes. 
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(a) (b) 

Figure 3.3: (a) Camera port, (b) camera and laser scanning unit 

The physical structure of the Hammerhead AUV (t he modified DMT) can be sum­

marised as in Table 3.1. The schematic of the vehicle is shown in Figure 3.4(a), with 

the actual vehicle strapped on its trailer ready for deployment is shown in Figure 

3.4(b). 

FRONT STEPPER 

JJ-iff=trn~ ·= ~ 
CAMERA PORT ----_; 

NOSE SECTION SENSORS REAR 
HYOROPI.ANES 

(a) 

(b) 

Figure 3.4: (a) The schematic of the Hammerhead, (b) The Hammerhead on its trailer 



Length 3.5(m) 

Diameter 0.35(m) 

Weight 250(kg) 

Weight in water 2(kg) 

Rudder deflection ± 22.5(deg) 

Hydroplane deflection ±25(deg) 

Speed 2(knots) 

Dept h Capability lOO(m) 

Battery capacity 

Propulsion 

Materials 

Launch and recovery 

l.6(kWh) or 3- 4(hours) 

Rear DC thruster IOO(N) 

Anodised alumunium hull 

Submergible trailer and rigid inflated boat (RIB) 

Table 3.1: The physical structure of t he Hammerhead AUV 
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A discussion on t he complete hardware setup and sensor configuration used in t he 

vehicle is given in t he next section. 

3.2 HARDWARE SETUP 

The initial hardware setup of the Hammerhead resembles many of those in ROVs, i.e., 

the processing of control signals are still carried out by an off-board operator which 

sends appropriate control commands to the vehicle through a tether. In this partic­

ular case, however, t he operator is replaced by an automatic control uni t. It should 

also be noted that the power to the vehicle is now generated internally. T herefore, 

due to the addition of the tether and the remotely located control unit , the vehicle 

can be regarded as still running in a semi-autonomous mode at this stage. 

The hardware in this setup can generally be considered to be divided into two major 

groups: a mobile real-t ime sensing unit and, a mobile real-time data-processing and 

control unit. The mobile sensing uni t consists of the vehicle and all sensors mounted 

thereon: one GPS receiver uni t, one IMU, one electronic compass known as TCM2 
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and one pressure transducer. These, with the exception of the pressure transducer, 

are RS232/serial compliance devices. The pressure transducer produces an analog 

voltage output and need to be converted to a digital form that is compatible with 

RS232/serial voltage levels using a MAX232 chip embedded in an analog to digital 

converter (ADC) card. The mobile sensing unit automatically measures the vehicle 

position in t he Earth-centred Earth-fixed co-ordinate frame at l(.H z), acceleration 

and angular rate at up to 50(H z) in both the body and NED co-ordinate frame, 

orientation and depth at 8( H z) in the NED co-ordinate frame. 

The mobile data-processing and control unit consists of a Pentium-4 (1.6(GH z)) lap­

top. The data-processing and control softwares were developed using MATLAB with 

extensive use of its RS232/serial port I/0 facility. The speed of data-processing is 

constrained by t he sequent ial nature of MATLAB command execution and therefore 

limited to only 8(H z). Control commands to drive the stepper motor of the rudder 

and hydroplanes (Figure 3.5) of t he vehicle are also sent through the RS232/serial 

port. For this purpose, an interface which can receive an input from the mobile control 

unit and converts it into the stepper motor driving pulses was sought. A microcon­

troller based board using an ATMEL 89C2051 chip was t hen developed. Details of 

the design and development can be found in Naeem (2004). 

(a) (b) 

Figure 3.5: (a) Rudder and rear hydroplanes motor, (b) front hydroplanes motor 

It is important to note that the laptop has only one RS232/serial port and therefore, 

insufficient to cater the I/0 requirements of the data-processing and control unit. A 

QUATECH PCMCIA to 4x RS232/serial converter, shown in Figure 3.6, is included 
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(a) (b) 

Figure 3.6: (a) PCMCIA to 4xRS232/serial converter, (b) converter- laptop connec­
tion 

to acquire all sensor data. The GPS, IMU and TCM2 data can all be automatically 

received by t he RX pin of the RS232/serial ports, while t he pressure transducer re­

quire a certain 8-bits sent from t he laptop to the ADC card through t he TX pin 

to indicate t he card t hat data are ready to be received. The cont rol commands are 

sent t hrough the TX pin of the same RS232/serial port where the RX pin used by 

the TCM2. More sensors can be accommodated, providing a certain or several RX 

pins shared/mult iplexed by two or more sensors. T he multiplexing process can be 

achieved, for instance, using a PHILIPS 74HC/HCT151 8-input mult iplexer. 

A 20-core tlun cable is used to transmit all sensor data from the mobile real-time 

sensing unit to the real-time data-processing unit. This is also used to transmit the 

command signals from the real-time cont rol unit to the stepper motor controller card. 

Two cores of the cable are connected to t he leak detector unit inside the vehicle. At 

the other end of t hese two cores, a loudspeaker is connected to provide an audible leak 

warning. If such a case occurs, another two-cores of t he cable has been dedicated to 

enable manual shutdown of the vehicle. In cases where t he vehicle dives, due to, for 

instance, an imperfection in the mechanical structure of t he hydroplanes, a sudden 

change of liquid hydrodynamic surrounds the vehicle and a strong vert ical t ide of 

water to the surface of the vehicle, an emergency weight ejection system will release a 

weight on the nose of the vehicle and consequently, due to inherent positive buoyancy, 

the vehicle will be brought back to the surface. T he length and diameter of the cable 

are chosen carefully to minimise d rag effects caused thereby t hat might produce a 



40 

significant dist urbance to the dynamic of the vehicle. The overall hardware setup 

and sensor configuration mounted on the vehicle are shown in Figure 3.7(a). Figure 

3. 7(b) shows the mobile sensing unit, and the mobile data-processing and cont rol unit 

during a full scale trial. 

(a) (b) 

Figure 3. 7: (a) The Hammerhead hardware setup and sensor configurat ion, (b) full 

scale trial 

During the first half of the Hammerhead project, most full scale t rials were conducted 

using the setup shown in Figure 3.7. In the second half of t he project, t he mobile 

real- time data-processing and control unit have been replaced by two on-board CP Us. 

This setup eliminates the need for a tether and consequently, the drag encountered 

by the vehicle was minimised. The two CPUs, referred to as the Host and the Nav­

igator+ Controller, work side by side t o perform an autonomous mission. The Host 

CPU is responsible for all sensor acquisit ion and intervention, including failsafe emer­

gency systems and all automated imaging parameters. To accomplish these, the Host 

CPU is equipped with a frame grabber, a mult ifunction data acquisition card and six 

RS232/serial ports. The programs to perform these tasks are developed in LABVJEW 

and are ini tiated via the wireless Ethernet link (IEEE802.11b wireless local area net­

work(WLAN)) operat ive on an off-board laptop. The WLAN has a range of 200(m) 

at ll(Mbitsjsec), extendable by reducing the bandwidth . T he Navigator+Controller 

CPU receives a navigational parameter string sent by the Host CP U and perform 

a control action by sending appropriate pulses to the rudder and hydroplanes. T he 

navigation and cont rol systems are developed in MATLAB and are resident on this 

CPU. Figure 3.8(a) and Figure 3.8(b) respectively, show the vehicle with a 'tetherless' 

hardware setup and its recent ly conducted full scale t rial. 
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(a) (b) 

Figure 3.8: (a) The wireless Hammerhead hardware setup and sensor configuration, 

(b) full scale trial 

Details of the sensors employed in both vehicles' setup are presented in the next 

section. 

3.3 DETAILS ON THE SENSORS 

The sensors used in t he mobile real-time sensing unit have been discussed briefly in the 

previous chapters and as well in the beginning of this chapter. A more comprehensive 

treatment is given in this section. 

3.3.1 GPS 

(a) (b) 

Figure 3.9: (a) Mounted GPS uni t, (b) installed GPS antenna 



Element 
$ 

< 1 > 
< 2 > 
< 3 > 
< 4 > 
<5> 
< 6 > 
< 7 > 

hh 
< CR> 
< LF > 

Description 
Start 
Universal time coordinated (UTC) of position fix 
Latitude 
Latitude hemisphere, N or S 
Longitude 
Longitude hemisphere, E or W 
GPS quaHty indicator 
Number of satellites in use, 00 to 12 

Check sum 
Carriage return 
Line feed 

Table 3.2: GPGGA sentence 
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A GARMIN GPS 25LVS is used in the mobile real-t ime sensing unit. Figure 3.9(a) 

and 3.9(b) show the hull-mounted uni t and tail-installed antenna respectively. It is 

designed to operate from a low voltage 3.6(V DC) to 6.0(V DC ) supply and conforms 

to the RS232/serial standard . As the dat a acquired by the serial port of the mobile 

real-time data-processing unit, communication speed is limited to 4800 baud rate. 

Posit ion accuracy is 15(m) RMS. It tracks up to 12 satellites with 1(H z) update 

rate. T he interface protocol design on the TX/RX is based on the national marine 

electronics association's (NMEA's) 0183 ASCII interface specification. The NMEA 

0183 navigation information transmitted by the unit posses a common structure, 

which includes a message header, data fields, and a terminating carriage return and 

line feed as the following example : 

$GPGGA, < 1 >, < 2 >, < 3 >, < 4 >, < 5 >, < 6 >, < 7 >, ... *hh < CR >< LF > 

Table 3.2 provides a detailed description of the above GPGGA sentence. Other sen­

tences like GPRMC, GPGSA and PGRME can provide more extensive information 

such as ambient magnetic variation , position dilution of precision, and estimated 3D 

posit ion error. These, if taken into account in the proposed adapt ive Kalman filtering 

algori thms can certainly be valuable in enhancing the overall accuracy of t he Ham­

m erhead navigation system. However, in t his thesis, focus is given to the acquisition 

of the absolu te posit ioning information , i.e., the latitude and longit ude, and t heir use 

in updating the posit ion derived by t he I S sensors. Chapter 6 will discuss possible 
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implementations of the other GPS information, especially in relation to the proposed 

adaptive Kalman fil tering techniques. 

3.3.2 TCM2 Electronic Compass 

(a) (b) 

Figure 3.10: (a) TCM2 circuitry, (b) mounted T CM2 

Heading Information Values 

Accuracy at tilt= O(deg) 0.5(deg) RMS 

Accuracy at O(deg) <tilt or t ilt> O(deg) l.O(deg) RMS 

Resolut ion 0.1(deg) 

Ilepeatability ± O.l{deg) 

T ilt Information Values 

Accuracy ± 0.1 ( deg) 

Resolut ion 0.1(deg) 

Repeatability ± 0.2(deg) 

Range ±20 (deg) 

Table 3.3: TCM2-20 technical specification (courtesy of Precision Navigation website 

www.precisionnav.com) 

T he TCM2 (shown in Figure 3.10) contains a combined t riaxial magneto inductive 

magnetometer and biaxial fl uid fi lled inclinometer. T he TCM2 uses a unique tech­

nology, which enables accurate data to be obtained without having to reference the 

compass level to the horizon. T his is made possible by an electronic gimballing pro­

cess performed by the in-built microprocessor, which takes t he inclinometer data and 
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computes a t ilt correction mathemat ically. The electronic gimballing eliminates mov­

ing parts and provides more information about the environment: pitch and roll angles 

and 3D magnetic field measurement in addit ion to compass output. Table 3.3 pro­

vides the technical specification of t he heading and t ilt information of the TCM2. 

The TCM2 also features a magnetic distortion alarm. This is to indicate magnet ic 

anomalies that can compromise compass and magnetometer accuracy. The magnetic 

anomalies are detected dming a continuous data sampling by an algorithm that eval­

uates the quality of the magnetic environment. If a significant deviation is detected 

between an instantaneous magnetic field information against a stored reference, the 

magnetic distortion alarm error flag is raised. A host magnetic reference is obtained 

by performing a user calibration. It was noted, that as a host, the mounting location 

of the T CM2 inside t he Hammerhead vehicle produces only an infinitesimal static 

magnetic vector contri bution to the local Earth's field. Also, t he vehicle was mostly 

deployed in a magnetically 'benign' environment. Therefore, it was decided to reserve 

the magnetic distortion alarm feature only for future developments of the adaptive 

Kalman fi ltering algorithm, especially in compensating the effect of anomalies t hat 

are caused by ambient dynamic sources (see future works discussion on Chapter 6) . 

Element Description 

$ Start 

C< . > Compass 

P < . > Pitch 

R < . > Roll 

hh Check sum 

<CR > Carriage return 

< LF > Line feed 

Table 3.4: TCM2 string 
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The TCM2 sends an ASCII data across the RS232/serial link, which takes the fol­

lowing standard format: 

$C < . > P < . > R < . > ... *hh < CR >< LF > 

Table 3.4 provides the description of the string. For the current adaptive Kalman 

fil tering algorithm, only the C < . >, R < . >, and P < . > a re used . The rest of t he 

entries form the basis of fu ture works. 

3.3.3 Inertial Measurement Unit 

(a) (b) 

Figure 3.11: (a) Watson Industries Ltd . inert ial measurement unit, (b) mounted 
inertial measurement unit 

The Hammerhead JMU (manufactured by Watson Industries), shown in Figure 3.11, 

consists of a 3-axis solid-state rate-gyro and accelerometer to measure angular mea­

surements and linear accelerat ion respectively. The gyros are vibrat ing cylinder types 

while the accelerometers a re made using silicon micro-machining technology. Table 

3.5 provides t he technical specification of the unit. T he uni t also sends ASCII data 

across the RS232/serial link. For the purpose of the present work, only angular dis­

placement and linear acceleration data are used. 

It is important to recognise that two sets of measurement co-ordinate frame are used 

in the unit. One set of measurement co-ordinate frame is referred to the body co­

ordinate frame, while the other set is the NED co-ordinate frame. Just like in the 

TCM2, the term angular displacements are measurements made with respect to the 

Horizon. However, angular rates are measurements made with respect to the body 



Angular Rates 
Range 
Accuracy 
Resolution 
Tilt 
Range 

Resolution 
Heading 
Range 
Accuracy 
Resolution 
Linear Acceleration 
Range 
Accuracy 
Resolut ion 

Values 
± 100( deg /sec) 
±2% of scale value 
0.1 (degjsec) ASCII format data 
Values 
±0.3(deg) ± 2% of scale value, 
+0.5(deg) per g due to linear acceleration 
0.1(deg) ASCII format data 
Values 
+360(deg) 
±1(deg) 
0.1 ( deg) ASCII format data 
Values 
± 2(g) 
±lO(mg) 
l(mg) ASCII format data 

Table 3.5: JMU technical specification 
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co-ordinate frame. Longitudinal, lateral and vert ical acceleration are made with re­

spect to the body co-ordinate frame, while t he X-, Y-, and Z-axis acceleration are 

with rf'..spect to the NED co-ordinate frame. 

To obtain an GPS/INS positioning, the IMU acceleration made in the body co­

ordinate frame is first integrated once to obtain linear velocity: 

1.
Lo+5t 

[V ]noDY(to+5t) = [V] BODY(t)dt + [V ]noDY(to) 
to 

(3.1) 

Integration of t he new body velocity to determine position is preceded by a transfor­

mation from the body co-ordinate frame to the NED co-ordinate frame (see Appendix 

G for detail) . The following substitution pertains: 

(3.2) 

T he final integration to determine position is therefore: 

['o+5t 

[P ]N1W(to+5t) = } to [V ]NIW(t)dt + [P]NED(to) (3.3) 
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3.3.4 Pressure Transducer 

The pressure t ransducer, shown in Figure 3.12 produces an analog signal between 

O(VDC) to 5(VDC), which is equivalent to O(bar) to 6(bar) . T he analog signal is 

converted to a RS232/serial signal using an ADC designed at the University of Ply­

mouth. Appendix C provides the details of the design. The ADC uses an ADC0804 

chip to do the conversion, an AT89C2051 microcontroller to cont rol the ADC0804, 

and a MAX232 chip to convert the signals from and to RS232/serial levels for send­

ing and receiving from the laptop. T he converted signal is furt her processed by t he 

data-processing unit to produce dept h in meter. 

(a) (b) 

Figure 3.12: (a) Pressure t ransducer, (b) ADC card 

T he hardware setup and sensor configurat ion discussed herein are used to facili tate 

the process of building up an integrated navigation, guidance and control for t he ve­

hicle. Full scale t rials conducted by the Hammerhead research team were designed to 

obtain all-important components of the integrated system. Both the navigation and, 

the guidance and control systems share one important component, t he dynamic model 

of the vehicle. This can be achieved through either finding the hydrodynamic coeffi­

cients of the vehicle or through system identification (SI) methods. T hese approaches 

are discussed in the next section . The discussion is compiled from Naeem (2004) . 

However, it should be noted that the resul ts presented henceforth are produced from 

a combined effort by the author of this thesis and by Naeem (2004). 
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3.4 SYSTEM IDENTIFICATION FOR THE HAMMERHEAD AUV 

To obtain a model of an AUV is an intricate task because of the nonlinear nature 

of the vehicle dynamics and the degrees of freedom of vehicle movement. Each of 

the implementation of the approaches of finding the dynamic model of an AUV, i.e., 

mat hematical modell ing (based on finding the hydrodynamic coefficients of the vehi­

cle) and system identification , is highly constrained by the physical characteristics of 

the vehicle and t he facility available to perform the rout ines therein. 

Mathematical modelling of AUVs is widely addressed. However, several parame­

ters st ill pose uncertainties due to the difficult nature of the problem. Of prime 

importance in this context is the dependence of many hydrodynamic parameters and 

coefficients on varying velocity regimes, proximity to the sea bed, sea surface and 

other structures, just to mention a few. Certain model parameters can be determined 

analytically. Other parameters, however, will need to be ident ified using scaled model 

or fu ll scale tank tests. For example, the Subzero-If vehicle based at The Institute 

for Sound and Vibration Research, University of Southampton, UK, has over 70 rigid 

body and hydrodynamic coefficients to be estimated. Twelve of these were obtained 

by calculation or experiments. Lack of tank test facilit ies prevent the evaluation of 

the coefficients to only four whereas the remaining coefficients used were scaled down 

versions of the Ocean Voyager vehicle, which is similar in shape to Subzero-II (Ahmad 

and Sutton, 2003). 

Taking into consideration the physical characteristics of the Hammerhead AUV and 

the insufficient test tank facilities available to perform the experiments required by 

t his type of vehicle, an alternate route using SI techniques to obtain t he dynamic 

models of the vehicle is thus suggested and used in this thesis. SI is quite effective in 

providing reliable and accmate models based only on input-output data sets obtained 

from AUVs fu ll scale trials. This is the main appeal of t he approach and makes it 

quite desirable to be employed in modelling AUVs whose configuration changes fre­

quently to sui t their mission requi rements. Details of the SI implemented to the 

Hammerhead AUV and the resuls thereof are given in the following discussion. 
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3.4.1 System Identification 

Obtaining dynamic models of AUVs using SI approaches have been investigated be­

fore (Bossley et al., 1999; Goheen and Jefferys, 1990; Ahmad and Sutton, 2003), but 

most of the work involved has been undertaken on identifying a model by generating 

data from a 6 DOF mathematical model of the vehicle. However, in this thesis, the 

SI is performed on actual AUV input/output data obtained from test trials. The SI 

of a dynamical system generally consists of the following four steps: data acquisition 

(DAQ) data acquisition, characterisation, identification/estimation and verification. 

The first and most important step is to acquire the input/output data of the sys­

tem to be identified. Acquiring data is not trivial and can be very much laborious 

and expensive. This involves careful planning of t he inputs to be applied so that suf­

ficient information about the system dynamics is obtained. If the inputs are not well 

designed, then it could lead to insufficient or even useless data. Other factors that 

could degrade the data quality includes t he DAQ hardware involved and sampling 

rate. These will be discussed in detail in the following section. 

The second step defines the structure of the system to be identified, for example, type 

and order of t he differential equation relating the input to the output. This means 

selection of a suitable model structure, e.g. auto-regressive with exogeneous input 

(ARX), auto-regressive moving average with exogeneous input (ARMAX), output er­

ror, etc. If there is significant amount of noise in the data then it could be modelled 

separately by specifying an appropriate model type. A generic input-output linear 

model for a single output system can be written as (Ljung, 2001). 

nu [Bi(q)] [C(q) ] 
A(q)y(t) = ~ Fi(q) ui(t - nki) + D(q) e(t) (3.4) 

where q is the shift operator and A(q)y(t) is short for 

()() 

A(q)y(t) = L a(k)y(t- k) (3.5) 
k= l 
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and 

00 

A(q) = L a(k)q- k; q- 1y(t) = y(t- 1) (3.6) 
k= l 

u and y are the input and output respectively, ui represents t he ith input and nu 

represents the number of input. A, Bi, C, D and Fi are polynomial in q and work as 

defined in Equation (3.5) and (3.6) , nk denotes the t ime delay in the system and e is 

the disturbance. All the above ment ioned models can be obtained from the generic 

model structure by substitut ing the appropriate values of the polynomials. 

The t hird step is identification/estimation, which involves determining the numer­

ical values of the structural parameters, which minimise t he error between t he sys­

tem to be identified , and its model. Common estimation methods are least squares 

(LS) , instrumental-variable (IV) , maximum-likelihood (MLE) and the prediction­

error method (PEM). A common criterion used in most optimization methods is 

the quadratic error function given by 

m in 
r 

1 N 
J = N L (Y(t ) - y(t))2 

i= l 

(3.7) 

where fJ is the predicted output from the model, y represents the actual output, N 

denotes the number of data points and r contains the coefficients to be estimated in 

a given model structure. 

T he final step, verification, consists of relating the system to t he ident ified model 

responses in t ime or frequency domain to instil confidence in the obtained model. 

Residual (correlation) ana lysis and cross-validation tests are generally employed for 

model validation. T he residuals E are defined as the difference between the model 

output and measured output. For a perfect model, the residuals should reduce to an 

uncorrelated sequence e with zero mean and finite variance. Correlat ion based tests 

are employed to veri fy if 

e(t) = E(t) (3.8) 
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This is achieved by verifying if the correlation functions are within the confidence 

intervals i.e. 

E [c:(t- ~~;)c:(t)] = 8(~~;) 

E [Uin(t- K)c:(t)] = 0 

(3.9) 

{3.10) 

where </J€€ and <Puin€ represents t he autocorrelation of residuals and cross correlation 

of residuals and input respectively. Uin is the excitation signal to the system and 8 is 

the dirac delta function defined as 

J(r) = { 
0 if T f= 0 

1 if T = 0 

If the cross correlation test in Equation (3.10) is not verified, this means that there 

is something in the residuals which is originating from t he input and has not been 

properly taken care of by the model and thus the model needs further t uning. 

The above-mentioned features of SI are symbolically indicated in Figure 3.13 where 

d(t) is the external noise or disturbance to the plant. SI theory is well established 

and the reader is referred to Ljung (1999) for a comprehensive treatment. 

Figure 3.13: The overall system identification procedure. 
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3.4.2 Hammerhead Trials Setup for System Identification 

The Hammerhead SI experiments (using the configuration shown in Figure 3.7) were 

designed to obtain the best possible data for model development. Ideally, the re­

quirement is to have a completely noise free data which is impossible in a real world 

environment . The Hammerhead is a low speed AUV that swims at about 2(knots). 

This gives some insight about t he sampling period to be chosen. Clearly, too high 

sampling rate in this case will give no advantage whatsoever. A sampling rate of 

l(H z) was thus chosen iteratively which is adequate to obtain ample dynamical in­

formation about the system. By the same token, the frequency for the input signal 

is chosen as O.l(Hz) which was deemed sufficient to excite the interesting modes of 

the system. 

Some common type of excitation signals used in this t hesis are uniformly distributed 

random numbers (UDRN), Figure 3.14(a), pseudo random binary sequence (PRBS), 

Figure 3.14(b), and its variants such as multistep, Figure 3.14(c) , and doublet in­

put, Figure 3.14{d). The multistep inputs are suitable to obtain the step response 

of t he vehicle with various levels of input amplitude. On the other hand, PRBS 

signal excites t he system within a range of frequencies. The response of the vehicle 

to these excitation signals wi ll be discussed in the subsequent sections. It should 

be re-emphasised here that t he Matlab environment was used for DAQ during al l SI 

trials. However, since Matlab DAQ abilit ies are limited, a sequent ial algorithm was 

developed t hat acquires data from various on-board sensors progressively rather than 

simultaneously as demonstrated in t he following pseudocodes: 

Step 1. send input to the control sUTjace 

Step 2. while time < specified duration 

1·ead depth sensor -------t read TCM2 compass-------tread !MU 

end 

Step 3. read shaft speed-------tread GPS 

Step 4- _go to Step 1 

Each of the excitation signal was applied for a specified duration during which sen­

sors data was collected. As show n in the pseudocodes above during the yaw-rudder 
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Figure 3014: (a) UDRN input, (b) 32 length PRBS input, (c) mult istep input and (d) 
doublet input for system ident ification 

channel identification trials, data was acquired from the TCM2, IMU, depth sensor, 

GPS and a shaft speed encoder. P lease note that the GPS and shaft speed encoder 

have been kept outside of the main loop. This is because the GPS samples at a 

much slower rate as compared to other sensors and therefore would reduce the overall 

sampling rate if it was placed inside t he loop. T he shaft speed encoder was employed 

here only to check the data val idi ty and to make sure that t he vehicle is not slowing 

down due to low battery power which implies a change in operating condition. T he 

data obtained during this period was therefore successfully separated using the infor­

mation from the shaft speed encoder and was not used in model identification. 

The sampling frequency obtained using this algori thm was B(H z)o T he data was 

resampled afterwards at 1 (H z) since this frequency was found adequate to control 

the Hammerhead. Moreover, it also help smoothing t he data i .e. acts as a low pass 
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filter. It was observed that during the transmission phase to the on-board actuators, 

no data could be acqujred. This is due to the limitations of Matlab. This problem 

was circumvented by leaving holes during that interval which represents the missing 

data. In addition, since there was no feedback from t he control surfaces, the t ransi­

tion from one input to the other is approximated as a ramp and appropriate values 

are inserted. The whole input/output data was later processed and the missing data 

was interpolated. Figure 3.15(a) shows data set with holes and Figure 3.15(b) depicts 

the processed data. 
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Figure 3.15: (a) Original data set and (b) interpolated data set 

3.4.3 Identification Results 

The procedure detailed in Section 3.4.2 was employed to acquire the rudder-yaw 

channel input/out put data from the Hammerhead necessary for SI. The input to t his 

channel is t he rudder deflections and t he output is t he vehicle's yaw or heading angle. 

The heading information is avai lable from the TCM2 and IMU, however, the results 

presented here are t he responses obtained from t he TCM2 only. In addition, the 

data sets shown are the original measurements at 8(H z) and has not been filtered or 

resampled. Three trial results are shown for this channel after a PRBS, a UDRN and 

a multistep inputs sent to the rudder of the vehicle. 
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Yaw data analysis 

A 32length PRBS sequence is shown in Figure 3.16(a). The response of Hammerhead 

to this input is also depicted in Figure 3.16(b) . Very useful information can be ex­

tracted from the heacting data. The negative rudder deflection as seen from the figure 

causes the vehicle to turn clockwise while its opposite in case of a posit ive rudder 

angle. The turning radius of Hammerhead is an important specification and can also 

be estimated using this data set. 
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Figure 3.16: (a) PRBS input and (b) PRBS heading 
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Figure 3.17: (a) UDRN input and (b) UDRN heading 

T he UDRN input and t he vehicle's response is depicted in Figure 3.17(a) and 3.17(b). 

T his provides several step responses of Hammerhead for various levels of input. Look­

ing closely at t he response plot, the vehicle course changes for a zero rudder deflection. 
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T here could be at least two possible reasons for t his type of behaviour. Firstly, t he 

surface currents can push the vehicle without any current compensation or closed 

loop controL Secondly, since t he proximity sensors were not installed at the time of 

t he experiments, t he rudder was being ini tialised by observation and hence the exact 

posit ion of the rudder was uncertain. 

Finally, the multistep input in Figure 3.18(a) was used to excite the Hammerhead 

dynamics and t he response was recorded in Figure 3.18(b). Again the vehicle head­

ing changes for zero rudder deflection due to the reasons ment ioned above. 

3.4.4 Modelling of Rudder-Yaw Channel 

Once suitable data sets were selected , attent ion was t urned towards estimating a 

model that could best replicate the systems behaviour. All available measurements 

were pre-filtered and resampled at 1 ( H z) before resuming t he work on system iden­

t ification. For t he purpose of this work, first to tenth order state space models were 

ident ified. T heir propert ies are shown in Appendbc B. Careful observation on each 

individual model properties leads to the conclusion t hat state space models with or­

der higher than two bring inconsequential improvement to the quali ty of t he models. 

More on model properties will be discussed shortly in the next section. 



The ident ified second order state space model is 
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(3.11) 

(3.12) 

where x, u and y are the state vector (yaw and delayed yaw), the input (rudder 

deflection) and the output (yaw). The mat rices A, B and H are given by 

A = [ -0 9831~ !983: ] ' B = [ ~:.~:::!19165 ] ' H = [ I O l 

3.4.5 Model Validation 

Validation of t he estimated model is the final step in an SI process. Various techniques 

are employed to measure the model quality and its capabiUty to predict accurately 

the measured response. Correlation tests are performed to validate if all the inter­

esting vehicle dynamics have been captured by the model. On the other hand, cross 

validation test is performed to gauge the predicting capacity of the model. In this 

test, data not used for SI is applied to the model and the degree of fi t between simu­

lated output and measured response is computed and expressed in per cent. 

T he correlat ion tests of the yaw-rudder channel model is performed and the results 

a re shown in F igure 3.19. The cross correlation function (CCF) falls within the 95% 

confidence intervals indicating that there is no correlation between t he input and the 

residuals. Higher order models could provide autocorrelation (ACF) that falls more 

inside the 95% confidence interval (refer to Appendix B), however t he model ident i­

fied previously was deemed adequate for further analysis. Next, four cross val idation 

tests are performed for t his channel and are shown in Figure 3.20. T he simulated 

outputs as seen from the figures matches reasonably well with t he measured outputs. 

T here are some discrepancies though evident from the figures due to the effect of 

surface currents on different data sets during the trials. A higher order model may 

not give any significant improvement over t he estimated model, as t heir difference in 

t he degree of fit, as shown in Table 3.6, is infinitesimal. T herefore, robust controllers 

need to be developed for t he selected model which should be able to cope with any 

discrepancies and disturbances. 
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Figure 3.20: Cross validation test for yaw-rudder channel using different sets of data 

whose fit between the simulated and measured outputs are respectively (a) 83.188%, 

(b) 70.887%, (c) 70.196% and (d) 51.915% 



Order 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Fit 
83.1888% 
81.9476% 
81.5526% 
82.3896% 
83.5926% 
82.6636% 
83.2953% 
83.2608% 
83.0287% 
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Table 3.6: The degree of fi t between simulated output and measured response of the 
identified Hammerhead AUV models 

3.4.6 Model Analysis 

The SI approach is a black box modelling technique meaning t hat no physical quan­

t it ies a re directly involved in this process in cont rast to mathematical modelling. All 

that is of interest is the cause and effect phenomena and then identifying the black 

box in between, t hat can reproduce the measured system output as closely as possible 

for the same input . Some insight can be gained into systems behaviour by analysing 

the estimated model. The coefficients of the model, though, do not have any direct 

physical interpretation but they are yjtal in studying the nature of t he system. The 

numerator coefficients, fo r instance, provide t he zeros of the plant. For many appl i­

cations, the plant needs to be minimum phase, i.e., all zeros must lie within the unit 

circle. T he denominator coefficients, on the other hand, determine the pole locations 

in t he z-plane. A pole outside the unit circle indicates an unstable system, therefore 

the system needs to be stabilised through closed loop cont rol. 

T he pole zero plot of the rudder-yaw channel is shown in Figure 3.21(a) , which clearly 

shows that t his is a minimum phase system. However, the plant is marginally stable 

due to the presence of a pole on the unit circle. T he step response, which is shown 

in Figure 3.21(b) , displays a particular behaviour, which generally belongs to an in­

tegrator type of system where the output is produced by integrating the input. T his 

behaviour is mainly caused by the presence of a pole at the axis of t he unit circle 

(z = 1 or equivalent to s = 0), which along with t he step input will form a ramp 
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Figure 3.21: (a) Pole zero plot for the rudder-yaw channel model, (b) step response 
of the rudder-yaw channel model and (c) impulse response of the rudder-yaw channel 
model 

function, whose output magnitude can increase wit hout bound as t ime progresses. 

The actual motion of the Hammerhead vehicle in response to a step input can be il­

lustrated as a vehicle moving in a circle, whose heading grows from O(deg) to 360(deg) 

for one circular motion and continue growing as the number of complete circular mo­

tion (denoted as m) increases. For example for m = 2, the heading will grow fTOm 

360(deg) to 720(deg) (i.e, the second O(deg) to 360(deg) circular movement). This 

behaviour is shmvn in Figure 3.22. Similar types of marginally stable AUV systems 

(where one pole lie on z = 1 or s = 0) can be found in t he literature. T he Subzero 

II (Lea, 1998), the Aries (Healey and Lienard, 1993; Healey and Marco, 2001) and 

the Phoenix (Ni, 2001) are to name a few. The step response of the other identified 

models is given in Appendix B. 
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Figm e 3.22: m-circular motion of the vehicle, wit h m= 1,2, ... , as a response to a step 
input 
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The impulse response of the model is shown in Figure 3.21{c) . The actual motion 

of the Hammerhead vehicle can be illustrated as shown in Figure 3.23. T he vehicle 

moves slightly to the left in response to an instantaneous input to the rudder and 

maintains this heading as t he rudder returns to its original posit ion. T he complete 

impulse response of the higher order systems is given in Appendix B. 

3.5 CONCLUDING REMARKS 

This chapter began with a discussion on the evolution of the structme of t he Ham­

m erhead AUV. It was developed on the structure of a DMT, and with subsequent 

modification and addition of hardware and sensor, the DMT was transformed to a 

semi-autonomous underwater vehicle. The hardware setup at this stage was similar 

to that in ROVs. Here sensor data and control action are still transferred through a 

tether and processed in an off-board CPU. Further development eliminated the need 

for a tether, and the vehicle was able to operate in a full autonomous mode. In de­

veloping an integrated navigat ion, guidance and cont rol, several full scale trials were 

conducted for the purpose of obtaining a dynamic model of the vehicle. Taking into 

consideration the physical characteristics and the facilities avai lable, it was decided to 

adopt SI approaches. The details of the sensors used for this purpose were discussed. 

Chapter 4 and 5 present respectively the results from the simulation and pseudo 

real-time implementation of the proposed adapt ive Kalman filtering. Both employ 

a dynamic model of t he vehicle developed using the SI approaches discussed in t his 

chapter. Pseudo real-time implementation of the proposed techniques in Chapter 5 

also makes use a set of data collected using the hardware setup described herein. 



CHAPTER4 

FUZZY KALMAN FILTER MULTIOBJECTIVE GENETIC 

ALGORJTHM: SIMULATION 

4.1 INTRODUCTION 
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It is clear from the discussion in Chapter 2 that to achieve t ruly autonomous be­

haviour, an AUV must be able to locate itself accurately during an operating scenario 

using only its on-board sensors. In the past, fusing the data produced by different 

navigation sensors through the use of a KF has been a popular met hod for most nav­

igation system mechanizations (Kayton, 1997), and this is particularly true for AUVs 

(Loebis et al., 2002). Even in condit ions where t he KF does not perform very well it 

is often used as a benchmark for more custom-made and specialised filters. This is 

due to the properties of t he KF which makes it very useful and easy to implement. 

In its basic form it allows measurement of different dimensions, observing different 

subsets of the system and arriving at different times and frequencies to be fused. 

Furthermore, it allows both measurement and process equations to be t ime variant 

and it yields the optimal state estimate when operating under Gaussian and linear 

condit ions. However, a significant difficulty in designing a KF can often be traced 

to incomplete a priori knowledge of the process covariance matrix Q and measure­

ment noise covariance matrix R. In most practical applications, these matrices are 

ini t ially estimated or even unknown. Several examples of these applications are given 

in Chapter 2. The problem here is that the optimality of the estimation algorithm in 

t he KF setting is closely connected to the quality of a priori information about the 

process and measurement noise (Mehra, 1970; Mehra, 1971). It has been shown that 

insufficiently known a priori fi lter statistics can reduce the precision of the estimated 

fi lter states or int roduces biases to their estimates. In addition, incorrect a priori 

informat ion can lead to practical divergence of the filter (Fitzgerald, 1971). From 
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the aforement ioned it may be argued that the conventional KF with fixed R and/or 

Q should be replaced by an adaptive estimation formulation and this is the main 

discussion of the next sections. To maintain the clarity of the forthcoming discussion 

on this subject, a hands-on reference to the formulae in the basic discrete Kalman 

filtering algorithm is provided in Appendix D. Readers who are interested on t he 

details of the derivation are referred to Gelb (1989), and Brown and Hwang (1997). 

4.2 THE ADAPTIVE KALMAN FILTER ALGORITHM 

Adaptive Kalman filtering has attracted an enormous research interest and accord­

ingly a number of papers have been published in this area. The two major ap­

proaches that have been proposed for adaptive Kalman filtering are multiple model 

adaptive estimation (MMAE) (Magill, 1965; Maybeck and Hanlon, 1995; Wheaton 

and Maybeck, 1995; Eide, 1996; Chaer et al., 1997; Chaer et al., 1998; Schiller and 

Maybeck, 1997; Hanlon and Maybeck, 1998; Hanlon and Maybeck, 2000a; Hanlon 

and Maybeck, 2000b; Vazquez and Maybeck, 2004) and innovation adaptive estima­

tion (IAE)(Jazwinski, 1969; Mehra, 1970; Mehra, 1971; Mehra, 1972; Boozer and 

McDaniel-Jr., 1972; Tsai and Kurz, 1983; Alspach, 1973; Kumar et al., 1991; Chen 

and Chui , 1990; Xia et al. , 1994; King et al., 1994; Liang et al. , 2004) . Alt hough 

the implementation of these approaches are quite different, they both share the same 

concept of ut ilising new statistical information obtained from the innovation (or resid­

ual) sequence. In both cases, the innovation Innk at sample time k is the difference 

between the real-measurement zk, received by the filter and its estimated (predicted) 

value ik. The predicted measurement is the projection of the fil ter predicted states 

ij; onto the measurement space through the measurement design matrix H k. Inno­

vation represents addi t ional information avai lable to the fil ter as a result of the new 

measurement zk· The occurrence of data with statistics different from t he a priori 

information will first show up in the innovation vector. For this reason t he innovation 

sequence represents t he information content in the new observation and is considered 

the most relevant source of information to the filter adaptation. Interested readers 

can refer to Kailath (1968a), Kailath (1968b), and Kai lath (1970) for a more detailed 

discussion on the innovation sequence and its use in linear fil ter theory. 
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In the MMAE approach, a bank of Kalman filters run in parallel (Magill, 1965; May­

beck and Hanlon, 1995; Wbeaton and Maybeck, 1995; Eide, 1996; Schiller and 

Maybeck, 1997; Hanlon and Maybeck, 1998; Hanlon and Maybeck, 2000a; Ban­

Ion and Maybeck, 2000b; Vazquez and Maybeck, 2004) or with a gating algo­

rithm (Chaer et al., 1997; Chaer et al., 1998) under a different model for the 

statistical filter information matrices, i.e. Q and R. In the IAE approach, the 

Q and R themselves are adapted as measurements evolve with time. In this 

chapter, the IAE approach pioneered by J azwinski (1969) and popularized by 

(Mehra, 1970; Mehra, 1971; Mehra, 1972) coupled with fuzzy logic techniques de­

scribed in Appendix E is used to adjust the R matrix of the KF. 

The fuzzy logic membership functions for the IAE approach are initially established 

by a combinat ion of knowledge, experience and observation and may thus not be 

optimal. Additionally, fine-tuning of its performance is still a matter of t rial and 

error. Many studies have shown that genetic algorithms (described in Appendix F) 

have the ability to find fuzzy membership functions closer to optimal solutions and 

may be made to implement self-tuning and adaptive schemes (Cordon et al., 1998). 

However, the work in this thesis is the first known use of the mult iobject ive genetic 

algorithm proposed by Fonseca and Fleming (1995) (also described in Appendix F) 

for the optimization of the membership function of a fuzzy system used for the adap­

tation of an assumed KF measurement noise characteristic. Thus, this is considered 

as the major contribution of this particular study in relation to AUV technology. 

4.3 FUZZY KALMAN FILTER 

In this section, an on-line innovation-based adaptive scheme of the KF to adjust the R 

matrix employing the principles of fuzzy logic is presented. T he fuzzy logic is chosen 

mainly because of its simplicity and closeness to human reasoning. T hese enable a 

satisfactory performance being developed empirically in practice without complicated 

mathematics. T hese have motivated the interest in the topic, as testified by related 
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articles which have been appearing in the literat ure (Loebis et al., 2004b; Escamilla­

Ambrosio and Mort, 2001 ; Jetto et al., 1999; Kobayashi et al., 1998). 

The fuzzy logic Kalman fi lter (FKF) proposed herein is based on the IAE approach 

using a technique known as covariance-matching (Mehra, 1970) . T he basic idea be­

hind t he technique is to make the actual value of the covariance of t he innovation 

sequences match its theoret ical value. 

The actual covariance is defined as an approximation of the Innk sample covari­

ance through averaging inside a moving estimation window of size M (Mohamed and 

Schwarz, 1999) which takes the following form : 

k 

A 1 '"' T C Inn~o = M ~ Innk · Innk 
i =io 

(4.1) 

where j0 = k - M + 1 is the first sample inside t he estimation window. An empirical 

heuristic experiment is conducted to choose t he window size M t hat is adequate to 

capture the dynamic of the Innk actual covariance. From experiment ation it was 

found t hat a good size for t he moving window in Equation (4.1) used in this thesis is 

15. The value of M is dependent on the dynamic of t he Innk and therefore can vary 

for different types of applications. 

T he theoretical covariance of the innovation sequence is defined as (Mehra, 1970) : 

(4.2) 

T he logic of t he adaptation algori thm using covariance matching technique can be 

qualitatively described as follows. If the actual covariance value C lnnk is observed , 

whose value is within the range predicted by theory Sk and the difference is very near 

to zero, this indkates that both covariances match almost perfectly and only a small 

change is needed to be made on the value of R. If the actual covariance is greater t han 

its theoretical value, the value of R should be decreased. On t he contrary, if C lnnk is 

less than Sk. the value of R should be increased. This adjustment mechanism lends 
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itself very well to being dealt wit h using a fuzzy-logic approach (Escamilla-Ambrosio 

and Mort, 2001): 

IF (antecedent ) THEN (consequent ) (4.3) 

To implement the above covariance matching t echnique using the fuzzy logic ap­

proach, a new variable called deltak, is defined to detect t he discrepancy between 

C1nnk and Sk. T he following fuzzy rules of the kind of Equation (4.3) are used: 

IF (deltak ~ 0) THEN (R k is unchanged) 

IF (deltak > 0) THEN (R k is decreased) 

IF (deltak < 0) THEN (R k is increased) 

Thus R is adjusted according to, 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where ~Rk is added or subtracted from R at each instant of t ime. Here deltak is 

the input to the fuzzy inference system (FIS) and ~Rk is the output. 

On t he basis of the above adaptation hypothesis, the FIS can be implemented using 

t hree fuzzy sets for deltak ; N = Negative, Z = Zero and P = P ositive. For ~Rk 

the fuzzy sets are specified as I = Increase, M = Maintain and D = Decrease. T he 

membership functions of t hese fuzzy sets which are first designed using a heuristic 

approach are shown in Figure 4.1(a) and 4.1 (b). 

- 0.015 0.00 0.015- 0.135 - 0.033 0.033 0.135 

(a) (b) 

Figure 4.1: Membership function of (a) deltak and (b) ~Rk 
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4.4 FUZZY LOGIC OBSERVER 

To monitor the performance of a FKF, another FIS called the fuzzy logic observer 

(FLO) (Escamilla-Ambrosio and Mort, 2001) is used. The FLO assigns a weight or 

degree of confidence denoted as ck, a number on the interval [0,1], to t he FKF state 

estimate. The FLO is implemented using two inputs: the values of ldeltakl and Rk· 

The membership functions of these variables are shown Figure 4.2(a) and 4.2(b) . 

z s L 

0 0.1 0.3 0 2 

(a) (b) 

Figure 4.2: Membership function of (a) ldeltak l and (b) Rk 

The fuzzy labels for the membership functions: Z = Zero, S = Small and L = Large. 

Three fuz:1.y singletons are defined for the output Ck and are labelled as G = Good, AV 

= Average and P = Poor with values 1, 0.5 and 0 respectively. The basic heuristic 

hypothesis for the FLO is as follows: if the value of ldeltakl is near to zero and 

the value of Rk is near to zero, then the FKF works almost perfectly and the state 

estimate of the F KF is assigned a weight near 1. On the contrary if one or both of 

these values increases far from zero, it means that the FKF performance is degrading 

and the FLO assigns a weight near 0. Table 4.1 gives the complete fuzzy rule base of 

each FLO. 

Rk z s L 
ldeltalk 
z G G AV 
s G AV p 
L AV p p 

Table 4.1: Fuzzy rule based FLO 
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4.5 FUZZY MEMBERSHIP FUNCTIONS OPTIMIZATION 

GAs in single- and mult iobject ive mode are used here to optimize the membership 

functions of the FKF. To t ranslate the FKF membership functions to a representation 

useful as genetic material, they are parameterised with real-valued variables. Each 

of these variables constit utes a gene of the chromosomes (concurrent multiple search 

points (refer to Appendix F)) for the MOGA. Boundaries of chromosomes are required 

for the creation of chromosomes in the right limits so that the MOGA is not misled 

to some other area of search space. The technique adopted in t his thesis is to define 

the boundaries of the output membership functions according to the furthest points 

and t he crossover points of two adjacent membership functions. In other words, the 

boundaries of FKF consist of three real-valued chromosomes ( Chs) , as in Figure 4.3. 

The trapezoidal membership functions' two furthest points, -0.135 (D1), -0.135 (D2 ) 

D I 

-0.135 0.135 

-0.033 0. 000 0. 033 

Figure 4.3: Membership function and boundaries of Rk 

and 0.135 (13) , 0.135 (14 ) of FKF, remain the same in the GA's descript ion to allow 

a similar representation as the fuzzy system's definition . As can be seen from Figure 

4.3, D3 and M1 can change value in the pt Ch boundary, D4 , M2 and 11 in the 2nd 

Ch boundary, and final ly, M3 and 12 in 3rd Ch. Table 4.2 shows t he encoding used 

for optimization of the membership fun ctions. 



Limit 

Upper Limit 
Lower Limit 

-0.135 
-0.033 

Parameter 
D4, M2, J1 

-0.033 
0.033 

Table 4.2: FKF boundaries 

4.6 FUSION OF INS SENSOR DATA 

0.033 
0.135 
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In this section, the FKF technique is applied to maintain the optimality of an AUV 

heading estimation process. The FLO, will then be used subsequent ly to fuse t he 

estimated heading values. To this end, t he Hammerhead dynamic model in Equat ion 

( 4.8) obtained using system identification procedures discussed in the previous chap­

ter (with further details given in Naeem (2004)), is employed. It is assumed in t his 

model that the forward velocity of the vehicle is constant at 1(m/sec) and the vehicle 

is not at an angle of roll and pitch. 

A= [ -0;8312 !9~31 ] ;B = [ =~~~:~~~~ ] ;H = [I O] (
4

·
8
) 

Here yaw and delayed yaw as the component of the states. The w and v are both zero 

mean white noise for the process and measurement models respectively and input to 

the system is 8r (rudder deflection). T he initial conditions are: 

Xo- ,Po -_ [ O(rad) ] . _ [ O.Ol(rad)
2 

O(rad) 0 
(4.9) 

and Q k is made constant as 

0.1725 x ~o-'(rad)' ] (4.10) 

The values of P 0 and Qk are determined heuristically. In real-time applications, the 

Qk values are dependent on temporal and spatial variations in the environment such 

as sea condit ions, ocean current, and local magnetic variations and therefore, appro­

priate adjustments to the initial values of Q also need to be undertaken. However , 
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given the fact that the Hammerhead AUV mostly operates in a stable environment, 

the problem with the Q adjustment is reserved for future work. 

To the Hammherhead model described in Equation (4.8) a sinusoidal input was ap­

plied. Four yaw sensors with different noise characteristics are considered to measure 

the response of the vehicle. The actual value of R for each yaw sensor is assumed 

unknown but its initial value is selected as O.Ol(rad)2. The FKF algorithm optimized 

using a MOGA with parameters shown in Table 4.3 was then implemented with t he 

trade-off graph shown in Figure 4.4 and simulation results shown in t he next section. 

The M OG A parameters used herein were chosen heuristically after exhaustive tests 

and no significant improvement can be achieved by adjusting these values. 

Parameters 
Number of objective functions 
Number of generation 
Number of individual per generation 
Generation gap in selection operation 
Rate in rate in recombination operation 
Rate in mutation operat ion 

Table 4.3: MOGA parameters 

'\ RMSE SENSOR t '\ RMSE SENSOR 2 '\ RMSE SENSOR 3 
•D.OIOO(rad) •0.0190(rad) • O.OttO(rad) 

GOAlRMSE GOAlRMSE GOAl RMSE SENSOR 
SENSOR I SENSOR2 3 

• 0.0050(rod) • 0.0095(rad) = 0.0055{rad) 

I I I 
~ - --

Values 
5 
200 
25 
0.95 
0.8 
0.09 

'\ RMSE SENSOR 4 
• O.Ot 22(rad) 

GOAl RMSE SENSOR 
4 

I 
= 0.0061(rad) 

'\ RMSE SENSOR 
FUSED 

• 0.0088(rad) 

GOAl RMSE SENSOR 
FUSED 

I 
~ 00044{rad) 

,...... 2.-·-·-· -== -:::-. 

--~-

I 

--.-

RMSE SENSOR I 
• O.OOOO(rad) I 

2 

RMSE SENSOR 2 RMSE SENSOR 3 
• 0 OOOO(rad) I • O.OOOO(rad) 

3 
Objective no. 

RMSE SENSOR 4 

I • O.OOOO(rad) 

4 

Figure 4.4: Trade-off graph for FKF search 

RMSESENSOR I FUSED 
• O.OOOO(rad) 

5 
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4. 7 SIMULATION RESULTS 

Figure 4.4 and 4.5 are the simulation results showing the response of the AUV ob­

served by sensors with constant Gaussian noise, while Figure 4.6 and 4.7 by sensors 

with uniform noise increasing and decreasing with t ime respectively. These types of 

noise are included in t he simulation to demonstrate the effectiveness of the proposed 

adaptation mechanism in general. A possible real-time scenario that can result in 

the noise with the characteristic shown in Figure 4.6 is the third yaw sensor located 

in close proximity to an electronic hardware such as the vehicle's propeller DC mo­

tor whose internal temperat ure increases with time and affects the sensor ambient 

temperature. A similar scenario can also occur when t he fourth yaw sensor (Figure 

4.7) is located in close proximity to another vehicle's electron~~ hardware such as the 

laser unit used in the VNS whose init ial internal temperature is high and settles down 

after sometime. Figure 4.8 shows the values of R after t he FKF has been run. Figure 

4.4 and 4.7 also show several peaks in the simulations of sensors 1 and 4. T hese are 

to indicate faul ts in t he sensor. There are two types of fault defined in this simula­

tion work, t ransient and persistent faults (Escamilla-Ambrosio and Mort, 2001). A 

transient fault happens when the sensor output increases abrupt ly for only a sample 

period of time. Persistent fau lts occur when t he t ransient faults persist for a period 

of t ime. Consequently, the peaks in sensor-1 and sensor-4 simulations show the per­

sistent and t ransient faults respectively. Figure 4.4(b) and Figure 4. 7(b) provide a 

closer look on t he indicated areas in Figure 4.4(a) and 4.7(a) respectively. It is clear 

in both cases t hat the algorithms have detected faults in the system and appropriate 

actions have been undertaken to recover the signals. Direct observation on F igure 4.4 

- 4.7 shows how the proposed method has significantly reduced the level of error in 

the system. To fuse the estimated yaw, a cent re of gravity method is used, 

(4.11) 

where Zki is the output of the i-th FKF (i=1,2,3,4) and cki is the respective weight 

at instant time k. 



'0 
~ 
:; 
% 
0 - 0.8 

-1 

-1 .2 
0 

0.3 

~ 
0. 

g 
w 
?!; ., 
>-

- 0.1 
0 

0.15 
0.1 

50 100 150 200 250 300 
Time (sec) 

350 400 450 500 

- measured error 
- estimated error . . 

······-:··· ·· ·····=-······ ···.········-:·-·······;·········:···· ···<·········<······· ·· . . . . . . . . . . 
I . . . . . . 

. . . . .. .. ......... :. . . . . .... : .......... : . . . . . . .. ; ........ ; ......... ~ ... . 
~ 
I 

50 100 150 200 250 300 350 400 450 500 
Time (sec) 

(a) 

. . . ........•...................•... .....• . . 
. . . ... ~ . . . . . . ~ . . . . ......... . 

~ 0.05 

~~~~~~ 

5 10 15 20 25 30 35 40 45 50 
Time (sec) 

0.15 ··-··-····--·· -·' ·····-··· .... 

'0 
~ 0.1 .. ···•··· ... . : ..... .. ' . .. ··' 
g 

0.05 w 
?!; ., 
>-

-0.05 
5 10 15 20 25 30 35 40 45 50 

Time (sec) 

(b) 

74 

Figure 4.4: (a) Measured and estimated yaw output and error of sensor-1 , (b) mea­

sured and recovered yaw output and error of sensor-1 
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Figure 4.5: Measured and estimated yaw output and error of sensor-2 
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Figure 4.6: Measured and estimated yaw output and error of sensor-3 
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Figure 4.7: (a) Measured and estimated yaw output and error of sensor 4, (b) mea­

sured and recovered yaw output and error of sensor-4 
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Finally, the following performance measure are adopted for comparison purposes, 

(4.12) 

(4.13) 

where zak is the actual value of the yaw, zk is the measured yaw, Zk is the estimated 

yaw at an instant of time k and n = number of samples. Table 4.4 shows the compar­

ison of performance of each individual measured sensor output with the one obtained 

usi ng standard FKF and FKF optirnized using MOGA (FKF-MOGA) respectively. 
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Sensor Jzv(rad) Jze(rad) 
GA MOGA 

p l 2na 3ra 

Sensor-1 0.02669 0.01910 0.00469 0.00466 0.00470 
Sensor-2 0.03998 0.00876 0.00877 0.00877 0.00876 
Sensor-3 0.01733 0.00494 0.00498 0.00501 0.00500 
Sensor-4 0.02093 0.00507 0.00487 0.00487 0.00487 

Fused 0.00350 0.00372 0.00373 0.00373 

Table 4.4: Comparison of performance 

A further comparison is also made between the performance of the fused sensor out­

puts obtained using both FKF schemes. A first look on the table shows that l ze of 

each indjvidual sensor always outperforms Jzv · Most important ly is t hat every single 

lze of the fused sensor output from both FKF schemes outperforms its individual 

sensor counterpart . It is also clear that the MOGA optimization techniques have 

significantly increased the performance of sensor-1 as indicated by t he correspondjng 

l ze-s. T he FKF-MOGA Jze-S of sensor-4 also show a similar t rend of improvement, 

although not as good as the ones produced by sensor-1. The Jze-S of sensor-2 and 

sensor-3 in the FKF-MOGA case are slight ly inferior compared to t hose in the stan­

dard FKF case. T his stems from the non-dominated nature of M OG A solutions for 

which an improvement in one objective will lead to a degradation in one or more 

other objectives as discussed in Appendix F . 

4.8 GPS/INS SURFACE (2D) NAVIGATION 

Here, t he fused estimated yaw obtained previously is t reated as a single imaginary 

yaw sensor and used by other INS sensors to transform data from a body co-ordinate 

to a geographica l (Nort h-East-Down/NED) co-ordinate frame (see Appendix G for 

detai ls) where integration with converted GPS data is performed using a combination 

of FKF and EKF techniques and can be referred to as fuzzy extended Kalman fil ­

ter(FEKF) . Figure 4.9 shows t his relationship and serves as an overall representation 

of the algorithms that have been discussed so far. 

A cont inuous t ime model of the vehicle motion appropriate to this problem is taken 
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Figure 4.9: Block diagram of GPS/INS using FKF and FEKF 

X(t) = F(X(t)) + W(t) 

Z(t) = H(X(t)) + V(t) 
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(4.14) 

(4.15) 

Denoted by X(t) = [ XNEo(t) YN Eo(t) 1/Jim(t) r(t) u(t) v(t) ]T are the model 

states. XNEo(t) and YNED(t) are the longitude and latitude of the AUV posit ion 

converted from deg-min-sec in an Ear th-centered Earth-fixed co-ordinate frame into 

metres in the NED co-ordinate frame, 1/Jim(t) is the yaw angle obtained from the 

imaginary yaw sensor, r(t) is yaw rate, u(t) and v(t) are the surge and sway velocity 

respectively. In this system model, F(-) and H(-) are both continuo11s function , con­

tinuously differentiable in X(t). The W(t) and V(t) are both zero mean white noise 
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for the system and measurement models respectively. The model states are related 

th rough the following kinematically based set of functions (F(X(t))) in Equation 

(4.14): 

u(t) = o 

v(t) = o 

~im(t) = r(t) 

r(t) = o 

X N ED( t) = u( t) cos 1/Jim ( t) - v(t) sin 1/Jim ( t) 

YNEo(t) = u(t) sin 1/Jim (t) + v(t) cos1/Jim(t) 

{4 .16) 

(4.17) 

(4.18) 

{4.19) 

{4.20) 

(4.21) 

The output measurements are related through the states by the identity matrix 

(H(X(t)). To obtain an EKF with an effective state prediction equation in a simple 

form , t he continuous time model of Equations (4.16) - (4.21) have been linearised 

about the current state estimates, producing: 

Ftin(t) = 

0 0 -u(t) sin 1/Jim(t)- v(t ) cos1/Jim(t) 0 COS 1/Jim { t) -sin 1/Jim (t) 

0 0 u(t) cos1/Jim(t)- v(t) sin 1/Jim(t) 0 sin 1/Jim ( t) COS 1/Jim ( t) 
0 0 0 1 0 0 

(4.22) 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

and Htin(t) is an identity matrix (where Flin and Htin equivalent to A and H). 

Subsequent discretisation with period T = 0.125{sec) of the linearised model results 

in an EKF algorithm (see Appendix D for details) only this t ime the A is updated 

at every iteration. T he initial conditions are: 
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Po = 

O.Ol(m)2 0 0 0 0 0 

0 O.Ol(m)2 0 0 0 0 

0 0 O.Ol(rad)2 0 0 0 
(4.23) 

0 0 0 0.01 (rad/ sec)2 0 0 

0 0 0 0 0.01 (m/ sec)2 

0 0 0 0 0 O.Ol(m/ sec)2 

and Q is made constant as 

10(m)2 0 0 0 0 0 

0 10(m)2 0 0 0 0 

0 0 0.000001 (rad)2 0 0 0 
(4.24) 

0 0 0 0.01 (rad/ sec)2 0 0 

0 0 0 0 O.Ol(m/ sec)2 

0 0 0 0 0 0.01 (m/ sec)2 

As in the case of fusion of INS sensor data discussed previously, t he values of P 0 and 

Q here are also determined heuristically. The initial value of R is selected as 

20.18(m)2 0 0 0 0 0 

0 3.3(m)2 0 0 0 0 

0 0 O(rad)2 0 0 0 

0 0 0 O(rad/ sec)2 0 0 

0 0 0 0 0.000009(m/ sec)2 0 

0 0 0 0 0 0.000016{m/ sec)2 

(4.25) 

T he val ues of R (l, 1) and R (2, 2) a re determined by error analysis of the output of 

a n actual GARMIN GPS 15LW receiver over a period of severa l hours at the Uni­

versity of Plymouth testing-site with Latitude 50(deg) 22(min) 33.0552(sec) North 

a nd Longitude 004(deg) 08(min) 21.1438(sec) West. To generate the error time se­

ries shown in Figure 4.1 0, the degrees- minutes- seconds of difference between the 

output of the receiver and the actual known position was converted into metres, using 

methods avai lable in the li terature (Kennedy, 2002). R (5, 5) and R (6, 6) are chosen 

to represent the R of an RDI Navigator Dapper Velocity Log at 1200(kH z)(Grenon 
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rme(sec) rme(~«) 

(a) (b) 

Figure 4.10: (a) Longitude error, (b) latitude error 

et al. , 2001) . As the output from the imaginary yaw sensor assumed to be noise 

free, the init ial values of R(3,3) and R(4,4) are selected as O(rad)2 and O(radjsec)2 

respectively. 

The FKF algori thm from Section 4.2 is then implemented, only this t ime the adapta­

tion of the ( i, i)- th element of R k is made in accordance with the ( i, i)- th element of 

deltak. Here a single-input-single-output (SISO) FIS as shown in Figure 4.1, is used 

sequentially to generate t he correction factors for t he elements in t he main diagonal 

of R as t he following, 

( 4.26) 

F igure 4.11 and 4.12 are the simulation resul ts showing the AUV trajectory operating 

on the surface at the start and the end of its mission. The longitude and lat itude 

of the vehicle during the course of the mission are simulated being observed by the 

on-board GPS receiver wi th constant Gaussian noise with R values lower than the 

assumed ini tial values. On the contrary, the vehicle's surge and sway velocity are 

simulated being observed by a Doppler velocity log (DVL) with constant Gaussian 

noise with R values much higher than the assumed init ial values. This logically 

will cause less weight being put on the position obtained by GPS and more on the 

prediction of posit ion obtained from dead reckoning method (using DVL data) at 
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Figure 4.11: (a) Initial AUV trajectory using (a) standard EKF (b) FEKF 
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the start of the simulation and conversely towards the end. Figure 4.11(a) shows 

how the EKF make a relatively slower adjustments to t he R values compared to the 

adjustments made by the FEKF shown in Figure 4.11(b). It is clear here that only 

after a few sample of time, the FEKF has learned the true nature of the sensors 

noise and put more weight on the position obtained by the GPS receiver than on the 

prediction of position obtained by dead reckoning accordingly. Figure 4.12(a) shows 

how the EKF has still some 'confidence' on the dead reckoned position at the end of 

the simulated trajectory, while the FEKF shown in Figure 4.12(b) has put 100 per 

cent confidence on t he GPS position. The EKF results in an estimated trajectory 

with IlMSE of0.6157(m) for longitude and 0.2626(m) for latitude. With the proposed 

FEKF adaptation, the RMSE for longitude is 0.1098(m) and 0.0158(m) for latitude. 

4.9 CONCLUDING REMARKS 

T he problem with incomplete a priori knowledge of R has been considered. Within 

this chapter, an adaptive Kalman filter approach, based on the filter innovation se­

quence coupled with fuzzy logic has been optimized using a MOGA and is discussed 

as an alternative for fusing INS sensor data and integrating GPS/INS position infor­

mation. Implementation of this approach to the Hammerhead AUV heading model, 

whose responses are measured with sensors with different noise characteristics, has 

shown a significant result in improving the estimation of an individual KF. In Chapter 

5, t he principle of FKF and FEKF will be validated using real data obtained from 

several full scale trials. The performance of the algorithm will be tested not only on 

a surface (2D) scenario, but also on a surface-depth (3D) scenario. 



CHAPTER 5 

FUZZY KALMAN FILTER MULTIOBJECTIVE 

GENETIC ALGORITHM: A PSEUDO REAL-TIME 

IMPLEMENTATION 

5.1 INTRODUCTION 
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Chapter 4 has shown the efficacy of the proposed FKF-MOGA technique to improve 

the accuracy of the Hammerhead integrated GPS/INS in a simulation environment. 

However, the real challenge lies in the application of t he techniques to the real world. 

Real-time computations of a KF must take less time to execute than t he t ime interval 

containing the total number of measurements processed by that KF. The consequences 

if t his were not t rue are either only a reduced number of measurements are processed 

by the KF to keep up with the progression of time or the KF will insist on processing 

everything presented to it and gradually fall behind in t he t imeliness of computing 

its solution. The former, a lt hough maybe a suboptimal one, can still be considered 

as a real-time KF. The latter is certainly no longer considered as real-time KF. 

The TCM2 electronic compass and the IMU on board the vehicle can produce heading 

data at B(H z), if acquired by MATLAB RS232/serial port I/0 faci lity running in a 

Pentium-4 (1.6(GHz)) laptop. Runnjng under the same hardware specification , the 

simulation of t he FKF-MOGA with the parameters shown in Table 5.1, can only pro­

duce a result at approxjmately 0.88(H z) or one solution at every 1.136(sec). These 

facts prevent the FKF-MOGA from being implemented even in a suboptimal level of 

a real-t ime KF. Therefore it was decided to emulate t he real-time implementation of 

t he FKF-MOGA by applying the algorithm in a simulation environment with sensor 

updates coming from real sensor data acquired during full scale trials. In this thesis, 



Parameters 
Number of objective functions 
Number of generation 
Number of individual per generation 
Generation gap in selection operation 
Rate in rate in recombination operation 
Rate in mutation operation 

Table 5.1: MOGA parameters 

Values 
5 
5 
5 
0.95 
0.8 
0.09 
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this method is referred to as pseudo real-time application of the FKF-MOGA. Ad­

ditionally, in this chapter, the algorit hm is not only applied to provide an enhanced 

accuracy for the Hammerhead integrated GPS/INS for a surface (2D) mission , but 

also for a surface-depth (3D) mission. It will be clear from the forthcoming discus­

sions and presented results t hat the proposed algorithm can perform equally well in 

both cases. 

5.2 2D /SURFACE MISSION 

T his section discusses the implementat ion of t he FKF-MOGA algorithms developed 

in the previous chapters for a 2D/surface mission using data acquired during a real­

t ime experiment conducted in Roadford Reservoir, Devon, UK in July 2003. 

T he Hammerhead AUV model used in this chapter was derived using system iden­

t ification techniques described in Chapter 3. T he system matrix (A ), input matrix 

(B ) and output vector (H ) (Equation (3.11) and (3.12)) a re: 

A = B = H = 1 
[ 

0 1 l [ -0.003196 ] [ 
- 0.98312 1.9831 ' -0.0036115 ' 

0 ] 

T his model is assumed to be sufficiently accurate to repm'lent the dynamics of the 

vehicle, and for t his reason, any output produced by t he model after being excited 

by an input, can be considered as an actual output value. T his assumption also mo­

tivates the use of the model output as a reference in measuring the performance of 

the FKF-MOGA algorit hm. 
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To test the FKF-MOGA algorithms, real data obtained from the TCM2 electronic 

compass and IMU (Figure 5.l(b)) , as a response to the input shown in Figure 5.1(a), 

are fused together with two sets of simulated data. To produce the simulated data, 

the noise in Figure 5.2(a) and 5.2(b) are simply added to the TCM2 electronic com­

pass and IMU real data respectively. A similar hypothetical real-time scenario as 

in Chapter 4, t hat can result in the noise with t he characteristic shown in Figure 

5.2(a), is adopted. In this particular scenario, the second TCM2 electronic compass 

(sensor-3) is located in close proximity to t he propeller DC motor (Figure 3.2), whose 

internal temperature increases with time and affects the sensor ambient temperature. 

A similar scenario can also be considered to occur when the second IMU (sensor-4) 

is located in close proximity to the laser unit used in the VNS whose initial internal 

temperature is high and settles down after sometime. This part icular scenario can 

result in the noise characteristic shown in Figure 5.2(b). 

The init ial condition are: 

[ 
O(rad) l 

Xo = O(md) 
;Po = [ O.Ol~ad)' (5.1) 

and Qk is made constant as 

0.1725 x ~o-7(md)2 ] 
(5.2) 

The actual value of R is assumed unknown , but its initial value is selected according 

to the heading accuracy of the sensors (see Table 3.3 and 3.5) , i.e. l(deg)2
. 

T he covariance matching technique discussed in Chapter 4 is then implemented to 

maintain the performance of the estimation process. Fuzzy rules are kept t he san1e 

as in Equation (4.4)-(4.6) as followings : 

IF (deltak ~ 0) THEN (R k is 7tnchanged) 
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Figure 5.2: (a) Sensor-3 noise, (b) sensor-4 noise 



IF (deltak > 0) THEN (R k is decreased) 

IF (deltak < 0) THEN (R k is increased) 
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deltak is the discrepancy between C1nnk and sk, the actual and theoretical eo­

variance of innovation Jnnk. Rk is then adjusted by adding its previous value, 

R k- l with ~Rk> the output of the FIS. Initial membership functions of the FIS 

are taken to be the same as the ones in Chapter 4 and repeated in Figure 5.3(a) 

and 5.3{b) for clarity. Subsequent optimization of ~Rk membersl1ip functions using 

MOG A with parameters shown in Table 5.2, produces membership functions shown 

in Figure 5.3(c). As in the previous chapter , the MOGA parameters are selected 

heuristically after exhaustive tests and it was observed that no significant improve­

ment can be achieved using different set of parameters. Trade-off graphs of this 

par t icular search is shown in Figure 5.4. The goal of the objective functions, de­

termined heuristically based on similar experiments from the previous chapters is: 

[0.1565(rad) 0.5125(md) 0.3043(rad) 0.1984(rad) 0.0770(rad)JT. Results of the im­

plementation of the FKF-MOGA techniques are shown in the next section. 

Parameters 
Number of objective functions 

umber of generat ion 
Number of individual per generation 
Generation gap in selection operation 
Rate in rate in recombination operation 
Rate in mutation operation 

Table 5.2: MOGA parameters 

Values 
5 
25 
10 
0.95 
0.8 
0.09 

- 0.01 5 0.00 0.015 - 0.135 - 0.033 0.033 0.135 - 0.135 - 0.033 0.033 0.135 

(a) (b) (c) 

F igure 5.3: Membership function of (a) deltak and (b) ~Rk before optimization, and 
(c) ~Rk after optimization 
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Sensor l zv(rad) lze(rad) 
GA MOGA 

Sensor-} 0.2340 0.2090 0.2094 
Sensor-2 0.2960 0.3047 0.2761 
Sensor-3 0.6558 0.4131 0.4130 
Sensor-4 0.3852 0.2552 0.2551 

Fused 0.2487 0.2088 

Table 5.3: Comparison of performance 

Figure 5.5 and 5.6 are the simulation results showing the response of the Hammerhead 

AUV observed by t he TCM2 electronic compass and IMU respectively, while Figure 

5.7 and 5.8, which are the output of the two former sensors added with uniform noise 

increasing and decreasing with time respectively. Figure 5.5 and Figure 5.6 show 

improvements in the level of error produced by the proposed FKF-MOGA algorithms 

as compared to direct measurements from t he sensors. Apart from the improvements 

in t he level of error, Figure 5.7 and 5.8 also show how the proposed algorithms has 

detected transient and persistent faults (see Chapter 4 for definition of these faults) 

in the sensors and made an appropriate recovery. Figure 5.9 shows the result of fusing 

the four sensors. 

Table 5.3 shows the performance of the sensors, indicated by l zv and l ze (Equation 

(4.12) and (4.13)) . A close look on the l zv and Jze, of each sensor indicates that the 

FKF with single objective GA optimization has improved t he accuracy of the heading 

information of sensor-1 to sensor-4. However, t he result of fusing the estimated sen­

sor data has shown a slightly inferior performance, indicated by lze = 0.2487(rad), 

compared to the performance of sensor-1, indicated by l zv = 0.2340(rad). This can 

be understood as a direct result of fusing a relatively accurate sensor-1, with other 

sensors that are less accurate. A further comparison is made between individual sen­

sor performance of non-MOGA and MOGA case. It is clear that the individual sensor 

performance of t he MOGA case, with the exception of sensor-1, has produced some 

improvements, with sensor-2 as the most noticeable one. It is clear that t he improve­

ment on sensor-2 has brought about an overall significant improvement on the quality 

of the estimation of the MOGA fused sensor, which is indicated by l ze = 0.2088(md). 

As before, the fused estimated yaw is treated as a single imaginary yaw sensor and 
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used by other INS sensors to transform data from body co-ordinate frame to Earth­

centered Earth-fixed co-ordinate frame where integration with GPS data is performed 

using the FEKF techniques. 

In addition to Equations {4.14)- (4.21) , a new output measurement matrix H (X(t)) 

is defined as the following: 

H (X(t)) = 

0 0 0 0 1 0 

0 0 0 0 0 1 

0 0 1 0 0 0 

0 0 0 1 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

when GPS signal is available, and when it is not, 

0 0 0 0 1 0 

H (X(t)) = 
0 0 0 0 0 1 

0 0 1 0 0 0 

0 0 0 1 0 0 

(5.3) 

(5.4) 

The continuous time model of Equations (4.16)- (4.21) and Equations (5.3)-{5.4) are 

then linearised to obtain an EKF with an effective state prediction equation in simple 

form , producing: 

Ftin (t) = 

0 0 -u(t) sin 1/Jim (t) - v(t) cos 1/Jim ( t) 0 COS 1/Jim ( t) -sin 1/Jim ( t) 

0 0 u(t) cos 1/Jim(t) - v(t) sin 1/Jim(t) 0 sin 1/Jim ( t) COS 1/Jim { t) 

0 0 0 1 0 0 
(5.5) 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
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Please note this is Equation ( 4.22) and repeated here to maintain clarity of the dis­

cussion in this section. The Hlin(t) is a matrix identical as in either Equation (5.3) or 

(5.4). Subsequent discretisation with period T = 0.125(sec) of the linearised model 

results in the EKF algorithm as described in Appendix D. The initial conditions are: 

Po = 

O.Ol(m)2 0 0 0 0 0 

0 O.Ol(m)2 0 0 0 0 

0 0 0.01(rad)2 0 0 0 (5.6) 
0 0 0 O.Ol(rad/ sec)2 0 0 

0 0 0 0 0.01 (m/ sec)2 

0 0 0 0 0 0.01(mfsec)2 

and Q is made constant as 

10(m)2 0 0 0 0 0 

0 10(m)2 0 0 0 0 

0 0 0.0175(rad)2 0 0 0 (5.7) 
0 0 0 O.l(radfsec)2 0 0 

0 0 0 0 O.l(mfsec)2 

0 0 0 0 0 0.1(m/sec)2 

The actual value of R is assumed unknown but its initial value is selected as: 

1000(m)2 0 0 0 0 0 

0 1000(m)2 0 0 0 0 

0 0 0.0873(rad)2 0 0 0 
(5.8) 

0 0 0 0.0175(rad/ sec)2 0 0 

0 0 0 0 2(mfsec)2 0 

0 0 0 0 0 2(m/sec)2 

T he FEKF algorithm is t hen implemented to the diagonal element of R k· 

Figure 5.10(a) shows the Hammerhead AUV t rajectory obtained using GPS, dead 

reckoning using I S sensors (through double integration of the accelerometer data 
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Figure 5.10: (a) AUV trajectory obtained using GPS, I S sensors (dead reckoning 
method) and GPS/INS using EKF without adaptation, (b) AUV trajectory obtained 
using GPS, I S sensors (dead reckoning method) and GPS/INS using EKF with 
adaptation 
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with respect to time) and integrated GPS/INS. As the init ial value of R for both 

XNEo(t) and YNEo (t) is 1000(m2), the standard EKF algorithm puts less weight on 

the position obtained by GPS and more on the prediction of posit ion obtained from 

dead reckoning method (using INS sensor data) . Figure 5.10(b) shows that t he matrix 

has been adjusted accordingly and more weight is given to the GPS data, and t herefore 

the estimated t rajectory in the integrated GPS/INS is " pulled" a little bit further 

to the GPS trajectory. However, big discrepancies can stiiJ be appreciated between 

the integrated GPS/INS estimate with respect to t he GPS fixes. T here are several 

explanations to this erratic behaviour. T he first possibility is t hat it is caused by the 

poor level of accuracy of the low-cost GPS being used in this part icular application. 

It is important to note that the proposed algorithm has detected a persistent high 

actual covariance (CrnnJ for both XNED and YNED throughout t he trajectory. T his 

results in insufficient weight being given to the GPS fixes in the FEKF and more 

on the posit ion obtained by the dead reckoning. The second possibility is that the 

GPS receiver did not lock into a sufficient number of satellites with a sufficient ly 

small value of position dilut ion of precision (POOP) that can provide the required 

level of accuracy. T he use of a differential global positioning system (DGPS) receiver 

or a GPS receiver with a wide area augmentation system (WAAS) or a European 

geostationary navigation overlay service (EGNOS) capabili ty can be considered as a 

way forward to alleviate t his problem. 

5.3 3D /SURFACE-DEPTH MISSION 

Many missions performed by AUVs require the vehicle to operate not only on the 

surface of t he sea, but also at a particular depth. Examples of such AUVs and their 

specific missions can be found in Chapter 2. T he Hammerhead AUV is also de­

signed to be able to dive to a certain depth and perform a particular mission, such 

as tracking underwater cables for maintenance purposes or landmark recognit ion for 

an underwater absolute positioning system as proposed in Loebis et al. (2003a). To 

carry out these missions, the Hammerhead AUV is equipped with underwater image 

acquisition techniques (Dalgleish et al., 2003) , coupled with a laser stripe illumina­

tion methodology (LSI) developed previously by Cranfield University (Tetlow and 
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Allwood, 1995) to provide an enhanced viewing of the seabed below the vehicle, and 

a depth controller developed by Naeem (2004). 

T he concept of 3D pseudo real-time navigation system enhanced by the proposed 

techniques is demonstrated in this section . T he real data used herein are those gener­

ated by the individual TCM2 electronic compass and IMU, their respective simulated 

counterparts, and their overall fused values. Further real-time experiments are con­

sidered to be imperative and must be conducted before a full-scale pseudo real-time 

implementation of t he proposed techniques can be undertaken. This, however, due 

to t he amount of t ime required to do so and to analyse t he data produced thereby, is 

considered to be suitable for the future work of the Hammerhead AUV. 

The mission scenario adopted in this section is designed to mimic the actual cable­

tracking or landmark recognition that will be performed in the future by the Ham­

merhead vehicle. This involves acquiring GPS/INS data on the surface and subse­

quently finding the estimated trajectory before sending the vehicle to a certain depth. 

Once the vehicle is under the water, the GPS signals are completely blocked and the 

GPS/INS navigation system is replaced by a pure dead reckoning navigation system. 

During this period, t he underwater image acquisition algoritluns continuously observ­

ing the area beneath t he vehicle to find a cable to be tracked or underwater landmarks 

to be identified and used as underwater absolute posit ion fixes. In condit ions where 

sufficient illumination is available in identifying t hose objects, produced eit her by the 

LSI or natural ambient light, the vehkle is then controlled to maintain its current 

depth. Otherwise, t he depth controller algorithm will act accordingly and send the 

vehicle furt her clown until sufficient illumination is obtained. After a certain period of 

time the vehicle is sent back to the surface to obtain GPS fixes that are used to reset 

the drift or the accumulated error produced by the dead reckoning navigation system. 

Figure 5.11 , 5.12 and 5.13 show the simulated surge, sway and heave of the vehi­

cle respectively, obtained after integrating t he corresponding body co-ordinate frame 

acceleration data. The t rue values of the surge and sway are, respectively, defined as 

l.3(mjsec) and ± 0.1(m/sec) . The heave values are defined into fi ve parts. T he first 

and last parts are to show t he heave of the vehicle when it is operating on the 
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surface, i.e., true values are assumed to be O(mfsec). The second part is to show the 

heave of t he vehicle as it is descending to a certain depth, defined here as -0.1 (m/ sec). 

Once the vehicle reaches this, the depth controller is employed to maintain t he depth 

of the vehicle. Consequently, the t rue heave during this period is defined to be 

O(m/ sec). Finally, the vehicle is sent back to the surface, and the heave during as­

cending period is defined to be 0.1(m/sec). It clear that t he enors added to t hese 

true values will contribute to the total drift suffered by the dead reckoning naviga­

t ion system in finding the posi tion of the vehicle when it is operating under the water. 

Figure 5.14 and 5.15 show, respectively, pitch and pitch rate of the vehicle during 

this particular mission. Figure 5.14 shows the pitch of the vehjcle when it is on t he 

surface, descending, at a constant depth, ascending (and back) to the surface. Figure 

5.15 shows the corresponding pitch rate. It is assumed that the roll of the vehicle is 

constant and stable at O(rad) during t he course of the mission. For clarity, the yaw of 

the individual TCM2 electronic compass and IMU, t heir respective simulated coun­

terparts, and their overall fusion values will be repeated in t he forthcoming discussion. 

These are presented along with t heir associated yaw rate values. 
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A continuous time model of the vehicle motion appropriate to this problem is taken 

to be as in Equations (4.14) and (4.15) , wit h X(t), the state vector, is equal to 

[ XNEo(t) YNEo(t) ZNEo(t) B(t) q(t) 1/Jim (t) r(t) u(t) v(t) w(t) JT. XNED 

(t), YNEo(t) are the longitude and latitude of the AUV position converted from deg­

min-sec in the Eartb-centered Earth-fixed co-ordinate frame into metres in the NED 

co-ordinate frame, ZNEo(t ) is the depth of the vehicle, B(t) is the pi tch, q(t) is the 

pitch rate, 1/Jim(t) is t he yaw angle obt ained from t he imaginary yaw sensor, r(t) is 

yaw rate, u(t) , v(t) and w(t) are the surge, sway and heave velocity respectively. The 

model states are related through t he following kinemat ically based set of funct ions 

(refer to Appendix G for body co-ordinate frame to Geographical/North-East-Down 

co-ordinate frame transformat ion) : 

X N ED ( t) = u(t) cos 1/Jim ( t) cos B( t) - v( t) sin 1/Jim ( t) + w( t) cos 1/Jim (t) sin B( t) (5.9) 

YNEo(t) = u(t) sin 1/Jim(t) cos B(t) + v(t) cos 1/Jim(t) + w(t) sin 1/Jim(t) sin B(t) (5.10) 

ZNEo(t) = -u(t) sinB(t) +w(t) cos B(t) (5.11) 

iJ(t) = q(t) (5.12) 

q(t) = 0 (5.13) 

~im(t) = r(t) (5.14) 

1~(t) = 0 (5.15) 

U(t) = aXBODY--tNED(t) (5.16) 

iJ(t) = aYUO DY--tNED (t ) (5.17) 

tiJ(t) = aZOODY--+NED(t) (5.18) 

Where aXOODY-tNED(t) , aYBODY--tNED(t) and aZBODY--+ NED(t) a re the acceleration Of 

the vehicle acquired in t he body co-ordinate frame and transformed subsequent ly to 

the NED co-ordinate frame. 

T he output measurements are related through t he states by an identity matrix I 10x 10 

when tl1e vehicle is operating on t he surface. When t he vehicle is operating under t he 

water, pure dead reckoning is used. Linearisation about the current estimates of the 

cont inuous time model of Equation (5.9)-(5.18), producing F 1in(t) with the following 
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non-zero components (readers interested in the techniques of linearisation in Kalman 

filtering are referred to Brown and Hwang (1997)) : 

F tin11,41 (t) = -u(t) cos 1/Jim ( t) sin O(t) + w(t) cos 1/Jim( t) cos O(t) 

F linp,6J (t) = -u( t) sin 1/Jim (t) cos 0( t) - v(t) cos 1/Jim (t) - w( t) sin 1/Jim (t) sin 0( t) 

Ftinp,81 (t) = cos1/Jim(t) cosO(t) 

Ftin11,91 (t) =-sin 1/Jim(t) 

F linp,101 (t) = cos 1/Jirn(t) sin O(t) 

Ftinr2,41 (t) = - 1t(t) sin 1/Jim ( t) sin 0( t) + w(t) sin 1/Jim (t) cos O(t) 

Ftinr2,61 (t) = u( t) cos 1/Jim ( t) cos 0( t) - v( t) sin 1/Jim ( t) + w(t) cos 1/Jim ( t) sin 0( t) 

F tinr2,81 (t) =sin 1/Jim(t) cosO(t) 

F linr2,91 ( t) = COS 1/Jim ( t) 

Ftin12, 101 (t) =sin 1/Jim(t) sin O(t) 

Flinr3 •41 (t) = -u(t) cosO(t)- w(t)sinO(t) 

F tinr3,81 (t) = -sin O(t) 

Ftinr3•101 (t) = cosO(t) 

with Hlin(t) = 110x 10. The FEKF algorithm is then implemented after subsequent 

discretisation wi th period T = 0.125(sec). The ini tial conditions are X0 = Ol10x 1o 

and P0 = 0.011 10x 10 , and Q is made constant as with the following components: 

Q [I,I J = 0.01(m)2 

Q 12,2] = O.Ol(m)2 

Q [3,3J = O.Ol(m)2 

Q [4,4] = 0.000001 (rad) 2 

Q [s,s] = O.Ol (radjsec)2 

Q [6,B] = 0.000001(rad)2 



Q[7,7] = O.Ol(mdjsec)2 

Q[s,s] = 0.01(m/ sec)2 

Q [9,9] = O.Ol(m/sec)2 

Q[lo,Jo] = O.Ol(m/sec)2 

The initial value of R is selected as: 

R[t ,t] = 10(m)2 

R [2,2] = 10(m)2 

R [3,3] = 5(m)2 

Rt4,4] = 0.000001(rad)2 

R [s,s] = 0.000001(md/ sec)2 

R [6,6] = O(rad) 2 

R [7,7] = O(radjsec)2 

R [s,s] = 2(m/sec)2 

R [9,9] = 2(m/sec)2 

R [to,Jo] = 2(m/ sec)2 
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Figure 5.17 shows the result of implementing the proposed FEKF algorithm to the 

3D/surface-depth mission described in the beginning of the section using the yaw 

produced by sensor-1 (shown in Figure 4.4 and repeated in Figure 5.16 for clarity). 

Figure 5.18 present a closer look on the start and the end of t he mission. Figure 5.20, 

5.23, 5.26 and 5.29 present the results of implementing the proposed FEKF algorithm 

using, respectively, the yaw data produced by sensor-2 (Figure 5.19), sensor-3 (Figure 

5.22), sensor-4 (Figure 5.25) and the fusion results (Figure 5.28). Closer looks on the 

start and end of mission produced by implementing the proposed algorithm using 

sensor-2, sensor-3, sensor-4 and the fusion results respectively, are shown in Figure 

5.21, 5.24, 5.27, 5.30. 

It is clear, that the initial GPS/INS surface trajectory using the yaw produced by the 

individual sensor contain an unexpected drift in vert ical direction. T his is a direct 

result of assuming the measurement noise in this direction as being higher than its 

corresponding process noise. The values of the measurement and process covariance 
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matrices are indicated respectively as R [a,a) = 5(m )2 and Qr3,3J = O.Ol(m )2
. Con­

sequently, t he EKF algorit hm puts more confidence on the process, i.e., integrating 

the Z[NED], than the measurement of depth from the pressure t ransducer. It is clear, 

as indicated by Equat ion (5.11) , that integrating the value of Z[NED] consequently 

integrates the noise in the u(t), 'lj;im , w and B. This in turn produces an accumula­

tion of error and needs to be reset to ZNED = O(m), right before the vehicle dives. 

The reset mechanism can easily be seen in Figure 5.18(a) , 5.21(a), 5.24(a) and 5.27(a). 

Once the vehicle is below the surface, the depth controller and the underwater image 

acquisit ion algorithms will work side by side to find objects of interest and to maintain 

a constant dept h thereafter for a specific period of time. This is shown in Figure 5.17, 

5.20, 5.23 and 5.26. Part icular emphasis is placed on Figure 5.23 and 5.26. The two 

t rajectories were produced using the yaw from sensor-3 and sensor-4, which contain 

persistent and t ransient faults respectively. It can be observed from Figure 5.23, the 

first persistent fault (shown in Figure 5.22) int roduces a significant error into t he ve­

hicle's underwater navigation system. Alt hough the second and t he t hird persistent 

faults did not occur as long as the fi rst one, they still indeed exacerbate the overall 

accuracy and reliability of t he system. It can also be observed from Figure 5.26 that 

the fault in sensor-4 did not affect t he underwater navigation system significantly as 

it is only transient in nature. This 'glitch' only produced an infinitesimal amount of 

error in Euler angle computation and subsequent ly in the underwater DR process. 

The vehicle is then sent back to the surface to obt ain GPS fixes used to reset the 

drift produced by the dead reckoning process during the underwater mission. T his 

particular mechanism is shown in Figure 5.18(b), 5.21 (b), 5.24(b) and 5.27(b). A 

similar case a DR error also occurs at this stage. Alt hough the depth has been reset 

to O(m), the EKF algorithm soon puts more confidence on the vertical DR process 

and consequent ly produces an estimate of dept h larger than O(m). This also happens 

to t he horizontal (XNED and Y NED) est imation process. As the measurement covari­

ance matrices for both the longitude and latitude are R p,1J = R r2,2J = 10(m)2
, the 

estimation process put more weight on the DR processes, which are assumed to have 

Q p,l) = Q[2,21 = O.Ol (m)2 process covariance matrices. 
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Figure 5.17: True trajectory, GPS fixes and GPS/INS using yaw produced by sensor-1 

only 
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Figure 5.21: (a) Initial true t rajectory, GPS fixes and GPS/INS estimated trajectory 
using yaw produced by sensor-2 only, (b) final true trajectory, GPS fixes and GPS/INS 
estimated trajectory using yaw produced by sensor-2 only 
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Figure 5.24: (a) Initial true trajectory, GPS fixes and GPS/INS estimated trajectory 
using yaw produced by sensor-3 only, (b) final true t rajectory, GPS fixes and GPS/INS 
estimated t rajectory using yaw produced by sensor-3 only 
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Figure 5.26: True trajectory, GPS fixes and GPS/INS using yaw produced by sensor-4 

only 
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Figure 5.27: (a) Init ial t rue trajectory, GPS fixes and GPS/I S estimated trajectory 
using yaw produced by sensor-4 only, (b) final t rue trajectory, GPS fixes and GPS/I S 
estimated trajectory using yaw produced by sensor-4 only 
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Figure 5.29: True t rajectory, GPS fixes and GPS/INS using yaw produced by fused 

sensor 



·· .. 

- true trajectory 
· GPS fixes 

- GPS/lNS estimated tra•ect 

ESTIMATEP,STAAT . 

- true trajectory 
· GPS r"'es 

... 

- GPS/lNS estimated tra"ect 

.. ··: 

(a) 

(b) 

117 

.·: 

· . . ·. 
:EStiMATED END 

.·i· .·· 

ESTIMATED RESURFACING POINT 

· .. 
· ... 

Figure 5.30: (a) Ini tial true trajectory, GPS fixes and GPS/INS estimated trajectory 
using yaw produced by fused sensor, (b) fin al true trajectory, GPS fixes and GPS/INS 
estimated t rajectory using yaw produced by fused sensor 



118 

Figure 5.29 shows the trajectory produced using the fused yaw sensor and with the 

values of R adjusted by FEKF. It is clear as presented in Figure 5.30(a), that as the 

assumed values of R for the longitude and latitude quite lm\•, 10(m)2 , compared to 

the true ones, which are simulated to be 225(m)2 and 100(m)2 , the FEKF estimation 

process put initial weight more on the CPS fixes than the dead reckoning solutions. 

However, as the filter learns the true nature ofR of these quantities, the FEKF makes 

an appropriate adjustment by putting more weight on the dead reckoning solution 

than on the CPS fixes. It can also be observed how the filter learns the true value 

of Rr3,3J> which is simulated to he 0.0001(m2
). This time the vehicle is not estimated 

to have depth larger than O(m)2, as in the case with the trajectory using yaw data 

produced by sensor-1 - sensor-4. Figure 5.30(a) also shows the work of the reset 

mechanism. As before, once the vehicle is below the surface, the depth controller and 

the undenvater image acquisition algorithms will work side by side to find objects of 

interest and to maintain a constant depth thereafter for a specific period of time (see 

Figure 5.29). The vehicle is then sent back to the surface to obtain CPS fixes used to 

reset the drift produced by the dead reckoning process during the underwater mission. 

This particular mechanism is shown in Figure 5.30(b). It is also clear here how the 

FEKF has learned the trne nature of the R values. It can be observed from Figure 

5.30(b) how the FEKF algorithm puts extra confidence on the CPS fixes right after 

the vehicle reaches the surface. Soon afterwards however, the algorithm recognises 

the high level of noise inherent in the acquired CPS signals and put less confidence 

thereon. Small discrepancies still exist between the true end and the estimated end 

of the mission. However, it is clear that without the FEKF, the estimated end could 

easily coincide with the last CPS fix and cause a significant position error. 

5.4 CONCLUDING REMARKS 

This chapter extends the implementation of the adaptive Kalman filtering approach 

from pure simulation in Chapter 4 to pseudo real-time herein. The set of data used 

here were gathered during a real-time experiment of the actual Hammerhead vehicle. 

The sensors used for this purpose were discussed with special emphasis given to their 
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characteristics and how the physical behaviour of their surrounding environments can 

possibly affect these. 

Two navigation scenarios have been considered to validate the proposed approach: 

2D/surface and 3D/surface-depth scenario. In both scenarios, the data from the 

TCM2 electronic compass and IMU are fused with two other simulated sensors be­

fore being used in transforming data from the body to the NED co-ordinate frame, 

where integration between the INS and GPS data occurs. In the first scenario, as 

the vehicle operates on the surface only, the GPS data is available periodically and 

the proposed estimation process takes place between the GPS fixes. In the second 

scenario, the GPS fixes are available continuously when the vehicle operates on the 

surface, and the proposed estimation algorithm blends these data with the position 

solution produced by the dead reckoning method to find the best estimates of the 

vehicle's position. In this scenario, the vehicle uses only dead reckoning method dur­

ing an underwater mission and the accumulated errors produced thereby is reset by 

GPS fixes the next time the vehicle gain access to their signals, It has been shown in 

both scenarios that the proposed algorithm has produced a significant improvement 

in accuracy and reliability of the navigation.system of the vehicle. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 CONCLUSIONS 

This thesis focuses on the investigation of multisensor data fusion method utilising 

a synergistic combination of fuzzy logic, genetic algorithms (both in single and mul­

tiobjective mode), and Kalman filtering techniques to provide enhanced accuracy of 

the Hammerhead AUV integrated GPS/INS. This work is the first known use ofthis 

particular hybrid technique and is thus considered as a major contribution in relation 

to AUV technology. It has been shown how the method is ableto provide a significant 

improvement over the conventional Kalman filtering techniques in their capacity as 

estimators in an integrated GPS/INS. 

The following conclusions can be drawn with respect to the adaptive Kalman fil­

ter (which is here in this thesis also referred to as FKF /FEKF) developed in this 

research: 

• The replacement of the widely used standard form of Kalman filters with adap­

tive ones for GPS/INS applications should be considered for the following rea-

son: 

- the requirement to have a complete a priori knowledge of the filter statis­

tics, represented by the R and Q matrices, are relaxed in the adaptive 

Kalman filtering approach. Although the focus of the work in the thesis 

has been placed to the adaptation of the R matrix, with the Q made con­

stant, adaptive Kalman filtering is still able to produce the anticipated 

enhancement on the overall GPS/INS solutions. 

- results from pure simulation and pseudo real-time implementation show 
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that the adaptive Kalman filtering techniques outperform their standard 

counterparts in various situations, e.g. when the vehicle operates on the 

surface with continuous or periodical access to the GPS signals, before 

and after the vehicle is sent to a certain depth to perform a particular 

mission. 

• Numerical complexity introduced by the soft computing techniques to the stan­

dard Kalman filtering in making up the adaptivity of the filter is quite substan­

tial. Therefore it is decided to implement the proposed adaptation mechanisms 

to a set of simulated data and to a set of real data collected during a real-time 

experiment. In both cases, the proposed adaptive filtering performs equally 

well. It should ,be noted however, that the algorithms are highly implementable 

in real time provided superior computing power is at one's disposaL 

• The effectiveness of adaptive Kahnan filtering, depends largely on several im­

portant factors such as the number of satellites that are currently being locked 

on to by the GPS receiver and their POOP. 

• The size of the sliding window over which the actual covariance of the innovation 

is computed plays an important part in the overall performance of the filter. 

It is determined empirically in such away so that it is large enough to capture 

the dynamic of slowly-varying covariance values or small enough to capture the 

dynamic of fast-varying covariance values. 

• The membership functions .found by MOGA depends largely on the parameters 

defined thereon. The larger the values of certain parameters can lead to a 

higher numerical complexity. The trade-off between the numerical complexity 

and the solutions that can be produced by MOGA in this thesis have been made 

cautiously so as to sufficiently good solutions can still be found without having 

to go through a complex numerical computation, 

• Despite the fact that solutions produced by the single objective GA and MOGA 

are comparable in some cases, the latter is still preferable to the former as it 

can be designed to direct the optimization process to satisfy a certain number 

of conditions without compromising the overall performance of the algorithms, 
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It has also been observed that improvements in one or more objectives of can 

lead to a degradation in other objectives. This stems from the non-dominated 

nature of the MOGA solutions. 

6.2 FUTURE WORK 

The work in this thesis focuses on the adaptation of R. Consequently, the next logical 

step is to make the value of Q adaptive. The Q in this thesis are determined carefully 

using an iterative simulation process. 

To use other sensor outputs, like the magnetic distortion alarm from the TCM2 

electronic compass, POOP and number of satellites from the GPS as part of the 

adaptation of the covariance matrices . 

Chapter 2 discusses numerous algorithms for combining the information from var­

ious sensors and navigation aids for use in AUV navigation system. These have also 

been enriched by the work in this thesis. However, relatively little analytical or quan­

titative work has been undertaken to establish a rationale for sensor selection. Nor has 

much work been done to quantify the relative contributions that individual· navigation 

sensors make to the performance of various navigation systems performance. As the 

usage of AUVs become more and more common as scientific and military exploration 

platforms, a tool is therefore considered to be necessary in this particular area of 

navigation system. The navigation systems that will be examined are similar to the 

previously developed Hammerhead AUV navigation system discussed in Chapters 4 

and 5 and in Loebis et al. (2003b), Loebis et al. (2003c), Loebis et al. (2004a), Loebis 

et al. (2004b) in that they each utilize GPS position fixes and information from INS 

sensors. The differences between the systems lay primarily in which INS sensors the 

system utilize and the accuracy of the various sensor measurements. For example, 

many results are ohtaii1ed for a system utilizing GPS position fixes, an accelerometer 

and a gyroscope. This sensor set was chosen as it is frequently sufficient to achieve 

moderate accuracy in an AUV navigation· system. Here, the performance of this set of 

sensors is examined for various accelerometer and gyroscope performance levels and 

various GPS position fix accuracies. Other results are obtained for a system utilizing 

GPS position fixes, an accelerometer, a gyroscope and an electronic compass. The 
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performance of this system is examined for various GPS position fix accuracies and for 

a range of compass errors. Still.other results can be obtained for a system operating in 

a littoral water utilizing GPS ,position fixes, an accelerometer, a.gyroscope, and a ve­

locity estimator (Loebis et al., 2003a) from the VNS. The quantitative results. directly 

divulge that individual navigation sensor error parameters have on navigation system 

performance. These quantitative results should therefore be beneficial for identifying 

the most cost-effective navigation system designs. It is important to note that 

although the analysis techniques in this work were developed for A UVs, 

they can effortlessly be applied to other autonomous vehicles, which are 

employed in the aerospace, underground and land environments. Thus 

the post-processing algorithms are valuable as generic practical tools for 

all types of navigation system design. 

To achieve the aim of the proposed futme work, the following steps need to be un­

dertaken: 

Step 1. To develop sensor error models using first and second order M arkov processes. 

Step 2. To derive semitivity analysis equations for a K alman filter and the correspondin_g 

adaptation mechani.~m u.9ing .9oft computing methodology 

Step 3. To derive .~emitivity analy.~i.~ equation.~ for a K alman .9moother and the 

corre.9ponding adaptation mechanism using soft computing methodology 

Step 4. To validate the post-proces.~ing analysis tool by undertaking full scale trials. 

It is felt that major contributions to knowledge will be forthcoming from 

this post-processing analysis tool. 
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Abstract 

This paper describes the implementation of an intelligent navigation system, based on the integrated use of the global positioning 
system (GPS) and several inertial navigation system (INS) sensors, for autonomous underwater vehicle (AUV) applications. A 
simple Kalman filter (SKF) and an extended Kalman filter (EKF) are proposed to be used subsequently to fuse the data from the 
INS sensors and to integrate them with the GPS data. The paper highlights the use of fuzzy logic techniques to the adaptation of the 
initial statistical assumption of both the SKF and EKF caused by possible changes in sensor noise characteristics. This adaptive 
mechanism is considered to be necessary as the SKF and EKF can only maintain their stability and performance when the 
algorithms contain the true sensor noise characteristics. In addition, fault detection and signal recovery algorithms during the fusion 
process to enhance the reliability of the navigation systems are also discussed herein. The proposed algorithms are implemented to 
real experimental data obtained from a series of AUV trials conducted by running the low-cost Hammer/read AUV, developed by the 
University of Plymouth and Cranfield University. 
© 2004 Elsevier Ltd . All rights reserved. 

Keywords: Autonomous underwater vehicles; Navigation; Sensor fusion; Kalman fi lters; Extended Kalman filters; Fuzzy logic 

1. Introduction 

The development of autonomous underwater vehicles 
(AUVs) for scientific, military and commercial purposes 
in applications such as ocean surveying (Swrkersen, 
Kristensen, Indreeide, Seim, & Glancy, 1998), unex­
ploded ordnance hunting (Wright et al., 1996) and cable 
tracking and inspection (Asakawa, Kojima, Kato, 
Matsumoto, & Kato, 2000) requires the corresponding 
development of navigation systems. Such systems are 
necessary to provide knowledge of vehicle position and 
attitude. The need for accuracy in such systems is 
paramount: erroneous position and attitude data can 
lead to a meaningless interpretation of the collected data 
or even to a catastrophic failure of an AUV. 

A growing number of research groups around the 
world are developing integrated navigation systems 
utilising inertial navigation system (INS) and global 
positioning system (GPS) (Gade & Jalving, 1999; 
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1752232638. 
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Grenon, An, Smith, & Healey, 2001; Yun et al., 1999). 
However, few of these works make explicit the essential 
need for fusion of several INS sensors that enable the 
users to maintain the accuracy or even to prevent a 
complete failure of this part of the navigation system, 
before being integrated with the GPS. Kinsey and 
Whitcomb (2003), e.g. use a switching mechanism to 
prevent a complete failure of the INS. Although simple 
to implement, the approach may not be appropriate to 
use to maintain a certain level of accuracy. 

Several estimation methods have been used in the past 
for multisensor data fusion and integration purpose 
(Loebis, Sutton, & Chudley, 2002). To this end, simple/ 
extended Kalman filter (SKF/EKF) and their variants 
have been popular methods in the past and interest in 
developing the algorithms has continued to the present 
day. However, a significant difficulty in designing a 
SKF/EKF can often be traced to incomplete a priori 
knowledge of the process covariance matrix (Q) and 
measurement noise covariance matrix (R). In most 
practical applications, these matrices are initially esti­
mated or even unknown. The problem here is that the 
optimality of the estimation algorithm in the SKF/EKF 
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setting is closely connected to the quality of a priori 
information about the process and measurement noise 
(Mehra, 1970, 1971). It has been shown that insuffi­
ciently known a priori filter statistics can reduce the 
precision of the estimated filter states or introduces 
biases to their estimates. In addition , incorrect a priori 
information can lead to practical divergence of the filter 
(Fitzgerald, 1971). From the aforementioned, it may be 
argued that the conventional SKF/EKF with fixed R 
and/or Q should be replaced by an adaptive estimation 
formula tion as discussed in the next section. 

2. The adaptive tuning of Kalman filter algorithm 

In the past few years, only a few publications in the 
area of adaptive Kalman filtering can be found in the 
literature. The two major approaches that have been 
proposed for adaptive Kalman filtering are multiple 
model adaptive estimation (MMAE) and innovation 
adaptive estimation (IAE). Although the implementa­
tion of these approaches are quite different, they both 
share the same concept of utilising new statistical 
information obtained from the innovation (or residual) 
sequence. In both cases, the innovation Innk at sample 
time k is the difference between the real measurement Zk. 

received by the fi.lter and its estimated (predicted) value 
Zk. The predicted measurement is the projection of the 
fi lter predicted states Xi onto the measurement space 
through the measurement design matrix Hk. Innovation 
represents additional information available to the filter 
as a result of the new measurement Zk. The occurrence of 
data with statistics different from the a priori informa­
tion will first show up in the innovation vector. For this 
reason, the innovation sequence represents the informa­
tion content in the new observation and is considered 
the most relevant source of information to the filter 
adaptation. Interested readers can refer to (K.ailath, 
1968a, b, 1970) for a more detailed discussion of the 
innovation sequence and its use in linear filter theory. 

In the MMAE approach, a bank of Kalrnan filters 
runs in parallel (Magill, 1965; Hanlon & Maybeck, 
2000) or with a gating a lgorithm (Chaer, Bishop, & 
Ghough, 1997) under a different model for the statistical 
filter information matrices, i.e. Q and R. In the IAE 
approach (Mehra, 1970, 1971 ), the Q and R matrices 
themselves are adapted as measurements evolve with 
time. In this paper, the JAE approach coupled with 
fuzzy logic techniques with membership functions 
designed using heuristic methods is used to adjust the 
R matrix of both the SKF and EKF. The proposed 
a lgorithms in this paper a re implemented using a set of 
experimental data obtained from the Hammerhead AUV 
trials conducted in July 2003 at Roadford Reservoir, 
Devon, UK. Initial work using purely simulated data on 
the proposed a lgori thms can be found in Loebis, Sutton, 

and Chudley, 2003b and Loebis, Chudley, and Sutton. 
2003a. 

2.1. Fuzzy simple Kalman filt er 

In this section, an on-line innovation-based adaptive 
scheme of the SKF to adjust the R matrix employing the 
principles of fuzzy logic is presented. The fuzzy logic is 
chosen mainly because of its simplicity. This motivates 
the interest in the topic, as testified by related papers 
which have been appearing in the literature (Kobayashi. 
Cheok, Watanabe, & Muneka, 1998; Jetto, Longhi, &:. 
Vitali, 1999; Loebis et al., 2003a, b). The fuzzy logic 
simple Kalman filter (FSKF) proposed herein and fuzzy 
logic extended Kalman filter (FEKF) discussed in 
Section 4 are based on the IAE approach using a 
technique known as covariance matching (Mehra, 1970). 
The basic idea behind the technique is to make the 
actual value of the covariance of the innovation 
sequences match its theoretical value. 

The actual covariance is defined as an approximation 
of the Innk sample covariance through averaging inside 
a moving estimation window of size M (Mohamed &:. 
Schwarz, 1999) which takes the following form: 

A I~ T 
Clnnt = M 4 Innk lnnk , 

J=Jo 

(1) 

where jo = k - M+ I is the first sample inside the 
estimation window. An empirical experiment is con­
ducted to choose the window size M . From experi­

. mentation, it was found that a good size for the moving 
window in (I} is 15. 

The theoretical covariance of the innovation sequence 
is defined as 

{2) 

The logic of the adaptation algorithm using covar­
iance matching technique can be qualitatively described 
as follows. If the actual covariance value Clnnt is 
observed, whose value is within the range predicted by 
theory Sk and the difference is very near to zero, this 
indicates that both covariances match almost perfectly 
and only a small change is needed to be made on the 
value of R. If the actual covariance is greater than its 
theoretical value, the value of R should be decreased . On 
the contrary, if Crnn, is less than sk. the value of R 
should be increased. This adjustment mechanism lends 
itself very well to being dealt with using a fuzzy-logic 
approach based on rules of the kind: 

IF < antecedent> THEN < consequent >, (3) 

where antecedent and consequent are of the form 
xe01, KEL;, i = 1,2, ... , respectively, where x and " 
are the input and output variables, respectively, and 0 1 

and L; are the fuzzy sets. 
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Fig. I . Membership function of: (a) deltako and (b) t:.Rk· 

To implement the above covariance matching techni­
que using the fuzzy logic approach, a new variable called 
delta~c , is defined to detect the discrepancy between C1nnk 

and S~c. It is important to note that in this particular 
application, t1nn• and s" are constrained to be diagonal 
matrices . The following three fuzzy rules of the kind (3) 
are used: 

IF <delta" ~0 > THEN< R~c is unchanged >, (4) 

IF < deltak > 0> THEN< Rk is decreased >, (5) 

IF<deltak<O > THEN <R~c is increased >. 

Thus ·/?.. is adjusted according to 

R~c = R~c- t + !J.Rko 

(6) 

(7) 

where fl.R~c is added or subtracted from Rat each instant 
of time. Here de/tak is the input to the fuzzy inference 
system (FIS) and !J.Rk is the output. 

On the "basis of the above adaptation hypothesis, the 
FIS can be implemented using three fuzzy sets for de/tak; 
N =Ne!Jative, Z =Zero and P= Positive. For fl.R~c the 
fuzzy sets are specified as 1 =Increase, M = Maintain and 
D = Decrease. The membership functions of these fuzzy 
sets which are designed using a heuristic approach are 
shown in Fig. 1. 

2.2. Sensor fault diagnostic and recovery algorithm 

In addition to the adaptation procedure, the FSKF 
has been equipped with the sensor fault diagnostic and 
recovery algorithm as proposed by Escamilla-Ambrosio 
& Mort (2001). The basic idea behind this algorithm is 
that the amplitude of the actual value of the lnnk and its 
theoretical value ( .JS;) for a sensor without any fault 
must be around I , but it increases abruptly if a transient 
or persistent fault is present in the measurement data. 
For this purpose a variable lnnC~cis defined as 

lnnC~c = llnn~c l . (8) vs; 
Thus, if the value of lnnC~c is greater or equal than a 

threshold (ex) then a transient fault is declared and lnnk is 
assigned a value of 0. If lnnC~c is still greater than ex for 
an instant of time, the persistent fault is declared and 
lnnk is assigned a value of ...;s; multiplied by a random 

0 0.1 0.3 0 2 
(a) (b) 

Fig. 2. Membership function of: (a) ldeltakl, and (b) Rk. 

Table I 
Fuzzy rule base FLO 

ldeltatl Rt 

z s L 

z G G AV 
s G .AV p 

L AV p p 

number. From experimentation, it was found that the 
good value of a is 1.2. 

2.3. Fuzzy logic observer 

To monitor the performance of a FSKF, another FIS 
called the fuzzy logic observer (FLO) (Escamilla­
Ambrosio & Mort, 2001) is used. The FLO assigns a 
weight or degree of confidence denoted as c~c, a number 
on the interval (0,1], to the FSKF state estimate. The 
FLO is implemented using two inputs: the values of 
ldelta~cl and Rk. The membership functions of these 
variables were found using a heuristic method that 
produced a non-symmetrical shape for ldelta~cl and a 
symmetrical shape for R~c are shown in Fig. 2. 

The fuzzy labels for the membership functions: 
Z =Zero, S =Small and L = Large. Three fuzzy single­
tons are defined for the output Ck and are labelled as 
G = Good, AV= Average and P = Poor with values 1, 
0.5 and 0, respectively. The basic heuristic hypothesis for 
the FLO is as follows: if the value of lde/takl is near to 
zero and the value of~ is near to zero, then the FSKF 
works almost perfectly and the state estimate of the 
FSKF is assigned a weight near 1. On the contrary, if 
one or both of these values increases far from zero, it 
means that the FSKF performance is degrading and the 
FLO assigns a weight near 0. Table 1 gives the complete 
fuzzy rule base of each FLO. 

3. Fusion of INS sensor data 

In this section, the FSKF algorithm is applied to the 
linear heading model of the Hammerhead AUV. 
Fig. 3(a) shows the vehicle before leak testing and 
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(3) 

Fig. 3. TI1e Hammerhead AUV: (a) before leak testing and baUasting, and (b) during a system identification trial. 

ballasting in the laboratory test tank and Fig. 3(b) 
shows the vehicle during a heading system identification 
trial. Inputs to the rudder of the vehicle are sent by the 
user from a laptop through an umbilical cable. Thus in 
reality it was travelling in a semi-autonomous model for 
that specific trial. The drag effect of the cable is 
considered to be negligible. An electronic compass and 
an inertial measurement unit (IMU) on board the 
vehicle are used to capture the corresponding responses. 

The system matrix (A), input matrix (B), and 
output vector (H) of the linear discrete state space 
model (see Appendix A) obtained from the trial data 
are, respectively, A = (0 I; -0.98312 1.9831], B = 
[- 0.003196 1 - 0.0036115], H = (1 0), with the yaw 
and delayed-yaw as the component of the states. 

This model is assumed to be sufficiently accurate to 
represent the dynamics of the vehicle, and for this 
reason, any output produced by the model after being 
excited by an input, can be considered as an actual 
output value. This assumption also motivates the use of 
the model output as a reference in measuring the 
performance of the FSKF algorithms. 

To test the FSKF algorithms, real data obtained from 
the electronic compass and IMU (Fig. 5), as a response 
to the input shown in Fig. 4, are fused together with two 
sets of simulated data. To produce the simulated data, 
the noise in Figs. 6(a) and (b) are simply added to the 
electronic compass and IMU real data, respectively. A 
possible real-time scenario that can result in the noise 
with the characteristic shown in Fig. 6(a) is that the 
second electronic compass is located in close proximity 
to the propeller DC motor whose internal temperature 
increases with time and affects the sensor ambient 
temperature. A similar scenario can also be considered 
to occur when the second IMU is located in close 
proximity to the front hydroplane stepper motor whose 
initial internal temperature is high and settles down after 
sometime. This particular scenario can result in the 
noise characteristic as shown in Fig. 6(b). The initial 

condition of the states are [0 of, P0 = O.Oih (see 
Appendix A) and Q = diag(O, 0.1725 x 10-7) . The ac­
tual value of R for each sensor is assumed unknown, but 
its initial value is selected as I. Simulation results are 
shown in the next section. 
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Fig. 4. Input rudder. 
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Fig. 5. Real electronic compass and IMU output. 

3.1. Simulation result 

Figs. 7 and 8 are the simulation results showing the 
response of the Hammerhead AUV observed by electro­
nic compass and IMU, respectively, while Figs. 9 and 10 
by sensor 3 and 4, which are the output of the two 
former sensors added with uniform noise increasing and 
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Fig. 6. (a) Added noise profile to the electronic compass data, and (b) 
to the IMU data. 

(a) Tme 

(b) Tme 

Fig. 7. (a) Process, measured and estimated yaw output, and (b) 
measured and estimated yaw error of electronic compass. 

decreasing with time, respectively. Figs. 7 and 8 show 
improvements in the level of error produced by the 
proposed FSKF algorithms as compared to direct 
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Fig. 8. (a) Process, measured and estimated yaw output, and (b) 
measured and estimated yaw error of IMU . 
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Fig. 9. (a) Process, measured and estimated yaw output, and (b) 
measured and estimated yaw error of sensor 3 (electronic compass+­
simulated noise). 
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Fig. 10. (a) Process, measured and estimated yaw output, and (b) 
measured and estimated yaw error of sensor 4 (JMU +simulated 
noise). 
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measurements from the sensors. Apart from the 
improvements in the level of error, Figs. 9 and 10 also 
show how the proposed algorithms have detected 
transient and persistent faults in the sensors (see Section 
2.2) and made an appropriate recovery. 

To fuse the estimated yaw, a centre of gravity method 
is used 

'"'n • • L.Ji= I ZktCk, 
Zk = '"'n • 

L.Ji= l Ckt 
(9) 

where Zk1 is the output of the ith FSKF (i = I, 2, 3, 4) 
and Ck1 is the respective weight at instant time k. Fig. 11 
shows the comparison of the actual and the fused 
estimated yaw. It is clear, by comparing Fig. ll and 
Figs. 7-10 that an improvement has been achieved by 
fusing the estimated yaw. 

Finally, the following performance measure are 
adopted for comparison purposes: 

Jzo = V~"':.:= 1 (zak- zd, (10) 

(11) 

where zak is the actual value of the yaw, Zk is the 
measured yaw, Zk is the estimated yaw at an instant of 
time k and n the number of samples (Table 2). 

A close look on the l zv and lu on Table 2 of each 
sensor indicates that the FSKF has improved the 
accuracy of the heading information. The result of 
fusing the estimated data has shown a further improve­
ment. A slight offset shown by the final fusion result 
might be caused by an inaccurate model of the process 
noise (see Appendix A) and its covariance (Q). Adapta­
tion of these parameters is the topic of a future 
investigation. It should also be noted that from a 
theoretical point of view, the analysis of the stability of 

nme 

Fig. 11. (a) Process and estimated fused yaw output, and (b) fused 
yaw error. 

Table 2 
Comparison of perfonnance 

Sensor 

Electronic compass 
IMU 
Electronic compass+ noise 
fMU + noise 
Sensor fusion 

Perfonnance 

J"' (deg) 

13.4050 
17.3507 
37.5725 
22.0702 

lu (deg) 

12.1 170 
15.8216 
23.6664 
14.6159 
11.9650 

the FSKF needs to be investigated. However, this is not 
easily undertaken due to the use of the adaptation 
techniques used herein. Future work will address this 
issue more rigorously. 

4. Integrated GPS{INS 

Here, the fused estimated yaw obtained previously is 
treated as a single imaginary yaw sensor and used by 
other INS sensors to transform data from body co­
ordinate to Earth co-ordinate frame where integration 
with GPS data is performed using a combination of 
fuzzy logic and EKF techniques and can be referred to 
as FEKF. 

A continuous time model of the vehicle motion 
appropriate to this problem is taken to be 

X(t) = F(X(t)) + W(t), (12) 

Z(t) = H(X(t)) + V(t). (13) 

Denoted by X( I) = [..<(1) q~(t) 1/J(t) 9(1) ~(t) v(t)f is the 
model states . ..t(t) and q~(t) are the longitude and latitude 
of the AUV position in Earth co-ordinate frame which 
are obtained from a GPS receiver, 1/J(t) is the yaw angle 
obtained from the imaginary yaw sensor, 9(1) is yaw 
rate, ~(I) and v(t) are the surge and sway velocity. 
respectively. 

In this system model, F and H are both continuous 
functions, continuously differentiable in X(t). The W(t) 
and V(t) are both zero-mean white noise for the system 
and measurement models, respectively. 

The model states are related through the following 
kinematically based set of functions (F(X{t)) in 
Eq. (12)): 

~(t) = 0, (14) 

v(t) = 0, (1 5) 

~(t) = 9(t), (16) 

9(t) = 0, (17) 

A(t) = ~(t) cos 1/!(t) - v(t) sin 1/J(t), (18) 
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<P(t) = c;(t) sin t/t(t) + o(t) cos t/t(t). (19) 

The output measurements are related through the 
states by the following output matrix: 

0 0 0 0 0 

0 0 0 0 0 I 

0 0 I 0 0 0 
H(X(t)) = 

0 0 0 I 0 0 
(20) 

0 0 0 0 0 

0 0 0 0 0 

when GPS signal is available, and when it is not, 

[

0 0 0 0 I 0] 
0 0 0 0 0 I 

H(X(t)) = 0 0 I 0 0 0 . 

0 0 0 I 0 0 

(21) 

To obtain an EKF with an effective state prediction 
equation in a simple form, the continuous time model of 
(14}-{21) has been linearised about the current state 
estimates, producing 

ll>(t) = 

{), 0 

0 0 

'2 0 
0 0 

0 0 
0 0 

0 

0 

0 

0 

-c;(t) sin tJ!(t) - v(t) cos 1/t(l) 

c;(l) cos 1/t(l) - v(t) sin 1/t(t) 

0 

0 

I 
0 

0 

0 

0 

0 

0 

0 

cos t/l(t) 

sin 1/1(1) 

0 

0 

0 

0 

-sin t/1(1) 

cos 1/t(l) 

(22) 

and r i~ a .matrix identical as in either (20) or (21). 
Subsequent discretisation with period T = 0.125 s of the 
Iinearised model results in an EKF algorithm similar to 
the SKF algorithms in Appendix A (where Ill and r are 
equivalent to A and H), only this time the <D matrix is 
updated at every iteration. The initial conditions are 
Po = 0.01 [6 and Q is made constant as diag(IO, 10, I, 
0.1, 0. 1, 0.1 ). The actual value of R is assumed unknown 
but its initial value is selected as diag( IOOO, 1000, 5, 
I, 2, 2) 

The FSKF algorithm from Section 2 is then 
implemented, only this time the adaptation of the 
(i, i)th element of Rk is made in accordance with the 
(i, r)th element of deltak . Here a single-input-single­
output FIS as shown in Fig. I, is used sequentially to 
generate the correction factors for the elements in the 
main diagonal of Rk as the following: 

Rk(i, i) = Rk-J (i, i) + llRk· (23) 

Fig. 12 shows the Hammerhead AUV trajectory 
obtained using GPS, dead reckoning using INS sensors 
(through double integration of the accelerometer data 
with respect to time) and integrated GPS/INS. As the 
initial value of R for both l(t) and qJ(t) is 1000, the 
standard EKF algorithm puts less weight on the 
position obtained by GPS and more on the prediction 
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Fig. 12. AUV trajectory obtained using GPS, INS sensors (dead 
reckoning method) and GPSfiNS using EKF without adaptation. 
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Fig. 13. AUV trajectory obtained using GPS, INS sensors (dead 
reckoning method) and GPSfJNS using EKF with adaptation. 

of position obtained from dead reckoning method (using 
INS sensor data). Fig. 13 shows that the R matrix has 
been adjusted accordingly and more weight is given to 
the GPS data, and therefore the estimated trajectory in 
the integrated INS/GPS is " pulled" a little bit further to 
the GPS trajectory. However, big discrepancies can still 
be appreciated between the integrated INS/GPS esti­
mate with respect to the GPS fixes. There are several 
explanations to this erratic behaviour. The first possi­
bility is that it is caused by the poor level of accuracy of 
the low-cost GPS being used in this particular applica­
tion. It is important to note that the proposed algorithm 
has detected a persistent high actual covariance ( Crnnt) 
for both the l(t) and qJ(t) throughout the trajectory. This 
results in insufficient weight being given to the GPS fixes 
in the FEKF and more on the position obtained by the 
dead reckoning. The second possibility is that the GPS 
receiver did not lock into a sufficient number of satellites 
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with a sufficiently small value of position dilution of 
precision that can provide the required level of accuracy. 
The use of a differential GPS receiver or a GPS receiver 
with a wide area augmentation system or a European 
Geostationary Navigation Overlay Service capability 
can be considered as a way forward to alleviate this 
problem. 

5. Summary and conclusions 

The problem with incomplete a priori knowledge of Q 
and R is considered. Within this paper, an adaptive 
Kalman filter approach, based on the filter innovation 
sequence coupled with fuzzy logic is discussed as an 
alternative for fusing INS sensor data and integrating 
INS/GPS position information. Implementation of this 
approach to the Hammerhead heading model, whose 
responses are measured with electronic compass, IMU 
and two additional sensors with different noise char­
acteristics, has shown a promising result in improving 
the estimation of an individual SKF and EKF and 
enhancing the overall accuracy of the integrated INS/ 
GPS. 

Appendix A. Simple Kalman filter algorithms 

Given a discrete-time controlled process described by 
the linear stochastic difference equations: 

(A. I) 

(A.2) 

where Xk is ann x I system state vector, Ak is ann x 11 

transition matrix, Uk is an I x I vector of the input 
forcing function, Bk is an n x I matrix, Wk is an n x I 
process noise vector, Zk is an m x I measurement vector, 
Hk is an m x n measurement matrix and Vk is an m x 1 
measurement noise vector. Both the Wk and Vk are 
assumed to be uncorrelated zero-mean Gaussian white 
noise sequences with covariance given by 

T { Qk. E[IVkiV; 1 = 
0, 

i = k, 
i,Pk, 

i = k, 
i :f.k, 

E[wkvTJ = 0, for all k and i. 

(A.3) 

(A.4) 

(A.5) 

The SKF algorithm can be organised into time update 
and measurement update equations 

Time update equations: 

(A.6) 

Pk+ t = AkPkA[ + Qk. 

Measurement update equations: 

Kk = P; H[(HkPk H{ + Rkr1
, 

Xk = x; + Kk[Zk - Hkx;], 

(A.?) 

(A.8) 

(A.9) 

(A.IO) 

The measurement update equations incorporate a new 
observation into the a priori estimate from the time 
update equations to obtain an improved a posteriori 
estimate. In the time and measurement update equa­
tions, Xk is an estimate of the system state vector Xk, Kk 
is the Kalman gain and Pk is the covariance matrix of 
the state estimation error. 
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A fuzzy Kalman filter optimized using a multi-objective 
genetic algorithm for enhanced autonomous underwater 
vehicle navigation 

D Loebis*, R Sutton and J Chudley 
Marine and Industrial Dynamic Analysis Research Group, School of Engineering, University of Plymouth, UK 

Abstract: In an autonomous underwater vehicle integrated navigation system, short-term temporal 
accuracy is provided by an inertial navigation subsystem (INS) and long-term accuracy by a global 
positioning system (GPS). The Kalman filter has been a popular method for integrating the data 
produced by the two systems to provide optimal estimates of autonomous underwater vehicle position 
and attitude. In this paper, a sequential use of a linear Kahnan filter and extended Kalman filter is 
proposed. The former is used to fuse the data from a variety of INS sensors whose output is used 
as an input to the latter where integration with GPS data takes place. The use of a fuzzy-rule-based 
adaptation scheme to cope with the divergence problem caused by the insufficiently known a priori 
filter statistics is also explored. The choice of fuzzy membership functions for an adaptation scheme 
is first carried out using a heuristic approach. Multiobjective genetic algorithm techniques are then 
used to optimize the parameters of the membership functions with respect to a certain performance 
criteria in order to improve the overall accuracy of the integrated navigation system. Simulation 
results are presented that show that the proposed algorithms can provide a significant improvement 
in the overall navigation performance of an autonomous underwater vehicle navigation system. 

Ke)'Words: autonomous underwater vehicles, navigation, sensor fusion, Kalman filters, extended 
Kalrnan filters~ fuz.iy logic, multiobjective genetic algorithm 

NOTATION F(.) 

H(.) 
Hit 

state transition matrix of the kinematic 
model 

A(t) 

clt 
C(t) 

f 
F 

linearized state transition matrix of the 
kinematic model 
discretized state transition matrix of the 
kinematic model 
matrix that relates the control input to the 
state vector 
weight of the estimated sensor output 
linearized measurement matrix of the 
kinematic model 
discretized measurement matrix of the 
kinematic model 
actual covariance value of the innovation 
discrepancy between the actual and theoretical 
covariance value of innovation sequence 
scalar function of design parameters 
vector of the objective function of design 
parameters 
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i 
In nit 
l o 
fu 

measurement matrix of the kinematic model 
measurement matrix of the dynamic model 
number of fuzzy membership functions 
innovation 
first sample inside the estimation window 
performance measure of the fused sensor 
output 
performance measure of the non-fused 
sensor output 
discrete-time index 
Kalman gain 
nutnber of sensors or the FKF output 
output fuzzy membership functions 
size of the moving estimation window 
number of samples 
input fuzzy membership functions 
design parameters of the optimization 
problem 
state error covariance 
process noise covariance 
yaw rate of the turn state of the dynamic 
model 
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V(t) 

w(t) 
W(t) 
Xt 
X(t) 
zk 
zak 
Z(t) 

o,(t) 
9(t) 
IC 

A.(t) 
v(t) 
~(t) 

~(t) 

X 
f/J(t) 
lJf(t) 
Q 

measurement error covariance 
theoretical covariance value of innovation 
continuous time 
sway velocity state of the dynamic model 
measurement white noise of the dynamic 
model 
measurement white noise of the kinematic 
model 
process white noise of the dynamic model 
process white noise of the kinematic model 
states of the dynamic model 
states of the kinematic model 
real-time measurement 
actual value measurement 
measurement vector of the kinematic model 

rudder deflection 
yaw rate of the turn of the kinematic model 
output variable of fuzzy sets 
longitude 
sway velocity state of the kinematic model 
surge velocity state of the kinematic model 
latitude 
input variable of fuzzy sets 
yaw angle state of the dynamic model 
,yaw angle state of the kinematic model 
set of constraints on design parameters of 
the optimization problem 

1 INTRODUCfiON 

In the past few decades, there have been numerous 
worldwide research and development activities in order 
to explore the oceans of the world. As an ocean is an 
inherently hostile and hazardous environment, the need 
for an underwater robotic system, especially one with 
high reliability and fully built-in intelligence, becomes 
apparent. The autonomous underwater vehicle (AUV) 
class of vessel meets these requirements. 

To achieve truly autonomous behaviour, an AUV must 
be able to locate itself accurately during an operating 
scenario using only its onboard sensors. In the past, 
fusing of inertial navigation system (INS) sensors and 
the integration with a global positioning system (GPS) 
through the use of a conventional linear Kalman filter 
(LKF) and an extended Kalman filter (EKF) has been a 
popular method for localization of an AUV [ 1 ). However, 
a significant difficulty in designing a KF (refers to both 
LKF and EKF) can often be traced to incomplete 
a priori knowledge of the process covariance matrix (Q) 
and measurement noise covariance matrix (R). In most 
practical applications, these matrices are initially estimated 
or even unknown. The problem here is that the optimality 
of the estimation algorithm in the KF setting is closely 
connected to the quality of a priori information about 
the process and measurement noise [2, 3). It has been 
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shown that insufficiently known a priori filter stati sties 
can reduce the precision of the estimated filter states or 
introduces biases to their estimates. In addition, incorrect 
a priori information can lead to practical divergence of 
the filter (4]. From the aforementioned it may be argued 
that the conventional KF with fixed R and/or Q sh<>uld 
be replaced by an adaptive estimation formulation, as 
discussed in the next section. 

2 THE ADAPTIVE KALMAN FILTER 
ALGORITHM 

In the past few years, only a few publications in the 
area of adaptive Kalman filtering can been found in 
the literature. The two major approaches that have been 
proposed for adaptive Kalman filtering are multiple model 
adaptive estimation (MMAE) and innovation adaptive 
estimation (IAE ). Altlwugh the implementation of these 
approaches are quite different, they both share the same 
concept of utilizing new statistical information obtained 
from the innovation (or residual) sequence. In both cases, 
the innovation lnnk at sample time k is the difference 
between the real-time measurement z« received by the 
filter and its estimated (predicted) value ft· The predicted 
measurement is the projection of the filter predicted 
states ~t- on to the measurement space through the 
measurement design matrix Ht· Innovation represents 
additional information available to the filter as a result 
of the new measurement zk· The occurrence of data with 
statistics different from the a priori information wiU first 
show up in the innovation vector. For this reason the 
innovation sequence represents the information content in 
the new observation and is considered the most relevant 
source of information to the filter adaptation. Interested 
readers can refer to references [5] to [7] for a more 
detailed discussion of the innovation sequence and its 
use in linear filter theory. 

In the MMAE approach, a bank of Kalman filters runs 
in parallel [8, 9) or with a gating algorithm (10] under 
a different model for the statistical filter information 
matrices, i.e. Q and R. In the IAE approach [2, 3], the 
Q and R themselves are adapted as measurements evolve 
with time. In this paper, the IAE approach [2, 3] coupled 
with fuzzy logic techniques is used to adjust the R matrix 
of the KF. 

The fuzzy logic membership functions for the IAE 
approach are mitially established by a combination of 
knowledge, experience and observation and may thus not 
be optimal. Additionally, fine-tuning of its performance 
is still a matter of trial and error. Many studies have 
shown that genetic algorithms (GAs) have the ability 
to find fuzzy membership functions closer to optimal 
solutions and may be made to implement self-tuning 
and adaptive schemes [11). However, this paper is the 
first known use of the multiobjective genetic algorithm 
(MOGA) for the optimization of the membership 
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function of a fuzzy system in the noise adaptation of 
a KF and is thus considered as the major contribution 
of this particular study in relation to AUV technology. 

2.1 Fuzzy Kalman filter 

In this subsection, a n on-line innovation-based adaptive 
scheme of the KF to adjust the R matrix employing the 
principles of fuzzy logic is presented. The fuzzy logic is 
chosen mainly because of its simplicity. This motivates 
interest in the topic, as testified by related articles that 
have been appearing in the literature [12- 14]. 

The fuzzy logic Kalman filter (FKF) proposed herein 
is based on the IAE approach using a technique known 
as covariance matching [2]. The basic idea behind the 
technique is to mak!e the actual value of the covariance 
of the innovation sequences match its theoretical value. 

The actual covariance is defined as an approximation 
of the lnnk sample covariance through averaging inside 
a moving estimation window of size M [15], which takes 
the following form: 

A l ~ T 
Clnnk = M '-' lnnk lnnk 

J=Jo 
(I) 

where j 0 =k - M+ I is the first sample inside the esti­
mation window. An empirical experiment is conducted 
to choose the window size M. From experimentation it 
was found that a good size for the moving window in 
equation (I) for the lnnk used in this paper is 15. The 
value of M is dependent on the dynamic of the lnnk 
and therefore can be different for different types of 
applications. 

The theoretical covariance of the innovation sequence 
is defined as 

S.~: = HtP; HJ + Rt (2) 

The logic of the adaptation algorithm using the covariance 
matching technique can be qualitatively described as 
follows. If the actual covariance value Ctnnk is observed, 
whose value is within the range predicted by theory St 
and the difference is very near to zero, this indicates that 
both covariances match almost perfectly and only a small 

N 

-0.015 

z 

0 

(a) 

p 

0.015 

change is needed to be made on the value of R • If the 
actual covariance is greater than its theoretical value, 
the value of R should be decreased. On the contrary, if 
C1nnk is less than Sk, the value of R should be increased. 
This adjustment mechanism lends itself very ~ell to 
being dealt with using a fuzzy logic approach based on 
rules of the kind: 

IF ( antecedent ) THEN (consequent ) (3) 

where antecedent and consequent are of the form x E 0" 
K E Li, i = I, 2, ... , respectively, where x and K are the 
input and output variables respectively and Oi and L1 

are the fuzzy sets. 
To implement the above covariance matching technique 

using the fuzzy logic approach, a new variable called 
deltak is defined to detect the discrepancy between clnnk 
and St. The following three fuzzy rules of the kind (3) 
are used: 

IF ( delta~r ~ 0) THEN ( Rk is unchanged ) ( 4) 

IF ( del tat > 0) THEN ( Rk is decreased ) ( 5) 

lF ( del tat < 0) THEN ( R.~c is increased ) ( 6) 

Thus R is adjusted according to 

(7) 

where ARt is added or subtracted from R at each instant 
of time. Here delta.~; is the input to the fuzzy inference 
system (FIS) and .!\Rk is the output. 

On the basis of the above adaptation hypothesis, the 
FIS can be implemented using three fuzzy sets for deltat : 
N =Negative, Z =Zero and P =Positive. For AR~r the 
fuzzy sets are specified as I= Increase, M= Maintaill 
and D =Decrease. The membership functions of these 
fuzzy sets which are first designed using a heuristic 
approach are shown in Fig. 1. 

2.2 Fuzzy logic observer 

To monitor the performance of an FKF, another FIS 
called the fuzzy logic observer (FLO) [16] is used. The 
FLO assigns a weight or degree of confidence denoted 

D M 

-0.135 -0.033 0 0.033 0.135 

(b) 

Fig. l Membership function of (a) dellak and (b) t.Rk 
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z s L z s L 

0 0.1 0 .3 0 2 

(a) (b) 

Fig. 2 Membership functiQn of (a) ldeltakl and (b) Rk 

as·ck> a number on the interval [0, I], to the FKF state 
estimate. The FLO is implemented using two inputs: the 
values of ldel taA:I and Rt. The membership functions of 
these variables are shown in Fig. 2. 

The fu1zy labels for the membership functions: Z =Zero, 
S =Small and L = Large. Three fuzzy singletons are 
defined for the output c1 and are labelled as G = Good, 
AV= Average and P = Poor, with values I, 0.5 and 0 
respectively. The basic heuristic hypothesis for the FLO 
is as follows: if the value of ldeltaA:I is near to zero and 
the value of RA: is near to zero, then the FKF works 
almost perfectly and the state estimate of the FKF is 
assigned a weight near I . On the contrary, if one or both 
of these values increases far from zero, it means that the 
FKF performance is degrading and the FLO assigns a 
weight near 0. Table 1 gives the complete fuzzy rule base 
of each FLO. 

2.3 Fuzzy membership functions optimization 

GAs as function optimizers are global optimization 
techniques based on natural selection [17]. A simple, or 
single, GA is restricted to tackling optimization problems 
of the form 

min f(p), p E Q (8) 

where p = [Ph p2 , ..• , pq] represents the design parameters 
of the problem and Q represents a set of constraints 
on those parameters. The objective function, f, to 
be minimized is a scalar function of the design para­
meters. Most practical engineering problems, however, 

Table I Fuzzy rule base FLO 

R. 

!delta. I z s L 

z G G AV 
s G AV p 
L AV p p 
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require more than one objective function to be optimized 
simultaneously. The general form of this type of problem is 

min F(p) , p e Q, (9) 

where p and Q are defined in the same way as before 
and F = [/1 , / 2 , . • . , };.] is a vector of objective functions 
to be minimized. In this paper, functions of this type are 
referred to as multiobjective functions. 

The MOGA is presented here as a tool to optimize 
simultaneously the FKF membership functions with 
respect to, possibly competing, multiobjective functions. 
The result of such an optimization is a number of points 
on the surface of maximum attainment in the dimension 
of the problem, known as a Pareto-optimal surface of 
non-dominated solutions [18]. These are defined such 
that a non-dominated solution is one for which an 
improvement in one objective will lead to a degradation 
in one or more objectives. Here, a popula tion-based 
optimizer can generate a number of points on this 
surface, giving the designer the ability to trade objectives 
against each other. 

Figure 3 shows a schematic of the MOGA. The 
algorithm starts by evaluating the objectives proposed 
by an initial random population. The user can interact 
with the optimization process by altering the goal and 
priority information as the optimization progresses, 
which enable the user to effectively steer the optimization 
towards a region of the objective space of particular 
interest. Pareto-optimal ranking assigns all individuals 
in a current population a rank equal to the degree of 
non-dominance in the corresponding trade-off region. 
This kind of ranking is non-unique; e.g. non-dominated 
individuals are ranked 0, whereas the solution ranked 5 is 
dominated by five other solutions in a multi objective sense. 
Due to the stochastic nature of a MOGA, individuals 
with the same fitness may produce a different number of 
offspring. The resulting accumulation of the imbala nces 
in reproduction may lead the search into a random area 
of the trade-off surface. This phenomenon is known as 
genetic drift and can drastically reduce the quality and 
efficiency of the search. Here, the crossover and mutation 
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Create Initial 
Random Population 

Evaluation o; Objectives 

User Interaction 

Pareto Optimal Ranking 

Kernel Density Estimation 

Fitness Sharing 

Mating Resfliction 

Recombination 

Mutation 

Fig. 3 Schematic of the MOGA 

can be less likely to produce different individuals and may 
result in restriction of the coverage search space. Fitness 
sharing helps reduce genetic drift by penalizing the fitness 
of individuals in popular neighbourhoods in favour of 
more remote individuals of similar fitness [19]. The 
essence of fitness sharing operator is the kernel density 
estimator, which statistically estimates the population 
density at each point. Finally, mating restriction [20] 
limits the recombination of the unacceptably large 
number of unfit individuals, called lethals. It is achieved 

by restricting reproduction to individuals that are ~ithin 
a given distance of each other. 

To translate the FKF membership functions to a 
representation useful as genetic material, the y are 
parameterized with real-valued variables. Each or these 
variables constitutes a gene of the chromosomes r()r the 
MOGA. Boundaries of chromosomes are required for 
the creation of chromosomes in the right limits s~ that 
the MOGA is not misled to some other area of search 
space. The technique adapted in this paper is to define 
the boundaries of the output membership fun.ctions 
accordin_g to the furthest points and the crossover :points 
of two adjacent membership functions. In other \'\lords, 
the boundaries of the FKF consist of three real-valued 
chromosomes (Chs) , as shown in Fig. 4. 

The trapezoidal membership functions' two furthest 
points, - 0.135 (D1) , - 0.135 (D2 ) and 0.135 (/3), 

0.135 (/4 ) of the FKF, remain the same in the GA's 
description to allow a similar representation as the fuzzy 
system's definition. As can be seen from Fig. 4, D 3 and 
M 1 can change value in the first Ch boundary, D 4 , M 2 

and / 1 in the second Ch boundary and, finally, M3 and ! 2 

in the third Ch boundary. Table 2 shows the encoding 
used for optimization of the membership functions. 

Table 2 FKF boundaries 

Limit 

Upper limit 
Lower limit 

- 0.135 
- 0.033 

Parameter 

- 0.033 
0.033 

0.033 
0.135 

1st Ch -z>d Ch T Ch 

·····-----------------,----------------T·---------T·-------cy-------------····r-·-----------·-----
! ~ 
I : 

j ! 

i ! 
! ! 
! { 
i i 

D 
j ; 

! M l I 

i -0.135 -0.033j i 0.033 i 0.135 i 
i<] ..... ·-·-··--·······--····--··········-l ...... _. __ -l>i ~--·--· ··· ·..l ·-···-····- -·---···· · ·· ··· ···· ··············-C>' 

~----·· ···--· ·-··.L. ________ e:J 
Fig. 4 Membership function and boundaries of Rk 
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3 FUSION OF INS SENSOR DATA Table 3 MOGA parameters 

In this section, the FKF technique is applied to maintain 
the optimality of an AUV heading estimation process. The 
FLO will then be used subsequently to fuse the estimated 
heading values. To this end, an AUV linearized head­
ing dynamic model derived by using sway and yaw 
equations of motion along with Euler angle mapping 
[21] is employed. It is assumed in this model that the 
forward velocity of the vehicle is constant at 1.3 rnls and 
the vehicle is not at an angle of roll and pitch. The com­
ponents of the equations were obtained using standard 
fluid techniques such as K.irchhoff's equations [22], 
which. are usually simplified by neglecting second-order 
terms, either explicitly or implicitly, from Taylor series 
expansions. The state-space form (please also refer to 
the Appendix) of the dynamic model is 

[ 
v(t)] [ - 2.09 

f(t) = 7.96 

~(t) 0 

0.376 0][ v(t)] 
- 8.69 0 r(t) 

I 0 'ljl(t) 

[ 

1.07 ] 
--+ -~4.1 o,(t)+w(t) (10) 

where v(t) , r(t) and 1/J(t) represent the sway velocity, 
yaw rate p( turn and yaw angle. The H (see the 
Appendix) in this case is (0 0 l]T (only the third 
state is observed by its corresponding sensor). The 
w(t) and v(t) are both zero mean white noise for the 
system and measurement models respectively and o.(t) 
is the rudder deflection. A sample time of 0.125 s is 
used to discretize the linearized model. The initial 
conditions are [v0 f0 ~o]T = (0 rnls 0 rad/s 0 radf, 
P0 = diag(O.Ol m/s2 0.01 radls2 0.01 rad2

] and QA: is 
made constant as diag(O.Ol rnls2 0.01 radls2 0.01 rad2

] . 

The values of P0 and Qk are determined heuristically. 
In real-time applications, the Qk values are dependent 
on temporal and spatial variations in the environment 
such as sea conditions, ocean current, local magnetic 
variations, etc., and therefore appropriate adjustments 
to the initial values of Q also need to be undertaken. 
This topic will be addressed in forthcoming papers. In 
equation (10) a sinusoidal input was applied to the rudder. 
Four yaw sensors with different noise characteristics a re 
considered to measure the response of the vehicle. 

The actual value of R for each yaw sensor is assumed 
unknown but its initial value is selected as 0.01 rad2 . The 
FKF algorithm optimized using MOGA with parameters 
shown in Table 3 was then implemented with the trade­
off graph shown in Fig. 5 and simulation results shown 
in the next section. 
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Parameters 

Number of objective functions 
Number of generations 
Number of individuals per generation 
Generation gap in selection operation 
Rate in recombination operation 
Rate in mutation operation 

Tuning of FIS of FKF 

X 

2 3 

Values 

5 
200 

X 

4 

25 
0.95 
0.8 
0.09 

--

5 

Fig. 5 Trade-off graph for a FKF search 

3.1 Simulation results 

Figures 6 and 7 are the simulation results showing the 
response of the AUV observed by sensors with con­
stant Gaussian noise, while Figs 8 and 9 are the results 
observed by sensors with uniform noise increasing and 
decreasing with time respectively. These types of noise 
are included in the simulation to demonstrate the 
effectiveness of the proposed adaptation mechanism in 
general. A possible real-time scenario that can result in 
the noise with the characteristic shown in Fig. 8 is that 
of tl1e third yaw sensor located in close proximity to 
an electronic hardware such as a propeller d.c. motor 
whose internal temperature increases with time and affects 
the sensor ambient temperature. A similar scenario can 
also occur when the fourth yaw sensor is located in close 
proximity to another electronic hardware such as a hydro­
plane stepper motor whose initial internal temperature 
is high and settles down after some time. Figure I 0 shows 
the values of R after the FKF has been run. Figures 6 
and 9 a lso show several peaks in the simulations of 
sensors I and 4. These are to indicate faults in the sensor. 
There are two types of fault defined in this simulation 
work, transient and persistent faults [16]. Transient fault 
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Fig. 6 (a) Measured and estimated yaw output; (b) measured and ·estimated yaw error of sensor I; 
(c) measured and recovered yaw output; (d) measured and recovered yaw error of sensor I 
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happens when the sensor output increases abruptly for 
only a sample period of time. Persistent faults occur 
when the transient faults persist for an instant of time. 
Consequently, the peaks in sensor 1 and 4 simulations 
show the persistent and transient faults respectively. 
Figures 6c, d and 9c, d provide a closer look on the 

indicated areas in Figs 6a, band 9a, b respectively. It is 
clear in both cases that the algorithms have detected 
faults in the system and appropriate actions have been 
undertaken to recover the signals. Direct observation 
of Figs 6 to 9 shows how the proposed method has 
significantly reduced the level of error in the system. 
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Fig. 7 (a) Measured and estimated yaw output; (b) measured and estimated yaw error of sensor 2 
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Fig. 8 (a) Measured and estimated yaw output; (b) measured and estimated yaw error of sensor 3 

To fuse the estimated yaw, a centre of gravity method 
is used (please note that as H = [0 0 l V the vector z 
now takes the form scalar z) 

Finally, the ·following performance measures are 
adopted for comparison purposes: 

(ll) 

where zk, is the output of the ith FKF (i = l, 2, 3, 4) 
and ck, is the respective weight at instant time k. 
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Fig. 9 (a) Measured and estimated yaw output; (b) measured and estimated yaw error of sensor 4; 
(c) measured and recovered yaw output; (d) measured and rerovered yaw error of sensor 4 
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where zak is the actual value of the yaw, zk is the measured 
yaw, it is the estimated yaw at an instant of time k and 
n = number of samples. 

Table 4 shows the comparison of performance of each 
individual measured sensor output with the one obtained 
using standard FKF and FKF optimized using MOGA 
(FKF-MOGA) respectively. A further comparison is 

also made between the performance of the fused sensor 
outputs obtained using both FKF schemes. A first look 
at the table shows that Jze of each individual sensor 
always outperforms Jrv. Most importantly is that every 
single J ze of the fused sensor output from both FKF 
schemes outperforms its individual sensor counterpart. 
It is also clear that the MOGA optimization techniques 
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Fig. 10 (continued over) 

have significantly increased the performance of sensor I, 
as indicated by the corresponding l u values. The FKF­
MOGA lze values of sensor 4 also show a similar trend 
of improvement, although not as good as the ones pro­
duced by sensor I . The l u values of sensors 2 and 3 in 
the FKF-MOGA case are slightly inferior compared to 
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those in the standard FKF case. A logical explanation 
to this is that the MOGA mutation process might not 
have produced a sufficiently 'mutated' individual in the 
specified number of generations. Given the complexity and 
the computational burden of the proposed algorithms, 
it is decided that running the MOGA for many more 
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numbers of generations wiU be the topic of forthcoming 
papers. However, it should be noted that any improve­
ment in Ju values of either sensor 2 or 3 can degrade 
the J u values of other sensors. This stems from the non­
dominated nature of MOGA solutions for which an 
improvement in one objective will lead to a degradation 
in one or more other objectives, as discussed in section 2.3. 

Here, the fused estimated yaw obtained previously 
is treated as a single imaginary yaw sensor and used 
by other INS sensors to transform data from a body 
coordinate frame to a geographical (north- east-down, 
or NED) coordina te frame where integration with 
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Table 4 Comparison of performance 

Sensor 

Sensor I 
Sensor 2 
Sensor 3 
Sensor 4 
Fused 

J •• 

0.026 687 829 592 25 
0.039 982 002 504 69 
0.017 336 355 460 06 
0.020 936 969 706 92 

Non-MOGA 

0.019 097 392 675 32 
0.008 758 062 186 51 
0.004 944 517 770 90 
0.005 070 181 477 04 
0.003 499 385 150 25 

converted GPS data is performed using a combination of 
FKF and EKF techniques, which can be referred to as 

1 a fuzzy extended Kalman filter (FEKF). Figure 11 shows 
this relationship and serves as an overall representation 
of the algorithms that have been discussed so far. 

A continuous-time model of the vehicle motion 
appropriate to this problem is taken to be 

X(t) = F(X(t)) + W(t) 

Z(t) = H(X(t)) + Jl(t) 

(14) 

(15) 

where X(t) = [.l(t) rp(t) 'l1(t) .9(t) ~(t) v(t)]T show the 
model states, A.(t) and rp(t) are the longitude and latitude 
of the AUV "POsition converted from deg- min- s in 
the Earth coordinate frame into metres in the NED 
coordinate frame, 'l'(t) is the yaw angle obtained from 
the imaginary ·yaw sensor, 8(t) is the yaw rate, and ~(t) 
and v(t) are the surge and sway velocities respectively. 

In this system model, F(.) and H(.) are both con­
tinuous function, continuously differentiable in X(t). 

FEKF: 
GPS/lNS 

integration 

No 

Performance (rad) 

MOGA 

First Second Third 

0.004 686 209 041 60 0.004 658 283 773 57 0.004 700 171 675 62 
0.008 773 770 149 78 0.008 765 043 503 52 0.008 759 807 515 76 
0.004 979 424 355 94 0.005 010 840 282 48 0.005 003 858 965 47 
0.004 879 940 588 58 0.004 872 959 271 57 0.004 869 468 613 06 
0.003 722 787 294 50 0.003 729 768 611 51 0.003 728 023 282. 26 

The W(t) and Jl(t) are both zero mean white noise for 
the system and measurement models respectively. 

The model states are related through the follow­
ing kinematically based set of functions [F(X(t)) in 
equation (14)]: 

~t)=O (16) 

v(t) = o 
tj/(t) = .9(t) 

8{t) = 0 

i(t) = ~(t) cos IJI(t) - v(t) sin IJI(t) 

rp(t) = ~(t) sin 'P(t) + v(t) cos IJI(t) 

(17) 

(18) 

( 19) 

(20) 

(21) 

The output measurements are related through the 
states by the identity matrix H(X(t)). To obtain an EKF 
with an effective state prediction equation in a simple 
form, the continuous time model of equations (16) 
to (21) have been linearized about the current state 

EsUmate 
INS 

INS 
Fusion 

Sensor N 

Fig. 11 Block diagram of the INS/GPS using the F(E)KF 
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estimates, producing 
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and C is an identity matrix. Subsequent discretization with 
period T = 0.125 s of the linearized model results in an 
EK.F algorithm similar to the LKF algorithms in the 
Appendix, only this time the A matrix is updated at every 
iteration. The initial conditions are P0 = diag [0.01 m2 

0 .01 m2 O.Ol(rad2
) O.Ol(rad/s2

) 0.01 m/s2 0.01 m/s2
) and 

Q is made constant as diag[l0m2 10m2 0.000001 rad2 

0.01 rad/s2 0.1 m/s2 0.1 m/s2
) . As in the case of fusion of 

INS sensor data discussed previously, the values of P0 

and Q here are also determined heuristically. The initial 
value of R is selected as diag[20.l8 m2 3.30 m2 0 ra..d2 

0 radls2 0.000009 m/s2 0.000016 rn/s2
]. The values of 

R(l , l) and R(2, 2) are determined by error analysis of 
the output of an actual GARMIN GPS l5LW receiver 
over a period of several hours at the University of 
Plymouth testing site with latitude 50° 22' 33.0552" North 
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Fig. 13 {a) Initial AUV trajectory using the standard EKF; (b) initial AUV trajectory using the FEKF 
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and longitude 004° 08' 21.1438" West. To generate the 
error time series shown in Fig. 12, the deg- min- s of 
difference between the output of the receiver and the 
actual known position was converted into metres, using 
methods available in the literature [23]. R(5, 5) and 
R(6, 6) are chosen to represent the R of an RDI 
Navigator Dopper Velocity Log at 1200kHz [24]. As 
the output from the imaginary yaw sensor assumed to 

be noise free, the initial values of R(3, 3) and Wl( 4, 4) 
are selected as 0 rad2 and 0 rad/s2 respectively. 

The FKF algorithm from section 2. 1 is then imple­
mented, only this time the adaptation of the (i, i) th 
element ofRk is made in accordance with the (i, i) th element 
of deltak. Here a single-input- single-output (SISO) FIS, 
as shown in Fig. 1, is used sequentially to generate the 
correction factors for the elements in the main diagonal 

z 
I 
<I> 
"0 

~ 
.J 
(/) 

z 

I 
G) 
'0 
.a 
'16 
.J 
(/) 

550 

545 

540 

535 

530 

525 

520 

515 

510 

505 

5~---------2~7~5------~-2~70~------~-2~65~-------~~~--------2~5~5---------2~~ 

W Longitude (m) E 
(a) 

550 

545 
. . . . ................. ___________________ . ___________ __ ________ . _____________________ . ___________________ _ 
t • • 0 
I t o t 

540 

535 

--- -------- ----~--~ __ _ ·._;>;;; ___ ~ ___ ~ __ SJlll~til5· . ........ : L J ·. . 
530 

. . ·arae:GPS·tr•iiot);····-------·····;··--------------- ------------·--------------------
thin solid tioo: es1imated trajectOIY i . . 

525 

520 

515 

510 

0 • • • • 

505 
o o o o I ---------------······-------------···········--··-------·------·····-··--··-·-------··'···-------·-···--·-·· ··----·-·····-······· 0 0 0 0 0 
0 0 • • • 
• 0 • • 0 
0 0 • • 0 . . . . . 
0 • ' 0 ' 0 t o I I 

~~o--------~2~75~-------2~7~0------~-2~65~-------2~00~-------~25~5~-------2~~ 

W Longitude (m) E 
(b) 

Fig. 14 (a) Final AUV trajectory using the standard EKF; (b) final AUV trajectory using the FEKF 

M01603 0 IMechE 2004 Proc. lnstn Mech. Engrs Vol. 218 Part M: J. Engineering for the Maritime Environment 



68 D LOEBIS, R SUITON AND J CHUDLEY 

of Rk as the following: 

Rk(i, i) = R•- 1(i, i) + lillk (23) 

Figures 13 and 14 are the simulation results showing the 
AUV trajectory at the start and the end of its mission. 
The longitude and latitude of the vehicle during the 
course of the mission are simulated while being observed 
by the on-board GPS receiver with constant Gaussian 
noise with R values lower than the assumed initial values. 
On the contrary, the vehicle's surge and sway velocities 
are simulated being observed by a DVL with constant 
Gaussian noise with R values much higher than the 
assumed initial values. This logically will cause less 
weight being put on the position obtained by the GPS 
and more on the prediction of position obtained from 
the dead reckoning method (using DVL data) at the 
start of the simulation and conversely towards the end. 
Figure 13a shows how the EKF makes relatively slower 
adjustments to the R values compared to the adjustments 
made by the FEKF shown in Fig. 13b. It is clear here 
that only after a few samples of time, the FEKF has 
learned the true nature of the sensor noise and put more 
weight on the position obtained by the GPS receiver than 
on the prediction of position obtained by dead reckoning 
accordingly. Figure 14a shows how the EKF has still 
some 'confidence' on the dead reckoned position at the 
end of the simulated trajectory, while the FEKF shown 
in Fig. 14b l:fas put lOO per cent confidence on the GPS 
position. The EKF results in an estimated trajectory 
with a root mean square error (r.m.s.e.) of 0.6 157 m for 
longitude and 0.2626 m for latitude. With the proposed 
FEKF adaptation, the r.m.s.e. for longitude is 0.1098 m 
and 0.01 58 m for latitude. 

5 SUMMARY AND CONCLUSIONS 

The problem with incomplete a priori knowledge 
of Q (process covariance matrix) and R (measurement 
covariance matrix) is considered. Within this paper, an 
adaptive Kalman filter approach based on the fllter 
innovation sequence coupled with fuzzy logic optimized 
using a MOOA is discussed as an alternative for fusing 
INS sensor data and integrating INS/GPS position 
information. Implementation of this approach to a 
linearized heading model of an A UV, whose responses 
are measured with sensors with different noise character­
istics, has shown a significant result in improving the 
estimation of an individual KF. 
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APPENDIX 

Kalman filter algorithm 

Given a discrete-time controlled process described by the 
linear stochastic difference equations 

xH 1 = A1 x 1 + B1 u 1 + w1 

z1 = H,x1 +v, 

(24) 

(25) 

where x, is an n x 1 system state vector, A, is an n x n 
transition matrix, u1 is an I x l vector of the input forcing 
function, B1 is an n x I matrix, w, is an n x l process 
noise vector, z1 is an m x l measurement vector, H 1 
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is an m x n measurement matrix and v4 is lUll m x l 
measurement noise vector. Both w, and v1 are a :;sumed 
to be uncorrelated zero-mean Gaussian white noise 
sequences with covariance given by 

wTJ = {~:· i=k 
E[w1 

i :1: k 
(26) 

T] - {R•, i = k 
E[v, VI -

i :1: k 
(27) 

0, 

E[w1 vTJ=O, for all k and i (28) 

The KF algorithm can be organized into a time update 
and measurement update equations: 

Time update equations: 

f;-+ 1 = A4 f 4 + B•"• 
P;-+t = A,P,AI + Qk 

Measurement update equations: 

K1 = P;-ffl[HaPl' HI + Rd - 1 

f~c = f ; + K,[z1 - H,x; ] 

P, =[I- KkH.]P; 

(29) 

(30) 

(31) 

(32) 

(33) 

The measurement update equations incorporate a new 
observation into the a priori estimate from the time 
update equations to obtain an improved a posteriori 
estimate. In the time and measurement update equations, 
ft is an estimate of the system state vector X~c, Kk is the 
Kalman gain and P 1 is the covariance matrix of the state 
estimation error. 
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A SOFT COMPUTING METHOD 
FOR AN AUV NAVIGATION SYSTEM 

WITH PSEUDO-REAL-TIME APPLICABILITY 
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Abstract: This paper describes the implementation of a soft computing method 
based on fuzzy logic and multiobjective genetic algorithm techniques to adapt the 
parameters of an error-state complementary Kalman filter (ESCKF) to enhance 
the accuracy of an autonomous underwater vehicle (AUV) navigation system. In 
the ESCKF, inertially-derived quantities from an inertial navigation system (INS) 
sensor are combined with direct measurements of the same quantities by use 
of the global positioning system (GPS) and other aiding sensors. The backlash 
of the integration processes however, is that errors can grow rapidly and the 
values obtained therein can drift off the true value significantly. By contrast, the 
directly-measured data contain high frequency noise with bounded error. This 
instinctively suggests integrating the two sets of quantities, which is exactly what 
the ESGKF does. To maintain the stability and performance of the ESCKF, 
which is likely to deteriorate when the assumed error and noise characteristics do 
not reflect the true ones, a fuzzy logic based scheme is used to make these values 
adaptive. The choice of fuzzy membership functions for this scheme is first carried 
out using a heuristic approach and further refined using a multiobjective genetic 
algorithm method. Copyright@2004 /FAG 

Keywords: Autonomous underwater vehicles, navigation, Kalman filters, fuzzy 
logic, genetic algorithm, multiobjective optimization 

1. INTRODUCTION 

The development of AUVs for scientific, military 
and commercial purposes in applications such as 
ocean surveying, unexploded ordnance hunting, 
and cable tracking and inspection requires the 
corresponding development of navigation systems. 
Such systems are necessary to provide knowledge 
of vehicle position and attitude. The need for 
accuracy in such systems is paramount: erroneous 
position and attitude data can lead to a meaning-

less interpretation of the collected data or even 
to a catastrophic failure of an AUV. A growing 
number of research groups around the world are 
developing integrated navigation systems utilising 
INS and GPS. However, few of these works make 
explicit the essential need for fusion of several 
INS sensors that enable the users to maintain the 
accuracy or even to prevent a complete failure 
of this part of the navigation system, before be­
ing integrated with the GPS. Several estimation 
methods have been used in the past for multisen-
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sor data fusion and integration purposes. To this 
end, the Kalman filter {KF) and its variants have 
been popular methods in the past and interest in 
developing the algorithms has continued to the 
present day. 

However, a significant difficulty in designing a KF 
can often be traced to incomplete a priori knowl­
edge of the process noise covariance matrix (Q) 
and measurement noise covariance matrix (R). 
In most practical applications, these matrices are 
initially estimated or even unknown. The prob­
lem here is that the optimality of the estimation 
algorithm in the KF setting is closely connected 
to the quality of a priori information about the 
Q and R {Mehra, 1970). It has' been shown that 
insufficiently known a priori filter statistics can 
reduce the precision of the estimated filter states 
or introduce biases to their estimates. In addi­
tion, incorrect a priori information can lead to 
practical divergence of the filter. Fr~m the afore­
mentioned it may be argued that the conventional 
KF with fixed Q and/or R should be replaced by 
an adaptive estimation formulation. In this paper, 
a novel fuzzy error-state complementary Kalman 
filter (FESCKF) is proposed. With this method, a 
KF with an error-state model obtained using first 
order Markov processes and error data analysis 
is used in parallel with fuzzy logic techniques to 
adjust R. A further improvement can be achieved 
using multiobjective genetic algorithm (MOGA) 
techniques, whereby the fuzzy membership func­
tions are adjusted to produce the most optimum 
result. 

'"'·· 

The structure of. the paper is as follows: sec­
tion 2 introduces the concept of the ESCKF and 
the derivation of the process and measurement 
model and the associated noise covariance matri­
ces. Section 3 discusses the proposed KF adap­
tation mechanism followed by fuzzy membership 
function optimization (FESCKF). Section 4 and 5 
provide simulation results and concluding remarks 
respectively. 

2. ESCKF MODELLING 

2.1 The Concept of ESCKF 

Brown and Hwang {1997) discuss the advantages 
of the ESCKF method over the total state Kalman 
filter. The most important advantage is that any 
nonlinear relationship between the process dy­
namics in the inertial system and the measure­
ment relationships can be removed in a differ­
encing operation, and the filter becomes linear. 
This linearity condition is required by the Kalman 
filter. This condition can also lead to faster codes 
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execution as linearisation operations are relatively 
slow to execute. 

KF algorithms are widely available in the liter­
ature. The interested reader can refer to Brown 
and Hwang (1997). Works on ESCKF however, 
are very limited especially in the field of AUV 
navigation systems. An example of this work can 
be found in Gustaffson et al. {2001). Like in the 
KF, the ESCKF algorithm can be divided into 
two major parts: the measurement update and 
the time update. In ESCKF, the measurement 
update is obtained by subtracting the direct mea­
surements from the computed version of the same 
quantities. By doing this, the true values cancel 
each other out and what remains is the difference 
between the measurement errors and drift errors. 
In the time update, the estimates are obtained 
by subtracting the estimated drift errors from the 
forward filter pass from the computed version of 
the same quantities. 

In this paper, measurement errors from an ac­
celerometer ~nd a gyroscope (assembled in an 
inertial measurement unit (IMU)), a TCM2 elec­
tronic compass and a GPS receiver unit are esti­
mated and modelled using first order Markov pro­
cesses which are defined in the folJowing manner: 

. 1 
x=--·x+')' (1) 

T 

In (1), x is the error process to be modelled, r is 
the time constant of the assumed Markov process 
and ')' is white noise. For modelling purposes, all 
sensor data have been colJected in static condi­
tions for a period of approximately 2.5 hours. 
For the same purpose, three different frames of 
reference are defined. The body-fixed (b) frame of 
reference is aligned to the axes of the AUV, where 
forward-starboard-down correspond to x - 71 - z. 
These need to be transformed to the geographical 
(g) frame of reference, where x - 71 - z corre­
spond to North-East-Down. For these particular 
application; the measurements in question are 3D 
accelerations, as well as angular rates measured 
by the IMU. Earth-centred Earth-fixed (ECEF) 
frame is where the GPS latitude and longitude 
are defined. The following subsections give the 
derivation of the process matrix (F) and the cor­
responding noise covariance matrix (Q) 

2.2 Process and Noise Covariance Matrix 

The elements of the state of the ESCKF are 
defined as follows: 

x = [ ~ y~ t/1~ x~ y~ t/J~ r~ u~ v~] (2) 

In {2) the subscripts d and e denote drift and 
sensor errors respectively. Superscripts g, b and 

CAMS 2004 

.· .. : 



h denote geographical frame, body-fixed-frame 
and horizontal frame respectively. Drift errors in 
positic;m, ~ and ~ stem from the error in the 
integrated acceleration ( u~ and v:), and compass 
error t/J~. t/J~ is heading drift error which comes 
from the error in the integrated yaw rate. Mea­
surement errors in the position blend are respec­
tively represented by the states x~ and YK. Finally, 
state r~ represents gyroscope's yaw error. 

The differential equation describing the relation­
ship between dead reckoning position and the hor­
izontal velocity from the integrated acceleration is 
given as: 

[~] = [~:~ -~:t/Jv;: ] . [:£] (3) 

In (3) the subscript c denotes computed and m 
denotes measured. Expanding this into true values 
and errors yields: 

Expansion of (4) by applying trigonometric for­
mulas and by assuming that the measurement 
error is sufficiently small whereby the relations 
cos t/JK ~- 1 and sin t/Jg ~ t/Jg holds, yields: 

By sul;>stituting true values into (3) and subtract­
ing the result from (5), gives 

To explicitly relate drift errors in position to the 
accelerometer error, trivial alteration is applied to 
the first term of right hand side of (6). Further, 
by assuming that the current estimate of A heading 
and velocities from the Kalman filter (t/19 ,u and 
iJ) are sufficiently close to the true heading (t/19 ) 

and velocities and also by keeping in mind that 
tJI9 + t/J: = t/Jfn, (6) becomes: 
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AB in the case with position drift, the heading 
drift error evolution { 1/J~) will be directly depen­
dent on the yaw rate sensor error (r~), because 
it is rotated into horizontal frame before it is 
integrated up to yield an alternative heading. The 
differential equation describing the relationship 
between body-fixed angular rates and horizontal 
heading can be written as: 

. A.h b .J.h b 
'h smY'm ·qm +cosY'm ·rm 

1/Jc = cosOh 
m 

(8) 

In (8) 4J, 8, q and r are the roll, pitch, pitch rate 
and ya.w rate respectively. Expanding computed 
heading and measured ya.w rate into true values 
plus drift and sensor errors, and using the as­

sumptions that qb ~ q~, 1/Jh ~ 1/J~ and 6 ~ 8~, 
true values cancel each other out. Observing that 
the computed heading is initialised by a TCM2 
reading, the following expression gives the sought 
relation between drift error and yaw rate sensor 
error: 

tj;9 - cos 4J~ . rb 
d- cosO~ e 

(9) 

The rest of the diagonal elements in the process 
matrix describe the sensor error processes, which 
are modelled using a first order Markov processes. 
Based on the derivations and assumptions in (3) 
through (9) , the process matrix can be written as 
in {10) given in the neXt page. 

The variance of the process noise for a Markov 
error model can be described as in Brown and 
Hwang (1997), 

In (11), e- -;
1 

is the state transition parameter for 
the Markov error model. L':l.t is the discrete time 
interval and T is the time constant. By taking 
the approximation: e-IJL!.(t) ~ 1 - {3 · L':l.t, where 
f3 = T-1, t he following is true: 

variance[wk] = (2{3L':l.t - ({3L':l.t)2
) • variance[xk](12) 

According to the process model, the heading drift 
error state represents the integrated yaw error 
state, in effect an integrated Markov process. 
The process noise covariance matrix for these two 
states can be defined as in Brown and Hwang 
{1997), 

{13) 

where 
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000 0 0 • ,pg •h ,pg -.h - SlD · U - COS · V 0 cos,Pfn - sin 1/Jfn 
000 0 0 COB ,pg · Uh -sin ,P9 • Vh 0 sin 1/Jfn COtlVJfn 

000 0 0 0 

0 0 0 - 1 
0 0 

'Tx 
-1 

000 0 0 
F= 'TII 

-1 
000 0 0 

r.p 

000 0 0 0 

000 0 0 0 

000 0 0 0 

Qu= 
2

<1

2 
[tlt-~(1-t/J)+_!_(1-t/J2)] (14) 

{3 {3 2{3 

Ql2 = Q21 = 2a2 [!_(1 - 1/J) + _!_(1- t/J2 ) ] (15} 
{3 2{3 

(16) 

where {3 is the inverse of the Markov time con­
stant, a2 is the process noise variance of the yaw 

At 
rate Markov error and 1/J = e-T and defined as 
before. 

For the first two states in the process model, ~ 
and ~.· the analysis is more complicated and for 
this reason, the noise covariance matrix of the 
two states are obtained from an empirical result, 
and provision for the adjustment method has been 
made and will be reported in the future. 

2.9 Measurement and Noise C011ariance Matrix 

The measurement matrix H relates the available 
measurement updates to the element in the state 
vector and takes the following form: 

[

1 0 0 -1 0 0 0 0 0] 
H = 0 1 0 0 -1 0 0 0 0 

0 0 1 0 0 - 1 0 0 0 
{17) 

The measurement noise covariance matrix R.~; is 
determined empirically and given as: 

[ 

aJc- Poaition 
2 

0 0 l 
Rk = 0 <Ty - Poaition 0 

0 0 <T~eading 
{18) 

where aJc - Poaition• <Tf - Poaition• <T~Jeading are the 
variance in X, Y direction and heading respec­
tively. These values will be adapted using the 
algorithm discussed in the next section. 
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3. THE ADAPTIVE TUNING OF KALMAN 
FILTER ALGORITHM 

Over the past few years, only a few publications in 
the area of adaptive Kalman filtering can be found 
in the literature. One of the most popular method 
is innovation adaptive estimation (IAE). The in­
novation Inn,~; at sample time k is the difference 
between the real measurement Zk received by the 
filter and its estimated {predicted} value Zk· The 
predicted measurement is the projection of t he 
filter predicted states x;; onto the measurement 
space through the measurement matrix Hk. Inno­
vation represents additional information available 
to the filter as a result of the new measurement 
Zk. The occurrence of data with statistics different 
from the a priori information will first show up in 
the innovation vector. For this reason the innova­
tion sequence represents the information content 
in the new observation and is considered the most 
relevant source of information to the filter adap­
tation. 

Herein, the IAE approach coupled with fuzzy logic 
techniques with membership functions designed 
using heuristic methods and further refined using 
MOGA is used to adjust the R matrix of the 
ESCKF. Initial work on this approach can be 
found in Loebis et al. {2003) . 

9.1 Fuzzy error state complem entary K alm an 
filter 

In this sub-section, an on-line innovation-based 
adaptive scheme of the ESCKF to adjust the R 
matrix employing the principles of fuzzy logic is 
presented. The fuzzy logic is chosen mainly be­
cause of its simplicity. This motivates the interest 
in the topic, as testified by related papers which 
have been appearing in the literature (Loebis et 
al. , 2003; Escamilla-Ambrosio and Mort, 2001). 
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The FESCKF proposed herein is based on the IAE 
approach using a technique known as covariance­
matching (Mehra, 1970). The basic idea behind 
the technique is to make the actual value of the 
covariance of the innovation sequences match its 
theoretical value. 

The actual covariance is defined as an approx­
imation of the Innk sample covariance through 
averaging inside a moving estimation window of 
size M (Moha.med and Schwa.rz, 1999) which takes 
the following form: 

{19) 

where jo = k - M + 1 is the first sample inside 
the estimation window. An empirical experiment 
is conducted to choose the window size M. From 
experimentation it was found that a good size for 
the moving window in {19) is 15. The theoretical 
covaria.nce of the innovation sequence is defined as 

Sk = Hk · Pj; · Hf + Rk (20) 

The logic of the adaptation algorithm using eo­
variance matching technique can be qualitatively 
described as follows. If the actual covaria.nce value 
Crnn11 is is observed, whose value is within the 
range predicted by theory sk and the difference 
is very Mar to zero, this indicates that both co­
Wrianees match almost perfectly and only a small 
change is needed to be made on the value of R . If 
the actual covariance is greater than its theoretical 
value, the value of R should be decreased. On the 
contrary, if Crnn,. is less than sk. the value of R 
should. be increased. This adjustment mechanism 
lends itself very well to being dealt with using a 
fuzzy-logic approach based on rules of the kind: 

IF (antecedent} THEN {consequent} (21) 

where antecedent and consequent are of the form 
vt-0,, K.f.L,, i = 1, 2, ... respectively. Where v and 
,. are the input and output variables, respectively, 
and O, and L, are the fuzzy sets. 

'Th implement the above covariance matching 
technique using the fuzzy logic approach, a new 
variable called deltll,l;, is defined to detect the 
discrepancy between Crnnk and sk. The following 
fuzzy rules of the kind {21) are used: 

IF {delt8,1; ~ 0} THEN (Rk is un.changed}(22) 

IF (deltak > 0} THEN {Rk is decreased} {23) 

IF {deltak < 0} THEN {Rk is increased} {24) 

Thus R is adjusted according to, 

R k = Rk- 1 +~k 
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{25) 

where ARk is added or subtracted from R at 
each instant of time. Here delt8,1; is the input to 
the fuzzy inference system (FIS) and ARk is the 
output. 

9.2 FUzzy membership functions optimization 

MOGA is used here to optimize the member­
ship functions of the FESCKF. To translate the 
FESCKF membership functions to a representa­
tion useful as genetic material, they are param-

. eterised with real-valued variables. Each of these 
variables constitutes a gene of the chromosomes 
for the MOGA. Boundaries of chromosomes are 
required for the creation of chromosomes in the 
right limits so that the MOGA is not misled to 
some other area of search space. The technique 

· adopted in this paper is to define the boundaries 
of the output membership functions according to 
the furthest poiiits and t_he crossover points of two 
adjacent membership functions. In other words, 
the boundaries of FESCKF consist of three real­
valu~ chromosomes (Ohs), as in Figure 1. The 

~.033 0.000 0.033 

Fig. 1. Membership function and boundaries of 
Rk . 

trapezoidal membership functions' two furthest 
points, -0.135 (D1), -0.135 {~) and 0.135 {la), 
0.135 (!4) of FESCKF, remain the same in the 
GA's description to allow a similar representation 
as the fuzzy system's definition. As can be seen 
from Figure 1, Ds and M1 can change value in the 
1111 Ch boundary, D4, M2 and 11 in the 2nd Ch 
boundary, and finally, Ma and !2 in 3rd Ch. 

4. SIMULATION RESULTS 

In this section the FESCKF algorithm is applied 
to a set of simulated sensor data, i.e. latitude and 
longitude data from a GPS unit, 3D accelerometer 
and gyroscope data from four IMUs located in 
different parts of the vehicle, and yaw data from 
four TCM2s located in close proximity to the 
IMUs. Herein, these sensors are used to capture 
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YAWl 

YAWl YAW4 

Fig. 2. Yaw output from TCM2s with (a) con­
stant Gaussian noise1, {b) constant Gaussian 
noise2, (c) uniform noise increasing with time 
and {d) uniform noise decreasing with time 

the position · and attitude of the vehicle as a si­
nusoidal input applied to ita rudder. Although 
there are redundancy on the 3D acceleration and 
attitude data, due to limited space, it is decided 
to focus the discussion in this paper on the fusion 
ofthe yaw data produced by the TCM2a. The yaw 
rates produced by the IMUs are integrated once to 
produce a computed version of the corresponding 
yaw data. AB discussed in Section 2, the yaw mea­
surement update is obtained by subtracting the 
yaw {TCM2s) direct measurements from the yaw 
(gyroscopes) computed version. Figure 2 shows 
the output of the TCM2a. The initial R was as­
sumed to be diag[500m2 500m2 0.1ratPJ, x0 = 0, 
Po = O.Ollg. The value of R was first adapted 
).l8ing the FESCKF with membership functions 
designed heuristically and further refined using 
MOGA with the parameters shown in Table 1. For 
comparison purposes, the following performance 
measures were adopted: 

{26) 

{27) 

where za~c is the actual value of the yaw, Zk is 
the measured yaw, Zk is the estimated yaw at an 
instant of time k and n = number of samples. The 
performance comparison is presented in Table 2. 
It is clear that the J ze·S of each sensor in both 
non-MOGA and MOGA always outperform the 
corresponding Jzv·S. It is also clear that the Jze­
s of MOGA case always produce a better result 
than the non-MOGA case. Most importantly, the 
J ze·S of the fused sensor are better compared to 
the J ze·S of the individual sensor. 
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Parameters Values 
Number of objective functions 5 
Number of generation 200 
Number of individual per generation 25 
Generation gap in selection operation 0.95 
Rate in rate in recombination operation 0.8 
rate in mutation operation 0.09 

Table 1. MOGA parameters 

Sensor J .. .,(rad) J:e(rad) 
Non-MOGA MOGA 

Sensor 1 0.0393 0.0379 0.0324 
Sensor 2 0.0799 0.0793 0.0668 
Sensor 3 0.0341 0.0293 0.0285 
Sensor 4 0.0350 0.0339 0.0299 

Fused 0.0245 0.0184 
Table 2. Performance comparison 

5. CONCLUDING REMARKS 

A novel method to obtain an accurate AUV nav­
igation system is proposed. The method is based 
on the ESCKF coupled with fuzzy logic to adjust 
the value of measurement noise covariance matrix 
R. MOGA is proposed to further refine the result. 
The simulation results presented in this paper 
have shown the ability of the proposed algorithm 
to produce a significant improvement over the 
conventional method. 

REFERENCES 

Brown, R. G. and P. Y. C. Hwang {1997). In­
troduction to Random Signals and Applied 
Kalman Filtering. 3rd Ed. John Wiley and 
Sons. 

Escamilla-Ambrosio, P. J . and N. Mort {2001). A 
Hybrid Kalman Filter-Fuzzy Logic Multiaen­
sor Data Fusion Architecture with Fault Tol­
erant Characteristics. In: Proc. of the 2001 
International Conference on Artificial Intel­
ligence. Las Vegas, NV, USA. pp. 361- 367. 

Gustaffson, E., E. An and S. Smith {2001). A 
Postprocessing Kalman Smoother for Under­
water Vehicle Navigation. In: Proc. 12th In­
ternational Symposium on Unmanned Un­
thetered Submersible Technology. New Hamp­
shire, NH, USA. pp. 1- 7. 

Loebis, D., R. Sutton and J . Chudley {2003). A 
Fuzzy Kalman Filter for Accurate Navigation 
of an Autonomous Underwater Vehicle. In: 
Proc. 1st !FAG Workshop on Guidance and 
Control of Underwater Vehicles. Newport, 
South Wales, UK. pp. 161- 166. 

Mehra, R. K. {1970). On the Identification of 
Variances and Adaptive Kalman Filtering. 
IEEE 1hmsactions on Automatic Control 
AC-16(1) , 12- 21. 

Mohamed, A. H. and K. P. Schwarz (1999). Adap­
tive Kalman Filtering for INS/GPS. Journal 
of Geodesy 73, 193- 203. 

CAMS 2004 



IAV2004- PREPRINTS 
5th IFACIEURON Symposium on Intelligent Autonomous Vehicles 
/nstituto Superior Tecnico, Lisboa, Portugal 
July 5-7, 2004 

THE APPLICATION OF SOFT COMPUTING 
TECHNIQUES TO AN INTEGRATED 
NAVIGATION SYSTEM OF AN AUV 

D . Loebis•, R. Sutton•, J. Chudley•, W. Naeem•, 
F. R. Dalgleish ••, S. Tetlow .. 

• Marine and Industrial Dynamic Analysis Research Group, 
Reynolds Building, School of Engineering, The University of Plymouth, 

Drake Circus, Plymouth, PL4 BAA 

•• Offshore Technology Centre, Cronfield University, 
Bedfordshire, Cranfield, MK43 OAL 

Abstract: This paper describes the implementation of a soft computing method 
based on fuzzy logic and multiobjective genetic algorithm (MOGA) techniques to 
adapt the parameters of an error-state complementary Kalman filter (ESCKF) 
to enhance the accuracy of an autonomous underwater vehicle (AUV) integrated 
navigation system. In the ESCKF, inertially-derived quantities from an inertial 
navigation system (INS) sensor are combined with direct measurements of the 
same quantities by use of the global positioning system (GPS) when the vehicle is 
on the surface and the velocity estimator output from a visual navigation system 
(VNS) based on laser stripe illumination methodology when the vehicle is in close 
contact to the bottom of the sea whilst performing an underwater mission. This 
strategy will alleviate the need for frequent excursions to the surface to obtain 
a GPS fix to reset the navigation solution produced by the INS that tends to 
drift after a certain period of time. This technique exploits the complementary 
error characteristics in such a way so as to produce optimal estimates in terms 
of minimum variance. To this end, errors of the sensors are modelled using 
first-order Markov processes and error data analysis is undertaken to determine 
the respective time constants and variances. To maintain the stability and 
performance of the ESCKF, which is likely to deteriorate when the assumed error 
and noise characteristics do not reflect the true ones, a fuzzy logic based scheme 
is used to make these values adaptive. The choice of fuzzy membership functions 
for this scheme is first carried out using a heuristic approach and further refined 
using a MOGA method. Copyright@2004 /FA G 

Keywords: Autonomous underwater vehicles, navigation, visual motion, Kalman 
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1. INTRODUCTION 

A deep mobile target has been converted into 
a rudimentary autonomous underwater vehicle 
(AUV) known as Hammerhead. A three year eo-

operative research project funded by the Engi­
neering and Physical Sciences Research Council 
involving both the University of Plymouth (UoP) 
and Cranfield University (CU) has the objectives 
of designing and developing an interactive nav-



igation system consisting of a visual navigat ion 
subsystem (VNS) and an inertial navigation sys­
tem/global posit ioning subsystem (INS/GPS) to 
interact with an appropriate guidance and con­
trol system. VNS has been widely adopted as a 
navigation methodology for AUVs as it has the 
capabilities to provide high precision and high 
quality measurements from image data to derive 
accurate relative position information. Advanced 
VNS applications can attempt to provide AUV 
global position updates, while simultaneously cre­
ating a mosaic, or composite image map of a 
seabed (Fleischer et al., 1997) and matching cur­
rent image with viewing mosaic map. VNS has 
also been used for tracking and cable following 
(Balasuriya and Ura, 1999). In this work various 
image-processing techniques to extract position 
measurements or to identify a specific feature 
of an object from live video imagery are used. 
Given the high resolution of digital imaging, mea­
surement accuracies on the order of millimetres 
and precise feature identification can be achieved. 
However, the methods employed are limited in 
regimes where the object or terrain of interest 
is within both the field of view (Fo V) and vi­
sual range of the camera. In addition to that, 
there is a need for artificial light, which increases 
the expense and power consumption of the vehi­
cles. The fusion of VNS with INS measurement 
data can be proposed as a potent ial solution to 
these problems, as INS measurements are not 
affected by the aforementioned factors (Fleischer 
et al., 1997; Balasuriya and Ura, 1999). Through 
the technique of dead reckoning, the position of 
an AUV can be inferred by integrating the fused 
VNS and INS measurements. T he problem here is 
that the dead reckoning is only accurate for short 
time durations; since the measurement noise is 
integrated along with the signals, the error on po­
sition accumulates quite quickly. Consequently, an 
external reset mechanism is required. The use of 
GPS to provide periodic updates and compensate 
drifting from the bias errors inherent when inte­
grating INS heading for position, have been widely 
implemented in the navigation of AUVs. The work 
in this paper is an extension to the general inte­
grated INS/GPS by fusing the VNS and INS data 
between intermittent GPS fixes. The navigation 
system that is being developed at the UoP is based 
on a multisensor data fusion (MSDF) technique 
that can produce accurate navigation information 
continuously in real time from a variety of low cost 
inertial sensors and a GPS receiver. During an 
actual mission this subsystem is enhanced by data 
from the intelligent viewing system developed by 
CU, with the purpose of aiding navigation by 
providing velocity estimates. Once the navigation 
data has been suitably processed it will be fed to 
the guidance and control system for the appropri­
ate action. The aim of this paper is to describe 

the present hardware/sensor configurations and 
techniques to combine measurement data from 
the VNS, INS and GPS to derive an estimated 
position of the Hammerhead AUV during both 
submerged and surface operations. The structure 
of this paper is as follows: the next two sections 
describe the current status of the Hammerhead 
VNS and INS/GPS development respectively and 
concluding remarks are given in section 4. 

2. HAMMERHEAD VNS DEVELOPMENT: 
CURRENT STATUS 

2.1 General description 

The Hammerhead VNS is based on the laser 
stripe illumination (LSI) methodology previously 
developed at CU (Tetlow and Allwood, 1995), 
and will provide enhanced viewing of the seabed 
below the vehicle. However, it also provides real 
time data such as velocities, altitude and tracking 
information to t he navigation system during the 
mission as well as gathering images to produce a 
post mission enhanced optical waterfall image of 
a surveyed area. There are several advantages of 
this type of approach over conventional imaging. 
LSI provides an improved image contrast at a 
given range. From computer simulations (Jaffe 
and Dunn, 1988) tlus type of system becomes lim­
ited at 5-7 attenuation lengths, compared with 2-4 
for a conventionally illuminated system. This al­
lows an increased deployment altitude for seabed 
surveys (3-18 metres) resulting in a greater swathe 
and hence greater area coverage. The images pro­
duced are approximately optically flat, meaning 
they exhibit even illumination. Furthermore, the 
structured nature of the light allows additional ge­
ometric information to be derived from the image 
and the stripe region can be extracted for each 
image to form a continuously evolving 2-D inten­
sity waterfall image. However, LSI systems are 
more expensive and require a greater development 
resource than conventional systems. The viewing 
system comprises: a lOOm W frequency doubled 
diode pumped Nd:YAG Laser (532nm), a low cost 
high sensitivity monochrome charged coupled de­
vice (CCD) camera with a wide angle lens, a sin­
gle ax.is sca1mer and a t ilt-compensated electronic 
compass (TCM2). Both the laser/scanner assem­
bly and the camera are mounted within separate 
dedicated sections of the torpedo-shaped vehicle, 
with specially made plane ports to accommodate 
the optical path. The TCM2 compass uses two 
inclinometers to correct the output of three mag­
netometers for the declination angle error. The 
inclinometers, which are liquid-filled, are integral 
to the viewing system, providing tilt data for sta­
bilisation when pitch and roll is experienced. The 
complete sensor subsystem can be split into t he 



three areas, with regard to their distinct utility: 
1. velocity estimator; 2. active altitude sensor; 3. 
imaging capabilities. 

A computer vision application is used to derive the 
required navigational and tracking information in 
real time from acquired images. An estimate of the 
instantaneous speed of the vehicle can be derived 
by using a 2-D correlation-based window-tracker, 
together with an integration of a range estimate 
from a laser-triangulation system by which im­
age displacements are transformed into real-world 
displacements. The laser-triangulation technique 
requires the extraction of the vertical position of 
the laser stripe on an image to determine the 
range from the centre of the camera axis to the 
seabed. Together with the speed and range acqui­
sition in real time, image quality can be checked 
and optimized by either changing the laser system 
parameters or demanding navigational changes 
from the vehicle. The complete video sequence 
is also recorded in digital-8 format and can be 
post-processed to produce a continuous 2-D in­
tensity waterfall image or 3-D range images of 
the seabed with dimensional data and referenced 
against accurate positions] information. These op­
tical maps can be used to classify and locate 
particular objects that are of interest. This can be 
implemented in the image-processing suite or by 
maimal inspection of the mosaic. In the autumn 
of 2002 a set of constrained motion trials were 
performed at the IFREMER facility in Brest. As 
we11 as the validation of a viewing model and 
system calibration, these trials created a useful 
arduve of test files, allowing much of the future 
development to be possible from the dry labora­
tory. Furthermore, the measurements necessary to 
build a ground truth model were acquired in par­
allel to t he image and vehicle specific data. Tllis 
is used in ascertaining the accuracy of the vision­
based navigation routines. A description of these 
experiments, including the construction, analysis 
and limitations of the ground truth model is given 
in a previous paper (Dalgleish et al., 2003). The 
next sub-section briefly describe t he sensor in 
terms of one navigational components, i.e. the ve­
locity estimator. Readers interested in the second 
component, the active altitude sensor, are referred 
to Loebis et al. (2003a). Some recent results are 
presented and the means by which the outputs 
are to be integrated with the MSDF algorithm 
(described later in the paper) is discussed. More 
detail concerning each component and the imag­
ing capabilities will be given in subsequent papers. 

2.2 Velocity estimator 

As an implementation of window-based tracking 
{Anandan, 1989) using the LabVIEW IMAQTM 
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Fig. 1. Scatter plot of error vs. confidence level 

Image Processing toolbox, this a lgorithm per­
forms an intelligent correlation between an ini­
tial stored image region and subsequent image 
regions where image displacement is measured 
directly. The tracker uses a non-uniform sampling 
technique where only a few points that represent 
the overall content of the image are extracted. 
Moreover, an adaptive search strategy based on 
previous displacements is a lso incorporated to fur­
ther improve tracking efficiency. Each successful 
matching event outputs a confidence level based 
on the degree of success of the correlation. Fig. 
1 illustrates the distribution of matching events 
for the single resolution case and the correspond­
ing pixel error, where sub-pixel accuracy is used. 
This was based on a static subsea sequence of 
two thousand 'lossy' JPEG images. The stand­
off distance was eight metres. The window size 
was 20 x 20 pixels. As a more realistic alternative 
to adding Gaussian noise to each pixel indepen­
dently, it is planned to use an 'artificial turbidity' 
environment in the Cranfield test tank to assess 
the static performance of the single resolution 
tracker under increasing noise. It is intended to 
use the confidence value as an indication of image 
quality, where as the confidence value degrades, 
the desired altitude of the A UV needs to be re­
duced. Outliers are detected in a smoothing stage. 

3. HAMMERHEAD INS/GPS 
DEVELOPMENT: CURRENT STATUS 

9.1 ESCKF Modelling 

Brown and Hwang {1997) discuss the advantages 
of the ESCKF method over the total state Kalman 
filter. The most important advantage is that any 
nonlinear relationship between the process dy­
namics in the inertial system and the measure­
ment relationships can be removed in a differ­
encing operation, and the filter becomes linear. 
This linearity condition is required by the Kalman 
filter. This condition can also lead to a faster codes 
execution as linearisation operations are relatively 
slow to execute. KF algorithms are widely avail­
able in the literature. The interested reader can re­
fer to Brown and Hwang (1997) . Works on ESCKF 
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however, are very limited especially in the field of 
AUV navigation systems. An example of this work 
can be found in Gustaffson et al. {2001). Like in 
the KF, the ESCKF algorithm can be divided into 
two major parts: the measurement update and 
the time update. In ESCKF, the measurement 
update is obtained by subtracting the direct mea­
surements from the computed version of the same 
quantities. By doing tllis, the true values cancel 
each other out and what remains is the difference 
between the measurement errors and drift errors. 
In the time update, the estimates are obtained 
by subtracting the estimated drift errors from the 
forward filter pass from the computed version of 
the same quantities. In this paper, measurement 
errors from an accelerometer and a gyroscope (as­
sembled in an inertial measurement unit{IMU)), 
a TCM2 electronic compass and a GPS receiver 
unit are estimated and modelled using first order 
Markov processes which are defined in the follow­
ing manner: 

. 1 
x=--·X+I 

T 
{4) 

In {4), xis the error process to be modelled,; is 
the time constant of the assumed Markov process 
and 1 is white noise. For modelling purposes, all 
sensor data have been collected in static condi­
tions for a period of approximately 2.5 hours. 
For the same purpose, three different frames of 
reference are defined. The body-fixed (b) frame of 
reference is aligned to the axes of the A UV, where 
forward-starboard-down correspond to x - y - z. 
These need to be transformed to the geographical 
(g) frame of reference, where x - y - z corre­
spond to North-East-Down. For these particular 
application, the measurements in question are 3D 
accelerations, as well as angular rates measured 
by the IMU. Earth-centred Earth-fixed (ECEF) 
frame is where the GPS latitude and longitude are 
defined. The elements of the state of the ESCKF 
are defined as follows: 

cosf/1~ 
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0 0 0 

0 0 0 
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{5) 

In {5) the subscripts d and e denote drift and 
sensor errors respectively. Superscripts g, b and 
h denote geographical frame, body-fixed-frame 
and horizontal frame respectively. Drift errors in 
position, x~ and y~ stem from the error in the 
integrated acceleration (u~ and v~), and com­
pass error ,pg. 1/J~ is heading drift error which 
comes from the error in the integrated yaw rate. 
Measurement errors in the position blend are re­
spectively represented by the states xg and yg. 
Finally, state r~ represents gyroscope's yaw error. 
The process matrix (F) is given in {3). In {3), m 
denotes measured value. Due to page limitation, 
the derivation of this matrix is not given in this 
paper. 

The variance of the process noise for a Markov 
error model can be described as in Brown and 
Hwang {1997), 

variance [wk] = (1 - e-
2

~·) • variance[xk] {6) 

In {6), e-~· is the state transition parameter for 
the Markov error model. 6t is the discrete time 
interval and ; is the time constant. By taking 
the approximation: e-11A(t} :::::: 1- /3 · 6t, where 
f3 = ,-1 , the following is true: 

variance[wk] = (2{36t - (f36t)2) · variance[xk](7) 

According to the process model, the heading drift 
error state represents the integrated yaw error 
state, in effect an integrated Markov process. 
The process noise covariance matrix for these two 
states can be defined as in Brown and Hwang 
{1997), 

{8) 

where 



Qu = - At- -(1 - 4>) + -(1- 4> ) 2a
2 

[ 2 1 2 ] 
{3 {3 2{3 

(9) 

2[1 1 2] Q12 = Q21 = 2a t3(1- 4>) + 2{3(1- 4> ) (10) 

(11) 

where {3 is the inverse of the Markov time con­
stant, a 2 is the process noise variance of the yaw 

l>t 
rate Markov error and 4> = e-, and defined as 
before. 

For the first two states in the process model, x~ 
and y~, the analysis is more complicated and for 
this reason, t he noise covariance matrix of the 
two states are obtained from an empirical result, 
and provision for the adjustment method has been 
made and will be reported in the future. 

The measurement matrix H relates the available 
measurement updates to the element in the state 
vector and takes the following form: 

H= 
[

100 - 1 0 
0 1 0 0 - 1 
0 0 1 0 0 

0 0 0 0] 
0 0 0 0 
-1 0 0 0 

(12) 

The measurement noise covariance matrix Rk is 
determined empirically and given as: 

[ a~ -Po1ition 
2 

0 0 l 
R k = 0 aY-Po•ition 0 

0 0 a~eading 
(13) 

where a~ -Poaition• a~ -Po•ition• a~eading are the 
variance in X,Y direction and heading respec­
tively. These values will be adapted using the 
algorithm discussed in the next sub-section. 

3.2 Fuzzy error state complementary Kalman 
filter {FESCKF) 

In this sub-section, an on-line innovation-based 
adaptive scheme of t he ESCKF to adjust the R 
matrix employing the principles of fuzzy logic is 
presented. The fuzzy logic is chosen mainly be­
cause of its simplicity. This motivates the interest 
in the topic, as testified by related papers which 
have been appearing in the literature (Loebis et 
al., 2003b; Escamilla-Ambrosio and Mort, 2001). 
The FESCKF proposed herein is based on the IAE 
approach using a technique known as covariance­
matching (Mehra, 1970). The basic idea behind 
the technique is to make the actual value of the 
covariance of the innovation sequences match its 
theoretical value. 

T he actual covariance is defined as an approx­
imation of the Innk sample covariance through 

averaging inside a moving estimation window of 
size M which takes the following form: 

~ 1 ~ T 
C lnnk = M '-' Innk · lnnk 

i=io 

(14) 

where io = k - M + 1 is the first sample inside 
the estimation window. An empirical experiment 
is conducted to choose the window size M. From 
experimentation it was found that a good size for 
the moving window in (14) is 15. The t heoretical 
covariance of the innovation sequence is defined as 

sk = H" . P; . HI+ Rk (15) 

The logic of the adaptation algorithm using eo­
variance matching technique can be qualitatively 
described as follows. If the actual covariance value 
Crnn• is is observed, whose value is within the 
range predicted by t heory sk and the difference 
is very near to zero, this indicates that both co­
variances match almost perfectly and only a small 
change is needed to be made on the value of R. If 
the actual covariance is greater than its theoretical 
value, the value of R should be decreased. On the 
contrary, if Crnn" is less than SA:, the value of R 
should be increased. This adjustment mechanism 
lends itself very well to being dealt with using a 
fuzzy-logic approach based on rules of the kind: 

IF (antecedent) THEN (consequent) {16) 

where antecedent and consequent are of the form 
v€0,, K.€L,, i = 1,2, ... respectively. Where v and 
K. are the input and output variables, respectively, 
and o, and L1 are the fuzzy sets. 

To implement the above covariance matching 
technique using the fuzzy logic approach, a new 
variable called deltak , is defined to detect the 
discrepancy between C/nn. and sk. The fo llowing 
fuzzy rules of the kind (16) are used: 

IF (deltSJ< ~ 0) THEN (Rk is unchanged)(17) 

IF (delta"> 0) THEN (Rk is decreased) (18) 

IF {deltak < 0} THEN (Rk is increased) (19) 

Thus R is adjusted according to, 

R k = RA:-t + ARA: (20) 

where ARk is added or subtracted from R at 
each instant of time. Here deltak is the input to 
the fuzzy inference system (FIS) and ARk is the 
output. 

3.3 Fuzzy membership functions optimisation 

MOGA is used here to optimize the member­
ship functions of the FKF. To translate the FKF 



membership functions to a representation useful 
as genetic material, they are parameterised with 
real-valued variables. Each of these variables con­
stitutes a gene of the chromosomes for the MOGA. 
Boundaries of chromosomes are required for the 
creation of chromosomes in the right limits so t hat 
the MOGA is not misled to some other area of 
search space. The technique adopted in this paper 
is to define the boundaries of the output mem­
bership functions according to the furthest points 
and the crossover points of two adjacent mem­
bership functions. In other words, the boundaries 
of FKF consist of three real-valued chromosomes 
( Chs), as in Figure 2. The trapezoidal membership 

-0.033 0.000 0.033 

Fig. 2. Membership function and boundaries of 
R k 

functions' two furthest points, -0.135 (DI), -0.135 
(D2 ) and 0.135 {I3) , 0.135 (I4 ) of FKF, remain 
the same in the GA 's description to allow a similar 
representation as the fuzzy system's definition. As 
can be seen from Figure 2, D3 and M1 can change 
value in the 1"1 Ch boundary, D4 , M2 and h in 
the 2nd Ch boundary, and finally, M3 and I2 in 
3rd Ch. 

4. CONCLUDING REMARKS 

A novel method to obtain an accurate AUV nav­
igation system is proposed. The method is based 
on the ESCKF coupled with fuzzy logic to adjust 
the value of measurement noise covariance ma­
trix R during both surface and underwater mis­
sion whereby different combination of sensors, i.e. 
INS/GPS and INS/VNS respectively, are used. 
MOGA is proposed to further refine the result. 
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Abstract: The Kalman filter (KF) has been a popular method for integrating data produced 
by inertial navigation system (INS) sensor suites and global positioning systems (GPSs) 
onboard autonomous underwater vehicles to provide optimal estimates of their position 
and attitude. In this paper the data from a variety of INS sensors are first fused together 
by means of a linear Kalman filter (LKF) before being integrated with GPS data through 
the use of an extended Kalman filter (EKF). The use of a fuzzy-rule-based adaptation 
scheme to cope with the divergence problem caused by the insufficiently known a priori 
filter statistics is also explored. The choice of fuzzy membership functions for the 
adaptation scheme is first carried out using a heuristic approach. Genetic algorithm (GA) 
techniques are then used to optimise the parameters of the membership functions with 
respect to a certain performance criteria in order to improve the overall accuracy of the 
integrated navigation system. Copyright 0 2003 IFAC 

Keywords: Autonomous underwater vehicles, navigation, sensor fusion, Kalman filters, 
extended Kalman filters, fuzzy logic, genetic algorithm 

I. INTRODUCTION 

In the past few decades, there have been numerous 
worldwide research and development activities in 
order to explore the oceans of the world. As an ocean 
is an inherently hostile and hazardous environment, 
the need for an underwater robotic system, especially 
one with high reliability and a fully built-in 
intelligence, becomes apparent. The autonomous 
underwater vehicle (AUV) class of vessel meets 
these requirements. 

To achieve truly autonomous behaviour, an AUV 
must be able to locate itself accurately during an 
operating scenario using only its onboard sensors. In 
the past, fusing of inertial navigation system (INS) 
sensors and the integration with a global positioning 

system (GPS) through the use of a conventional 
linear Kalman filter (LKF) (appendix A) and an 
extended Kalman filter (EKF) has been a popular 
method of localisation of an AUV. However, a 
significant difficulty in designing a KF (refers to both 
LKF and EKF) can often be traced to incomplete a 
priori knowledge of the process covariance matrix 
(Q) and measurement noise covariance matrix (R). In 
most practical applications, these matrices are 
initially estimated or even unknown. The problem 
here is that the optimality of the estimation algorithm 
in the KF setting is closely connected to the quality 
of a priori information about the process and 
measurement noise (Mehra, 1970). It has been shown 
that insufficiently known a priori filter statistics can 
on the one hand reduce the precision of the estimated 
filter states or introduces biases to their estimates. In 



addition, incorrect a priori information can lead to 
practical divergence of the filter (Fitzgerald, 1971). 
From the aforementioned it may be argued that the 
conventional KF with fiXed R and/or Q should be 
replaced by an adaptive estimation formulation. 

In this paper, an innovation adaptive estimation 
{IAE) approach {Mehra, 1970) coupled with fuzzy 
logic techniques is used to adjust the R matrix of the 
KF. Here the innovation Inn1c at sample time kin the 

KF algorithm is the difference between the real 
measurement z1c, received by the filter and its 

estimated (predicted) value z/c • and is computed as 
follows : 

(1) 

The predicted measurement is the projection of the 

filter predicted states x;; onto the measurement space 

through the measurement design matrix H k , i.e. 

Innovation represents additional information 
available to the filter as a result of the new 
measurement z/c . The occurrence of data with 
statistics different from the a priori information will 
first show up in the innovation vector. For this reason 
the innovation sequence represent the information 
content in the new observation and is considered the 
most relevant source of information to the filter 
adaptation. 

The fuzzy logic membership functions for the tAE 
approach are established by a combination of 
knowledge, experience and observation and may thus 
not be optimal. Additionally, fine-tuning of its 
perfom1ance is still a matter of trial and error. Many 
studies have shown that genetic algorithms (GAs) 
have the ability to find fuzzy membership functions 
closer to optimal solutions and may be made to 
implement self-tuning and adaptive schemes 
(Cordon et al., 1997). However, this paper is the first 
known use of the GA for the optimisation of the 
membership function of a fuzzy system in the noise 
adaptation of a KF. 

2. THE ADAPTIVE ESTIMATION ALGORITHM 

2.1 Fuzzy Kalmanfilter. 

In this sub-section, an on-line innovation-based 
adaptive scheme of the KF to adjust the R matrix 
employing the principles of fuzzy logic is presented. 
The fuzzy logic is chosen mainly because of its 
simplicity. This motivates the interest in the topic, as 
testified by related articles which have been 
appearing in the literature (Kobayashi et al., 1998). 

The fuzzy logic Kalman filter (FKF) proposed in this 
paper is based on the tAE approach using a 

technique known as covariance-matching (Mehra, 
1970). The basic idea behind the technique is to 
make the actual value of the covariance of the 
innovation sequences match its theoretical value. 

The actual covariance is defined as an approximation 
of the lnn1c sample covariance through averaging 
inside a moving estimation window of size N 
(Mohamed and Schwarz, 1999) which takes the 
following form: 

. I N T 
C,, = - '[.Jnn~clnnlc , 

M 1-1. 
(3) 

where i0 = k - M+ I is the first sample inside the 
estimation window. An empirical experiment is 
conducted to choose the window size M From 
experimentation it was found that a good size for the 
moving window in (3) is 15. 

The theoretical covariance of the innovation 
sequence is defined as 

(4) 

The logic of the adaptation algorithm using 
covariance matching technique can be qualitatively 
described as follows. If the actual covariance value 

C,, is observed, whose value is within the range 

predicted by theory S1c and the difference is very near 
to zero, this indicates that both covariances match 
almost perfectly and only a small change is needed to 
be made on the value of R. If the actual covariance is 
greater than its theoretical value, the value of R 

should be decreased. On the contrary, if C, is less • 
than Sk , the value of R should be increased. This 
adjustment mechanism lends itself very well to being 
dealt with using a fuzzy-logic approach based on 
rules of the kind: 

IF <antecedent> THEN <consequent>, (5) 

where antecedent and consequent are of the form 
Ne M" :feN" i = 1,2, ... respectively, where N and 3 
are the input and output variables, respectively, and 
M, and N1 are the fuzzy sets. 

To implement the above covariance matching 
technique using the fuzzy logic approach, a new 
variable called delta, is defined to detect the 

discrepancy between C,, and S1c . The following 

three fuzzy rules of the kind (5) are used: 

IF <deltaic =: 0 > THEN < R4 is unchanged>, ( 6) 

IF <deltak > 0 > THEN <Rk is decreased>, (7) 

IF <deltaic< 0 > THEN < R1c is increased> (8) 

Thus R is adjusted according to, 

R~c = R~c - t + M ic • (9) 



where M~~: is added or subtracted from R at each 

instant of time. Here delta~~: is the input to the fuzzy 

inference system (FIS) and M 11 is the output. 

On the basis of the above adaptation hypothesis, the 
FIS can be implemented using three fuzzy sets for 
deltak ; N =Negative, Z =Zero and P =Positive. For 

Mk the fuzzy sets are specified as I= Increase, M= 

Maintain and D = Decrease. The membership 
functions of these fuzzy sets which are first designed 
using a heuristic approach are shown in Fig. 1. 

-0.015 0 

deltak 

0.015 -0.135 0 0.135 

Mk 

Fig. 1. Membership function of delta~~: and M 11 

2. 2 Fuzzy logic observer 

To monitor the performance of a FKF, another FJS 
called the fuzzy logic observer (FLO) (Escamilla­
Ambrosio and Mort, 2001) is used. The FLO assigns 
a weight or degree of confidence denoted as ck , a 
number on the interval [0,1], to the FKF state 
estimate. The FLO is implemented using two inputs: 
the values of I deltak I and Rk . The membership 

functions of these variables are shown in Fig. 2. 

0 0.1 0.3 0 2 

1 delta* 1 

Fig. 2. Membership function of I deltak I and R1c 

The fuzzy labels for the membership functions: Z = 
Zero, S = Small and L = Large. Three fuzzy 
singletons are defined for the output ck and are 
labelled as G = Good, A V = Average and P = Poor 
with values I, 0.5 and 0 respectively. The basic 
heuristic hypothesis for the FLO is as follows: if the 
value of I deltak I is near to zero and the value of 

Rk is near to zero, then the FKF works almost 
perfectly and the state estimate of the FKF is 
assigned a weight near I. On the contrary if one or 
both of these values increases far from zero, it means 
that the FKF performance is degrading and the PLO 
assigns a weight near 0. Table 1 gives the complete 
fuzzy rule base of each FLO. 

2. 3 Fuzzy membership functions optimisation 

GAs as function optimisers are global optimisation 
techniques based on natural selection (Goldberg, 
1989). GAs are here presented as a tool to optimise 

Tabl~ I FuiD rule bas~ FLQ 

R~~: z s L 

I deltak I 
z G G AV 
s G AV p 
L AV p p 

the FKF membership functions with respect to a 
certain objective function. Although there are many 
possible variants of basic GA, the fundamental 
underlying mechanism operates on a population of 
individuals, and consists of three operations: (1) 
evaluation of individual fitness in the population, (2) 
selection of the fittest individuals, and (3) 
recombination and mutation. The initial population 
P(O) is chosen randomly and the individuals resulting 
from these three operations form the next 
generation's population. The process is iterated until 
the system ceases to improve or a termination 
condition is satisfied. Fig. 3. shows the structure of a 
simpleGA. 

begin (1) 
t = 0; 
initialise P (t) 
evaluate P (t) 
while -(termination-condition) do 

begin (2) 
select P(t) 
recombine P(t) 
mutate P (t) 
evaluate P (t) 
t= t+l; 

end(2) 
end(/) 

Fig. 3. Structure of a GA 

To translate the FKF membership functions to a 
representation useful as genetic material, they are 
parameterised with real-valued variables. Each of 
these variables constitutes a gene of the 
chromosomes for the GA. Boundaries of 
chromosomes are required for the creation of 
chromosomes in the right limits so that the GA is not 
misled to some other area of search space. The 
technique adapted in this paper is to define the 
boundaries of the output membership functions 
according to the furthest points and the crossover 
points of two adjacent membership functions. In 
other words, the boundaries of FKF consist of three 
real-valued chromosomes (Chs), as in Fig. 4. 

Fig. 4. Membership function and boundaries of Rk 



The trapezoidal membership functions' two furthest 
points, -0.135 (01), -0.135 (02) and 0.135 (/3), 0.135 
(14) ofFKF, remain the same in the GA's description 
to allow a similar representation as the fuzzy 
system's definition. As can be seen from Fig. 4., 0 3 

and Mt can change value in the 1st Ch boundary, 0 4, 

M2 and 11 in the 2nd Ch boundary, and finally, M3 and 
12 in 3'd Ch. Table 2 shows the encoding used for 
optimisation of the membership functions. 

Table 2 FKF boundaries 

Limit Parameter 
03,M1 04,M2,/1 M3,/2 

Upper Limit -0.135 -0.033 0.033 
Lower Limit -0.033 0.033 0.135 

3. SENSOR FUSION OF INS SENSOR DATA 

In this section, the FKF algorithm is applied to a 
linearised steering model of an AUV at forward 
speed 1.3 ms· ' (Lea, 1998) as following: 

[ ;~;~] =[= ~:~: ~:.:~ ~] [;~;~] + 
if/(t) 0 I 0 lf'(t) (10) 

[ 
1.07] 
- 1:.1 b'r(t) + w(t), 

zk = [0 0 1] [:~~~] + v(t), 

ljl(t) 

(11) 

where v(t), r(t) and If'(/) represent the sway velocity, 

yaw rate of turn and yaw angle. The w(t) and v(t) are 

both zero mean white noise for the system and 
measurement models respectively and or(t) the 

rudder deflection. A sample time of0.125s is used to 
discretised the linearised model. The initial 

conditions are [v0 r0 viof = [0 0 of, 
P0 =0.0 I h and Q is made constant as 0.01 /3 • A 

sinusoidal input was applied to the rudder. Four yaw 
sensors with different noise characteristics are 
considered to measure the response of the vehicle. 

The actual value of R for each sensor is assumed 
unknown but its initial value is selected as 1. The 
FKF algorithm optimized using GA with parameters 
shown in Table 3 was then implemented and 
simulation results are shown in the next section. 

Table 3 GA Parameters 

Parameters 
Number of Generation 
Number of Individual per Generation 
Generation Gap in Selection Operation 
Rate in Recombination Operation 
Rate in Mutation Operation 

Values 
15 
10 
0.95 
0.8 
0.09 

3.1 Simulation Result 

0.5r--~--~--~--~---, 

0.4r--~--~--~--~---, 
i' I I I I 

jo~ - - --~- -- --:- --- - { -- - - -:-- - - -
-::- O~ I ...J. I 

~ ~.2 _ ~-l ____ -~ - -- -~no~lndono 
! 1 (b) ..nlto lno: ulmaled error 

>- ~-4o 100 200 300 400 soo 
Time (uc) 

Fig. 5. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 1. 

Fig. 6. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 2. 
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Fig. 7. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 3. 
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Fig. 8. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 4. 



Fig. 5. and Fig. 6. are the simulation result showing 
the response of the AUV observed by sensors with 
constant Gaussian noise, while Fig. 7. and Fig. 8. by 
sensors with uniform noise increasing and decreasing 
with time respectively. 

To fuse the estimated yaw, a centre of gravity 
method is used, 

(12) 

where zk, is the output of the i-th FKF (i= l ,2,3,4) 

and ck, is the respective weight at instant time k, 

which is shown in Fig. 9. Fig. 10. shows the 
comparison of the actual and the fused estimated 
yaw. 

Time (sec) 

Fig. 9. Weight of sensor 1, 2,3 and 4. 

I ~.5 
! -1 

-1.50~--1~00=---~200~--=300~--400~-~500 
Time(oec) 

Fig. 10. (a) Actual and fused yaw output, (b) fused 
error. 

Finally, the following performance measure are 
adopted for comparison purposes, 

1 • 
J = - ~:::<za. - z)' , (13) .. 

n •-• 

J,. = 1 t . 1 - (za. - z.) , 
n .. , (14) 

where za* is the actual value of the yaw, z* is the 

measured yaw, zk is the estimated yaw at an instant 

of time k and n = number of samples. Table 4 shows 
the comparison of performance of each individual 

FKF and those obtained by the proposed INS sensor 
fusion method with and without fuzzy system 
optimized using GA techniques. 

Table 4 Comparison of performance 

Sensor Perfonnance{dcgree) 
J,., J,. 

Non- GA 
GA I" 2"" 3"' 

Sensor I 1.5291 1.0942 1.0758 1.0849 1.0809 
Sensor2 2.2908 0.5018 0.5028 0.5025 0.5026 
Sensor 3 0.9933 0.2833 0.2856 0.2844 0.2856 
Sensor4 1.1996 0.2905 0.2901 0.2903 0.2903 
Fused 0.2005 0.1940 0.1940 0.1940 

4. GPSIINS NAVIGATION 

In this section, the fused estimated yaw obtained 
previously is treated as a single imaginary yaw 
sensor and used by other INS sensors to transform 
data from body co-ordinate to Earth co-ordinate 
frame where integration with GPS data is performed. 

A continuous time model of the vehicle motion 
appropriate to this problem is taken to be 

X(t) = F(X(t)) + W(l) 

Z(t) = H(X(t)) + V(t) 

(15) 

(16) 

Denoted by X(t) =[..t(t) 'fi..t) tp(t) l(t) U(t) V(t)f is the 

model states. A(t) and 'fi..t) are the longitude and 
latitude of the AUV position in Earth co-ordinate 
frame which are obtained from a GPS receiver, tp(t) 
is the yaw angle obtained from the imaginary yaw 
sensor, l(t) is yaw rate, u(t) and V(t) are the surge and 
sway velocity respectively. 

In this system model, F and H are both continuous 
function, continuously differentiable in X(t). The 
W(t) and V(t) are both zero mean white noise for 

the system and measurement models respectively. 

The model states are related through the following 
kinematically based set of functions ( F(X (t)) in Eq. 

16): 

u(t) = o, 
v(t)= o, 

tjl(t) = r(l), 
;(t) = 0, 

(17) 

(18) 

(19) 

(20) 

i(t) = u(t) cos tp(t) - v(t) sin tp(t) , (21) 

ifl(t) = u(l) sin tp(l) + v(t) cos tp(t), (22) 

The output measurements are related through the 
states by the identity matrix H(X(t)) . To obtain an 

EKF with an effective state prediction equation in a 
simple fom1, the continuous time model of (17)-(22) 
have been linearised about the current state estimates, 
producing the following form: 



X(t) = AX(t) + W(t)' 

Z(t)= CX(t)+ V(t), 

(23) 

(24) 

where A= 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 I 0 0 

0 0 0 0 0 0 

0 0 - u(r)sin !p(l)- v(r)cos !p(t) 0 cos !p(l) -sin !p(l) 

0 0 u(t) cos !p(t) - v (t) sin !p(t) 0 sin IJI(t) cos !p(t) 

and C is an identity matrix. Subsequent discretisation 
with period T = 0.125s of the linearised model results 
in an EKF algorithm similar to the LKF algorithms 
in appendix A, only this time the A matrix is updated 
at every iteration. The initial conditions are Po =0.01 

16 and Q is made constant as diag[O 0 0.000001 0.01 
0.01 0.01}. The actual value of R is assumed 
unknown but its initial value is selected as diag[IOO 
100 0 0 0.1 0.1]. 

The FKF algorithm from section 2.1 is then 
implemented, only this time the adaptation of the 
(i,i)-th element of Rk is made in accordance with the 

(i,l)-th element of deltak. Here a single-input-single­

output (SISO) FIS as shown in Fig. l., is used 
sequentially to generate the correction factors for the 
elements in the main diagonal of Rk as the following, 

(25) 

With the proposed FKF adaptation, the RMSE for 
longitude is 2.2890 m and 2.1137 m for latitude 
compared to 2.5322 m for longitude and 2.1921 m 
for latitude without adaptation. 

5. SUMMARY AND CONCLUSION 

The problem with incomplete a priori knowledge of 
Q (process covariance matrix) and R (measurement 
covariance matrix) is considered. In this paper, an 
adaptive Kalman filter approach, based on the filter 
innovation sequence coupled with fuzzy logic 
optimized using genetic algorithm is discussed as an 
alternative for fusing INS sensor data and integrating 
INS/GPS position information. Implementation of 
this approach to a linearised steering model of an 
AUV, whose responses are measured with sensors 
with different noise characteristics, has shown a 
promising result in improving the estimation of the 
individual KF. The use of FLO also plays an 
important role in determining the weight or degree of 
confidence of the FKF output. 

APPENDIX A: Kalmanfilter Equations 

Given a discrete-time controlled process described 
by the linear stochastic difference equations: 

xh1= AA xA +BA " A+ wA 

zA= HAxA+vA 

(AI) 

(A2) 

where xk is an n x I system state vector, A* is an n x 

n transition matrix, u * is an I x 1 vector of the input 

forcing function, Bk is ann x I matrix, w* is an n x 1 

process noise vector, z* is a m x I measurement 

vector, H* is a m x n measurement matrix and Vt is 
a m x 1 measurement noise vector. Both 
the wl and vk are assumed to be uncorrelated zero­

mean Gaussian white noise sequences with 
covariance given by 

E[ 
T ) { Q, , I • l (A3) 

WlWI = 0, I" l 

T _ { R._ I • l 
E{vkvt )- o, ' "A 

(A4) 

E[wkv[J=O,forallkandl (AS) 

The KF algorithm can be organised into time update 
and measurement update equations, 
Time update equations: 

xi+I = A• x*+ B• u* 
pk-._1= A* P* A{+ Qt 

Measurement update equations: 

K* = pk- H{ [H* Pt- H{ +RAr1 

x* =xi+ K• 1zt H.- x; 1 

P* =[l - K~; H~;JP~;-

(A6) 

(A7) 

(AS) 

(A9) 

(A IO) 

The measurement update equations incorporate a 
new observation into the a priori estimate from the 
time update equations to obtain an improved a 
posteriori estimate. In the time and measurement 
update equations, x* is an estimate of the system 

state vector x~;, and Pk is the covariance matrix of the 

state estimation error. 
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Abstract: An intelligent navigation system for an autonomous underwater vehicle known 
as Hammerhead is being developed by the University of Plymouth and Cranfield 
University. The Hammerhead navigation system is an integrated low-cost vision 
navigation subsystem and an inertial navigation system/global positioning subsystem. It is 
being developed to demonstrate the feasibility of using an integrated visual navigation 
system and inertial navigation system to navigate between intermittent global positioning 
system fixes whilst providing an enhanced imaging and tracking capability. This paper 
describes the present hardware/sensors composition, software design and preliminary 
experiment to combine measurement data from all the on-board sensors to derive an 
estimated position and orientation of the autonomous underwater vehicle during both 
submerged and surface operations. Copyright ~ 2003 IFAC 

Keywords: Autonomous underwater vehicles, real time, inertial navigation, global 
positioning systems, image sensors, sensor fusion, data acquisition, Kalman filters, fuzzy 
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1. INTRODUCTION 

A deep mobile target has been converted into a 
rudimentary autonomous underwater vehicle (AUV) 
known as Hammerhead. A three year co-operative 
research project funded by the Engineering and 
Physical Sciences Research Council involving both 
the University of Plymouth (UoP) and Cranfield 
University (CU) has the objectives of designing and 
developing an interactive navigation system consists 
of a visual navigation subsystem (VNS) and an 
inertial navigation system/global positioning 
subsystem (INS/GPS) to interact with an appropriate 
guidance and control system. 

VNS has been widely adopted as a navigation 
methodology for AUVs as it has the capabilities to 
provide high precision and high quality measurements 

from image data to derive accurate relative position 
information. Advanced VNS applications can attempt 
to provide AUV global position updates, while 
simultaneously creating a mosaic, or composite image 
map of a seabed (Fieischer et al., 1997) and matching 
current image with viewing mosaic map. There are 
also works using VNS for tracking and cable 
following (Balasuriya and Ura, 2001). In these works 
various image-processing techniques to extract 
position measurements or to identify a specific feature 
of an object from live video imagery are used. Given 
the high resolution of digital imaging, measurement 
accuracies on the order of millimetres and precise 
feature identification can be achieved. However, the 
methods employed in these works are limited in 
regimes where the object or terrain of interest is 
within both the field of view (FoV) and visual range 
of the camera. In addition to that, there is a need for 



artificial light, which increases the expense and power 
consumption of the vehicles. The fusion of VNS with 
INS measurement data can be proposed as a potential 
solution to these problems, as INS measurements are 
not affected by the aforementioned factors (Fieischer 
et al., 1997; Balasuriya and Ura, 2001 ). Through the 
technique of dead reckoning, the position of an AUV 
can be inferred by integrating the fused VNS and INS 
measurements . The problem here is that the dead 
reckoning is only accurate for short time durations; 
since the measurement noise is integrated along with 
the signals, the error on position accumulate quite 
quickly. Consequently, an external reset mechanism is 
required. The use of GPS to provide periodic updates 
and compensate drifting from the bias errors inherent 
when integrating INS heading for position, have been 
widely implemented in the navigation of AUVs. The 
work in this paper is an extension to the general 
integrated JNS/GPS by fusing the VNS and INS data 
between intermittent GPS fixes. 

The navigation system that is being developed at the 
UoP is based on a multisensor data fusion (MSDF) 
technique that can produce accurate navigation 
information continuously in real time from a variety 
of low cost inertial sensors and a GPS receiver. 
During an actual mission this subsystem is enhanced 
by data from the intelligent viewing system developed 
by CU, with the purpose of aiding navigation by 
providing velocity and altitude estimates. Once the 
navigation data has been suitably processed it will be 
fed to the guidance and control system for the 
appropriate action. 

The aim of this paper is to describe the present 
hardware/sensors configuration, software design and 
preliminary experiments to combine measurement 
data' from the VNS, INS and GPS to derive an 
estiritated position of the Hammerhead AUV during 
both submerged and surface operations. The structure 
of this paper is as follows: the next two sections 
describe the current status of the Hammerhead VNS 
and INS/GPS development respectively. A proposed 
experiment scenario of an integrated VNS+INS/GPS 
is then discussed in section 4. Conclusion and future 
works are given in section 5. 

2. HAMMERHEAD VNS DEVELOPMENT: 
CURRENT STATUS 

2. 1 General description 

The Hammerhead VNS is based on the laser stripe 
illumination (LSI) methodology previously developed 
at CU (Tetlow and Allwood, 1995), and will provide 
enhanced viewing of the seabed below the vehicle. 
However, it also provides real time data such as 
altitude, velocities and tracking information to the 
navigation system during the mission as well as 
gathering images to produce a post mission enhanced 
optical waterfall image of a surveyed area. 

There are several advantages of this type of approach 
over conventional imaging. LSI provides an improved 
image contrast at a given range. From computer 
simulations (Jaffe and Dunn, 1988) this type of 

system becomes limited at 5-7 attenuation length s, 
compared with 2-4 for a conventionally illuminated 
system. This allows an increased deployment altitude 
for seabed surveys (3-18 metres) resulting in a greater 
swathe and hence greater area coverage. The images 
produced are approximately optically flat, meanir1g 
they exhibit even illumination. Furthermore, the 
structured nature of the light allows additional 
geometric information to be derived from the image 
and the stripe region can be extracted for each image 
to form a continuously evolving 2-D intensit:y 
waterfall image. However, LSI systems are more 
expensive and require a greater development resource 
than conventional systems. 

The viewing system comprises: a IOOmW frequency 
doubled diode pumped Nd:YAG Laser (532nm), a 
low cost high sensitivity monochrome charged 
coupled device (CCD) camera with a wide angle lens, 
a single axis scanner and a tilt-compensated electronic 
compass (TCM2). Both the laser/scanner assembly 
and the camera are mounted within separate dedicated 
sections of the torpedo-shaped vehicle, with specially 
made plane ports to accommodate the optical path. 
The TCM2 compass uses two inclinometers to correct 
the output of three magnetometers for the declination 
angle error. The inclinometers, which are liquid-filled, 
are integral to the viewing system, providing tilt data 
for stabilisation when pitch and roll is experienced. 

The complete sensor subsystem can be split into the 
three areas, with regard to their distinct utility : l. 
velocity estimator; 2. active altitude sensor; 3 . 
imaging capabilities 

A computer vision application is used to derive the 
required navigational and tracking information in real 
time from acquired images. An estimate of the 
instantaneous speed of the vehicle can be derived by 
using a 2-D correlation-based window-tracker, 
together with an integration of a range estimate from a 
laser-triangulation system by which image 
displacements are transformed into real-world 
displacements. The laser-triangulation technique 
requires the extraction of the vertical position of the 
laser stripe on an image to determine the range from 
the centre of the camera axis to the seabed. 

Together with the speed and range acquisition in real 
time, image quality can be checked and optimised by 
either changing the laser system parameters or 
demanding navigational changes from the vehicle. 
The complete video sequence is also recorded in 
digital-8 format and can be post-processed to produce 
a continuous 2-D intensity waterfall image or 3-D 
range images of the seabed with dimensional data and 
referenced against accurate positional information. 
These optical maps can be used to classify and locate 
particular objects that are of interest. This can be 
implemented in the image-processing suite or by 
manual inspection of the mosaic. 

In the autumn of 2002 a set of constrained motion 
trials were performed at the IFREMER facility in 
Brest. As well as the validation of a viewing model 
and system calibration, these trials created a useful 



archive of test files, allowing much of the future 
development to be possible from the dry laboratory. 
Furthermore, the measurements necessary to build a 
ground truth model were acquired in parallel to the 
image and vehicle specific data. This is used in 
ascertaining the accuracy of the vision-based 
navigation routines. A description of these 
experiments, including the construction, analysis and 
limitations of the ground truth model is given in a 
previous paper (Dalgleish, et al., 2003). 

The next sub-sections briefly describe the sensor in 
terms of the two navigational components. Some 
recent results are presented and the means by which 
the outputs are to be integrated with the MSDF 
algorithm (described later in the paper) is discussed. 
More detail concerning each component and the 
imaging capabilities will be given in subsequent 
papers. 

2.2 Velocity estimator 

As an implementation of window-based tracking 
(Anandan, 1989) using the Lab VIEW IMAQ™ Image 
Processing toolbox, this algorithm performs an 
intelligent correlation between an initial stored image 
region and subsequent image regions where image 
displacement is measured directly. The tracker uses a 
non-uniform sampling technique where only a few 
points that represent the overall content of the image 
are extracted. Moreover, an adaptive search strategy 
based on previous displacements is also incorporated 
to further improve tracking efficiency. 

Each successful matching event outputs a confidence 
level based on the degree of success of the correlation. 
Fig. l. illustrates the distribution of matching events 
for the single resolution case and the corresponding 
pixel error, where sub-pixel accuracy is used. This 
was based on a static subsea sequence of two 
thousand 'lossy ' JPEG images. The stand-off distance 
was eight metres. The window size was 20 x 20 
pixels. 

As a more realistic alternative to adding Gaussian 
noise to each pixel independently, it is planned to use 
an 'artificial turbidity' environment in the Cranfield 
test tank to assess the static performance of the single 
resolution tracker under increasing noise. It is 
intended to use the confidence value as an indication 
of image quality, where as the confidence value 
degrades, the desired altitude of the AUV needs to be 
reduced. Outliers are detected in a smoothing stage. 
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Fig. I . Scatter plot of error vs. confidence level 

The standard deviation and the mean error are 1.44 
pixels and 0.03 pixels, which corresponds to 4.3cm 

and 0.1 cm respectively. This satisfies the Gaussifa.n 
distribution condition which is desirable for the 
application to MSDF methods using a Kalman filter 
approach. 

Additionally, for the Kalman filter to work properly 
there is a need to have a good knowledge of tbe 
measurement noise covariance matrix (R). For this 
system the initial value of R has been derived, and tbe 
fuzzy logic techniques discussed in section 3 are 
going to be used to tune the R value as it changes. 
Two similar static sequences can be used to produce 
the initial value of R. 

The further development of this tracker is intended to 
include a robust feature identification stage, where 
tracking windows are placed around features deemed 
worth tracking, as they first pass into the Fo V of the 
camera. This process will be described in a separate 
paper. 

In order to transform the X and Y image velocities to 
real world velocities, a translational transformation is 
performed using estimated altitude. As well as placifl.g 
a restriction on the size of the tracking window, this 
makes the assumption that the optical axis is 
perpendicular to the plane of the seabed. 

The next sub-section describes the analysis of the 
laser triangulation process to determine the altitude of 
the vehicle above the seabed. 

2.3 Active altitude sensor 

Determining range by triangulation of a laser beam 
and optical sensor is a well understood and tested 
method. Perhaps the most engaging aspect is that of 
calibration. For subsea systems this has been 

. approached in different ways· (Chantler et al., 1997; 
Spours, 2000). From the geometry of the system 
(Dalgleish et al., 2003), the measurement of the laser 
exit angle, the baseline and the use of the lens 
manufacturers data, an algebraic solution to derive 
altitude from stripe position in the image can be 
obtained. However, due to the errors in each of these 
values, the result is always inaccurate, particularly at 
increased range, and consequently, multipoint 
calibration routines are used, where 3rd or 4lh order 
polynomials are used to describe the best fit of the 
calibration data, often using several relationships for 
each different range of altitude. 

i~h:::= I .. ...,....,.. ... ___ (jO>do) 

Fig. 2. Theoretical altitude from stripe position curve 
with image derived points overlaid 

Fig. 2. shows the theoretical curve based on the 
geometry of the viewing system, with six points 
overlaid which were based on actual measurements 



from which images were taken in clear filtered 
seawater. The extraction of the stripe was performed 
using intensity thresholding. It can be seen how the 
accuracy falls off between 14 metres and 18 metres 
altitude. This is mainly due to both the non-linearity 
of the lens as the stripe approaches the extreme of the 
Fo V and pixel round-off errors. 

However, once operating in higher turbidity water, the 
stripe widens and the scatter field becomes more 
distinct (Tetlow, 1993). It is then that the extraction of 
the stripe becomes more difficult, and the accuracy of 
the laser triangulation will suffer even once the 
system is properly calibrated. In this case it is 
necessary for the computer vision application to 
instruct the AUV control system to fly at a lower 
altitude. 

3. HAMMERHEAD INSIGPS DEVELOPMENT: 
CURRENT STATUS 

3.1 General description 

The current hardware consists of an inertial 
measurement unit (IMU), a TCM2 compass, a GPS 
receiver, a pressure gauge, a shaft encoder, a laptop 
and a PCMCIA to 4-RS232 converter. The initial 
design of INSIGPS software is based on an adaptive 
Kalman filter (KF), which will be discussed in more 
detail in subsequent paragraphs. 

The KF is a computational algorithm that processes 
measured data with the objective of producing 
minimum error estimates of the states of the system. 
Although it is termed optimal filter, there are practical 
limitations to the KF that may lead to its divergence 
(Fitzgerald, 1971 ). Divergence may be attributed to 
incomplete a priori knowledge of the process noise 
coviU'iance matrix (Q) and the R as the measurement 
noise covariance matrix. For example: if R and/or Q 
are too small at the beginning of the estimation 
process, the uncertainty tube around the true value 
will tighten and a biased solution will result. If R 
and/or Q are too large, filter divergence and longer 
estimation of the filter could result. From the 
aforementioned it may be argued that the KF with 
fixed R and/or Q should be replaced by an adaptive 
estimation formulation. A fuzzy Kalman filter (FKF) 
technique (Loebis, et al., 2003) is an improvement to 
the conventional KF, whereby the requirements to 
have a complete a priori knowledge of the R 
covariance matrices are relaxed. In this preliminary 
simulation work, a linear Kalman filter (LKF) and an 
extended Kalman filter (EKF) coupled with fuzzy 
logic techniques is used to fuse sensor data and make 
appropriate adaptation to the initial value of R. 

This algorithm takes two general steps. First, the 
coupled LKF and fuzzy logic are utilised to fuse the 
response of a linearised dynamic model of an AUV 
after a sequence of commands is sent to its contro l 
surface. Here, four sensors measuring the response of 
the system are fused and form an input to the EKF. 
The EKF plays a role as a state estimator of a non­
linear system that describes the relationship of 
position and velocity in body and inertial co-ordinate 

system when the AUV navigates both without GPS 
updates i.e., pure dead reckoning navigation during a 
submerged operation and navigates with GPS updates 
i.e., integrated INSIGPS during a surface operation. In 
this preliminary simulation work, (Loebis, et al., 
2003), the method has shown a promising result. 

It should be noted however, that this method requires 
the dynamic model of the system from which the 
states can be estimated. The problem here is that 
input-output relationships that enable one to model a 
complete dynamic behaviour of an AUV are not 
always available and an alternative method to loosen 
up this requirement is needed. To this end, an 
extension to the initial work on FKF (Loebis, et al., 
2003) is proposed. The idea behind the proposed work 
is that the process and measurement model of the 
system are mainly derived from non-linear kinematic 
equations of motion and only an EKF coupled with 
fuzzy logic algorithm will be used as a MSDF 
algorithm. The discussion of the algorithm is begtin 
with the derivation of the process and measurement 
model and makes up the topic for the next sub­
section. 

3.2 Process and measurement model 

Angular rate, velocity and acceleration with respect to 
body co-ordinate frame in x, y and z axis produced by 

the lM.U are denoted as[p,q,rf, [u, v, wf and 

[ax,ay,az f respectively. Angular displacement of 

the IMU and TCM2 with respect to an inertial co­
ordinate frame is described using Euler angles roll, 

pitch and yaw which are represented as [~,e,\lfr. 
The rotation matrix that transforms velocity vectors 

[u, v, wf in the body co-ordinate frame to velocity 
vectors in the inertial co-ordinate frame is written as 

[~~ ~~4 -~~ ~~4+~~] R = ~817,- 17~17817"' + ~~~" ~~17817"' -17~~"' (I) 

- 178 17~~8 ~~~8 

where ~1.1 = cosO and 171.1 =si nO and 0 represents the 

Euler angle component. 

The three inertial ·co-ordinate frame Euler angle 

rotation rates [~,O,yif are obtained from the body 

co-ordinate frame rotation rates [p, q, r f by the non­

orthogonallinear transformation in (2). 

[ 

1 17~118 I ~8 
T = 0 ~~ 

0 17~ I ~8 

~~118 I ~8] 
-1]; 

~; 1 ~8 

(2) 

The process model plays a critical role in the 
localisation system performance since the AUV's 
localisation relies on it and the dead reckoning 
measurements entirely while absolute observations 
from GPS are not available. The non-linear systems 
represented in matrix form as in (3), (4) and (5) are 
utilised as the kinematic model of the vehicle: 



(3) 

(4) 

(5) 

where [xk ,yk ,zk f is the position in inertial co­

ordinate frame, [u*' v*' wk f and [~k>ek ,'lfk fare as 

before and k is discrete-time index and r is the 
sampling interval . Thus the system state vector may 

be written as xk = [~k>ek , \flk•"*'v* , w*,~*'e*'\fl*f' 
the input vector as uk = [a ... ,aY• ,a,., p*'q*' '* f. The 

system matrix (Ak) and input gain matrix (Bk) are 

represented by the Jacobian [ ! ]and[: ] and are 

evaluated respectively at .x. and u. The H matrix is 

simply an / 9" 9 matrix when GPS updates are 

available. In case of GPS updates unavailability, 
if H 's components can be represented 

as Hli.il , H[l.il and Hl2.il are zero with 

Hp.JJ ... H 19,91 are one. In the next sub-section, a 

discussion on the proposed algorithm is given. 

3.3 Fuzzy extended Kalmanjilter 

Having derived the process and measurement model, 
this section discusses how they are to be used in the 
proposed MSDF technique. This technique, the so 
called fuzzy extended Kalman filter (FEKF) enables 
the fusion of sensor data without the availability of 
the dynamic model of a system and resolves the 
limitations of the preliminary MSDF method (Loebis, 
et al., 2003). The algorithm of standard EKF itself is 
very well-defined and interested readers can refer to 
previous work (Brown and Hwang, 1997). 

The FEKF is based on an early innovation adaptive 
estimation (lAE) approach (Mehra, 1970) coupled 
with fuzzy logic techniques. Here the innovation at 
sample time k in the FEKF algorithm is the difference 
between the real measurementzk , received by the 

filter and its estimated (predicted) value zk' and is 

computed as follows: 

(6) 

The predic ted measurement is the projection of t11e 

filter predic ted states xj; onto the measurement space 

through the measurement design function, i.e. 

z* = h(f(xi> ("7) 

Innovation represents additional information availal> le 
to the filter as a result of the new measurement. The 
occurrence of data with statistics different from the a 
priori information will first show up in the innovation 
vector. For this reason the innovation sequence 
represent the information content in the new 
observation and is considered the most releva:11t 
source of information to the filter adaptation. 

The fuzzy logic is chosen mainly because of its 
simplicity. This motivates the interest in the topic, as 
testified by related articles, which have been 
appearing in the literature. The FEKF proposed in th.is 
paper is based on the IAE approach using a technique 
known as covariance-matching (Mehra, 1970). The 
basic idea behind this technique is to make the actual 
value of the covariance of the innovation sequences 
match its theoretical value. 

The actual covariance is defined as an approximation 
of the Inn* sample covariance through averaging 

inside a moving estimation window of size N which 
takes the following form: 

(8) 

where i0 = k - M+ l is the first sample inside the 

estimation window. An empirical experiment is 
conducted to choose ilie window size ·M From 
experimentation it was found in the previous work 
(Loebis, et al., 2003) that a good size for the moving 
window in (8) is 15. 

The theoreticalcovariance of the innovation sequence 
is defined as: 

(9) 

The logic of the adaptation algorithm using 
covariance matching technique can be qualitatively 
described as follows . If the actual covariance value 

cr. is observed, whose value is within the range 

predicted by theory sk and the difference is very near 

to zero, this indicates that both covariances match 
almost perfectly and only a small change is needed to 
be made on the value of R. If the actual covariance is 
greater than its theoretical value, the value of R should 

be decreased. On the contrary, if Cr, is less than Sk , 

the value of R should be increased. T his adjustment 
mechanism lends itself very well to being dealt with 
using a fuzzy-logic approach. based on rules of the 
kind: 

IF <antecedent> THEN <consequent> (1 0) 

where antecedent and consequent are of the form 
~EM~o ':JeN;, i = 1,2, . .. respectively, where ~ and .':J 
are the input and output variables, respectively, and 
M1 and N1 are the fuzzy sets. 



To implement the above covariance matching 
technique using the fuzzy logic approach, a new 
variable called delta, is defined to detect the 

discrepancy between er, and sk . The following three 

fuzzy rules of the kind (10) are used: 

IF < delta* :: 0 > THEN < ~ is unchanged>{ll) 

IF <delta* > 0 > THEN <Rk is decreased> (12) 

IF <delta*< 0 > THEN <Rk is increased> (13) 

Thus R is adjusted according to, 

(14) 

where t:.Rk is added or subtracted from R at each 

instant of time. Here delta* is the input to the fuzzy 

inference system (FIS) and t:.Rk is the output.On the 

basis of the above adaptation hypothesis, the FIS can 
be implemented using three fuzzy sets for deltak; N = 

Negative, Z = Zero and P = Positive. For t:.Rk the 

fuzzy sets are specified as I = Increase, M = Maintain 
and D =Decrease. 

4. HAMMERHEAD VNS+INS/GPS INTEGRATION 
EXPERIMENT 

For the purpose of VNS+INS/GPS integration, several 
open water experiments with a predefined mission 
scenario will be performed (Fig. 3). The purpose of 
the ex.periment is to acquire real time sensor 
measurement data and visual information. This will 
enable the creation of simulation environment test 
files . In this experiment, an initial GPS signal will be 
acquired before the vehicle submerges. When 
underwater, the vehicle is steered automatically to 
move in a spiral- or snake track- like trajectory and 
the INS measurement data plus visual images of the 
seabed will be continuously acquired. At a certain 
point in time, the CCD camera will detect and identify 
pre-deployed visual landmarks, whose position in 3D 
have been surveyed accurately before the actual 
mission taking place. These landmarks will be used to 
verify the accuracy of the position obtained using the 
integrated INSNNS that will be developed afterwards 
in a simulation environment. Having completed the 
predefined trajectory, the vehicle will be steered to 
come up to the surface, where another GPS signal will 
be acquired. 

Fig. 3. VNS+INS/GPS mission scenario 

The TCM2 and IMU angular displacement data 
acquired in this experiment will be fused using the 

FEKF technique using the process and measurement 
model as described earlier. Herein, the authors will 
focus on using the technique to adjust the R matrix 
only. The same technique is then applied to fuse the 
redundant velocity measurement data from VNS and 
IMU. Results will be reported in future papers. 

5. CONCLUSION AND FUTURE WORKS 

The background and the justification of the work have 
been presented. The hardware configurations and 
preliminary experiment for the VNS are discussed 
followed by a brief discussion on the hardware of the 
INS/GPS plus the initial MSDF algorithm to fuse the 
sensor data in this subsystem. An extension of this 
algorithm together with a plan for a future real-time 
trial to implement the algorithm has also been 
presented. In addition, the authors have made 
provision to deploy other sensors on-board the vehicle 
to provide a more accurate vertical position 
estimation. These sensors are a sonar altimeter and an 
upward looking sonar which will be fused with the 
laser-derived altitude output and the pressure sensor 
depth output respectively. 
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Abstract: An autonomous underwater vehicle requires a navigation system suite that has 
the capability to provide optimal estimates of the position and attitude of the vehicle. To 
this purpose, in this paper the data. from a variety of inertial navigation systems (INS) 
sensors are first fused together by means of a linear K.alman filter (LKF) before being 
integrated with global positioning system (GPS) data through the use of an extended. 
K.alman filter (EKF). To cope with divergence problem caused by the insufficiently 
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introducing a fuzzy-rule-based adaptation scheme. Copyright .~ 2003 !FA C 
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l. INTRODUCTION 

In the past few decades, there have been numerous 
worldwide research and development activities in 
order to explore the oceans of the world. As an ocean 
is an inherently hostile and hazardous environinent, 
the need for an underwater robotic system, especially 
one with high reliability and a fully built-in 
intelligence, becomes apparent. The autonomous 
underwater vehicle (AUV) class of vessel meets · 
these requirements. Tasks performed by AUVs 
include cable tracking and inspection (Asakawa et 
al., 2000) and seafloor mapping and ordnance 
location (Wright et al., 1996). . , 

To achieve truly autonomous behaviour, an AUV 
must be able to locate itself accurately during an 
operating scenario using only its onboard sensors. In 
the past, fusing of inertial navigation system (INS) 
sensors and the integration with the global 
positioning system (GPS) through the use of a 
conventional linear Kalman filter (Ll<F), whose 
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algorithm is given in appendix A, and an extended 
Kalman filter (EKF) have been a popular method of 
localisation of an AUV (Yun et al., 1999). However, 
a significant difficulty in designing a KF (refers to 
both LKF and EKF) can often be traced to 
incomplete a priori knowledge of the process 
covariance matrix· (Q) and measurement covariance 
matrix (R). In most practical applications, these 
matrices are initially estimated or even unknown. 
The problem here is that the optimality of the 
estimation algorithm in the KF setting is closely 
connected to the quality of a priori information about 
the process and measurement noise (Mehra, 1970). It 
has been shown that insufficiently known a priori 
filter statistics can on the one hand reduce the 
precision of the estimated filter states or introduces 
biases to their estimates. In addition, inaccurate a 
priori information can lead to practical divergence of 
the filter (Fitzgerald, 1971). For example: if Rand/or 
Q are too small at the beginning of the estimation 
process, the uncertainty tube around the true value 
will tighten and a biased solution will result. If R 



and/or Q are too large, filter divergence and longer 
estimation of the filter could result. From the 
aforementioned it may be argued that the 
conventional KF with fixed R and/or Q should be 
replaced by an adaptive estimation formulation. 

In this paper, an innovation adaptive estimation 
(IAE) approach (Mehra, 1970) coupled with fuzzy 
logic techniques is used to adjust the R matrix of the 
KF. Here the innovation Innk at sample time kin the 

KF algorithm is the difference between the real 
measurementzk, Eq. (A2), received by the filter and 

its estimated (predicted) value zk' and is computed 

as follows: 

where i = k - M+ I is the first sample inside the 
0 

estimation window. An empirical experiment is 
conducted to choose the window size M. The 
window size should be long enough to capture the 
dynamics of the innovation sequences as to provide 
statistical smoothing and prevent the occurrence of 
bias in the approximation. From experimentation it 
was found that a good size for the moving window in 
(3) is 15. 

The theoretical covariance of the innovation 
sequence is defined as 

(4) 

(J) \ which is part of the KF algorithm, Eq. A8. 

The predicted measurement is the projection of the 

filter predicted states x; onto the measurement space 

through the measurement design matrix H1c, i.e. 

(2) 

Innovation represents additional information 
available to the filter as a result of the new 
measurementz/c . The occurrence of data with 

statistics different from the a priori information will 
first show up in the innovation vector. For this reason 
the innovation sequence represent the information 
content in the new observation and is considered the 
most relevant source of information to the filter 
adaptation. 

2. THE ADAPTIVE ESTIMATION ALGORITHM 

2. I Fuzzy Kalman filter. 

In this section, an on-line innovation-based adaptive 
scheme of the KF to adjust the R matrix employing 
the principles of fuzzy logic is presented. The fuzzy 
logic is chosen mainly because of its simplicity. This 
motivates the interest in the topic, as testified by 
related articles which have been appearing in the 
literature (Kobayashi et al., 1998; Jetto et al., 1999). 

The fuzzy logic Kalman filter (FKF) proposed in this 
paper is based on the lAE approach using a 
technique known as covariance-matching (Mehra, 
1970). The basic idea behind this technique is to 
make the actual value of the covariance of the 
innovation sequences match its theoretical value. 

The actual covariance is defined as im approximation 
of the Inn1c sample covariance through averaging 

inside a moving estimation window of size N 
(Escamilla-Ambrosio and Mort, 2001) which takes 
the following form: 

N 

Cr = -
1
- 'IJnn~clnn[ , 

• M i=i . 
(3) 
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The logic of the adaptation algorithm using 
covariance matching technique can be qualitatively 
descnbed as follows. If the actual covariance 

value C,., is observed, whose value is within the • 
range predicted by theory sk and the difference is 

very near to zero, this indicates that both covariances 
match almost perfectly and only a small change is 
needed to be made on the value of R. If the actual 
covariance is greater than its theoretical value, the 
value of R should be decreased. On the contrary, 

ifC is less than S1c , the value of R should be 
rt 

increased. This adjustment mechanism lends itself . 
very well to being dealt with using a fuzzy-logic 
approach based on rules of the kind: 

··IF <antecedent> THEN <consequent>, (5) 

where antecedent and consequent are of the form 
xe M;, ye~. i = 1,2, .. . respectively, where x and y 
are the input and output variables, respectively, and 
M; and N; are the fuzzy sets. 

To implement the above covariance matching 
technique using the fuzzy logic approach, a new 
variable called delta, is defined to detect the 

discrepancy between Cr• and S1c . The following three 

fuzzy rules of the kind (5) are used: 

IF <deltak:: 0 > THEN <Rt is unchanged>, 

IF < deltaic > 0 > THEN < R1c is decreased>, 

IF < deltak < 0 > THEN < R1c is increased> 

Thus R is adjusted according to, 

(6) 

(7) 

(8) 

(9) n 

where Mk is added or subtracted from R at each 

instant of time. Here de/tak is the input to the fuzzy 

inference system (FIS) and Mt is the output. 

On the basis of the above adaptation hypothesis, the 
FIS can be implemented using three fuzzy sets for 



deltak ; N = Negative, Z = Zero· and P = Positive. 

For llRk the fuzzy sets are specified as I = Increase, 

M = Maintain and D = Decrease. The membership 
functions of these fuzzy sets are shown in Figure I . 

-0.015 0 0.015 -0.135 0 0.135 

deltak D.Rk 

Fig. I Membership function of deltak and llRk 

2.2 Sensor fault diagnostic and recovery algorithm. 

In addition to the adaptation procedure, the FKF has 
been equipped with the sensor fault diagnostic and 
recovery algorithm as proposed by Escamilla­
Ambrosio and Mort (200 I). The basic idea behind 
this algorithm is that the amplitude of the actual 

value of the Innk and its theoretical value ( JS'; ) for 

a sensor without any fault must be around I, btit it 
increases abruptly if a transient or persistent fault is 
present in the measurement data. For this purpose a 
variable InnCk is defined as, 

lnnCk = Vnnkl 
JS; (10) 

Thus, -if the value of InnCk is greater or equal than a 

threshold (a) then a transient fault is declared and 
Innk is assigned a value of 0. lflnnCk is still greater 

thana for an instant of time, the persistent fault is 
declared and Innk is assigned a value ,_ of 

JS; multiplied by a random number. From 

experimentation it was found that the good value of 
a is 1.2. 

2.3 Fuzzy logic observer 

The fuzzy labels for the membership functions: Z = -

Zero, S = Sm~ and L = Large. Three fuzzy 
singletons are defined for the_ outputck and are 
labelled as G = Good, A V = Average and P = Poor 
with values 1, 0.5 and 0 respectively. The basic 
heuristic hypothesis for the FLO is as follows: if the 
value of I deltak I is near ·to zero and the value 

of Rk is near to zero, then the FKF works atwost 
perfectly and the state estimate of the FKF is 
assigned a degree of confidence near I. On the 
contrary if one or both of these values increases far 
from zero, it means that the FKF performance is 
degrading and' the FLO assigns a degree confidence 
near 0. Table I gives the complete fuzzy rule base of 
eachFLO. 

z 
s 
L 

Table I Fuzzy rule base FLO 

z 

G 
G 
AV 

s 

G 
AV 
p 

L 

AV 
p 
p 

3. SENSOR FUSION OF INS SENSOR DATA 

In this section, the FKF algorithm is applied to a 
linearised steering model of an AUV at· forward 
speed u = 1.3 ms·• (Lea, 1998) as following: 

[
v(t)ll-2.09 0.376 ol [v(t)l 
~(t) = -_7.96 -8.69 0 r(t) + 
£<;) 0 1 0 £<;) (11) 

[

1.07] 
-1~.1 ar(t) + w(t). 

,J [
v(t)l 

zk = [0 0 I] r(t) + v(t), 

£ <;) 

(12) 

where v(t),r(t) and£<;) represent the sway velocity, 

yaw rate of turn and yaw angle. The w(t) and v(t) are 

To monito~ the performance of a FKF, another FIS \ 
called the fuzzy logic observer (FLO) is used .. The 
FLO assigns a degree of confidence denoted as ck , a 

number on the interval [0,1], to the FKF state · 
estimate. The FLO is implemented using two inputs: 
the values of I deltak I and Rk . The m~mbership 
functions of these variables are shown in Figure 2. 

, both zero mean white noise for the system and 
measurement models respectively and ar (t) the 
rudder deflection. A sample time of0.125s is used to 
discretised the linearised model. The initial 

0 0.1 0.3 0 2 

I deltak I 

Fig. 2. Membership function of I deltak I and Rk 

159 

conditions are [ v0 i0 £0 ] T =[ 0 0 0 F , 
Po =0.01 / 3 and Q is made constant as 0.01 h. A 
sinusoidal input was applied to the rudder. Four yaw 
sensors . with different noise characteristics are 
considered to measure the respoiise of the vehicle. 
The actual value of R for each sensor is assumed 
unknown but its initial value is selected as I. The 
FKF algorithm was then implemented and simulation 
results are shown in the next section. 



3.1 Simulation Result 
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Fig. 3. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 1. 

Tme(sec) 

Fig. 4. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 2. 
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Fig. 5. {a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 3. 
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Fig. 6. (a) Measured and estimated yaw output, (b) 
measured and estimated yaw error of sensor 4. 

Figure 3. and Figure 4. are the simulation result 
showing the response of the AUV observed by 
sensors with constant Gaussian noise, while Figure 5 
and Figure 6. by sensors with uniform noise 
increasing and decreasing with time respectively. 

To fuse the estimated yaw, a centre of gravity 
mt;thod is used, 

n 

L,ck; 
i=l 

(13) 

where zki is the output of the i-th FK.F (i=l,2,3,4) 

an.d cki is the respective degree of confidence at 

· instant time k. Figure 7. shows the comparison of the 
actual and the fused estimated yaw . 
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Fig. 7. (a) Actual and fused yaw output, (b) fused 
error. 

Fiilally, the following performance measure are 
adopted for comparison purposes, 

(14) 

(15) 

where zak is the actual value of 'the yaw, zk is the 

measured yaw, zk is the estimated yaw at an instant 

of time k and n = number of samples. 

Table 2 shows the comparison of performance of 
each individual FKF and those obtained by the 
proposed INS sensor fusion method. 

Table 2 Comparison of performance 

Sensor 

Sensor l 
Sensor2 
Sensor 3 

Performance 
Jzv (degree) Jze (degree) 
1.5291 1.0935 
2.2908 0.5018 
0.9933 0.2870 



Sensor 4 1.1996 0.2920 
Sensor Fusion 0.1994 

4. GPSIINS NAVIGATION 

In this section, the fused estimated yaw obtained 
previously is treated as a single imaginary yaw 
sensor and used by other INS sensors to transfonn 

· data from body co-ordinate to Earth ·co-ordinate 
frame where integration with GPS data is perfonned. 

A continuous time model of the vehicle motion 
appropriate to this problem is taken to be 

X(t) = F(X(t)) + W(t) 

Z(t) = H(X(t)) + V(t) 

(16) 

(17) 

Denoted by X (t) =[Long( I) Lat(t) (P .(t) r(t) u(t) v(t)]1 

is the model states. Long(t) and Lat(t) are the 
longitude and latitude of the AUV position in Earth 
co-ordinate frame which are obtained from a GPS 
receiver, (P.(t) is the yaw angle obtained from the 
imaginary yaw sensor, r(t) is yaw rate, u(t) and. v(t) 
are the surge and sway velocity respectively. 

In this system mode~ F and H are both continuous 
function, continuously differentiable in X(t),_ The 
W(t) and V(t)are both zero mean white noise for 

the system and measurement models respectively. 

The model states are related through the following 
kinematicaUy based set of functions ( F(X(t)) in Eq. 

16): 

u(t) = o, < t8) 

V(t) = 0, '· (19) 

iJ,.t) = r(t) , (20) 

r(t)= o, (2t) 

Long(t) = u(t) cos£tf(t) - v(t) sin £1-.t) , (22) 

iat(t) = u(t) sin £tf(t) + v(t} cos£J{t) , (23) 

The output measurements are related through the 
states by the identity matrix H(X(t)). To obtaJn an 

EKF with an effective state prediction equation in a 
simple form, the continuous time model of (18)-(23) 
have been linearised aboutJ the current state 
estimates, producing the followmg fo!1D: 

X(t) = AX(t) + W(t), 

Z(t) = CX(t) + V(t), 

where A = 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 

0 0 - u(t) sin£t(t)- v(t) cos£tf(t) 0 

0 0 u(t) cos£t(t)- v(t) sin£tf(t) 0 

0 

0 

0 

0 

cos£tf(t) 

sin£tf(t) 

(24) 

. (25) .. 

0 

0 

0 

0 

- sin£t(t) 

cos£tf(t) 
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and C is an identity matrix. Subsequent discretisation 
with period T= 0.125s of the linearised model results 
in an EKF algorithm similar to the LKF algorithms in 
appendix A, only this time the A matrix is updated at 
every iteration. The initial conditions are Po =0.01 h 
and Q ·is made constant as diag[O 0 0.00000 I 0.0 l 
.0.01 0.01]. The actual value of R is assumed 
unknown but its initial value is selected as diag[ 100 
100 0 0 0.1 0.1]. • 

The FKF algorithm from section 2.1 is then. 
implemented, only this time the adaptation of the 
(i,1)-th eleme~t of R1 is made in accordance with the 

(i,1)-th element of delta1 . Here a single-input-single­

output (SISO) FIS as shown in Figure 1., is used 
sequentially to generate the correction factors for the 
elements in the main diagonal of R1c as the following, 

(26) 

4.1 Simulation Results 

Figure 8. and Figure 9. show the AUV trajectory 
obtained using GPS, INS sensors and GPSIINS 
integration. As the initial value of R for both the 
Long( I) and Lat(t) is 100, the EKF algorithm puts 
less weight on the position obtained by GPS and 
more on the prediction of position obtained from 
dead reckoning method (using INS sensors data). 
This results in an estimated trajectory with ·RMSE of 
2.5311 m for longitude and 2.1917 m for latitude. 

ooo~------~------~------~ 
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300 •.....• 

250 

21!900 -250 -200 -150 
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Fig. 8. AUV trajectory obtained using GPS, INS 
sensors (dead reckoning method) and 
GPSIINS using EKF without adaptation. 
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Fig. 9. AUV trajectory obtained using GPS, INS 
sensors (dead reckoning method) and 
GPSIINS using EKF with adaptation. 



With the proposed FKF adaptation, the RMSE for 
longitude is 2.2883 m and 2.1134 m for latitude. This 
accumcy can increase as the distance travelled by the 
AUV increases. 

5. SUMMARY AND CONCLUSION 

The problem with incomplete a priori knowledge of 
Q (process covariance matrix) and R (measurement 
covariance matrix) is considered. In this paper, an­
adaptive Kalman filter approach, based on the filter 
innovation sequence coupled with fu~ logic 
techniqu~s is discussed as an alternative for fusing 
INS sensor data and integmting INS/GPS position 
information. Implementation of this approach .to a 
linearised steering model of an AUV, whose 
responses are measured with sensors with different 
noise characteristics, has shown a promising result in 
improving the estimation of the individual KF. The 
use of PLO also plays an important role in 
determining the degree of confidence of the FKF 
output. 

The choice of membernhip functions used in the FISs 
is carried out using a heuristic approach. This was 
time consuming. Currently the authors are exploring 
the use of adaptive search techniques for optimising 
the membership functions. 

APPENDIX A 

Kalman filter Equations 

Given a discrete-time controlled process described 
by the linear stochastic difference equations: 

xk=Ak xk + Bk uk + wk 

zk =Hk xk+ vk 

(AI) 

(A2) 

Where x~: is an n x I system state vector, A~: is an n x 

n transition matrix, u~: is an I x l vector of the input 
forcing function, Bt is an n x I matrix, w~; is an n x 1 
process noise vector, H~; is a m X n measurement 
matrix and Vt is a m x I measurement noise vector. 
Both the w~; and v~; are assumed to be uncorrelated 
zero-mean Gaussian white noise sequences with 
covariance given by 

E[ w w'!']= {Q.,; = k 
k I 0, j "* k 

E[ T ] _ { Rt, i = k 
VA;V; - 0, i ~ k 

E[ wk v[ ] = 0, for all k and i 

(A3) 

(A4) 

(AS) 

The KF algorithm can be organised into time update 
and measurement update equations, 

Time update equations: 

xk+l = Ak xk+ Bk uk 

pk-+1 = Ak Pk A[+ Qk 

(A6) 

(A7) 
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Measurement update equations: 

Kk= pk- H[ [Hk Pi: H[ +Rt]-l 

xk= xi;+ Kdzk Hk- x"k 1 
pk =[I- Kk H k] pk-

(A&) 

(A9) 

(AJO) 

The measurement update equations incorporate ;:t 

new observation into the a priori estimate from the 
time update equations to obtain an improved a 
posteriori estimate. In the time and measurement 

update equations, xk is an estimate of the system 

state vector xk, and Pk is the covariance matrix of 

the state estimation error. 
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A key problem with autonomous underwater vehicles is being able to navigate in a generally 
unknown environment The available underwater sensor suites have a limited capability to 
cope with such a navigation problem. In practice, no single sensor in the underwater 
environment can provide the level of accuracy, reliability and the coverage of information 
necessary to perform underwater navigation. Therefore there is a need to use a number 
of sensors and combine their information to provide the necessary navigation capability in 
a synergetic manner. This may be achieved by employing multisensor data fusion (MS OF) 
techniques and these are the subject of the material presented in this paper. 

INTRODUCTION 

T
he oceans cover 70% of the Earth's surface and contain 
an abundance of living and non-living resources that 
remain largely untapped waiting to be discovered." How 
ever, a number of complex issues, mainly caused by the 

nature of underwater environments, make exploration and pro­
tection of these resources d.i.flicult 10 perform. In the past few 
decades, various world-wide research and development activities 
in underwater robotic systems have increased in order to meet this 
challenge. One class of these systems is tethered and remotely 
operated and referred to as~remotely operated vehicles (ROVs). 
Extensive use of ROVs is currently limited to a few applications 
because of very high operational costs and the need for human 
presence in conducting a mission. The demand for a more sophis­
ticated unde!Water robotic technology that minimises the cost and 
eliminates the need for human operator and is therefore capable of 
operating autonomously, becomes apparent. These requirements 
led to the development of autonomous underwater vehicles (AUVs). 

To achieve truly autonomous behaviour, an AUV must be 
able to navigate accurately within an area of operation. In order 
to achieve this, an AUV needs to employ a navigation sensor 
with a high level of accuracy and reliability. However, in 
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practice, as will be discussed in the next section, a single 
sensor alone may not be sufficient to provide an accurate and 
reliable navigation system, as it can only operate efficiently 
under certain conditions or it has inherent limitations when 
operating in underwater environments. It is therefore neces­
sary to use a number of sensors and combine their information 
to provide the necessary navigation capability. To achieve this, 
a multisensor data fusion (MSDF) approach, which combines · 
data from multiple sensors and related information from 
associated databases, can, be used. 

The aim of this~paper is to S).trveypreviouswork and recent 
development in AUV navigation and to introduce MSDF tech­
niques as a means of improving the AWs navigation capability. 
The structure of this paper is as follows: the next section describ~ 
the navigation systems that are currently being used in AUVs. 
MSDF is then discussed, whilst MSDF using specific sensor 
combinations applied to the navigation of AUVs follow. 

AUTONOMOUS UNDERWATER 
VEHICLE NAVIGATION 

Navigation systems used by AUVs that are discussed here include 
dead reckoning, radio, optical, aarustic and terrain-relative navigatioiL 

3 



Review of multisensor data fusion techniques and their application to autonomous underwater vehicle navigation 

Dead Reckoning Navigation 
Dead reckoning is a mathematical means to determine posi­

tion estimates when the vehicle starts from a known point and 
moves at known velocities. The present position is equal to the 
time integral of the velocity. Measurement of the vector velocity 
components of the vehicle is usually accomplished-with-a com­
pass. (to obtain direction} and a water speed sensor (to obtain 
magnitude). The principal problem is that the presence of an 
ocean current can add a velocity component to the vehicle, which 
is not detected by the speed sensor. 

An inertial navigation system (INS) is a dead reckoning 
technique that obtains position estimates by integrating the signal 
from an accelerometer, which measures the vehicle's acceleration. 
The vehicle position is obtained in principle by double integration 
of the acceleration. The orientation of the accelerometer is gov­
erned by means of a gyroscope, which maintains either a fiXed or 
turning position as prescribed by some steering function. The 
orientation may also, in principle, be determined by integration of 
the angular rates of the gyroscope. Both the accelerometer and the 
gyroscope depend on inertia for their operation 

A dead reckoning navigation system is attractive mainly 
because it uses sensors that are self-contained and able to provide 
faSt dynamic measurements. Unfortunately in practice, this inte­
gration leads to unbounded groWth in position error with time 
due to the noise associated with the measurement and the 
nonlineari!}' of the sensors, and there is no built-in method for 
reducing this error. Depending on the sensors used and· the 
Specific vehicle miS,SJi)p, the navigational error can grow rapidly to 
the point where either the mission will not produce useful data or 
it will not be achievable at all. 

Two types o[ dead reckoning sensors have been widely 
employed in AUVs: inertial measurements· units (IMUs) and 
Doppler velocity sonar (DVS). Many very accurate IMUs have 
been developed for submarines. However, these are typically very 
expensive devices and are used only in naval vehicles. Lower cost 
IMUs have been used in AUVs1• However, due to the low 
acceleration encountered in autonomous underwater vehicles, 
these units are not normally of sufficient accuracy to provide 
stand-alone navigation. . 

DVS sensors provide measurement of a velocity vector with 
respect to the sea Door. These sensors normally comprise three or 
more separate sound beams allowing construction of a full three­
dimensional velocity vector. Typically, these instruments have 
specilications.of about 1% of the distance travelled'. However, 
these results can only be achieved when the speed of sound in the 
AUVs area of operation does not vary significantly as a result of 
changes in the salinity, temperature and density of the water. 
Therefore, as in the IMU case, these units are not normally used 
to provide stand-alone navigation. 

Radio Navigation 
Radio navigation systems mainly use the global positioning 

system (GPS)'. The GPS is a satellite-based navigational system 
that provides the most accurate open ocean navigation available. 
GPS consists of a constellation of 2 4 satellites that mbit the earth 
in 12 hours. There are six orbital planes (with nominally four 
satellites in each) equally spaced (60 degrees apart) and inclined 
at about 55 degrees with respect to the equatorial plane3• This 
constellation provides the user with between five and eight 
satellites visible from any point on the earth. 

4" 

The GPS-based navigation system is used extensively in 
surface vessels as these vehicles can directly receive signals 
radiated by the GPS. Unfortunately, these signals have a limited 
water-penetrating capability. Therefore to·receive the signals, an 
antenna associated withanAUV employing a GPSsystem must be 
clear and free of water. There are three possible antenna configu­
rations to meet this requirement. These are fixed, retractable, or 
expendable antennas•. A fJXed antenna is a non-moving antenna 
placed on the outside of the AUV. The AUV has to surface to 
expose this antenna and stay surfaced until the required informa­
tion has been received and processed adequately. A retractable 
antenna is one that the AUV would deploy while still submerged. 
When the required information is received, the antenna is re­
tracted back to theAUV. The expendable antenna works along the 
same principle as the retractable antenna, except that it is used 
once and discarded. When required, another antenna would be 
deployed. 

These antenna configurations require the AUV either to 

surface or to rise to a shallow depth, but there are several 
disadvantages5. For an AUV to receive radio signals, it must 
interrupt its mission, expend time and energy climbing 
and/or surfacing, risk its safety for up to a minute on the 
surface or in a shallow depth of water getting the fix, which 
is especially dangerous in a hostile environment, then 
expend additional time and energy submerging to resume 
the mission. Even if an extremely accurate fiX is obtained, 
the vehicle location uncertainty can grow significantly dur­
ing descent before the mission is ever resumed. Therefore 
there is a need to combine information obtained by a GPS 
navigation system with other underwater navigation sen­
sors when the AUV operates underwater to maintain good 
navigation capability. 

Optical Navigation 
In the context of optical imaging for navigation, the underwa­

ter environment is a very special place. The reason for this is that, 
in addition to visual-sensing issues that must be addressed in land 
and space-based vehicles, there are also issues specific to under­
water irnaging. These issues include limited range of visibility, 
brightness and contrast variation, and non-uniform illumination6• 

limited range of visibility is caused by the attenuation of light in 
water by absorption and scattering by suspended matter. light 
absorption and scattering cause the amount of reflected light to 

exponentially decay as a function of distance to scene surfaces. 
The absorption and scattering oflight also affect image brightness 
and contrast. Objects far away appear dark; as they move nearer, 
their brightness and contrast increase. Changes in image intensity 
brightness and contrast can cause many image processing tech­
niques to fail. If some type of intensity normalisation is not 
performed, brightness and contrast differences between images 
make it difficult to realise that the same scenery or object is being 
viewed6. Non-uniform illumination refers to the limitation of 
arriliciallight sources to provide uniform illumination of the enpre 
scene under observation. A classic example that demonstrates the 
difficulties non-uniform lighting can cause is the imaging of a 
planar, perpendicular surface using a collocated camera/light 
source. In this case, the image centre will appear brighter than the 
image border. If the camera and light source are moved relative to 

the scene, both the absolute and relative brightness of each pixel 
in the image will change. Simple effects such as these can degrade 
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correspondence (image matching) performance; more 
complicated effects such a5 shadowing can cause significant 
dilliculties for most image correspondence techniques6. 

Optical-based.navigation.involves the estimation.of3D mo­
. tion from time varying imagery7•8• Most techniques . for this 
purpose require knowledge of relevant 20 geometric information 

. in an image sequence. The current state-{)f-the-an in optical­
based navigation is essentially a form of dead reckoning9

. This 
method works by creating a mosaic where a series of· images are 
taken·from a video stream and aligned with each other to form a 
chain of images along the vehicle path. When a new image is about 
to be added to a mosaic, it must be properly aligned with the last 
image in the chain of images comprising the mosaic. To accom­
plish this, the two images are compared, and the displacement 
vector between the two image centres is calculated. Therefore, to 
determine the current vehicle position, it would be possible to 
compute the total distance travelled by summing the image 
displacement measurements along the image chain9• As with the. 
INS discussed earlier, this method has a fundamental problem: 
the unbounded propagation of errors on vehicle position over 
tiffie. This random walk~ffect is due to the accumulation of image 
alignment errors as the length of mosaic increases (Fig 1). 
Therefore, as in the INS case, this navigation method is not 
normally used to provide stand-alone navigation. 

Acoustic Navigation 
Acoustic navigation is the most widely accepted form of AUV 

navigation, and a ~~ty of systems have been both researched 
and tested. Most require an engineered environment, meaning 
that something has been added to the environment to aid 
navigation. The di$tance between acoustic baselines is generally 
used to define an acoustic positioningsystem;:that is the distance 
between the active sensing elements. Three types of system have 
been primarily employed; ultra shon baseline (USBlJ, shon 
baseline (SBlJ and long baseline (L.BlJ with distance between 
acoustic baselines less than 10 cm, between 20 to 50m and 
between lOO to 6000m respectivelyl0• 

USBL systems (Fig 2a) employ a single beacon on the bottom 
of the seafloorwhich emits acoustic pulses without being interro­
gated from an AlN. The onboard AlN equipment consists of a 
two-dimensional hydrophone array mounted on the bottom of 
the AlN. USBL systems measure the time- or phase difference of 
the arrival of an acoustic pulse between individual elements of the 
hydrophones.This time- or phase difference is used to determine 
the bearing from the USBL transceiver to the beacon. U a time-{)f­
flight interrogation technique is used, a range to that beacon will 
also be available from the USBL system. In SBL (Fig 2b) three or 
more transceivers are rigidly mounted on the hull of the AlN, 
making either an equilateral or a right-angled triangle. The dis­
tance between each transceiver is precisely known. A bearing to 
the transponder is derived from the detection of the relative time­
of-arrival as an acoustic pulse passes each of the transceivers. If the 
timt;-{)f-flig.~t interrogation technique is used, a range to that 
beacon will also be available from the SBL system. Any range and 
bearing position derived from USBL and SBL systems are with 
respect to the transceivers mounted on the AlN and, as such, the 
systems need a vertical reference unit (VRU), a gyroscope and, 
possibly, a surface navigation system to prov,ide a position that is 
seiilloor (Earth) referenced 10• 

In l.BL navigation systems (Fig 2c), an array of acoustic 
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beacons separated by a range of lOOm to a few kilometres is 
deployed on the seabed10•11 • The vehicle detennines its position 
by listening to the pulses emitted from the beacons and recording 
the arrival times. The location of these beacons must be provided, 
andlthe vehicle must be able to detect and distinguish between 
their signals. The two major· types ofLBL navigation are described 
as spherical and hypernoli~. In spherical navigation, the vehicle 
interrogates the array· by emitting its own pulse and then listens 
for the responses from the beacons. In hypernolic LBL navigation, 
the vehicle does not interrogate .the array, but instead listens 
passively to the Synchronised pulses emitted by the beaconsn 
Any range/range position derived from a LBL system is with 
respect to relative or absolute seafloor CO-{)rdinates. As such a LBL 
system does not require a VRU or gyroscope10

. 

Terrain-Relative Navigation 
For some applications of AlNs, the use of acoustic beacons is 

undesirable or impractical. In particular, the acoustic beacons 
must be pre-deployed for every mission and the vehicles can 
operate only over relatively shon ranges, and they are far too 
expensive to be practical in low cost civilian AlN work. Also the 
accuracy of the acoustic signals .tend to degrade due to noise and 
reverl>eration problem. This then motivates the use of onboard 
terrain sensors for the purpose of navigation of an AUV. An 
onboard sensor is used to obtain information on the terrain 
surrounding the vehicle in the form of features or landmarks. The 
vehicle maintains a map of these landmarks which mayor may not 
have been provided a priori. As the vehicle moves through the 
environment, the landmark observationS obtained from the ter­
rain sensor are matched to the landmarks maintained in the map 
and used, in much the same way as beacon observations, to 
correct and update the estimated location of the vehicle. In 
underwater environments it is very rare that an a priori terrain map 
will exist. Unlike surface applications, satellite or aircraft imagery 
cannot be used to build an underwater terrain map. This then 
precludes the common use of digital terrain eleYlltion data (DTED) 
as employed by systems such as terrain contour matching 
(TERCOM) used'forcruise missiles13 . This limitation then moti­
vates the development of simultaneous localisation and mapping 
(SlAM) for AlN navigation•(see Fig 3). 

SLAM is the process of concurrently building a feature-based 
map of the environment and using this map to obtain estimates of 
the location of the vehicle. In essence, the vehicle relies heavily on 
its ability to exrract useful navigation information from the data 
returned by its sensors. The vehicle typically stans at an unknown 
location with no a priori knowledge of landrruuk locations. From 
relative observations of landmarks, it simultaneously computes an 
estimate of vehicle location and an estimate of landmark locations. 
While continuing in motion, the vehicle builds a complete map of 
the landmarks and uses these to provide continuous estimates of 
the vehicle location. By rracking the relative position between the 
vehicle and identifiable features in the environment, both the 
position of the vehicle and the position of the features can be 
estimated simultaneously. The SLAM algorithm has recently seen 
a considerable amount of interest from AlN community as a tool 
to enable fully autonomous navigation14

•
15

·16. 

MULTISENSOR DATA FUSION 
It is clear from the previous discussion· that information from 
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sensors used in one navigation system need to be combiried or 
fused with information from sensors of other. navigation systems 
to improve the overall accuracy of.the system. To achieve this, 
MSDF techniques, which combine data ·from multiple sensors 
and related information from associated databases can be used17.16• 

Varshney19 describes MSDF as the acquisition, processing and 
synergistic combination ofinformation gathered by various knowl­
edge sources and sensors to provide a better understanding of a 
phenomenon. In this section, a general introduction to MSDF is 
provided. The description on benefits of MSDF, problems and 
issues, levels of MSDF where fusion takes place and MSDF 
algorithms are presented. 

Benefits of MSDF 
In general, fusion of multisensor data provides significant 

advantages over single source data. The advantages can be sum­
marised as follows 19•20: 

1 .. lmprooied system reliability and robustness. Multiple sensors 
have inherent redundancy. Due to the availability of data from 
multiple sensors, uncertainty can be reduced, noise can be 
rejected and sensor failure can• be tolerated. 

2. Exlrndedcoverage. An increase in both spatial and temporal 
c~erage of an observation is made possible by the use of multiple 
_sensor systems. Multiple sensors can observe a region larger than 
the one observable by a single sensor. 

3. lnc:rea5e5l conjidence.joint data from multiple sensors con­
finn the set of hypotheses about an object or event. The confirma­
tion can be used ~<!l. exclude some hypotheses to produce a 
reduced set of feasible options and as a result reduce the elfon 
required to search for the best solution. 

'1. Enhance4 resolution. Multiple sensors with different resolu­
tion· can result in. a greater resolution than a single sensor can 
achieve. 

Problems and Issues 
A technique for MSDF should consider several key issues, 

summarised below19.2°: 
1. Registration/data alignment. Each sensor provides data in 

its local frame. The data from different sensors must be convened 
into a common reference frame before combination. This prob­
lem of aligning sensor reference frames is often referred to as a 
registration problem. 

2. Comspondence/data association. Once the sensors are reg­
istered, there is still a need to establish which data features in one 
sensor refer to. the same aspect environment of the sensor. 

3. Fusion. The fusion of data from multiple sensors or a single 
sensor over time can take place at different levels of. representa­
tion. A useful categorisation is to consider MSDF as taking place 
at signal-, pixel-, feature- and symbol levels of representation. 

'1. Inference and estimation. Once the data has been fused, it is 
necessary to infer the sensed data due to the inherent uncenainty 
in the combined measurements. 

5. Sensor Management. Sensor management can take the form 
of active data gathering where the sensors are directed via feed­
back to specific fusion stage, physical reconfiguration of the 
spatial pattern of the sensors and sensor type, or algorithmic 
changes to the combination of data. 

!Levels of MSDF 
The common fused representation may range from a low-level 

probability distribution for statistical inference to high level 
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logical-proposition used in production rules for.logical inference. 
Luo and1Kay'2 and Luo et al· 23 divide the levels of representation 
of MSDF into signal-, pixel-,.feature- and symbol levels. 

1. Signal-level. Signai-level fusion deals with the combination 
of signals from a group of similar sensors with the aim of deriving 
a single composite signal, usually of the same form as the original 
signals but with a higher quality. The signals produced by the 
sensors can be modelled as random variables corrupted by 
uncorrelated noise, with the fu~ion process considered as an 
estimation procedure. A high degree of spatial and temporal 
registration between the sensed data is necessary for fusion to take 
place. 

2. Pixel-levd. Pixel-level fusion deals with the combination of 
multiple images into a single image with a greater infonnation 
content. The fused images can be modelled as a realisation of a 
stochastic process across the image, with the fusion process 
considered as an estimation procedure. In order for pixel-level to 
be feasible, the data provided by each sensor must be able to be 
registered at the pixel-level and, in most cases, must be sufficiently 
similar in terms of i!S resolution and information content. 

3. Feature-leveL Feature-level fusion deals with the combina­
tion offeatures derived from signals and images into meaningful 
internal representations or more reliable features. A feature pro: 
vides for data abstraction and is created either through the 
attachment of some type of semantic meaning to the results of the 
processing of some spatial and/or temporal 5egment of the 
sensory data or through a combination of existing features. As 
coni pared to the signal- and pixel-level fusion, the sensor registra­
tion requirements for feature-level fusion are less stringent, with 
the result that the sensors can be distributed across different 
platform. 

'1. Symbol-level. Symbol-level fusion deals with the combina­
tion of symbols with an associated uncertainty- measure, each 
represen tingsome decision, into symbols representing composite 
decisions. A symbol derived from sensory information represents 
a decision that haS been made concerning some aspect of the 
environment. The decision is usually made by matching features 
derived from the sensory information to a model. The sensOr 
registration is usually not explicitly considered in symbol-level 
fusion because the spatial and temporal extent of the sensory 
information upon which a symbol is based has already been 
explicitly considered in the generation of the symbol. 

MSDF Algorithms 
This section presents fusion algorithms for MSDF. Luo et al23 

classify MSDF algorithms as follows: estimation methods, clas­
sification methods, inference methods and artificial intelligence 
methods. Each of these methods will be discussed here and 
applications to AUV navigation are presented later. 

!.Estimation methods. A general estimation method of fusion 
is to take a weighted average of redundant information provided 
by a group of sensors and use this as the fused value. While this 
method provides real-time processing capability of dynamic 
low-level data, the Kalman filter is generally preferred as it 
provides a method that is nearly equal in processing require­
ment and resul!S in estimates for the fused data that are optimal 
in a statistical sense. Kalman filtering is an estimation method 
that combines all available measurement data, plus prior knowl­
edge about the system and measuring devices, to produce an 
estimate of the state in such a manner as 10 minimise the error 
statisticallf'. A detailed formulation of Kalman filter is given in 
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appendix A. 
2. Classification methods. Classification methods involve parti­

tioning of the multidimensional feature space (by geometrical or 
statistical boundaries) into distinct regions, each representing an 
identity class. In this method, the-location of a feature vector to 
prespecified locations in feature space is compared. A similarity 
measure must be computed and each observation is compared to 
a priori classes. In the cluster analysis approach, geometrical 
relationships on a set of sample data in a training process are 
established25. Other approaches include unsupervised or self­
organised learning algorithms such as K-means clustering and the 
associated adaptive update rule, the Kohonen feature map26. To 
fuse sensoty data in an adaptive manner and allow to automati­
cally adjust the granularity of the classifier and to maintain 
stability against category proliferation in the presence of drifting 
inputs and changing environments, ART, ARTMAP and Fuzzy 
ART network approaches can be used. 

3. Inference methods. Bayesian inference and Dempster-Shafer 
evidential reasoning are the main approaches in inference meth­
ods. Bayesian inference provides formalism for MSDF that allows 
sensory data to be fused according to the rules of probability 
theory. This approach relies on the use of Bayes' rule where a 
relationship between the a priori probability of a hypothesis, the 

. conditional probability of an observation given a hypothesis and 
the a posteriori probability of the hypothesis is provided'"· An 
immediate problem in this approach is that the required lmowl­
edge of the a priori probability and the conditional probabiliry 
may not be always;~le. Also in defining these probabilities, 
often subjective judgements are necessary27. An extension to the 
Bayesian inference method, Dempster-Shafer evidential reason­
ing, overcomes ~ese drawbacks by keeping track of an explicit 
probabilistic measure of the lack of information concerning a 
proposition's probability. The cost of this approach is the addi­
tional time required for computation. 

4. Artijidal lnteUigence methods. Artificial intelligence is a vast, 
loosely defined area encompassing various aspects of pattern 
recognition and image processing, natural language and speech 
processing, automated reasoning and a host of other disciplines. 
Fuzzy logic and neural network are two of the most widely used 
approaches In artificial intelligence methods for combining 
multisensor data. Fuzzy logic involves extension of Boolean set 
theory and Boolean logic to a continuous-valued logic via the 
concept of membership functions to quantify imprecise concepts. 
Neural ne!Work is a method designed to mimic a theory of how 
biological nervous systems work. In this method, an individual 
neuron takes weighted input from a number of sources, perform 
a simple function and then produces a single ourput when the 
required threshold is reached. Neurons can be trained to repre­
sent sensor data and, through associate recall, complex combina­
tions of the neurons can be activated in response to different 
sensor stimuli23. 

APPLICATIONS OF 
MULTISENSOR DATA FUSION 

The discussion here focuses on a variety of approaches to the 
fusion of information from combinations of different rypes of 
sensors. 

Inertial and GPS-Based Systems 
McGhee et al28 describe a navigation system employed by the 
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Phoenix AUV using an inenial and differential GPS (DGPS) 
navigational,suite to conduct shallow-water mine-detection and 
coastal environment monitoring missions. In the course of its 
mission, Phoenix combines signal-level infonnation from a gyro­
scope, depth sensor, speed sensor, and a compass heading to 

predict its position while operating underwater. The vehicle 
surfaces periodically to obtain an update of its position from a 
DGPS fix and then submerges (Fig 4a). Problems with this setup 
concern the time required to acquire the DGPS data and the 
influence of water covering the DGPS antenna during position 
fixing were examined in Nonon29. The inenial navigation sensors 
described in McGhee et aJ28 obtain accelerations and angular rates 
of change for the vehicle. A 'nine state' Kalman filter is used to 
process the data and to give the prediction of the vehicle position. 
The DGPS data is then used to update the predicted position 
resulting in an estimated position. The nine state Kalman filter can 
be divided into seven continuous-time states (three Euler angles, 
two horizontal velocities, and two horizontal positions) and two 
discrete-time states (estimated east and nonh currem derived 
from the DGPS fixes). The method used to fuse sensory informa­
.tion discussed by McGhee et al28 can be shown as in Fig 4b. 

The main problem with the Kalman ftlteremployed in McGhee 
et aJ28 is the need for a runing system to prevent lllter divergence. 
This problem can be overcome by the use of artificial imelligence 
CAD techniques as have been applied in helicopters30

, automo­
biles31 and target trackingsystem32 applications, Kobayashi et a!" 
wished to determine accurately the position of an automobile 
using DGPS. In their work, a fixed fuzzy rule based algorithm is 
used to tune the covariance factors of a Kalman filter. The shape 
and positioning of the various fuzzy. sets on their respective 

. universes of discourse having been decided by heuristic means. 
The main problem with the Kobayashi et aP1 methodology is the 
reliance on trial and error to generate the fuzzy rule based 
algorithms. Similar comments can also be made concerning the 
robot positioning work ofjetto et al33. To overcome such draw­
backs genetic algoritlJrnsl4.l' have been used to optimise fuzzy 
systems. Other intelligent optimisation techniques such as chemo­
taxis, alopa and simulated annealing have also been successfully 
employed in the designoptimisation of fuzzy controlsysterns36·37. 

Acoustic-Based Systems 
Atwaodet al38 have built and tested anAUV that utilises a LBL 

navigation system with an innovative fix-finding algorithm and 
commercially-available hardware. They use a spherical navigation 
system, in which the vehicle actively interrogates acoustic trans­
ponders and calculates ranges from round trip transit times, 
resulting in a greater accuracy (about lm) compared to the 
hyperbolic method proposed by Bellingham et al'2 .In this system, 
the vehicle can use two operating modes, master mode and 
transponder mode. In the fust mode, the vehicle triggers the 
acoustic transponders, which reply with an acoustic signal. The 
vehicle computer can then calculate distances and, applying 
acoustically measured depth, a position. Using the fust mode, 
operation over an area of 1 km2 is possible. In the second 
operating mode, a surface vessel triggers the vehicle, which in turn 
interrogaies the transponders. Position of the AUV can then be 
calculated in the surface vessel through an established GPS 
position and lmowledge of the relative positions of the AUV and 
the transponders. This procedure is called the .fish solution, as it lets 
the operator on the ship monitor vehicle progress. The second 
mode is developed to have operational areas as large as 10 km2. 
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In this work, Atwood et al38 have solved the problem of fading or 
destructive interference of the acoustic signals produced by the 
rransponders encountered by Bellingham et aP9

· Atwood et aP8 

principally combine sensor information at signal-level data. 
Rendas and Lourtie.o combine LBL navigation with dead 

reckoning and calls it a hybrid system. The vehicle travels between 
deployed baseline arrays, each consisting, for example, of four 
transponders, and uses acoustic navigation when in range of an 
array. Outside the range, it uses a sonar/Doppler sensor and depth 
information for autonomous navigation. The distances between 
the arrays must be carefully planned, because the accuracy of 
navigation in the autonomous mode deteriorates with time, 
depending on the quality of the sensing systems. The transition 
from one mode to another takes place automatically. When the 
vehicle is leaving tl1e area where a particular baseline array is 
located, the number of range measurements it is able to receive 
will gradually decrease to zero, entering, in this way, the autono­
mous navigation mode. On the contrary, when it approaches an 
area where transponders are located, it receives an increasing 
number of distance measurements, switching from autonomous 
to local navigation mode. The system uses a variable dimension 
K;Uman filter for both navigation modes. Where there is no 
d~tectable acceleration, the filter assumes uniform motion and 
estimates position and linear velocity. When there is acceleration, 
the filter switches to a larger order (manoeuvring modeD and 
extends its state vector to include the accelerations. In this work, 
however, Rendas and Lourtie10 have not taken into account the 
analytical approxii~l.E~tions to the error evolution during autono­
mous navigation to "Cieterrnine the layout of the baseline arrays and 
to derive the constraints on path planning once a layout has been 
decided upon. Similar to Bellingham et aP8, the MSDF method 
used by Rendas and Lourtie10 is an estimation method which fuses 
.data from the navigation sensors at signal-level. 

Acoustic- and Optical-Based Systems 
· Majumder et al14

•15•16 reponed the use of sonar and underwater 
cameras to construct a complete environmental map for navigation. 
A generic, multi-layered data fusion scheme is used to combine 
information from the two sensors. Jb.e general principle is that all 
sensor information is projected into a common state-space before 
the extraction of seabed features. Once projection has occurred, 
feature extraction and subsequent processing is based on a com­
bined description of the environment. As robust features, such as 
points and lines turn out to be fragile in a natural underwater 
environment, Majumder et al found that this approach is better 
than extracting features from a single piece of sensor infonnation 
followed by fusion. In this work, 'blobs' and blob-like patches are 
used as scene descriptors to segregate feature information from 
background noise and otl1er errors. Majumder et al discussed both 
the Bayesian and extended Kalman filter (EKF) approaches to map­
building and localisation in autonomous navigation systems. It was 
shown in this work that a significant problem in applying EKF is the 
difficulty of modelling natural environment features in a fonn that 
can be used in an EKF algorithm. Another formidable problem is the 
fragility of the EKF method when faced with incorrect associations 
of observations to landmarks. Jb.e llmitations in using EKF to build 
a feature map of landmarks describing the environment were then 
resolved through the use of the Bayesian approach. The fusion 
process can be shown as in Fig 5. A significant problem with this 
approach lies on the stability of the algorithm when the vehicle is 
run over long distances and returning around a loop to the initial 
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vehicle location. This problem sterns from the limitation in data 
association technique to correspond initially identified landmarks 
and the san1e landmarks viewed from the opposite side on the 
return visit. A potential solution to this problem is to use a 
probabUistic model to provide a very general description of land­
marks form and shape. 

Twin Burger 2, an AUV developed by the University of Tokyo, 
was designed to help monitor and carry out routine maintenance 
work of underwater cablesH.H. In doing so, the vehicle tracks the 
cable visually and provides human operators with visual informa­
tion about the condition of the cable accordingly. Initially the 
vehicle employed a visual servoing system to track the cable and 
to navigate the AUV accordingly. However, due to undesirable 
optical behaviour underwater, mere were many occasions where 
the cable was not sufficiently visible for the vision processor to 
track the cable. In addition, the vehicle can lose track of the cable 
when there were many similar cables appearing in the image. In 
order to overcome these problems, a mu!tisensor fusion tech­
nique is proposed. The proposed sensor fusion technique uses 
.dead reckoning position uncenainty with a 2D-position model of 
me cable to predict the region ofin terest in the image captured by 
a camera mounted on the AUV41·H. The 2D-position model of the 
layout of the cable is generated by taking the position 0c1,y) of a 
few points along the cable. The 2 D-position model of the cable is 
used to predict the most likely region of the cable in the image, 
which leads to a reduction in the amount of image data and a 
decrease in the image processing time. Additionally. due to the 
narrowing of the region of interest in the image, the chances of 
misinterpretation of similar features appearing in the image can be 
avoided. The 2D-position model is also used to generate naviga­
tion commands when the vision processor cannot recognise the 
cable in the environment. Similar to Majumder et al14

•
15

•
16

, me 
fusion process takes place at feature-level. 

Scheizer43 has reponed a target detection and classification 
system usingsidescansonardataand vision. Objects are detected 
by searching for highlights, textures, statistical anomalies and 
shadows. An artificial neural network-based classification system 
is used to assist me image-processing component. The classifica­
tion process does not identify objects but rather labels them as 
foreground, background, highlight, or shadow highlight. The 
level of correct classification is reponed to be 95% using a training 
set of 62 images. This technique, however, does not address the 
issue of feature- or object identification. 

CONCLUDING REMARKS 
It has been suggested in this paper, from the various examples 

given in AUV navigation, that information coming from a single 
navigation system is not sufficient to provide a good navigation 
capability. Therefore MSDF techniques which combine sensory 
information from other navigation systems to improve the naviga­
tion capability is essential. MSDF techniques which combine 
sensory information from inertial, radio and optical navigation 
system to track underwater cables is currently being developed in 
a three year co-operative project funded by EPSRC involving both 
the University of Plymouth and Cranfield University, UK The 
navigation system mat is being developed at the University of 
Plymouth utilises INS/GPS and will be enhanced by a vision­
based navigation system being developed at Cranfield University. 

During an underwater cable tracking mission, the position 
obtained by the tNS will be combined with a dead reckoned 
position obtained from a vision-based· navigation system. In 
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addition, the 20-position model of the cable can also be included 
to predict the most likely region of the cable in tl}e image, which 
leads to a reduction in the amount of image data and a decrease 
in the image processing time as discussed in41.42

• The vision 
system will be based on the lasers tripe illumination methodology 
previously developed at Cranfield UniversityH, overcoming opti­
cal imaging problems such as range of visibility, brighmess and 
contrast, and illumination of the sea bed as discussed by Marks et 
al6. The combined positions are then used to identify the locations 
of the gathered images of the cable. 

A significant improvement in accuracy of the navigation 
system is expected as the accumulated error using the combined 
INS and video-based navigation is to be minimised by the GPS 
update methodology as discussed by McGhee et aJ28 and also as 
the Kalman filter will be made adaptive by using fuzzy logic 
techniques to prevent the filter divergence as discussed by 
Kobayishi et aP1. 

ACKNOWLEDGEMENT 
This research has been supponed by the Engineering and 

P~ysical Sciences Research Council (EPSRC), QinetiQ (Wmfrith 
arid Bincleaves), J&S Marine, South West Water PLC and 
Hallibunon Subsea. 

REFERENCES 
l. Cox, R, and.Wei, S, (1995). Advances in the State of the Art 

for AUV Inertial Sensors and Navigation Systems. IEEE journal of 
Oceanic Engineering, 20 (4), pp. 361-366. 

2. Bellingham,JG. (1992). Capabilities of Autonomous Under­
water Vehicles . In]. Moore., Editor, Scientific and Environmental 
Collection with Autonomous Underwater Vehicles, pp. 7-14. 
MIT Sea Grant. 

3. Ellowitz, HI. (1992). The Global Positioning System . Micro­
WaveJournal, 35 ( 4), pp. 24-33. 

4. Kwak, SH, McKeon, jB, Clynch, JR., and McGhee, RB. 
(1992). Incorporation of Global Positioning System into Autonomous 
Underwater Vehicle Navigation. Proceedings of the 1992 Sympo­
sium on Autonomous Underwater Vehicle Technology, Wash­
ington, DC, pp. 291-297. 

5. Kwak, SH, Stevens, CD, Clynch, JR., McGhee, RB, and 
Whalen, RH. (1993). An Experimental Investigation of GPS/INS 
Integration for Small AUV Navigation . Proceedings of International 
Symposium on Unmanned Unthetered Submersible Technology, 
Durham, NH, pp. 239-251. 

6. Marks, RL, Rock, SM, and Lee, M]. (1994). Real-Time 
Video Mosaicking of the Ocean Floor. IEEE j ournal of Oceanic 
Engineering, 20 (3) , pp. 229-241. 

7. Victor, JS, and Sentieiro, ]. (1994). The Role of Vtricm for 
Underwater Vehicles . Proceedings of the 1994 Symposium on Au­
tonomous Underwater Technology, Cambridge, MA, pp. 28-35. 

8. Hallset,JO. (1992).A Vision SystemforanAutonomous Under­
water Vehicle. Proceedings of the 11th IAPR International Conference 
on Pattern Recognition, Los Alarnitos, CA, pp. 320-323. 

9. Huster, A, Fleischer, SO, and Rock, SM. (1998). Demon­
stration of a Vision-Based Dead-ReclwningSystanfor Navigation of an 
Underwater Vehicle. Proceedings of the Oceans '98 MTS/IEEE, 
Nice, France, pp. 326-330. 

10. Vickery, K (1998). Acoustic Positioning Systems: A Practical 
Ovaview of Current Systems. Proceedings of the 1998 Workshop 

No. A I Journal of Marine Engineering and Technology 

on Autonomous Underwater Vehicle, Cambridge, MA, pp . 5-17. 
11. Geyer, EM, Creamer, PM, D'Appolito.JA,and Gains RG. 

(1987). Characteristics and Capabilities of Navigation Systerns for 
Unmanned Untethered Submersibles. Proceedings International 
Symposium on Unmanned Unthetered Submersible Technology, 
Durham, NH, pp. 320-347. 

12. Bellingham,JG, Consi, TR, Tedrow, U, and Di Massa, D. 
(1992). Hyperbolic Acoustic Navigation for Underwater Vehicles: 
Implementation and Demonstration. 1992 IEEE Symposium on 
Autonomous Underwater Vehicle Technology, Washington , DC, 
pp. 304-309. 

13. Golden,jP. (1980). Terrain Contour Matching (TERCOM): 
A Cruise Missile Guidance Aid. SPIE: Image Processing for Missile 
Guidance, 238, pp. 10-18. 

14. Majumder, S, Sheding, S, and Durrant-Whyte, HF. (2000). 
SttiSOr Fusion and Map Building Localisation for Undenvater Naviga­
tion. Proceedings of the 7th International Symposium on E?q>eri­
mental Robotics, Honolulu, Hawaii. 

15. Majumder,S,Scheding,S,andDurrant-Whyte,HF. (2000). 
Sensor Fusion and Map Building for Underwater Navigation . Pro­
ceedings of the Australian Conference on Robotics and Au toma­
tion, Melbourne, Australia, pp. 25-30. 

16. Majumder,S,Scheding,S, andDurrant-Whyte,HF. (2001). 
Multisensor Data Fusion for Underwater Navigation. Robotics and 
Autonomous Systems 35, pp. 97-108. 

17. Llinas, j, and Waltz, E. (1990). Multisensor Data Fusion. 

Anech House: Boston, MA. 
18. Hall, D. (1992). Mathematical Techniques in Multisensor 

Data Fusion . Artech House: Boston, MA. 
19. Varshney, PK (1997). Multisensor Data Fusion. Electron­

ics and Communication Engineering]oumal, 9 (6), pp. 245-253. 
20. Harris, q, Bailey, A, and Dodd, 1]. (1998). Multisensor 

Data Fusion in Defence and Aerospace. The Aeronautical journal, 
102 (1015), pp. 229-241. 

21. Hall, DL,andUinas,j. (1997).An lntroductiontoMultisensor 
Data Fusion. Proceedings of the IEEE, 85 (1), pp.6-23. 

22. Luo, RC, and Kay, MG. (1990). A Tutorial on Multisensor 
Integration and Fusion. Proceedings of 16 Annual Conference of IEEE 
of Industrial Electronics Society, Pacific Groove, CA, pp. 707-722. 

23. Luo, RC, Chih-Chen, Y, and Kuo, LS. (2002). Multisensor 
Fusion and Integration: Approaches, Application and Future Research 
Directions. IEEE Sensors Journal, 2 (2), pp. 107-119. 

24. Brown, P,andHwang, P. (1997).IntnxluctiontoRandomSignals 
and Applied Kalman Ftltering. Wlley &. Sons, Inc.: Toronto, Canada. 

25. Bracio, BR, Horn, W, and Moller, DPF. Sensor Fusion in 
Biomedical Systems. (1997). Proceedings of the 19th Annual 
International Conference of IEEE Engineering in Medicine and 
Biology and Society, Chicago, ll, pp. 1387-1390. 

26. Kohonen, T. (1988). Self-Organization and Associative 
Memory. Springer-Verlag: New York. 

27. Brooks, RR, and Iyengar, SS. (1998). Multisensor Fusion: 
Fundamentals and Applications with Software. Prentice Hall: Upper 
Saddle River, NJ. 

28. McGhee, RB, Clynch,JR, Healey, AJ , Kwak, SH, Brutzman, 
DP, Yun,XP, Nonon, NA, Whalen, RH, Bachrnann, ER, Gay, DL, 
and Schuben, WR (1995). An Experimental Study of an Integrated 
GPS/ INS System for Shallow-Water AUV Navigation. 9th 
International Symposium on Unmanned Unthetered Submers­
ible Technology, Durham, NH, pp. 153-167. 

29. Nonon, NA. (1994). Evaluation of Hardware and Sofnvare 
fora Small Autonomous Underwater Vehicle Navigation System (SANS) . 

9 



Review of multisensor data fusion techniques and their-application to autonomous underwater vehide navigation 

Master Thesis, Naval Postgraduate School, Monterey, California. 
30. Doyle, RS, and Harris, C]. (1996). MultisensorDataFusion 

for Helicopter Guidance Using Neurojuzzy Estimation Algorithms. 
The Royal Aeronautical Society journal, June, pp. 241-251 . 

31 . Kobayashi, K, Cheok, KC, Watanabe, K, and Munekata, F. 
(1998). Accurate Differential Global Positioning via Fuzzy Logic 
Kalman Filter Sensor Fusion Technique. IEEE Transaction on 
lndusnialElectronics, 45 (3), pp. 510-518. 

32. McGinnity, S, and lrwin, G. (1997). Nonlinear State Esti­
mation Using Fuzzy Local Unear Models. International]ournal of 
Systems Science, 28 (7), pp. 643-656. 

33.j etto,L, Longhi, S. , and Vitali, D. (1999). Localisation of a 
Wheeled Mobile Rnbot by Sensor Data Fusion Based on a Fuzzy LDgic 
Adapted Kalman Filter. Control Engineering Practice, 7, pp. 7 63-771. 

34. Pham, DT, and Karaboga, D. (1991). Optimum Design of 
Fuzzy Controllers Using Genetic Algorithms. journal of Systems 
Engineering, pp. 114-118. 

35. Sutton, Rand Malsden, GD. Cl99n .A Fuzzy AutopilotOptimised 
· Using a Genetic Algorithm. journal of Navigation, 50, pp. 120-131. 

36. Suttori, R, Taylor, SDH, and Roberts, GN. (1996). 
Neurojuzzy Techniques Applied to a Ship Autopilot Deslgn.journal of 
N~vigation, 49, pp. 410-429. 

· 37. Sutton, R, Taylor, SDH, and Roberts, GN. (1997). Tuning 
Fuzzy ShipAutopilots UsingArtifidal Neural Networks . Transaction 
of Institute of Measurement and Control, 19 (2), pp. 94-106. 

38. Atwood, DK, Leonard,], Bellingham,JG, and Moran, BA. 
(1995). An Acoustic Navigation system for Multi-Vehicle Operations. 
9th lnternationa1 Sy1uposium on Unmanned Unthetered Sub­
mersible Technology, Durham, NH, pp. 202-208. 

39. Bellingham,JG, Goudey, CA, Consi, TR, Bales,JW,Atwood, 
DK, Leonard,], and Chryssostomidis, (l994).A5econd Generation 
Survey AUV. Proceedings of the 1994 Symposium on Autonomous 

. Underwater Vehicle Technology, Cambridge, MA, pp. 148-155. 
40. Rendas, MJ, and Lourtie, IMG. (1994). Hybrid Navigation 

System for LDttg Range Navigation . Proceedings of the 1994 Sympo­
sium on Autonomous Underwater Vehicle Technology, Cam­
bridge, MA, pp. 353-359. 

41. Balasuriya, BAAP, and Ura, T. (1999). Multisensor Fusion 
for Autonomous Underwater Cable Tracking. Oceans'99 MTS/IEEE, 
Seattle, WA, pp. 209-215. 

42. Balasuriya, BAAP, and Ura, T. (1999). Sensor Fusion 
Technique for Cable Following by Autonomous Underwater Vehicles . 
Proceedings of the 1999 IEEE International Conference on Con­
·rrol Applications, Kohala Coast-Island of Hawaii, Hawaii, pp. 
1779-1784. 

43. Scheizer, PF, and Petlevitch, Ej. (1989). Automatic Target 
Detection and Cueing System for an Autonomous Underwater Vehicle . 
Proceedings 7th International Symposium Unmanned Unthetered 
Submersible Technology, Durham, NH, pp. 359-371. 

44. Tetlow, S. and Allwood, RL. (1995). Development and 
Applications of a Novel Underwater Laser illumination System . Un­
derwater Technology, 2l (2), pp. 13-20. 

10 

APPENDIX A 
The Kalman filter and the extended Kalman filter are the most 

popular tools proposed in the literature for MSDF in AUV 
navigation. If the AUV system can be described with a linear 
model and both the system and sensor error can be mode]ed as 
white Gaussian noise, a Kalman filter provides unique, statistically 
optimal, estimates for data of interest. In the Kalman filter 

formulation, the obsetvation z(k) E 9l" are described (or ap­

proximated) by the linear model 

z(k + 1) = H(k + 1)x(k + 1) + v(k + 1) (1) 

where x E 9tmis a state vector, H E 9lnxm is an observation 

model, and v E 9tn is the obsetvation noise. The state vector 

satisfies a linear discrete-time state transition equation 

x(k + 1) = F(k + J)x(k) + G(k + J)u(k + 1) + w(k + J) (2) 

where F E 9tmxm is the system model, G E 9tmxq is the 

control model, u E 9tqisaknown control input, and WE ~m is 
the input noise. 

Independent, zero mean and white noise processes are assumed, 

~ w(k)] = E(v(k)] = o,E( w(k)wr(j)] = Q(k)Dti, 

E[v(k)vr(j)] = R(k)Dki,E(w(k)vr(j)] = 0 
(3) 

where Okj is the Kronecker delta function 

(o9 = o. k :~: j; o9 = 1, k = i). 
The optimal mean square error estimate of x( k) given 

z(J), ... , z(j)(k ~ j) is 

x(kli) = J4x(k)iz(J), ... , zU)] (4) 

and the conditional covariance matrix of x(kU) is 

P(kl.i) = E{[x(k) - x(kli)ix(k) - x(kl.i}fiz(l), ... , zU)} (5) 

The Kalman filter algorithm provides recursively an estimate 

x( k + ilk + 1) in terms of the previous estimate x( klk) and the 

most recent observation, z(k + J) . It involves a cycle of prediction 

and updating (see ref 2 7). 
The measurement model for the EKF is 

z(k + 1) = h[k + l, x(k + 1)] + v(k + 1), (6) 

and the dynamics are assumed to be 

x(k + 1) = f(k + 1),x(k),u(k+ 1) + w(k + 1) (7) 

The vector-valued function h and f are, in general, time 
varying. The EKF framework is developed through as series 
expansion of the nonlinear dynamics and the measurement 
equation. 
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Image Area 

Error Bound on 
Image Placement 

A$}/Je length of the image chain comprising the mosaic increases, the error bound in pladng the last 
image relative to the initial image (i.e. the origin) continues to grow according to a random walk 

Fig I: Error propagation in image chain as described by Huster et al.9 

Hydro phone Array 

USBL system measures the time or phase difference of the arrival of an acoustic pulse 
between individual elements of the hydrophones. This time or phase difference is used to 
determine the bearing fium the USBL transceiver to the beacon. If a time-of-~ight 
interrogation technique is used. a range to that beacon will also be available from the 
USBL system. 

Single Transponder 

Fig 2a: USBL system as described by Vickery10 
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Multiple Transceivers 

In SBL three or more transceivers ore rigidly mounted on the hull of the 
AUV A bearing to the transponder is derived from the detection of the 
relative time-of-arrival os on acoustic pulse posses each of the 
transceivers. If the time-of-ffight interrogation technique is used, a 
range to that beacon will also be available (Tom the SBL system. 

Fig 2b: SBL system as described by Yickery10 

Single Transducer 

Transponder Net 

n LBL navigation systems, on array of acoustic beacons separated by a range of I OOm to a few kilometres is deployed on the 
eobed. The vehicle determines its position by listening to the pulses emitted from the beacons and recording the arrival times. 

Fig 2c: LBL system as described by Vickery10 
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Relationship between, the vehide, features and mop at any time k is shown above. Cartesian axes system is used to describe the vehicle 
location at any time ~ ··denoted by xk. The vehide states change os a result of the applied control input uk" The mop at any time k is 
de~ned as set of landmarks or features detected from the sensor observation zk relative to the vehide location. 

z 

Initial State at k = 0 
Xo = {xo,yo,Zo) 

Rg 3: SLAM algorithm as described by Majumder et ol. 14•15•16 

In the course of its mission Phoenix combines signal-level information INS to predict its position while operating underwater. The vehide 
surfaces periodically to obtain on update of its position from a DGPS fix and then submerges. 

Rg 4a: GPS/INS Navigation by McGhee et al.18 
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Inertial Novitarion 
System 

Preprocessing 

(True position + 
Registration/ 

Da12 Alllgnment 
Correpondence/ Inertial system errors) 

Dal3 Association 

(True position + GPS errors) 

Signal-level 
Fusion using 
Kalman Alter 

Corrected 
Inertial 
output 

In the course of its mission Phoenix combines signal-level information fium a gyroscope, depth sensor. speed sensor; and a compass 
heading to predict its position while operating underwater. The vehide surfaces periodically to obtain an update of its position from a 
DGPS fix and then submerges to resume its mission. 

Fig 4b: MSDF in GPS/INS Navigation by McGhee et a1.18 

Registration/ 
Dal3 Alllgnment 

Correpondence/ 
Da13 Association 

Feature-level 
Fusion 
using 

Bayeslan 
Method 

Feature 
Extraction 

1---Map 

1---. Corrected Position 

The general prindple is that all sensor information is projected into a common state-space before the extraction of seabed feawres. 
Once projection has occurred, (eawre extraction and subsequent processing is based on a combined description of the environment 

Fig 5: MSDF in SLAM algorithm as described by Majumder et a/. 11.15
•
16 
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APPENDIX B 

THE HAMMERHEAD STATE SPACE MODEL PROPERTIES 

The properties of nine different HammerhP.ad state space models are shown in Figure 

B.l- B.9. These include the fit between simulated and measured output, model resid­

uals, step response, impulse response and pole-zero map. In this thesis, second order 

model is deemed to be sufficient for the analysis of the proposed MSDF techniques, 

This is based on the fact that the difference between the fit (between simulated and 

measured output) of second order system and higher order systems is infinitesimal. 

A utocorrelation function of the ,residual and the cross correlation between the residual 

and the input are also computed and displayed. The 95% confidence interval of these 

values are shown by the dashed curves. It is evident by visual inspection of Figure 

B.l (b), B.2{b) and B.3(b ), that the second order model could produce an autocorrela­

tion function that goes inside the confidence interval better than the third and fourth 

order models do. Further comparison between the second order model and the fifth to 

the tenth order models shows that more autocorrelation of these models lie inside the 

95% confidence inteJCvals. However; the use of these models could increase the level of 

complexity in the development of the proposed algorithm. This is also one of the rea­

son behind the preference to use the second order model over the higher order models. 

Fmther analysis can be made by observing the step response of these models in 

conjunction with their pole-zero plots. The step response, which are shown in Figure 

B.l(c)-B.9(c), displays a particular behaviour, which generally belongs to an inte­

grator type of system where the output is produced by integrating the input. This 

behaviour is mainly caused hy the presence of the poles at the axis of the unit circle 

(z = 1 or equivalent to s = 0), which along with the step input will form a ramp 

function, whose output magnitude can increase without bound as time progresses. 
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Figure B.l: (a) 83.1888% fit between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residuals and the input, (c) step response, 
(d) impulse response and (e) pole zero plot 
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Figure B.3: (a) 81.5526% fit between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residuaJs and t he input, (c) step response, 
(d) impulse response and (e) pole zero plot 



B.4 FIFTH ORDER 

400r----.-----.-----.-----,----, 

350 

300 

l2so 
~ 

~200 
:? 
1150 
r 

100 

. . 
···!·······-··· .. ·--~ ..• 

. t· .. 
... ··-····. :· ·-· + ......... •·· 

(a) 

015·r-----.----,----~----------~ 

005 

I o 

f.o.os 
~ 
i -01 
:I: 

-015 

-02 

.... ;. 

- o.25ioL ____ _,_ ____ _.2 ____ _._3 ____ ___._ ____ _J 

lmo(MC) 

(c) 

0.8 ·I··· 

0.6 

04 

t: 
3. 0.2 

i 
"' 

0 

~ -0.2 

;C) 

-04 

-0.6 

-0.8 

- 1 
- 1 

202 

j~M·M ~ 0.1 ; ' ; ·-:· . .. -

~o~~~ ~ -0.1 ' · !· : I ··· · 

-0~ - - 15 - 1o -5 Tlmeoshift s 10 15 20 

tl-----------r · _: __ __ __ ----?] 
8 -------- ~ --- -.---- :-----------------

-
0:10 -15 - 10 -5 0 5 10 15 20 

i 
:!!. 0.4 

t 0.3 

f 0.2 

0.1 

··r .. 
-· X 

Tlmeshift 

(b) 

6 
Tlme(MC) 

(d) 

10 12 

(e) 

F igure D.4: (a) 82.3896% fit between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residuals and the input , (c) step response, 
(d) impulse response and (e) pole zero plot 



B.5 SIXTH ORDER 

~1.-----.------r----~------.-----, 

. ···:·· 3SO 

300 

;yf".J Jy-- -J~.i : ............ ·rJ'-. --- ~ -
""C~i~J ... fv.- y 

100 -' 

~ 

203 

- ~~~o---~1~5--~-1~o---- ~5---7o---7--~10~~~~w 
Tine shifl 

-- _, 
0 

-0.~ 500 - 15 - 10 -5 
Tine

0
shlll 

5 10 15 20 

(a) (b) 

0 15r-----~-----r----~------,-----. 0.7 

01 06 

05 
005 

~ 
looo 
f -01 

0.4 .• • t .......... 
i 0.3 :5!. 
.! 

0.2 !l' f 0.1 

X 0 

- 015 -01 

-0.2 '\ 
-02 

-0.3 
- 025-0L----~------~2-Tine--(ac--)~3------~--~ 

r..!(sec) 10 12 

(c) (d) 

0.8 

0.8 

0.4 

i 0.2 

I 0 

1-o.2 
- 0.4 

- 0.6 ' ' 

(e) 

Figure B.5: (a) 83.5926% fi t between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residua ls and the input, (c) step response, 
(d) impulse response and (e) pole zero plot 



204 
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(d) impulse response and (e) pole zero plot 
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B.7 EIGHTH ORDER 
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Figure B.7: (a) 88.2953% fi t between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residuals and the input, (c) step response 
and (d) pole zero plot 
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B.B NINTH ORDER 
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Figure B.8: (a) 83.2608% fi t between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residuals and t he input, (c) step response 
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B .9 TENTH ORDER 
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Figure B.9: (a) 83.0287% fit between simulated and measured output, (b) autocor­
relation residuals and cross correlation of residuals and the input , (c) step response, 
(d) impulse response and (e) pole zero plot 
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The impulse response of the identified Hammerhead systems are shown in Figure 

B.l(d)-B.9(d). A comparison can be made between the response of the second order 

system and its higher order counterparts. The second order system dies away to a 

constant heading at approximately lO(sec), whilst the higher order systems, with the 

exception of the seventh order system, die away at approximately 2-3(sec). However, 

observation on the response also reveals the nature of oscillation of the systems. 

Although they die away more rapidly than the second order system, the higher order 

systems are more oscillatory and consequently may require a complex proper control 

system design. This is also one of the reason behind the choice on the second order 

system. 
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APPENDIX D 

LINEAR AND EXTENDED KALMAN FILTER ALGORITHM 

D.l THE LINEAR KALMAN FILTER 

State space form of a linear d iscrete t ime system observed by a linear measurement 

where both process and measurement are influenced by additive Gaussian noise can 

be put into: 

A kxk + B kuk + Wk, Wk rv N(O, Qk) 

Hkxk + Vk, Vk rv N(O, R k) 

(D-1) 

(D-2) 

T he process noise (vk) and the measurement noise (wk), are generally assumed mu­

tua lly independent (E[wivJ] = 0, for all i and j). 

T he Kalman fil ter equations for t he system in Equat ion (D-1) and (D-2) can be 

summarised as in Table 0.1: 

P rocess model 
Measurement model 
Ini tial conditions 
Other assumptions 
Time update 

Measurement update 

Xk+l = A kxk + B kuk + wk 
Zk = Hkxk + Vk 
i o , P o 
E[wivTJ = 0, Wk rv N(O, Qk), Vk rv N(O, R k) 
ik+1 = Akik + B kuk 
P ;±t = A kP kA I + Qk 
K k = P k HI'[HkP k H'f + RkJ-1 

ik = ik" + K k[zk - Hkik"] 
P k = [I - K kH k] P k" 

Table 0.1: Linear discrete Kalman filter equations 

At every sample, t he Kalman filter uses the process model to propagate the state 

estimate: 

(D-3) 
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The minus sign (-) on ik+l indicates that the estimate is an a priori estimate for 

the next step. The state estimate update in Eq1iation (D-3) does not equal the true 

state update in Equation (D-1). Therefore, the covariance of the estimation error 

(Pk) needs also to be propagated: 

(D-4) 

Equation (D-3) and (D-4) are referred to as the time update/prediction equations of 

the Kalman filter. If a measurement available, the estimate is updated by incorporat­

ing the incoming data with a gain that takes the covariance of the estimation error 

and the new data into account: 

(D-5) 

(D-6) 

The gain, Kk, is denoted the Kalman gain and is the gain that minimises the trace 

of the resulting covariance matrix, Pk. The covariance after the incorporation of new 

measurement is: 

(D-7) 

Equation (D-5)-(D-7) are referred to as the measurement update of the Kalman filter. 

D.2 THE EXTENDED KALMAN FILTER 

Various attempts have been made to modify or generalise the Kahnan filter to fit 

circumstances beyond linear system and additive Gaussian noise. One of the most 

popular representation of these filters is the extended Kalman filter, used when the 

process or output equations are non-linear. 

A non-linear system is given by: 

(D-8) 

(D-9) 



Process model 
Measurement model 
Init ial conditions 
Other assumptions 
Time update 

Measurement update 

Linearisations 

Xk+l = a(xk. Uk) + Wk, Wk rv N(O, Qk) 
zk = h(xk ) + vk, vk rv N(O, Rk) 
Xo ,Po 
E[wivTJ = 0, Wk rv N(O, Qk) , Vk rv N(O, R k) 
Xk+l = a(Xk 1 Uk) 
Pk"+t = A kPkAi + Qk 
Kk = PkH:f[HkPkHk' + R k] 
xk = x; + K k[zk - Hkx;J 
P k = [I - KkHk]Pk" 

Table 0 .2: Discrete extended Kalman filter equations 
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Table 0.2 provides the summary of the extended Kalman filter equations. The state 

estimate t ime update of t he filter is now: 

(0-10) 

If a(xk, uk) is linearised with respect to x (the Jacobians A = \1 xalx=x;+
1

, an approx­

imated linearised covariance update can be performed: 

To perform the data update h(xk) must be linearised as well: 

(0-11) 

(D-12) 

(0-13) 

(D-14) 

It is clear that apart from t he linearisations and t he state estimate propagatios, 

the equations for t he extended Kalman filter are similar to the linear Kalman filter. 

However, as the equations here have been linearised, the error covariance matrix (P ) is 

only a first order approximation of the t rue estimation error covariance, and the filter 

estimate is no longer optimal. Despite t his, the filter works well in many practical 

applications (Brown and Hwang, 1997). 
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APPENDIX E 

FUZZY LOGIC 

Human brains do not reason in the same way as computers. The way computers 

reason is in clear steps with strings of.Os and 1s. Humans reason with a sense of a 

gradual degree of truth to attributes like big, fast and young. However, these vague­

ness way of thinking is usually avoided in classical logic and computing, because it 

is considered as having a negative influence in their inference processes (Nauck et 

al., 1997). This conundrum has been noticed by several scholars in the past and 

subsequent attempts to develop a mathematical structure capable of encapsulating 

the human way of reasoning have then undertaken. In effect, several methodologies 

have been proposed and nowadays they are developed under a domain so-called soft 

computing (SC) technology. 

The term se was invoked by Zadeh (1994), to refer to systems that are capable 

of providing tolerance to uncertainty and an imprecision in their reasoning. se con­

stitutes several techniques with fuzzy logic (FL), genetic computing (GP), neural 

networks (NN) and probabilistic reasoning (PR) as the cardinal members (Tsoukalas 

and Uhrig, 1997). FL, GP, NN and PR mostly contribute to different research do­

mains and therefore they are synergistic and complementary rather than competitive 

in nature. The blend between these "substances" leads to the so called "hybrid in­

telligent systems" (Jang et al., 1997). Nowadays, one of the most noticeable and 

burgeoning of the hybrid intelligent systems are fuzzy-genetic systems. 

Fuzzy-genetic systems integrate synergistically two complementary approaches: fuzzy 

logic and the genetic algorithm (GA) (discussed in details in Appendix F). On the 

one hand, fuzzy inference systems eau incorporate human knowledge and perform 
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inferencing and decision making thereof; while a GA can be used to perform sys­

tematically a random search in order to find an optimal solution to an engineering 

problem. What genetic-fuzzy systems together can provide is a single methodology 

with all the above characteristics and these are desirable in many MSDF applications. 

E.l BRIEF CHRONOLOGICAL RETROSPECTIVE 

Zadeh proposed mathematical theory of approximate reasoning capable of emulating 

human logic in his breakthrough paper on fuzzy sets in 1965 (Zadeh, 1965). The word 

fuzzy is mentioned first in this paper to mean "vague" in the technical sense. In the 

first decade after this paper was published, most application oriented papers in this 

field were focused on theoretical studies toward possible applications and sometimes 

with real applications on a laboratory scale. One of the most noticeable idea was the 

concept of fuzzy control pioneered by Mamdani and Assilian (1975). In this work, 

control behaviour was described by a qualitative algorithm. The first application of 

the proposed method was the design of the automatic control of a steam engine/boiler 

combination in the laboratory. But not long after that, Holmblad and 0stergaard 

{1982) realised the automatic control of a cement kiln. Since then the concept of fuzzy 

systems was soon to be associated with a vast number of practical applications. One 

well known example was the the design of an automatic drive fuzzy control system 

for subway trains in Sendai city, Japan (Reznik, 1997). Indeed, fuzzy logic eventually 

received formal recognition by the technological world and lately efforts have increased 

to define a standard, based on IS0-9000, the general system development guidelines; 

for the methodology of fuzzy logic systems (Schram et al., 1997). 

E.2 FUZZY SYSTEMS 

The fuzzy set paradigm of Zadeh's theory of approximate reasoning established a 

connection between concrete and ambiguous ways of reasoning. Mathematical for­

mulation was developed to allow the concept of fuzzines or ambiguity captured in a 

language that can be comprehended by computers, to provide capabilities to emulate 

the human mind as a decision maker. Later, Dubois and Prade (1988) and Klir and 
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Yuan (I995) devised the theory of possibility developed on the ground of this new 

methodology. 

The fundamental principle of fuzzy sets is a variable notion of membership. That 

is to say that elements can belong to sets to a certain degree. The fuzzy set theory 

was developed to handle situations that have no sharp boundaries or in which the 

events are ambiguously defined. Consider for example the set of HIGH, assuming 

that the perception of high is the velocity of an object that moves with no less than 

80(km/hour): 

HIGH= {x E PI Velocity (x) ~ 80} (E-I) 

over some domain P of all moving objects and using a function Velocity that returns 

the velocity of an object x E P in km/hour. Characteristic function can also be 

defined for the same problem: 

Velocity (x) ~ 80 

80 < Velocity (x) 
(E-2) 

which assigns to elements of P a value of I whenever this element belongs to the set 

of HIGH, and 0 otherwise. This characteristic function can be seen as a membership 

function for the set HIGH, defining the set HIGH on P. 

Using this perception, an object that moves 79!99(km/hour) is therefore not consid­

ered moving with a high-velocity. Hence, defining the set HIGH using such a sharp 

boundary seerns not very appropriate. Using the fundamental principle of fuz7.y sets, 

it can be specified that 79.99 (km/hour) still belongs to the set of HIGH, but only to 

a degree less than one. The corresponding membership function would look slightly 

different: 

{ 

I : Velocity (x) ~ 80 

JlllfGif(.1:) = I- BO-(\'e~~city(x)) : 60S \lelocity (x) < 80 

0 : \l elocity (:r) < 60 

(E-3) 

The set HIGH contains the velocity of an object between 60 ami 80(krn/lwur) with 
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a linearly decreasing degree of membership, that is to say, the closer the velocity of 

an object approaches 60, the closer its degree of membership to the set of HIGH ap­

proaches zero. Hence, the fuzzy set allows an ambiguous proposition to be described 

in a logical sense using the entire interval [0,1] to create degrees of possibility of truth, 

in contrast to classical sets, where an element can only either belong to a set (Hoolean 

value 1) or lies completely outside ofthis set (Boolean value 0). 

Essentially, fuzzy sets can be considered as look-up tables that contain a series of 

truth membership values that encode the imprecision associated with certain events. 

Consequently, unlike their classical counterparts which are not capable of capturing 

the ambiguity of many realclife situations, fuzzy sets have more expressive power in 

this respect. In conclusion, fuzzy logic can be defined as the discipline that represents 

vagueness, imprecision or uncertainty by handling multi-valent membership degrees. 

It is a precise discipline dealing with imprecise data. 

From a practical point of view, Zadeh's philosophy allows the mechanism of human 

reasoning to be incorporated into the systems theory and led to the development of a 

linguistic type of systems called fuzzy .~ystems. The use of fuzzy sets to enhance the 

performance of a system that employs MSDF techniques, permits a generalisation 

of information and a quantification of imprecision, often required in the design and 

implementation of such a system. Fundamentally, the representation of information 

in fuzzy systems imitates the mechanism of approximate reasoning performed in the 

human mind. 

A fuzzy system comprises of four major components: 

1. A fuzzification interface, which maps real crisp inputs into fuzzy inputs, by 

means of fuzzy sets, 

2. A rule base containing a number of rules in the form of "IF < antecedent > 

THEN < consequent >", where knowledge about the problem is acquired, 

3. A mechanism of inference, which deals with the fuzzy rules in order to generate 

fuzzy conclusions (consequent) from fuzzy premises (antecedents), 
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4. A defuzzification interface, which realises the transformation of fuzzy outputs 

into crisp output. 

Further details of the individual elements of a fuzzy system mentioned above are 

presented in the following Sections. 

E.3 FUZZIFICATION 
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Figure E.l: The fuzzy set 'HIGH' 
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Essentially, four elements make up a fuzzy set, Figure E.l: a linguistic value (e.g., 

HIGH) , a horizontal axis to denote the real-world input variable, represented through 

crisp values (e.g., Velocity in km/hour) , a vertical axis indicating the degree of mem­

bership to the fuzzy set (a value in the interval [0,1]), and a membership function t hat 

encodes each element of the horizontal axis v to a degree of membership in the vertical 

axis J..L( v ). More specifically, f..t( v) describes quantitatively how accurate the linguistic 

value HIGH maps the crisp value v. For t he representation considered in Figure E.l , 

where the linguistic value HIGH denotes velocit ies in the range [50,110](km/haur), 

J..L( v) indicates how well a Velocity of v within this interval is represented by the at­

tribute HIGH. E.g, if v = 72(kmjhour) , then its degree membership to t he fuzzy set 

HIGH , is J..L(v) = 0.6. 
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For the example presented herein, the membership function has aGaussian shape, but 

in practice these functions may take various forms: triangular, trapewidal, etc. Due 

to simple formula and computational efficiency, triangular membership functions have 

been used extensively, especially in real-time implementations. However, since these 

functions are composed of straight line segments, they are not smooth at the corner 

points specified by the parameters. Gaussian is a type of membership functions de­

fined by smooth, non-linear differentiable functions. Although Gaussian membership 

function achieve smoothness, they are unable to specify asymetric functions, which 

are important in certain applications (Gorzalczabny, 2002), 

A fuzzy set A is thus defined through a set of pairs of a membership function JlA 

that assign each element v in the Universe of Discourse U, a degree of membership 

A, JlA(v): 

A= f(v, /-lA(v))lv E U, /-lA(v) : U-+ [0, 1]} (E-4) 

with the partitions corresponding to each fuzzy set in U are known as domains. Con­

sidering the example presented in Figure E.l, the U is the interval [0,10] and the 

domain for the fuzzy set HIGH is [50,110], with Velocity constitutes a fuzzy model 

parameter. To define completely a problem in terms of fuzzy logic, the allowable 

range of each model parameter (Velocity, Acceleration, etc.) is divided into over­

lapping regions (SLOW, MEDIUM, HIGH), each region describing, semantically, 

a domain of the associated fuzzy variable, as presented in Figure E.2. The overall 

process of collecting the current real-world crisp number and to transform the values 

appropriately into a fuzzy number by means of fuzzy sets is known in the literature 

as the process of fuzzification. 

E.4 FUZZY RULE BASE 

Fuzzy systems rely on the knowledge possessed by human expert, with which qual­

itative IF-THEN rules are then developed and embedded in the system structure. 
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Fuzzy rules can be used to characterise imprecise dependencies between different vari­

ables. Consider: 

IF Velocity (x ) ~ 80(kmjhour) THEN Mission(x) < l(hour) (E-5) 

describing the mission-time of a particular vehicle moving with a certain velocity. 

Obviously using linguistic values can make such a rule much more readable: 

IF Velocity (x) ISH IGH THEN M ission(x ) IS S HORT (E-6) 

Fuzzy rules are therefore of interest whenever a dependency is either imprecise or a 

high level of precision is not desired in order to maintain a high level of interpretabil­

ity. A basic type of a fuzzy rule which is widely used has the followin g forms: 

IF x1 IS A1 AND ... AND Xn IS An THEN y IS B (E-7) 

where the Ai in t he antcedent and the B in the consequent are linguistic values of 

the input vector x and the output variable y , respectively. These type of rules, where 

the antecedent and the consequent rule are expressed through fuzzy predicates are 
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known as Mamdani (Mamdani and Assilian, 1975) or linguistic fuzzy .~ystems. In 

many applications, rules that assign crisp equations to the output variable are also 

used. Most commonly there are either linear or quadratic dependencies on one or more 

input variables (first order or second order Takagi-Sugeno) fuzzy system (Takagi and 

Sugeno, 1985). The later system emerged as an alternative to Mamdani's linguistic 

formulation, and the idea wa.~ to alter the nile structure so that qualitative and quan­

titative knowledge can be equally incorporated into the knowledge base. 

A correct definition of the rule base is ensured if the following criteria are satisfied: 

1. Completeness·- any combination of input.s should result in appropriate output 

2. Consistency - The rule base does not contains contradictions, 

3. Continuity- neighbouring rules.generate output fuzzy sets with non-empty in­

tersections. 

E.5 INFERENCE ENGINE 

The inference engine is often regarded as the heart of the fuzzy system, a description 

that reflects the primary importance of this system component in processing fuzzy 

data. The inference engine is an interpreter of the rule base, with the ta.c;k to derive a 

fuzzy conclusion from a set of fuzzy IF-THEN rules. The ba.c;ic inference mechanism 

is the generalised modus ponens (GMP) (Lee, 1990; Jang and Sun, 1995). The CMP 

is the extension of the cla.c;sical Boolean logic modus ponens (MP) rule of inference. 

The MP can be illustrated as follows: 

Rule: IF x IS A THEN y IS D 

Fact: xIS A 

Conclusion: y IS D 

where A and n designate predicates which characterise properties of x and y respec­

tively. According to MP, a truth of a proposition y IS n can be inferred from the 

truth X IS A and the implication IF X IS A THEN y IS n. However, in much human 

reasoning MP is employed in an approximate manner, which can be written as: 
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Rule: IF x IS A THEN y IS B 

Fact: x IS A' 

Conclusion: y IS B' 

This inference procedure is the so-called GMP as it has MP as a special case. When 

A' and B' are input and output fuzzy sets in U and V respectively, the A' is mapped 

to B' through the fuzzy inference engine. 

In MP, the equivalent of a rule < IF p THEN q > is the implication p -+ q. 

Similarly, the interpretation of the fuzzy IF-THEN operation is given by a logi­

cal function whose arguments are the membership functions of the antecedent and 

consequent part of the rule. This logical operation results in a membership func­

tion fl.Q associated with the evaluated mle; the process of doing so is known as fuzzy 

implication. Briankov et al. (1993) and Wang (1997) detailed the various types of 

implication that have been proposed in the literature. E.g., the implication proposed 

by Mamdani, calculates the membership function of. a rule with minimum operation. 

For the rule:< IF x IS A THEN y IS B >, where < x IS A > and < y is B 

> are fuzzy propositions defined in U and V, respectively. According to Mamdani 

implication, the corresponding membership function is 

fl.Q(x, y) = min(fl.A(x), fl.a(y)) (E-8) 

where x defined in U, y defined in Y (implying that Q is defined in U x V, where 

x denotes the Cartesian product operator). If a fuzzy proposition (FP) in a rule 

contains connectives AND, then logical operations min is basically used to calculate 

its overall membership degree: 

FP: x1 IS A1 AND .r.2 IS A2 AND ... AND Xn IS A .. {o} 

fl.pp(XJ, ... xn) = min(f1.A 1 (x1), fl.A 2 (x2) ... , fl.AJxn)) 

The Mamdani implication can be written as: 

(E-9) 
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Jlq(x, y) = min(JlFPant (x), /lFPcon.(y)) (E-10) 

if the general expression for a rule with connectives (IF F Pant THEN F PcanS> with 

FPant defined in u =Ut X u2 X ... X Un and FP cons defined in V= Vi X v2 X ... X Vm) 

is adopted. Logically, the Mamdani implication is equivalent to: p-+ q = p 1\ q. 

Finally, an output B', given a set A' in U and having.determined Jlq, is obtained by 

means of compositional rule of inference proposed by Zadeh (1973): 

B' = A' oR= A' o (A -t B) (E-ll) 

with o is the sup-min operator, R = A -+ B is a fuzzy relation in the product space 

U x V, and 

ttw (y) = sup( min(Jl A', Jlq(x, y))) (E-12) 
X 

'"Bhis relation is called sup-min composition. In its general form, a compositional 

operator is expressed as a sup-t composition, where t represents the logical t-norm 

operator (min, algebraic product, bounded product and drastic product). 

The substitution of JlQ in (E-10) with the expression from (E-12) yields: 

Jlw(Y) =sup (min(ttA'(x),min(JlFP •• ,(x), JlFPcon,(y)))) = 
X 

sup (min(JlA' (:!: ),JlFPant (x )) , JlPP, •• , (y))) = sup (m in( T;,JlFPcan,(Y))) (E-13) 
X X 

with T; is defined as the degree of matching or fulfillment (BOF). The DOF of each 

individual rule can be obtained by matching the facts with the rule premises. This 

degree of matching is given by the actual membership degree of a fuzzy set A ' to the 

input fuzzy set A. 
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The discussion so far is based on a rule base that consists only one rule. In any 

practical application, a fuzzy system can be formed by several rules. In such a case, 

a method to combine all the rules should be utilised in order to generate the appro­

priate fuzzy output. composition based and individual rule based are two categories 

of inference on a set of rules that are identified by Wang (1997). 

In composition based inference, a logical operation, normally the union (max) are 

used to combined all the component rules of the rule base into a single rule. The 

membership function associated to the entire rule is described as: 

JLQA 11 (x, y) = max(JLQ(l)(x, y), JlQ(2)(x, y ), ... , JLQN (x, y)) (E-14) 

where JlQ(i) is the membership function related with the i-th rule. Similar to (E-12), 

the fuzzy output is then calculated as it would be the outcome of a single, resultant 

rule : 

Jla•(y) = sup(min{JLA'(x), JlQA11 (x, y))) {E-15) 
X 

In individual-rule based inference, a logical operation is used to aggregate the outputs 

of individual rule. The output membership function JlB'(i) (i = 1 : N) of each rule is 

calculated with (E-12), and by aggregating the value of all individual rule outputs, 

the final output can be obtained: 

JLw(y) = max(JLB'(I)(y), Jl.B'(2)(Y), ... JlR'(N)(y)) (E-16) 

According to Driankov et al. (1993), this kind of inference has .proven to be more 

efficient in terms of computational time and memory, and is more frequently used. 
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E.6 DEFUZZIFICATION 

The defuzzification process is a mapping from a space of fuzzy sets defined over the 

output universe of discourse into a space of crisp values. There are several meth­

ods to perform the process of defuzzification (Lee, 1990; Jang et al., 1997; Driankov 

et al., 1993). The most commonly found method in practice, as in the majority 

cases it leads to quite good results, although being computationally extensive, is the 

centre of area (COA) (Driankov et al., 1993; Nauck et al., 1997). This method ob­

tains the crisp output value by applying the following formula: 

-y- L~=l Yi 0 J.L; - "X 
L..i= I /1-i 

(E-17) 

where x indicates the number of mles, /1-i the corresponding degree of membership 

for each linguistic value and y; is the centre of the i-th output fuzzy set. 

E.7 FUZZY SYSTEMS TUNING AND OPTIMIZATION 

The simplicity of designing fuzzy systems has been the main drive of their successful 

implementation. However, there remain a number of drawbacks. A fuzzy system is 

usually designed by incorporating an expert's implicit knowledge of the underlying 

process and formulate them into a set of linguistic variables and fuzzy rules. The com­

plexity in developing these parameters increases with the complexity of the process. 

Fuzzy systems also consist of a number of other parameters that. are needed to be 

selected and con figured in prior, such as selection of scaling factors and configuration 

of the shape of the membership functions. 

Due to their learning capability, neural networks are being sought in the development 

ofneuro-fuzzy systems or adaptive fuzzy systems. Typically, the fuzzy system is trans­

ferred into a neural network-like architecture, which is then trained by some learning 

method, such a~ gradient descent or non-linear regression techniques (.Jang, 1993). 

Neuro-fuzzy approaches are suitable for supervised learning ta'lks, where the objec­

tive is to minimize the error between the output of the fuzzy system and the target 
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value. 13erenji (1992) developed a fuzzy system that is capable of learning as well 

a~ tuning of its parameters by using neural networks trained through a reinforce­

ment learning method. Jang (1992) developed a self-learning fuzzy system based on 

a neural network trained by temporal back-propagation. Lee et al. (1995) proposed 

a self-organizing fuzzified basis function based on the competitive learning scheme. 

A more recent technique in implementing adaptive or self-tuning fuzzy systems is by 

using genetic algorithms (GAs), which are discussed in details in Appendix F. 
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APPENDIX F 

GENETIC A:LGORITHM 

GAs provide both global and robust optimization techniques that mimics the mechan­

ics of natural genetics (Goldberg, 1989). That all natural species can survive by adap­

tation is the underlying power of GAs. GAs combine a Darwinian survival of the fittest 

strategy to eliminate unfit components and use random information exchange, with 

an exploitation of knowledge contained in old solutions, to effect a search mechanism 

with surprising power and speed. GAs employ multiple concurrent search points 

called "chromosomes" which process through three genetic operations, reproduction, 

crossover and mutations, to generate new search points called "offspring" for next 

iterations. Such operations ensnre the discovery of an optimal solution to the prob­

lem in an appropriate manner. Owing to its generality, it can be applied easily to 

nonlinear, discontinuous and multi-objective optimization problems that are difficult 

to solve using classical optimization techniques. 

F.l SINGLE OBJECTIVE GENETIC ALGORITHMS 

The GA approach was first proposed by Holland {1975). Goldberg (1989) further 

elaborated and developed the mechanisms of a GA. With a GA, a population of in­

dividuals undergoes a sequence of unary (mutation type) and higher order (crossover 

type) transformations, "Good" individuals, measured by "fitness", have a higher 

chance to survive to the next generation. After some number of generations, the al­

gorithm converges to the best individuals. The quality of the individuals (solutions) 

depends upon many factors, such as termination condition, the coverage of the pop­

ulation, the size of the population, and the evolution mechanisms. The structure of a 

simple, single objective GA is depicted in Figure F.l. Starting.from generation 0, the 

initial population is generated either by randomly choosing from the feasible domain 
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Figure F. l: A general structure of a GA 

or by using a specific routine such that the initial population has certain properties. 

T he objective of the optimization problem is evaluated using the population in the 

current generation. The fi tness of each individual in the population is then evaluated. 

Individuals in the next generation are generated from the current generation based 

upon the fitness values. An individual with a higher fi tness value gets better chance 

to survive to the next generation. The surviving individuals undergo some alterations 

by means of mutation and crossover. The fitness of altered individuals need to be 

evaluated . The procedure is repeated unt il a termination condition is met, e.g. the 

maximum number of generations or convergence of solut ions. 

The GA has been successfully applied to several optimization problems which are 

difficult to solve by convent ional methods. The reason for inefficiency in the use of a 

conventional method include: 

1. The problem is too complex or too large in size, 

2. T he objective functions are non-differentiable, 
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3. The algorithm tends to converge to local minima, 

The GA is able to facilitate the solutions to these problems. It is important to note 

that there are other heuristic methods, such as simulated annealing (SA) or tabu 

search (TS) that allow solutions to these problems to be found. However, these 

methods are more suitable for single objective optimization problems since they deal 

with just one solution at a time (Fonseca and Fleming, 1995). If SA or TS are used, a 

multi-objective optimization problem haB to be formulated as a single-objective prob­

lem prior to optimization so that the quality of a solution represented by a scalar value 

can be used to justify whether a solution should be accepted aB a current solution 

(Fonseca and Fleming, 1995). In MSDF problems, where objective function of each 

individual sensor are different from one another, and need to be optimized simultane­

ously, a GA in multi-objective mode seems to be more suitable and promising since 

it can manage a set of solutions in the population at each generation and provide a 

basis for handling a set of non-dominated solutions. Also unlike in the case of SA or 

TS, the process to,choose weights arbitrarily to aggregate multiple objectives into one 

single objective need not to be done. Therefore, for these reasons a multi-objective 

genetic algorithm is proposed in this thesis and is the subject of the next section. 

F.2 MULTI-OBJECTIVE GENETIC ALGORITHMS 

The form of optimization problems that can be tackled by the single objective GAs 

aB described in the previous section is limited to: 

min J(x) 
XEfl 

W-1) 

where x=[x 1, x2 , ••. xk] defines the design parameters of the problem, subject to any 

constraint on those parameters, in the hyperspace n. In this case, the objective 

function to be minimised, J, is a scalar function of the design parameters. In most 

practical problems, however, several competing objectives need to be satisfied si­

multaneously. The multi-objective (MO) optimization problem is, the problem of 

simultaneously minimising then components /j, j = 1, ... , n, of a possibly nonlinear 
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function F of a general design parameters x in n, 

min F(x) = min [fi(x),h(x), ... ,Jn(x)) 
xen xefl 

(F-2) 

The MO problems usually have no unique, perfect solution, but instead a set of non­

dominated alternative solutions, known as the Pm-eto optimal set (Ben-Tal, 1980), 

for which an improvement in one of the objectives will lead to a degradation in one 

or more of the remaining objectives. These solutions are also known as non-inferior 

or non-dominated solutions. The goals of the optimization contain the desired level 

(or target) of attainment associated with each objective function and are declared in 

a vector with dimension n. Ilased on some additional infonnation, a decision maker 

(human or machine) can then choose a preferred solution. This solution is regarded 

as the final solution to the problem. 

The solutions to MO problems can therefore be divided into two stages: an op­

timization stage and a decision stage. Most existing MO techniques such as £­

constraint, weighted-sum and global attainment methods, require the decision to 

be undertaken prior to the optimization (Hwang and Masud, 1979). In Pareto ap­

proaches (Goldberg, 1989), typically the decision is performed after the exploration 

of the Pareto optimal surface to present the designer with a varied set of solutions 

from which an appropriate compromise solution can then be selected with ease. As 

it is often difficult in MO problems to establish the relative emphasis on each ob­

jective a priori, this fact may be regarded as the benefit of the Pareto approaches. 

This is exactly how the multi-objective genetic algorithm (MOGA) (Fonseca and 

Fleming, 1995) behaves, and due to these facts, it is therefore considered as an ideal 

vehicle for the optimization· of the fuzzy systems used in the MSDF system employed 

in the AUV navigation in this thesis. 

Figure F.2 shows the structure of MOGA which is clearly composed of more operators 

than the GA shown in Figure F.l. Pareto ranking is considered to be the most im­

portant operators and it is closely associated with the graphical user interface (GUI), 

and these are the topic of the next section. 
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Figure F.2: A general structure of a MOGA 

F.2.1 Pareto-Ranking 

Pareto ranking is based upon the dominance of an individual solution in t he solu­

t ion hyperspace. The best individuals in the Pareto ranking are those not dominated 

by other individuals and in this scheme those individuals are 0-ranked (Fonseca and 

Fleming, 1995), while penalties are infl icted to the dominated ones according to the 

following equation: 

Rank(xi, t) = Pi(t) + 1 (F-3) 

Here, the number of individuals Pi that dominate a certain individual xi at t-th gen­

eration establishes the rank of t hat particular individual. F igure F.3 demonstrates 

the way in which Pareto ranking is achieved in a minimisation problem for two objec­

t ives defined with equal priorities. Note that other individuals do not dominate t hose 

individuals that are ranked 0, and none of the latter is better than its counterparts. 
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In this particular example, solution II has a better value than solut ion Ill in objective 

1. Whilst solut ion Ill, on the cont rary has less value than solution II in objective 2. 

T his demonstrates the concept of" trade-off' , where an improvement in one objective 

results in a degradation in other objectives. 

The non-dominated individuals in Figure F .3, however, are not distinct from each 

other unless priori ties of the two objectives are sp ecified. In different levels of priority 

the objective wit h the highest probability should be satisfied before searching indi­

viduals to satisfy other objectives. For example, an individual in which all goals are 

satisfied may be considered preferable to a nondominated one in which some compo­

nents go beyond t he goal boundaries. The t hree non-dominated individuals (II, Ill, 

IV) that are inside the goal boundaries are considered preferable than the other two 

non-dominated points (I, V). 

The ranking of other solutions that satisfy both constrains is performed according 

to (F-3) . To illustrate this, solution VII is ranked 5, since it has 4 other solut ions (II, 

Ill, IV, VI) in its region (indicated by dashed-lines) . T he ranking of the solut ions 

that do not satisfy goal 1 and 2, are performed in a similar manner, but the ranking 
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will start with a number of satisfying solut ions incremented by 1. In the example 

given above, solution VIII is ranked 6. It should be noted that not all rankings will 

necessary appear. In the particular case considered here, no individuals is ranked 2 

or 4. 

T he graphical representation of t rade-off given in Figure F .3 is sui table only to visu­

alise an opt imizat ion problem with two objectives. However, when the dimensionality 

of the solut ion space increases, this becomes virtually impossible. This subject is dis­

cussed in detail in the next section. 

F .2.2 Trade-Off Sets Visualisation and Analysis 

Fonseca and Fleming (1995) used a form of plot that allows t rade-off information to 

be visualised. As it displays t he t rade-offs solutions produced by MOGAs on parallel 

axes, the graphs is known as " parallel co-ordinates" . In its x-axis and y-axis, the 

objectives and t he objective value are displayed. An example of this plot is shown in 

Figure F.4. 

1ii 
0 
u 

2 
Objective no. 

3 4 

Figm e F.4: T he parallel co-ordinate visualisation plot 



234 

The design goal values for each objective used in this example, i.e., the root mean 

square error (RMSE) of each sensor, are shown by the crosses and potential solutions 

to this optimization problem are shown by the lines displayed below the crosses. In 

this particular case, all solutions have achieved the goals. The concept of trade-off, in 

which an improvement of an objective leads to a degradation in the other, is realised 

in this plot by the crossing lines. In this particular example, conflicts are exhibited 

by objectives (3) and {4). This means that reducing the RMSE of sensor 3, objective 

{3), will usually result in deterioration in RMSE of sensor 4 performance, objective 

( 4). As contradictory objectives cannot be satisfied simultaneously, an intervention 

by a decision maker {human or machine) to find a compromising situation is therefore 

needed. Fonseca and Fleming {1995) developed a GUI that facilitates the decision 

maker to direct the search in a desired spaces by altering the goals and priorities of 

the objectives and to make a final solution thereof. 
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APPENDIX G 

CO-ORDINATE TRANSFORMATION 

The applicat ion of an integrated INS/GPS techniques to provide an accurate po­

sition and orientation of AUVs requires the comprehension of three co-ordinate 

frames: Earth-centered Earth-fixed (ECEF) , geographical/North-East-Down (NED) 

and body co-ordinate frame. T hese a re briefly discussed in the following. 

1. Earth-centered Earth-fixed co-ordinate frame. Latitude, longitude and height 

provided by a GPS receiver are defined in the ECEF co-ordinate frame. As 

shown in Figure G.l , t he origin of the frame is at t he mass centre of the EaTth. 

T he XEcEF Y Ecsp-plane coincident with t he Earth's equatorial plane. T he 

+XEcEp-a.xis points in the direction of 0° longitude, and the + Y ECEF-axis 

points in the direction of 90° East longitude. T he XECEF- and Y ECEF-axes 

rotate wit h the Earth. The ZEcEp-axis is chosen to be normal to the equatorial 

plane in t he direction of the geographical North pole. 

z.c.. 
NORTH POLE 

Figure G. l : AUVs navigation co-ordinate frames 
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2. Geographical/North-East-Down co-ordinate frame. This frame is defined by 

three orthogonal axes originating at an arbitrary local point on the ocean sur­

face. North corresponds to XN Ev-ax.is, East corresponds to Y N Ev-axis and 

increasing depth corresponds to ZNEv-axis as shown in Figure G.l 

3. Body co-ordinate frame. It is defined with respect to the body of the AUVs. 

The three axes of the AUVs are X800v-axis/longitudinal pointing in the nom­

inal fonvard direction of the vehicle, Y 800v-axis/lateral pointing through the 

right hand side of the level vehicle, Z800v-axis/downward through the nominal 

bottom of the vehicle. The origin of body co-ordinate fTame for a submerged 

vehicle is at t he half point along the symmetric longitudinal axis. 

In an integrated INS/GPS, sensor outputs defined in the body co-ordinate frame need 

to be transformed into the NEO coordinate frame. The same case also appl ies to the 

GPS latiturle and longitude. The NEO co-ordinate frame can therefore be considered 

as a meet ing/integration point between the ECEF and the body co-ordinate frame. 

G.l TRANSFORMATION FROM BODY TO NORTH-EAST-DOWN 

CO-ORDINATE FRAME 

Like most AUVs, the Hammerhead AUV uses an IMU to provide 30 body angu­

lar velocities (Figure G.2(a)) and linear acceleration, which after a single integration 

produces linear velocities (Figure G.2(b)). In addition, an electronic compass with 

a bi-axial inclinometer is used to provide 3D angular displacements defined in NEO 

coordinate frame (Figure G.2(c)). T hese angular displacements are referred to as 

Euler angle and are used to t ransform the 30 body linear and angular velocit ies to 

the local NEO co-ordinate frame using the following rotation order: roll (4J) about 

the XNEv-ax.is , then pitch (B) about the first intermediate Y NEv-axis, followed by 

yaw ( 1/J) about the second intermediate ZN Ev-axis. Matrix multiplication results for 

this t ransformation are included in Equation G-1 
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Figure G.2: (a) Angular velocities in body co-ordinate frame, (b) linear velocit ies 
in body co-ordinate frame , (c) angular rotation in NED co-ordinate frame and (d) 
linear translat ion in NED co-ordinate frame 
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(G-1) 

[ 

cosOcos'lj; sin ~sin fJcos'lj;-cos~sin 'lj; cos~sinfJcos'ljJ+sin ~sin 'ljJ ] 
= cos() sin 'If; sin~ sin 0 sin 1/J +cos~ cos 1/J cos~ sin 0 sin 1/J- si n ~ cos 'ljJ (G-2) 

- sin 0 sin ~cos() cos~ cos(} 

Normally Euler angle must be restricted from representing a vertical orientation or 

else mathematical singularities may result. Several techniques for avoiding Euler an­

gle singularities in the vicinity of 0 = ±~(rad) are discussed in Cooke et al. (1992). 

T he 30 NEO linear velocities can be obtained from the body co-ordinate frame linear 

velocities by the following matrix equation: 

[ 

XNED] [ u] ~NED = [R EULER]· V 

ZNED w 

(G-3) 

The 30 NED angular velocities are obtained from t he body angular velocities by the 

following non-orthogonal linear transformations (Cooke et al., 1992): 

~ = p + q sin ~tan 0 + T cos~ tan() 

iJ = q cos ~ - T sin ~ 

,j; = q sin ~ + r cos~ 
cos() 

Equation G-4, G-5 and G-6 can be combined into matrix notation: 

[ 

~NED ] [ p] 
~NED = [TEULER]· q 

1/JNED T 

(G-4) 

(G-5) 

(G-6) 

(G-7) 
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where 

[ 

1 sin <P tan 0 cos <P t an B l 
[T EU LER ] = 0 COS </J - sin </J 

0 sin <P sec B cos <P sec () 

(G-8) 

The preceding equations provide a complete set of component t ransformations from 

body to NED co-ordinate frame linear and angular velocities. All component of ve­

locities can be further grouped together and form the following matrix transformation: 

where 

[V ]NED = [-[R_ EU_L_E_R]--+--
0
- -] · [V ]BODY 

0 [T Eu t, ER] 

[V ]aoDY = 

[V]NED = 

u 

V 

w 

p 

q 

r 

X NED 

Y NED 

Z NED 

cPNED 

ON E D 

1/JNED 

(G-9) 

(G-10) 

(G-11) 

These velocity relat ionship are the so called ki nematics equations of motion 

(Greenwood, 1988). 
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G.2 TRANSF0RMATION FROM EARTH~CENTERED-EARTH-FIXED 

TO NORTH-EAST-DOWN CO-ORDINATE FRAME 

In the Hammerhead Al:JV, a GARMIN GPS25-LVS is installed to acquire absolute 

position data in world geodetic system 1984 (WGS84). In this datum, one degree 

of latitude corresponds to approximately lll(km); therefore one minute of latitude 

corresponds to that number divided by 60, or approximately 1845{m). The length of 

a minute of longitude, measured along a parallel, depends upon the latitude of that 

parallel. The length varies from approximately 1855(m) at the equator to O{m) at the 

pole. One minute. of longitude corresponds to approximately 1855(m) multiplied by 

the cosine of that latitude. The conversion of latitude and longitude from deg-min-sec 

to meters is therefore transforming the absolute position defined in the ECEF to the 

NED co-ordinate frame. Readers interested in the details are referred to Kennedy 

{2002). 

During a particular surface mission, the position of an AUV in NED co-ordinate frame 

derived from the latitude and longitude GPS data can therefore be easily obtained. 

Finally, by subtracting the initial value of the NED position from all subsequent val­

ues, integration with the NED data derived using the techniques discussed in the 

previous section can be performed. 
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