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DEDY LOEBIS

AN INTELLIGENT NAVIGATION SYSTEM FOR
AN AUTONOMOUS UNDERWATER VEHICLE

ABSTRACT

The work in this thesis:concerns with the development of a novel multisensor data fu-
sion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic
and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous
underwater vehicle (AUV’) navigation system, formed by an integration of global po-

sitioning system and inertial navigation system (GPS/INS).

The Kalman filter has been a popular method for integrating the data produced
by the GPS and INS to provide optimal estimates of AUVs position and attitude. In
this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is
proposed. The former is used to fuse the data from a variety of INS sensors whose
output is used as an input to the later where integration with GPS data takes place.
The use of an adaptation scheme based on fuzzy logic approaches to cope with the
divergence problem caused by the insufficiently known a priori filter statistics is also
explored. The choice of fuzzy membership functions for the adaptation scheme is first
carried out using a heuristic approach. Single objective and multiobjective genetic
algorithm techniques are then used to optimize the parameters of the membership
functions with respect to a certain performance criteria in order to improve the over-
all accuracy ofl the integrated navigation system. Results are presented that show
that the proposed algorithms can provide a significant improvement in the overall

navigation performance of an autonomous underwater vehicle navigation.

‘The proposed technique is known to be the first method used in relation to AUV

navigation technology and is thus considered as a major contribution thereof.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The most basic function of an underwater vehicle navigation system is to estimate
accurately its position and orientation. In many existing underwater vehicles, this
is typically achieved by a remote or on-board computer that continuously collects
data from sensors that are mounted inside the vehicle and processes them to render
results according to a certain navigation algorithm. These results are subsequently
fed to a human operator or to an automatic control system, which in turn produce an
appropriate control action or control signal required to drive the vehicle in accordance
with a predetermined mission scenario. A block diagram to represent this type of

system is shown in Figure 1.1.
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Figure 1.1: (a) ROV navigation and control system (b) AUV navigation and control
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The class of underwater vehicles controlled using the configuration represented in
Figure 1.1(a) are known as remotely operated vehicles (ROVs) , while the ones rep-
resented in Figure 1.1(b) are known as autonomous underwater vehicles (AUVs).
In both configurations, when an error occurs on the sensor, the input to the con-
troller will also contain error and this subsequently results in an incorrect control
action/signal. This problem raises the idea of using multiple sensors in the system
(see Figure 1.2, for example). The implementation of multiple-sensor algorithms to
provide an enhanced accuracy to an AUV (known as the Hammerhead) navigation
system is the aim of this thesis, and consequently discussion henceforth is directed

towards this topic.
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Figure 1.2: AUV navigation and control system using multiple sensors

Examples of navigation sensors in the Hemmerhead AUV navigation system include a
global positioning system {(GPS) receiver, an electronic compass, a gyroscope and an
accelerometer commonly assembled in an inertial measurement unit (IMU). Despite
the fact that the purpose of the GPS is to provide the ability to compute location
in 3D space, an AUV navigation system cannot, in general, continuously determine
the vehicle’s position using a GPS receiver alone. The main reason for this is that at
times, the GPS position fixes are inaccurate, and for most underwater missions these
are unavailable as the signals have only a limited water penetrating capability. The
inaccuracies of a GPS receiver are caused by several factors. One of the most defining
one is the requirement for the receiver to be able to lock onto signals from at least 4

different satellites for a period of time that is long enough to receive the information




encoded in the transmission.

Based on these lacts, many AUV navigation systems utilise other navigation aids
in conjunction with GPS fixes to enhance overall system performance. These aids
usually include some combination or fusion of multiple sensors. The technique is
known as multisensor data fusion (MSDF). Any sensors other than GPS that are
used to position the vehicle are collectively referred to as a dead reckoning unit. The
key component in this unit is an IMU and the navigation technique utilises this is
known as an inertial navigation system (INS). An INS is a self-contained system that
continuously measures AUV acceleration and angular rates, from which its velocity
and position vectors are computed. However, an INS cannot be used alone to provide
an accurate AUV navigation solution for indefinitely long periods of time because
the error in a position estimate computed thereby can grow without bound and oc-
casional measurements of absolute position with bounded errors are necessary. The
errors that appear in a GPS and an INS are therefore complementary in nature. The
INS smoothes out the short-term GPS errors, and GPS fixes calibrate or reset the
INS drift over long time periods. Proper fusion of the GPS position fixes with the INS
solution can take advantage of these complementary errors, producing a positioning

performance that is better than could be obtained with either type of data alone.

One of the most popular algorithms for combining data with complementary
characteristics is the Kalman filter (Brown and Hwang, 1997; Grewal and An-
drews, 2001; Grewal et al., 2001). Introduced in 1960, Kalman filtering is a statistical
technique developed to arrive at an estimate of the state of a system by combining a
knowledge of system dynamics, represented as a state space model, with the statisti-
cal characteristics of system errors. The state estimate utilises a weighting function,
called the Kalman gain, which is optimized to produce a minimum error variance. For
this reason, the Kalman filter is called an optimal filter. In order for a Kalman filter
to produce a statistically optimal estimate of its state, the filter’s model equations,
measurement equations and covariance matrices must exactly describe the actual dy-
namical and statistical properties of the AUV system of interest. In other words,

the time-history of the system’s state must be described precisely by known linear

stochastic equations driven by white Gaussian noise with known statistical properties.




However, it is frequently the case that these are not available. It has been shown that
the absence of this information can reduce the precision of the estimated filter states
(Mehra, 1970; Mehra, 1971) or introduce biases to their estimates (Sangsuk-lam and
Bullock, 1990). In addition, incorrect a priori information can lead to practical di-

vergence of the filter (Chaer et al., 1998).

In GPS/INS applications, the estimation environment of the integrated system is
non-stationary. In such an environment, imperfect a prior: information will lead to
the aforementioned problems:. This implies that there is a major drawback in using
a fixed Kalman filter designed by conventional methods. An adaptive filtering for-
mulation, therefore tackles the problem of imperfect a priori information and may
provide a significant improvement in performance over the fixed filter through a filter

learning process.

In this thesis, the adaptation process is based on the detection of the dynamics
of innovation sequences proposed by Mehra (1970) and Mehra (1971), coupled with
fuzzy logic techniques. The fuzzy logic membership functions for the adaptation
mechanisms are initially established by a combination of knowledge, experience and
observation and therefore may not be optimal. Additionally, fine-tuning of its perfor-
mance is-still a matter of trial and error. Single objective and multiobjective genetic
algorithm (MOGA) techniques are therefore used to optimize the parameters of the
membership functions with respect to a certain performance criteria in order to im-

prove the overall accuracy of the integrated navigation system.

In particular, the work proposed in this thesis is designed for use on pure simu-
lated data and on navigational data gathered by the Hammerhead AUV developed
and operated by the University of Plymouth and Cranfield University. Hammer-
head, shown in Figure 1.3, was developed from a deep mobile target {(DMT) torpedo
of 3.5(m) length and 35(cm) diameter that was purchased by Cranfield University.
Initial modifications were made to transform the torpedo into a PC controlled AUV
(Naylies, 2000). Details of subsequent modifications on the vehicle are given in Chap-

ter 3.










which in turn drives the vehicle reaching its predetermined set points more accurately

than it does using a single sensor alone.

1.2 AIM AND OBJECTIVES OF THE THESIS

The main aim of this research is to enhance the performance of an AUV GPS/INS
integrated system by a combination of Kalman filtering and artificial intelligence tech-

niques.

To achieve the above aim, the following objectives were defined:

1. To investigate AUV navigation systems, in general, and GPS/INS integrated
systems, in particular, and to critically review the associated MSDF techniques

used therein, with a particular attention given to Kalman filtering.

2. To acquire a dynamic model of the Hammerhead AUV using a set of rela-
tively low cost sensors prior to developing a Kalman filtering algorithm thereof.
This was accomplished through implementing system identification techniques

to data sets obtained from a series of full scale tnals.

3. To develop a novel method employing a synergistic use of soft computing tech-

niques in overcoming the drawbacks of utilising fixed Kalman filtering.

4. To analyse the performance of the developed adaptive Kalman filtering against

fixed Kalman filter in both simulation and pseudo real-time environment.

1.3 AUTHOR’S CONTRIBUTION

This thesis introduces a novel alternative to the widely used fixed Kalman filter for
application in an AUV GPS/INS integrated system. The proposed method is built
upon a synergistic combination between soft computing and Kalman filtering tech-
niques. The novelty factor originates from the use of MOGA approaches to optimize
the membership functions of fuzzy inference systems which are used to .adjust the

values of a priori statistical information of the filter to cope with the changes in



the estimation environment. This is known to be the first method used and is thus

considered as a major contribution in relation to AUV technology.

The analysis of this method is carried out thoroughly and implemented to differ-
ent. AUV mission scenarios to show the effectiveness and suitability of the adaptive
techniques. It is shown that the proposed techniques are not only able to relax the
requirements to have a good a priori statistical information, but also able to out-
perform the fixed filter in both simulation and pseudo real-time environment, and
consequently has the potential in enhancing the performance of an AUV navigation
system. It is important to note that although the analysis techniques in this thesis are
developed for AUVs, they can effortlessly be applied to other autonomous vehicles,
which are employed in the aerospace, underground and land environments. Thus the
adaptive Kalman filtering algorithms proposed herein will be valuable as a genéric

method for all types of navigation system designs.

1.4 PUBLICATIONS

To date the following papers have been published or accepted as a direct result of

this research programme and can be found in Appendix A:

1. Loebis, D:, Naeem, W., Sutton, R. and Chudley, J. (2004). The Navigation,
Guidance and Control of the Hammerhead Autonomous Underwater Vehicle,
(To appear in: Advances in Unmanned Marine Vehicle (Roberts, G. N. and
Sutton, R. (Ed)). Peter Peregrinus Ltd., Herts.)

2. Loebis, D., Sutton, R., Chudley, J. and Naeem, W. (2004). Adaptive Tuning
of a Kalman Filter via Fuzzy Logic for an Intelligent AUV Navigation System.
Control Engineering Practice, 12 (12), pp. 1531-1539.

3. Loebis, D., Sutton, R. and Chudley, J. (2004). A Fuzzy Kalman Filter Opti-

mized Using a Multiobjective Algorithm for Enhanced Autonomous Underwater

Vehicle Navigation. Proceedings of the Institution of Mechanical Engineers Part
M, 218 (M1), pp. 53-69.




4. Loebis, D., Sutton, R. and Chudley, J. (2004). A Soft Computing Method for
an AUV Navigation System with Pseudo-Real-Time Applicability. Proc. 2004

IFAC Conference on Control Applications in Marine Systems, Ancona, Italy,
pp. 421-426.

5. Loebis, D., Sutton, R., Chudley, J., Dalgleish, F. R. and Tetlow, S. (2004). The
Application of Soft Computing Techniques to an Integrated Navigation System
of an AUV. Proe. 5 IFAC Symposium on Intelligent Autonomous Vehicles,
Lisbon, Portugal, MA-3-2 (CD-ROM Preprints)

6. Loebis, D., Chudley, J. and Sutton, R. (2003). A Fuzzy Kalman Filter Opti-
mized Using a Genetic Algorithm for Accurate Navigation of an Autonomous
Underwater Vehicle. Proc. 6'* IFAC Conference on Manoeuvring and Control
of Marine Craft, Girona, Spain, pp. 19-24.

7. Loebis, D.; Dalgleish, F. R., Sutton, R., Tetlow, S., Chudley, J., and Alwood,
R. L. {2003). An Integrated Approach in the Design of a Navigation System for
an AUV. Proc. 6 IFAC Conference on Manoeuvring and Conirol of Marine
Craft, Girona, Spain, pp. 329-334.

8. Loebis, D., Chudley, J. and Sutton, R. (2003). A Fuzzy Kalman Filter for Accu-
rate Navigation of an Autonomous Underwater Vehicle. A Proceedings Volume
from the IFAC Workshop on Guidance and Control of Underwater Vehicles
(ISBN: 0080442021), Newport, South Wales, UK, pp. 157-162.

9. Loebis, D., Sutton, R. and Chudley, J. (2002). Review of Multisensor Data
Fusion Techniques and Their Application to Autonomous Underwater Vehicle
Navigation. Journal of Marine Engineering and Technology, Al, pp. 3-14.
(This was given the Stanley Gray Award for the most worthy Offshore Technol-
ogy paper in the journal during 2001/2002).

1.5 THESIS ORGANISATION

Chapter 2 discusses previous work and recent developments in AUV navigation and

introduces MSDF techniques as a means of improving AUV navigation capability.
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Problems and issues of the techniques are briefly discussed. The levels of representa-
tion in fusion processes are identified herein. The methods of MSDF are presented,
followed by examples of their application in AUV navigation systems with special

attention being given to Kalman filtering techniques.

Chapter 3 introduces the Hammerhead vehicle in more detail. The evolution of the
vehicle's hardware from its early stage as a DMT to a fully autonomous vehicle is
presented. The sensors and their technical specifications, including the necessary
electronics work undertaken to interface the sensors with a CPU are discussed. These
are then associated with the system identification full scale trials discussed thereafter.

Results and analysis of the identification are also presented.

Chapter 4 supplies the theoretical background of the adaptive Kalman filtering tech-
niques followed by their applications to a set of simulated 2D /surface GPS/INS data.
The proposed method is first applied to fuse data coming from different INS measure-
ments. The results are subsequently used synergistically with other measurements to
obtain a GPS/INS integrated navigation solution. A performance comparison be-
tween the fixed and the proposed Kalman filters are made. It will clearly be seen
that the proposed method can significantly improve the performance of the Hammenr-

head navigation system.

Chapter 5 extends the work in Chapter 4 by implementing the adaptation mech-
anisms to a set of GPS/INS real data obtained from Hammherhead full scale trials.
Both GPS/INS applications for 2D/surface and 3D/surface-depth mission scenarios

are considered.

Chapter 6 provides conclusions and recommendations for future work.

Additionally, support of some of the above chapters are appendices.
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CHAPTER 2

REVIEW OF MULTISENSOR DATA FUSION
TECHNIQUES AND THEIR APPLICATION TO AUTONOMOUS
UNDERWATER VEHICLE NAVIGATION

2.1 INTRODUCTION

The oceans cover 70 per cent of the Earth’s surface and contain an abundance of living
and non-living resources that remain largely untapped and waiting to be discovered.
However, a number of complex issues, mainly caused by the nature of underwater
environments, make exploration and protection of these resources difficult to per-
form. In the past few decades, various worldwide research and development activities
in underwater robotic systems have increased in order to meet this challenge. One
class of these systems is tethered and remotely operated and referred to as ROVs.
Figure 2.1 shows an example of ROVs with a photomosaic obtained by the vehicle
from a particular mission shown in Figure 2.2. The ROVs serve a range of military,
scientific and commercial needs. The tether is used to send power and control signals
and to receive data from the on-board sensors. However, as depth or speed increases,
the drag of the tether becomes more significant and more effort is required from the
operator to control the vehicle. This, if must be done for a long period of time, may
degrade the ability of the operator to control the vehicle accurately. The demand
for a more sophisticated underwater robotic technology that eliminates the need for
human operator and therefore capable of operating autonomously becomes apparent.

These requirements lead to the development of AUVs.

To achieve truly autonomous behaviour, an AUV must be able to navigate accu-

rately within an area of operation. In order to achieve this, an AUV needs to employ

a navigation sensor with a high level of accuracy and reliability. However, in practice,
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as will be discussed in the next section, a single sensor alone may not be-sufficient to
provide an accurate and reliable navigation system, as it can only operate efficiently
under certain conditions or it has inherent limitations when operating in underwater
environments. It is therefore necessary to use a number of sensors and combine their
information to provide the necessary navigation capability. To achieve this, a MSDF
approach, which combines data from multiple sensors and related information from

associated databases, can be used.

The aim of this chapter is to survey previous work and recent development in AUV
navigation and to introduce MSDF techniques as a means of improving AUVs naviga-
tion capability. The majority of the material presented in this chapter being based up
on Loebis et al. (2002), which was given the Stanley Gray Award by The Institute of
Marine Engineering, Science and Technology for the most worthy Qffshore Technol-
ogy paper in the Journal of Marine Engineering and Technology during 2001/2002.
The structure of this chapter is as follows: Section 2.2 describes the navigation sys-
tems that are currently being used in AUVs. MSDF is discussed in Section 2.3, whilst
MSDF using specific-sensor combinations applied to the navigation of AUVs are given

in Section 2.4. Finally, concluding remarks are made in Section 2.5.

2.2 AUTONOMOUS UNDERWATER VEHICLE NAVIGATION

Navigation systems used by AUVs that are discussed here include dead reckoning,

radio, optical, acoustic and terrain-relative navigation.

2.2.1 Dead Reckoning Navigation

Dead reckoning is a mathematical means to determine position estimates when the
vehicle starts from a known point and moves at known velocities. The present posi-
tion is equal to the time integral of the velocity. Measurement of the vector velocity
components of the vehicle is usnally accomplished with a compass (to obtain direc-

tion) and a water speed sensor (to obtain magnitude). The principal problem is that

the presence of an ocean current can add a velocity component to the vehicle, which
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is not detected by the speed sensor.

An INS is a dead reckoning technique that obtains position estimates by integrat-
ing the signal from an accelerometer, which measures the vehicle’s acceleration. The
vehicle position is obtained in principle by double integration of the acceleration. The
orientation of the accelerometer is governed by means of a gyroscope, which main-
tains either a fixed or turning position as prescribed by some steering function. The
orientation may also in principle be determined by integration of the angular rates of
the gyroscope. Both the accelerometer and the gyroscope depend on inertia for their

operation

A dead reckoning navigation system is attractive mainly because it uses sensors
that are self-contained and able to provide fast dynamic measurements. Unfortu-
nately in practice, this integration leads to unbounded growth in position error with
time due to the noise associated with the measurement and the nonlinearity (which
takes form in bias and drift as the result of temperature change or external vibration
(Titterton, 1997)) of the sensors, and there is no built-in method for reducing this er-
ror. Depending on the sensors used and the specific vehicle mission, the navigational
error can grow rapidly to the point where either the mission will not produce useful

data or it will not be achievable at all.

Two types of dead reckoning sensors have been widely employed in AUVs: IMUs
and Doppler velocity sonar (DVS) . Many very accurate IMUs have been developed
for submarines. However, these are typically very expensive devices and are used only
in naval vehicles. Lower cost IMUs have been used in AUVs (Cox and Wei, 1995).
However, due to the low acceleration encountered in autonomous underwater vehicles,

these units are not normally of sufficient accuracy to provide stand-alone navigation.

DVS sensors provide measurement of a velocity vector with respect to the sea lloor.
These sensors normally comprise of three or more separate sound beams allowing
construction of a full three-dimensional velocity vector. Typically, these instruments
have specifications of about one per cent of the distance travelled (Bellingham, 1992).

However, these results can only be achieved when the speed of sound in the AUV’s
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area of operation does not vary significantly as a result of changes in the salinity,
temperature and density of the water. Therefore, as in the IMU case, these units are

not normally used to provide stand-alone navigation.

2.2.2 Radio Navigation

Radio navigation systems mainly use the GPS {Ellowitz, 1992). The GPS is a satellite-
based navigational system that provides the most accurate open ocean navigation
available. GPS consists of a constellation of 24 satellites that orbit the Earth in 12
hours. There are six orbital planes (with nominally four satellites in each) equally
spaced (60 degrees apart) and inclined at about 55 degrees with respect to the equato-
rial plane (Ellowitz, 1992). This constellation provides the user with between five and
eight satellites visible from any point on the Earth. Improvement on the accuracy of
ordinary GPS can be achieved using differential GPS (DGPS) techniques. The idea
behind all differential positioning is to correct bias errors at one location with mea-
sured bias errors at a known position. A reference receiver, or base station, computes
corrections for each satellite signal (Dana, 2000). There are several kinds of DGPS
available; DGPS mode using a beacon receiver and DGPS mode using geostationary
satellites. Wide area augmentation system (WAAS) in North America and its-coun-
terpart, Euro geostationary satellite augmentation system (EGNOS) in Europe and
multi-functional satellite augmentation system (MSAS) in Asia fall into the second
category of DGPS. It .is worth noting that under ideal conditions, the accuracy of an
ordinary GPS is typically 15(m), while the accuracy of DGPS using a beacon receiver
and geostationary satellites are 3 — 5(m) and less than 3(m) respectively. A detailed
discussion on the GPS is out of the scope of this thesis and interested readers can
refer to Yeazel (2003).

The GPS-based navigation system is used extensively in surface vessels as these ve-
hicles can receive signals directly radiated by the GPS. Unfortunately, these signals
have a limited water penetrating capability. Therefore to receive the signals, an an-
tenna associated with an AUV employing a GPS system must be clear and free of

water. There are three possible antenna configurations to meet this requirement.
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These are fixed, retractable, or expendable antennas (Kwak et al., 1992). A fixed
antenna is a non-moving antenna placed on the outside of the AUV. The AUV has to
surface to expose this antenna and stay surfaced until the required information has
been received and processed adequately. A retractable antenna is one that the AUV
would deploy while still submerged. When the required information is received, the
antenna is retracted back to the AUV. The expendable antenna works along the same
principle as the retractable antenna except that it is used once and discarded. When

required, another antenna would be deployed.

These antenna configurations require the AUV either to surface or to rise to a shal-
low depth, but there are several disadvantages (Kwak et al., 1993). For an AUV to
receive radio signals, it must interrupt its mission, expend time and energy climbing
and/or surfacing, risk its safety for up to a minute on the surface or in a shallow
depth of water getting the fix, which is especially dangerous in a hostile environment,,
then expend additional time and energy submerging to resume the mission. Even
if an extremely accurate fix is obtained, the vehicle location uncertainty can grow
significantly during descent before mission is ever resumed. Therefore there is a need
to combine information obtained by a GPS navigation system with other underwater
navigation sensors when the AUV operates underwater to maintain good navigation

capability.

2.2.3 Visual Navigation

In the context of visual imaging for navigation, the underwater environment is a very
special place. The reason for this is that in addition to visial-sensing issues that
must be addressed in land and space-based vehicles, there are also issues specific to
underwater imaging. These issues include limited range of visibility, brightness and
contrast variation, and nonuniform illumination (Marks et al., 1994). Limited range
of visibility is caused by the attenuation of light in water by absorption and scat-
tering by suspended matter. Light absorption and scattering cause the amount of
reflected light to decay exponentially as a function of distance to scene surfaces. The

absorption and scattering of light also affect image brightness and contrast. Objects
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mosaic where a series of images are taken from a video:stream and aligned with each
other to form a chain of images along the vehicle path. When a new image is about
to be added to a mosaic, it must be properly aligned with the last image in the chain
of images comprising the mosaic. To accomplish this, thé two images are compared,
and the displacement vector between the two image centres is calculated. Therefore,
to determine the current vehicle position, it would be possible to compute the total
distance travelled by summing the image displacement measurements along the image
chain (Huster et al., 1998). As with the INS discussed in Section 2.2.1, this method
has a fundamental problem: the unbounded propagation of errors on vehicle position
over time. This random walk-effect is due to the accumulation of image alignment
errors as the length of mosaic increases (Figure 2.3). Therefore, as in the INS case,

this navigation method is not normally used to provide stand-alone navigation.

2.2.4 Acoustic Navigation

Acoustic navigation is the most widely accepted form of AUV navigation, and a va-
riety of systems have been both researched and tested. Most require an engineered
environment, meaning that something has been added to the environment to aid navi-
gation. The distance between acoustic baselines is generally used to define an acoustic
positioning system, that is the distance between the active sensing elements. Three
types of system have been primarily employed; ultra short baseline (USBL), short
baseline (SBL) and long baseline (LBL) with distance between acoustic baselines less
than 10 em, between 20 to 50 metres and between 100 to 6,000 metres respectively
(Vickery, 1998).

USBL systems (Figure 2.4(a)) employ a single beacon on the bottom of the seafloor
which emits acoustic pulses without being interrogated from an AUV. The on-board
AUV equipment consists of a two-dimensional hydrophone array mounted on the bot-
tom of the AUV. USBL systems measure the time or phase difference of the arrival
of an acoustic pulse between individual elements of the hydrophones. This time or
phase difference is used to determine the bearing from the USBL transceiver to the

beacon. If a time-of-flight interrogation technique is used, a range to that beacon
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will also be available from the USBL system. In SBL (Figure2.4(c)) three or more
transceivers are rigidly mounted on the hull of the AUV, making either an equilat-
eral or a right-angled triangle. The distance between each transceiver is precisely
known. A bearing to the transponder is derived from the detection of the relative
time-of-arrival as an acoustic pulse passes each of the transceivers. If the time-of-flight
interrogation technique is used, a range to that beacon will also be available from the
SBL system. Any range and bearing position derived from USBL and SBL systems
are with respect to the transceivers mounted on the AUV and as such the systems
need a vertical reference unit (VRU), a gyroscope, and possibly a surface navigation

system to provide a position that is seafloor (Earth) referenced (Vickery, 1998).

In LBL navigation systems (Figure 2.4(c)), an array of acoustic beacons separated by a
range of 100 metres to a few kilometres is deployed on the seabed (Vickery, 1998; Geyer
et al., 1987). The vehicle determines its position by listening to the pulses emitted
from the beacons and recording the arrival times. The location of these beacons
must be provided, and the vehicle must be able to detect and distingnish between
their signals. The two major types of LBL navigation are described as spherical and
hyperbolic. In spherical navigation, the vehicle interrogates the array by emitting
its own pulse and then listens for the responses from the beacons: In hyperbolic
LBL navigation, the vehicle does not interrogate the array, but instead listens pas-
sively to the synchronised pulses emitted by the beacons (Bellingham et al., 1992).
Any range/range position derived from a LBL system is with respect to relative or
absolute seafloor co-ordinates. As such a LBL system does not require a VRU or

gyroscope (Vickery, 1998).

2.2.5 Terrain-Relative Navigation

For some applications of AUVSs, the use of acoustic beacons is undesirable or imprac-
tical. In particilar, the acoustic beacons must be pre-deployed for every mission and
the vehicles can operate only over relatively short ranges, and they are far too expen-
sive to be practical in low cost civilian AUV work. Also the accuracy of the acoustic

signals tend to degrade due to noise and reverberation problem. This then motivates
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useful navigation information from the.data returned by its:sensors. The vehicle typi-
cally starts at an unknown location with no-a priori knowledge of landmark locations.
From relative observations of landmarks, it simultaneously computes an estimate of
vehicle location and an estimate of landmark locations. While continuing in motion,
the vehicle builds a complete map of the landmarks and uses these to provide contin-
uous estimates of the vehicle location. By tracking the relative position between the
vehicle and identifiable features in the environment, both the position of the vehicle
and the position of the features can be estimated simultaneously. In Figure 2.5, the
relationship between the vehicle, features and map at any time k is shown above. A
Cartesian axes system is used to describe the vehicle location at any time &k denoted
by zx. The vehicle states change as a result of the applied control input u;. The
map at any time k is defined as set of landmarks or features detected from the sensor
observation z relative to the vehicle location. The SLAM algorithm has recently seen
a considerable amount of interest from the AUV community as a tool to.enable fully
autonomous navigation (Majumder ef al., 2000a; Majumder et al., 20006; Majumder
et al., 2001).

2.3 MULTISENSOR DATA FUSION

It is clear from the previous discussion that information from sensors used in one
navigation-system need to be combined or fused with information from sensors of other
navigation systems to improve the overall accuracy of the system. To achieve this,
MSDF techniques, which combine data from multiple sensors and related information
from associated databases can be used (Llinas and Waltz, 1990; Hall, 1992). Varshney
(1997) describes MSDF as the acquisition, processing and synergistic combination of
information gathered by various knowledge sources and sensors to provide a better
understanding of a phenomena. In this section, a general introduction to MSDF is
provided. A description of the benefits:of MSDF, problems and issues, levels of MSDF

where fusion takes place and MSDF algorithms are presented.
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2.3.1 Benefits of Multisensor Data Fusion

In general, fusion of multisensor data provides significant advantages over single source
data. The advantages can be summarised as follows (Varshney, 1997; Harris et al.,
1998):

1. Improved system reliability and robusiness: Multiple sensors have inherent re-
dundancy. Due to the availability of data from multiple sensors uncertainty can

be reduced, noise can be rejected and sensor failure can be tolerated.

2. Eztended coverage. An increase in both spatial and temporal coverage of an
observation is made possible by the use of multiple sensor systems. Multiple

sensors can observe a region larger than the one observable by a single sensor.

3. Increased confidence. Joint data from multiple sensors confirm the set of hy-
potheses about an object or event. The confirmation can be used to exclude
some hypotheses to produce a reduced set of feasible options and as a result

reduce the effort required to search for the best solution.

4. Enhanced resolution. Multiple sensors with diflerent resolution can result in a

greater resolution than a single sensor can achieve.

2.3.2 Problems and Issues

A technique for MSDF should consider several key issues, summarised below (Harris
et al., 1998; Hall and Llinas, 1997):

1. Registration/data alignment. Each sensor provides data in its local frame. The
data from different sensors must be converted into a common reference frame
before combination. This problem of aligning sensor reference frames is often

referred to as a registration problem.

2. Correspondence/data association. Once the sensors are registered, there is still
a need to establish which data features in one sensor refer to the same aspect

environment of the sensor.
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3. Fusion. The fusion of data from multiple sensors or a single sensor over time
can take place at different levels of representation. A useful categorisation is
to consider MSDF as taking place at signal, pixel, feature and symbol levels of

representation.

4. Inference and estimation. Once the data has been fused, it is necessary to infer

the sensed data due to the inherent uncertainty in the combined measurements.

i 5. Sensor Management. Sensor management can take the form of active data
gathering where the sensors are directed via feedback to specific fusion stage,
physical reconfiguration of the spatial pattern of the sensors and sensor type,

or algorithmic changes to the combination of data.

2.3.3 Levels of Multisensor Data Fusion

The common fused representation may range from- a low-level probability distribution
for statistical inference to high level logical proposition used in production rules for
logical inference. Luo and Kay (1990) and Luo et al. (2002) divide the levels of

representation of MSDF into signal; pixel; feature and symbol levels.

1. Signal-level. Signal level fusion deals with the combination of signals from a
group of similar sensors with the aim of deriving a single composite signal, usu-
ally of the same form as the original signals but with a higher quality. The
signals produced by the sensors can be modelled as random variables corrupted
by uncorrelated noise, with the fusion process considered as an estimation pro-
cedure. A high degree of spatial and temporal registration between the sensed

data is necessary for fusion to take place.

2. Pizel-level. Pixel level fusion deals with the combination of multiple images
into a single image with a greater information content. The fused images can
be modelled as a realisation of a stochastic process across the image, with the
fusion process considered as an estimation procedure. In order for pixel-level
to be feasible, the data provided by each sensor must be able to be registered
at the pixel level and, in most cases, must be sufficiently similar in terms of its

resolution and information content.
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3. Feature-level. Feature level fusion deals with the combination of features de-
rived from signals and images'into meaningful internal representations or more
reliable features. A feature provides for data abstraction and is created either
through the attachment of some type of semantic meaning to the results of
the processing of some spatial and/or temporal segment of the sensory data
or through a combination of existing features. As compared to the signal and
pixel-level fusion, the sensor registration requirements for feature-level fusion
are less stringent, with the result that the sensors can be distributed across

different platform.

4. Symbol-level. Symbol level fusion deals with the combination of symbols with an
associated uncertainty measure, each representing some decision, into symbols
representing composite decisions. A symbol derived from sensory information
represents a decision that has been made concerning some aspect of the envi-
ronment. The decision is usually made by matching features derived from the
sensory information to a model. The Sensor registration is usually not explicitly
considered in symbol-level fusion because the spatial and temporal extent of the
sensory information upon which a symbol is based has already been explicitly

considered in the generation of the symbol.

2.3.4 Multisensor Data Fusion Algorithms

This section presents algorithms for MSDF. Luo et al. (2002) classify MSDF algo-
rithms as follows: estimation methods, classification methods, inference methods and
artificial intelligence methods. Each of these methods will be discussed here and

applications to AUV navigation are presented in Section 2.4.

1. Estimation methods. A general estimation method of fusion is to take a weighted
average of redundant information provided by a group of sensors and use this
as the fused value. While this method provides real-time processing capability
of dynamic low-level data, the Kalman filter (KF) is generally preferred as it
provides a method that is nearly equal in processing requirement and results

in estimates for the lused data that are optimal in a statistical sense. Kalman
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filtering is an estimation method that combines all available measurement data,
plus prior knowledge about the system and measuring devices, to produce an
estimate of the state in such a manner as to minimise the error statistically
(Brown and Hwang, 1997). A detailed formulation of the Kalman filter is given
Appendix D.

. Classification methods. Classification methods involve partitioning of the mul-
tidimensional feature space (by geometrical or statistical boundaries) into dis-
tinct regions, each representing an identity class. In this method, the location
of a leature vector to prespecified locations in feature space is compared. A
similarity measure must be computed and each observation is compared to a
prior: classes. In the cluster analysis approach, geometrical relationships on a
set of sample data in a training process are established (Bracio et al., 1997).
Other approaches include unsupervised or self-organised learning algorithms
such as K-means clustering and the associated adaptive update rule, the Koho-
nen feature map (Kohonen, 1988). To fuse-sensory data in an adaptive manner
and allow to adjust automatically the granularity of the classifier and to main-
tain stability against category proliferation in the presence of drifting inputs
and changing environments, adaptive resonance theory (ART) (Carpenter and
Grossberg, 2003) and Fuzzy ART network {Carpenter and Grossberg, 1996)

approaches can be used.

. Inference methods. Bayesian inference and Dempster-Shafer evidential reason-
ing are the main approaches in inference methods. Bayesian inference provides
formalism for MSDF that allows sensory data to be fused according to the rules
of probability theory. This approach relies on the use of Bayes’ rule where a
relationship between the a priori probability of a hypothesis, the conditional
probability of an observation given a hypothesis and the a posteriori proba-
bility of the hypothesis is provided (Hall, 1992). An immediate problem in
this approach is that the required knowledge of the a priori probability and the
conditional probability may not be always-available. Also in defining these prob-
abilities, often subjective judgements are necessary (Brooks and Iyengar, 1998).
An extension to the Bayesian inference method, Dempster-Shafer evidential rea-

soning, overcomes these drawbacks by keeping track of an explicit probabilistic
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measure of the lack of information concerning a proposition’s probability. The

cost, of this approach is the additional time required for computation.

4. Artificial intelligence methods. Artificial intelligence is a vast, loosely defined
area encompassing various aspects of pattern recognition and image processing,
natural language and speech processing, automated reasoning and a host of
other disciplines. Fuzzy logic and neural networks are two of the most widely
used approaches in artificial intelligence methods for combining multisensor
data. Fuzzy logic involves the extension of Boolean set theory and Boolean
logic to a continuous-valued logic via the concept of membership functions to
quantify imprecise concepts. A neural network is 2 method designed to mimic
how- biological nervous systems work. In this method, an individual neuron
takes weighted input from a number of sources, performs a simple function and
then produces a single output when the required threshold is reached. Neurons
can be trained to represent sensor data and, through associate recall, complex
combinations of the neurons can be activated in response to different sensor

stimuli (Luo et al., 2002).

2.4 APPLICATIONS OF MULTISENSOR DATA FUSION FOR
AUTONOMOUS UNDERWATER VEHICLES

The discussion here focuses on a variety of approaches to the fusion of information

from combinations of different types of sensors.

2.4.1 GPS and Inertial-Based Systems

McGhee et al. (1995) describe a navigation system employed by the Phoeniz AUV
using an inertial and differential DGPS navigational silite to conduct shallow water
mine detection and coastal environment monitoring missions. In the course of its
mission Phoeniz combines signal-level information from a gyroscope, depth sensor,
speed sensor, and a compass heading to predict its position while operating under-
water. The vehicle surfaces periodically to obtain an update of its position from a

DGPS fix and then submerges (Figure 2.6(a)). Problems with this setup concern
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the time required to acquire the DGPS data and the influence of water covering the
DGPS antenna during position fixing were examined in Norton (1994). The inertial
navigation sensors described in McGhee et al (1995) obtain accelerations and an-
gular rates of change for the vehicle. A nine-state KF is used to process the data
and to give the prediction of the vehicle position. The DGPS data is then used to
update the predicted position resulting in an estimated position. The nine state K¥F
can be divided into seven continuous-time states (three Euler angles, two horizontal
velocities, and two horizontal positions) and two discrete-time states (estimated east
and north current derived from the DGPS fixes). The method used to fuse sensory

information discussed by McGhee et al. {1995) can be shown as in Figure 2.6(b).

The main problem with the KF employed in McGhee et al. (1995) is the need for
a tuning system to prevent filter divergence. This problem can be overcome by the
use of artificial intelligence (AI) techniques as have been applied in helicopters (Doyle
and Harris, 1996), automobiles (Kobayashi et al., 1998) and target tracking system
(McGinnity and Irwin, 1997) applications. Kobayashi et al. (1998) wished to deter-
mine accurately the position of an automobile using DGPS. In their work, a fixed
fuzzy rule based algorithm is used to tune the covariance factors of a K. The shape
and positioning of the various fuzzy sets on their respective universes of discourse
having been decided by heuristic means. The main problem with the Kobayashi et
al. (1898) methodology is the reliance on trial and error to generate the fuzzy rule
based algorithms. Similar comments can also be made concerning the robot posi-
tioning work of Jetto et al. (1999). To overcome such drawbacks genetic algorithmns
(GAs) (Pham and Karaboga, 1991; Sutton and Marsden, 1997) have been used to op-
timise fuzzy systems. Other intelligent optimization techniques such as chemotaxis,
alopex and simulated annealing have also been successfully employed in the design

optimization of fuzzy control systems (Sutton et al., 1996; Sutton et al., 1997).

2.4.2 Acoustic-Based Systems

Atwood et al. (1995) have built and tested an AUV that utilises a LBL navigation sys-

tem with an innovative fix-finding algorithm and commercially available hardware.
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They use a spherical navigation system, in which the vehicle actively interrogates
acoustic transponders and calculate ranges from round trip transit times, resulting
in a greater accuracy (about 1(m)) compared to the hyperbolic method proposed by
Bellingham et al. (1994). In this system, the vehicle can use two operating modes,
master mode and transponder mode. In the first mode, the vehicle triggers the acous-
tic transponders, which reply with an acoustic signal. The vehicle computer can then
calculate distances and, applying acoustically measured depth, a position. Using the
first mode, operation over an area of 1(km)? is possible. In the second operating
mode, a surface vessel triggers the vehicle, which in turn interrogates the transpon-
ders. Position of the AUV can then be calculated in the surface vessel through an
established GPS position and knowledge of the relative positions of the AUV and
the transponders. This procedure is called the fish solution, as it lets the operator
on the ship monitor vehicle progress. The second mode is developed to have opera-
tional areas as large as 10(km)2. In this work, Atwood et al. (1995) have solved the
problem of fading or destructive interference of the acoustic signals produced by the
transponders encountered by Bellingham et al. (1994). Atwood et al. (1995) princi-

pally combine sensor information at signal-level data.

Rendas and Lourtie (1994) combine LBL navigation with dead reckoning and calls it
a hybrid system. The vehicle travels between deployed baseline arrays, each consist-
ing, for example, of four transponders, and uses acoustic navigation when in range
of an array. Qutside the range, it uses a sonar/Doppler sensor and depth informa-
tion for autonomous navigation. The distances between the arrays must be carefully
planned, because the accuracy of navigation in the autonomous mode deteriorates
with time, depending on the quality of the sensing systems. The transition from
one mode to another takes place automatically. When the vehicle is leaving the area
where a particular baseline array is located, the number of range measurements it is
able to receive will gradually decrease to zero, entering, in this way, the autonomous
navigation mocde. On the contrary, when it approaches an area where transponders
are located, it receives an increasing number of distance measurements; switching
from antonomous to local navigation mode. The system uses a variable dimension
Kalman filter for both navigation modes. Where there is no detectable acceleration,

the filter assumes uniform motion and estimates position and linear velocity. When
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there is acceleration, the filter switches to a larger order (manoeuvring model) and
extends its state vector to include the accelerations. In this work, however, Ren-
das and Lourtie (1994) have not taken into account the analytical approximations
to the error evolution during antonomous navigation to determine the layout of the
baseline arrays and to derive the constrains on path planning once a layout has been
decided upon. Similar to Atwood et al. (1995), the MSDF method used by Rendas
and Lourtie (1994) is an estimation method which fuses data from the navigation

sensors at signal-level.

2.4.3 Acoustic- and Visual-Based Systems

Majumder et al. (2000@), Majumder et al. (2000b) and Majumder et al. (2001) re-
ported the use of sonar and underwater cameras to construct a complete environmen-
tal map for navigation. A generic, multi-layered data fusion:scheme is used to combine
information from the two sensors. The general principle is that all sensor information
is projected into a common state-space before the extraction of seabed features. Once
projection has occurred, feature extraction and subsequent processing is based on a
combined description of the environment. As robust features, siich as points and lines
turn out to be fragile in a natural underwater environment, Majumder and co-workers
found that this approach is better than extracting features from a single piece of sen-
sor information followed by fusion. In this work, "blobs” and blob-like patches are
used as scene descriptors to segregate feature information from background noise and
other errors. Majumder et al. (2000a), Majumder et al. (2000b) and Majumder et al.
(2001) discussed both the Bayesian and extended Kalman filter (EKF) approaches
to map-building and localisation in autonomous navigation systems. It was shown in
this work that a significant problem in applying EKF is the difficulty of modelling nat-
ural environment features in a form that can be used in an EKF algorithm. Another
formidable problem is the fragility of the EKF method when faced with incorrect
associations of observations to landmarks. The limitations in using this to build a
feature map.of landmarks describing the environment were then resolved through the
use of the Bayesian approach. The fusion process can be shown as in Figure 2.7. A

significant problem with this approach lies on the stability of the algorithm when the
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also used to generate navigation commands when the vision processor cannot recog-
nise the cable in the environment. Similar to Majumder et al. (2000a), Majumder et

al. (20006) and Majumder et al. (2001), the fusion process takes place at feature-level.

Scheizer and Petlevitch (1989) has reported a target detection and classification sys-
tem using side scan sonar data and vision. Objects are detected by searching for
highlights, textures, statistical anomalies and shadows. A neural network-based clas-
sification system is used to assist the image-processing component. The classification
process does not identify objects but rather labels them as foreground, background,
highlight, or shadow highlight. The level of correct classification is reported to be 95
per cent using a training set of 62 images. This technique, however, does not address

the issue of feature or object identification.

2.5 CONCLUDING REMARKS

It has been suggested in this chapter, from the various examples given in AUV nav-
igation, that information coming from a single navigation system is not sufficient to
provide a good navigation capability. Therefore MSDF techniques which comibine
sensory information from other navigation systems to improve the navigation capa-
bility is-essential. These will underpin the theoretical and practical work of this thesis
that aims to design and develop an interactive navigation system that consists of sev-
eral INS sensors integrated with a GPS to interact with an appropriate guidance and
control system, implemented to the Hammerhend AUV. The next chapter presents
an introduction to the vehicle, the hardware setup and sensors used within. System

identification approaches and results obtained are also discussed in detail.
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Figure 5.29 shows the trajectory produced using the fused yaw sensor and with the
values of R adjusted by FEKF. It is clear as presented in Figure 5.30(a), that as the
assumed values of R for the longitude and latitude quite low, 10{m)?, compared to
the true ones, which are simulated to be 225(m)? and 100(m)?, the FEKF estimation
process put initial weight more on the GPS fixes than the dead reckoning solutions.
However, as the filter learns the true nature of R of these quantities, the FEKF makes
an -appropriate adjustment by putting more weight on the dead reckoning solution
than on the GPS fixes. It can also be observed how the filter learns the true value
of Rz 3), which is simulated to be 0.0001(m?). This time the vehicle is not estimated
to have depth larger than 0(m)?, as in the case with the trajectory using yaw data
produced by sensor-1 - sensor-4. Figure 5.30(a) also shows the work of the reset
mechanism. As before, once the vehicle is below the surface, the depth controller and
the underwater image acquisition algorithms will work side by side to find objects of
interest and to maintain a constant depth thereafter for a specific period of time (see
Figure 5.29). The vehicle is then sent back to the surface to.obtain GPS fixes used to
reset. the drift produced by the dead reckoning process during the underwater mission.
This particular mechanism is shown in Figure 5.30(b). It is also clear here how the
FEKF has learned the true nature of the R values. It can be observed from Figure
5.30(b) how the FEKF algorithm puts extra confidence on the GPS fixes right after
the vehicle reaches the surface. Soon afterwards however, the algorithm recognises
the high level of noise inherent in the acquired GPS signals and put less confidence
thereon. Small discrepancies still exist between the true end and the estimated end
of the mission. However, it is clear that without the FEKF, the estimated end could

easily coincide with the last GPS fix and cause a significant position error.

5.4 CONCLUDING REMARKS

This chapter extends the implementation of the adaptive Kalman filtering approach
from pire simulation in Chapter 4 to psendo real-time herein. The set of data used
here were gathered during a real-time experiment of the actual Hammerhead vehicle.

The sensors used for this purpose were discussed with special emphasis given to their
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characteristics and how the physical behaviour of their surrounding environments can

possibly affect these.

Two navigation scenarios have been considered to validate the proposed approach:
2D/surface and 3D/surface-depth scenario. In both scenarios, the data from the
TCM2 electronic compass and IMU are fused with two other simulated sensors be-
fore being used in transforming data from the body to the NED co-ordinate frame,
where integration between the INS and GPS data occurs. In the first scenario, as
the vehicle operates on the surface only, the GPS data is available periodically and
the proposed estimation process takes place between the GPS fixes. In the second
scenario, the GPS fixes are available continuously when the vehicle operates on the
surface, and the proposed estimation algorithm blends these data with the position
solution produced by the dead reckoning method to find the best estimates of the
vehicle’s position. In this scenario, the vehicle uses only dead reckoning method dur-
ing an underwater mission and the accumulated errors produced thereby is reset by
GPS fixes the next time the vehicle gain access to their signals. It has been shown in
both scenarios that the proposed algorithm has produced a significant improvement

in-accuracy and reliability of the navigation.system of the vehicle.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

This thesis focuses on the investigation of multisensor data fusion method utilising
a synergistic combination of fuzzy logic, genetic algorithms (both in single and mul-
tiobjective mode), and Kalman filtering techniques to provide enhanced accuracy of
the Hammerhead AUV integrated GPS/INS. This work is the first known use of this
particular hybrid technique and is thus considered as a major contribution in relation
to AUV technology. It has been shown how the method is able to provide a significant
improvement over the conventional Kalman filtering techniques in their capacity as

estimators in an integrated GPS/INS.

The following conclusions can be drawn with respect to the adaptive Kalman fil-
ter (which is here in this thesis also referred to as FKF/FEKF) developed in this

research:

e The replacement of the widely used standard form of Kalman filters with adap-
tive ones for GPS/INS applications should be considered for the following rea-

son:

— the requirement to have a complete a priori knowledge of the filter statis-
tics, represented by the R and Q matrices, are relaxed in the adaptive
Kalman filtering approach. Although the locus of the work in the thesis
has been placed to the adaptation of the R matrix, with the Q made con-
stant, adaptive Kalman filtering is still able to produce the anticipated

enhancement on the overall GPS/INS solutions.

— results [rom pure simulation and pseudo real-time implementation show
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that the adaptive Kalman filtering techniques outperform their standard
counterparts in various situations, e.g. when the vehicle operates on the
surface with continuous or periodical access to the GPS signals, before
and after the vehicle is sent to a certain depth to perform a particular

mission.

e Numerical complexity introduced by the soft computing techniques to the stan-
dard Kalman filtering in making up the adaptivity of the filter is quite substan-
tial. Therefore it is decided to implement the proposed adaptation mechanisms
to a set of simulated data and to a set ol real data collected during a real-time
experiment. In both cases, the proposed adaptive filtering performs equally
well. It should be noted however, that the algorithms are highly implementable

in real time provided superior computing power is at one’s disposal:

e The effectiveness of adaptive Kalnan filtering, depends largely on several im-
portant factors such as the number of satellites that are currently being locked
on to by the GPS receiver and their PDOP.

e The size of the sliding window over which the actual covariance of the innovation
is computed plays an .important part in the overall performance of the filter.
It is determined empirically in such away so that it is large enough to capture
the dynamic of slowly-varying covariance values or small enough to capture the

dynamic of fast-varying covariance values.

® The membership functions found by MOGA depends largely on the parameters
defined thereon. The larger the values of certain parameters can lead to a
higher numerical complexity. The trade-off between the numerical complexity
and the solutions that can be produced by MOGA in this thesis have been made
cautiously so as to sufficiently good solutions can still be found without having

to go through a complex numerical computation.

o Despite the fact that solutions produced by the single objective GA and MOGA
are comparable in some cases, the latter is still preferable to the former as it
can be designed to direct the optimization process to satisfy a certain number

of conditions without compromising the overall performance of the algorithms:
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It has also been observed that improvements in one or more objectives of can
lead to a degradation in other objectives. This stems from the non-dominated

nature of the MOGA solutions.

6.2 FUTURE WORK

The work in this thesis focuses on the adaptation of R. Consequently, the next logical
step is to make the value of Q adaptive. The Q in this thesis are determined carefully

using an iterative simulation process.

To use other sensor outputs; like the magnetic distortion alarm from the TCM2
electronic compass, PDOP and number of satellites from the GPS as part of the

adaptation of the covariance matrices .

Chapter 2 discusses numerous algorithms for combining the information from var-
ious sensors and navigation aids for use in AUV navigation system. These have also
been enriched by the work in this thesis. However, relatively little analytical or quan-
titative work has been undertaken to establish a rationale for sensor selection. Nor has
much work been done to quantify the relative contributions that individual navigation
sensors make to the performance of various navigation systems performance. As the
usage of AUVs become more and more common as scientific and military exploration
platforms, a tool is therefore considered to be necessary in this particular area of
navigation system. The navigation systems that will be examined are similar to the
previously developed Hammerhead AUV navigation system discussed in Chapters 4
and 5 and in Loebis et al. (20035), Loebis et al. (2003¢), Loebis et al. (2004a), Loebis
et al. (2004b) in that they each utilize GPS position fixes and information from INS
sensors. The differences between the systems lay primarily in which INS sensors the
system utilize and the accuracy of the various sensor measurements. For example,
many results are obtained for a system utilizing GPS position fixes, an accelerometer
and a gyroscope. This sensor set was chosen as it is frequently sufficient to achieve
moderate accuracy in an AUV navigation system. Here, the performance of this set of
sensors is examined for various accelerometer and gyroscope performance levels and
varions GPS position fix accuracies. Other results are obtained for a system utilizing

GPS position fixes, an accelerometer, a gyroscope and an electronic compass. The
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performance of this system is examined for various GPS position fix accuracies and for
a range of compass errors. Still other results can be obtained for a system operating in
a littoral water utilizing GPS position fixes, an accelerometer, a. gyroscope, and a ve-
locity estimator (Loebis et al., 2003a) from the VNS. The quantitative results directly
divulge that individual navigation sensor error parameters have on navigation system
performance. These quantitative results should therefore be beneficial for identifying
the most cost-effective navigation system designs. It is tmporiant to note that
although the analysis techniques in this work were developed for AUVs,
they can eﬁ'ortlessly be applied to other autonomous vehicles, which are
employed in the aerospace, underground and land environments. Thus
the post-processing algorithms are valuable as generic practical tools for

all types of navigation system design.

'To achieve the aim of the proposed future work, the following steps need to be un-
dertaken:

Step 1. To develop sensor error models using first and second order Markov processes.

Step 2. To derive sensitivity analysis equations for a Kelman filler and the corresponding
adaptation mechanism using soft computing methodolagy

Step 3. To derive sensitivity analysis equations for a Kalman smoother and the
corresponding adaptation mechanism using soft computing methodology

Step 4. To validate the post-processing analysis tool by undertaking full scale trials.

It i3 felt that major contributions to knowledge will be forthcoming from

this post-processing analysis tool.
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Akey probler with autonomous underwater vehicles is being able to navigate in a generally
unknown environment. The available underwater sensor suites have a limited capability to
cope with such a navigatiori problem. In practice, no single sensor in the underwater
environment can provide the level of accuracy, reliability and the coverage of information
necessary to perform underwater navigation. Therefore there is a need to use a number
of sensors and combine their information to provide the necessary navigation capability in
a synergetic manner. This may be achieved by employing multisensor data fusion (MSDF)
technigues and these are the subject of the material presented in this paper.

INTRODUCTION

he oceans cover 70% of the Earth's surface and contain

an abundance of living and non-living resources that

remain largely untapped waiting to be discovered. How

ever, anumber of complex issues, mainly caused by the

nature of underwater environments, make exploration and pro-
tection of these resources difficult to perform. In the past few
decades, various world-wide research and development aciivities
in underwater robotic systems have increased in order to meet this
challenge. One class of these systems is tethered and remotely
operated and referred to as-remotely operated vehicles (ROVSs).
Extensive use of ROVs is currently limited to a few applications
because of very high operational costs and the need for human
presence in conducting a mission. The demand for a more sophis-
ticated undenwater robotic technology that minimises the cost and
eliminates the need for human operator and is therefore capable of
operating autonomously, becomes apparent. These requirements
led to the development of autonomous underwatervehicles (AUVs).
To achieve truly autonomous behaviour, an AUV must be
able to navigate accurately within an area of operation. In order
to achieve this, an AUV needs 1o employ a navigation sensor
with a high level of accuracy and reliability. However, in
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practice, as will be discussed in the next section, a single
sensor alone may not be sufficient to provide an accurate and
reliable navigation system, as it can only operate efficiently
under certain conditions or it has inherent limitations when
operating in underwater environments. It is therefore neces-
sary to use a number of sensors and combine their information
to provide the necessary navigation capability. To achieve this,
a multisensor data fusion (MSDF) approach, which combines
data from muliiple sensors and related information from
associated databases, can'be used.

The aim of this paper is to survey previous work and recent
development in AUV navigation and to introduce MSDF tech-
niques as a means of improving the AUV's navigation capability.
The structure of this paper is as follows: the next section describes
the navigation systems that are currently being used in AUVs.
MSDF is then discussed, whilst MSDF using specific sensor
combinations applied to the navigation of AUVs follow. '

AUTONOMOUS UNDERWATER
VEHICLE NAVIGATION

Navigation systems used by AUVs that are discussed here include
dead reckoning, radio, optical, acousfic and terrain-relative navigation.
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Dead Reckoning Navigation _

Dead reckoening is a mathematical means to determine posi-
tion estimates when the vehicle starts from a known point and
moves at known velocities. The present position is equal to the
time integral of the velocity. Measurement of the vector velocity
components of the vehicle is usually accomplished with-a com-
pass.(to obtain direction) and a water speed sensor {to obtain
magnitude). The principal problem is that the presence of an
ocean current can add a velocity component to the vehicle, which
is not detected by the speed sensor.

An inertial navigation system (INS) is a dead reckoning
technique that obtains position estimates byintegrating the signal
from an accelerometer, which measures the vehicle's acceleration.
The vehicle position is obtained in principle by double integration
of the acceleration. The orientation of the accelerometer is gov-
ermned by means of a gyroscope, which maintains either a fixed or
tuming position as prescribed by some steering functon. The
orientation may also, in principle, be determined by integration of
the angular raves of the gyroscepe. Both the accelerometerand the
gyroscope depend on inerta for their operation

A dead reckoning navigation system is attractive mainly
because it uses sensors that are self-contained and able to provide
fast dynamic measurements. Unfortunately in practice, this inte-
graton leads to unbounded growth in position error with time
due to the noise associated with the measurement and the
nonlinearity of the sensors, and there is no built-in method for
reducing this emmor. Depending on the sensors used and'the
specific vehicle missidn, the navigational error can grow rapidly to
the point where either the mission will not produce useful data or
it will not be achievable at all.

Two types.of dead reckoning sensors have been widely
employed in AUVs: inertial measurements units (IMUs) and
Doppler velocity sonar (DVS). Many very accurate IMUs have
been developed for submarines. However, these are typically very
expensive devices and are used only in naval vehicles. Lower cost
IMUs have been used in AUVs!. However, due to the low
acceleration encountered in autonomous underwater vehicles,
these units are not normally of sufficient accuracy to provide
stand-alone navigation.

DVS sensors provide measurement of a velocity vector with
respect to the sea floor. These sensors normally comprise three or
more separate sound beams allowing construction of a full three-
dimensional velocity vector. Typically, these instruments have
specifications .of about 1% of the distance travelled®. However,
these results can only be achieved when the speed of sound in the
AUVs area of operation does not vary significantly as a result of
changes in the salinity, temperature and density of the water.
Therefore, as in the IMU case, these units are not normally used
to provide stand-alone navigation.

Radio Navigation

Radio navigation systems mainly use the global positioning
system (GPS)*. The GPS is a satellite-based navigational system
that provides the most accurate open ocean navigation available.
GPS consists of a constellation of 24 satellites that orbit the earth
in 12 hours. There are six orbital planes (with nominally four
satellites in each) equally spaced (60 degrees apart) and inclined
at about 55 degrees with respect to the equatorial plane’. This
constellation provides the user with between five and eight
satellites visible from-any point on the earth.

The GPS-based navigation system is used extensively in
surface vessels as these vehicles can directly receive signals
radiated by the GPS. Unfortunately, these signals have a lirnited
water-penetrating capability. Therefore to receive the signals, an
antennaassociated with an AUV employing a GPS system must be
clear and free of water. There are three possible antenna configu-
rations to meet this requirement. These are fixed, retractable, or
expendable antennas*. A fixed antenna is a non-moving 2ntenna
placed on the outside ol the AUV. The AUV has to surface to
expose this antenna and stay surfaced until the required informa-
tion has been received and processed adequately. A retractable
antenna is one that the AUV would deploy while still submerged.

“When the required information is received, the antenna is re-

tracted back to the AUV. The expendable antenna works alongthe
same principle as the retractable antenna, except that it is used
once and discarded. When required, another antenna would be
deployed.

These antenna configurations require the AUV either 10
surface or to rise to a shallow depth, but there are several
disadvantages®. For an AUV 1o receive radio signals, it must
interrupt its mission, expend time and energy climbing
and/or surfacing, risk its safety for up to a minute on the
surface or in a shallow depth ol water getting the fix, which
is especially dangerous in a hostile environment, then
expend additional time and energy submerging to resume
the mission. Even if an extremely accurate fix is obtained,
the vehicle location uncertainty can grow significantly dur-
ing descent before the mission is ever resumed. Therefore
there is a need to combine information obtained by a GPS
navigation system with other underwater navigation sen-
sors when the AUV operates underwater to maintain good
navigation capability. '

Optical Navigation

In the context of optical imaging for navigation, the underwa-
ter environment is a very special place. The reason for this is that,
in addition to visual-sensing issues that must be addressed in land
and space-based vehicles, there are also issues specific to under-
waler imaging. These issues include limited range of visibility,
brightnessand contrast variation, and non-uniform illumination®.
Limited range of visibility is caused by the attenuation of light in
water by absorption and scattering by suspended matter. Light
absorption and scattering cause the amount of reflected light to
exponendally decay as a function of distance to scene surfaces.
The absorption and scattering of light also affect image brightness
and contrast. Objects far away appear dark; as they move neager,
their brightness and contrast increase. Changes in image intensity
brightness and contrast can cause many image processing tech-
niques to fail. If some type of intensity normalisation is not
performed, brightness and contrast differences between images
make it difficult to realise that the same scenery or object is being
viewed®. Non-uniform illumination refers to the limitation of
artificial light sources to provide uniform illumination of the entire
scene under observation. A classic example that demonstrates the
difficulties non-uniform lighting can cause is the imaging of a
planar, perpendicular surface using a collocated camera/light
source. In this case, the image centre will appear brighter than the
image border. If the camera and light source are moved relative to
the scene, both the absolute and relative brightness of each pixel
in the image will change. Simple effects such as these can degrade
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correspondence (image matching) performance; more
complicated effects such as shadowing can cause significant
difficulties for most image correspondence techniques®.
Optical-based navigation involves the estimation.of 3D mo-
‘tion from tme varying imagery’®. Most techniques for this
purpose require knowledge of relevant 2D geometric information
/in an image sequence. The current state-of-the-art in optical-
based navigation is essentially a form of dead reckoning®. This
method works by creating a mosaic where a series of images are
taken-from a video stream and aligned with each other to form a
chain of images along the vehicle path. When anew image isabout
to be added to a mosaic, it must be properly aligned with the last
image in the chain of images comprising the mosaic. To accom-
plish this, the two images are compared, and the displacement
vector between the two image centres is calcutated. Therefore, to
determine the current vehicle position, it would be possible to
compute the total distance travelled by summing the image

displacement measurements along the image chain®. As with the.

INS discussed earlier, this method has a fundamental problem:
the unbounded propagation of errors on vehicle positicn over
time. This random walk-effect is due to the accumulation of image
alignment errors as the length of mosaic increases (Fig 1).
Therefore, as in the INS case, this navigation method is not
normally used to provide stand-alone navigation.

Acoustic Navigation

Acoustic navigation is the most widely accepted form of AUV
navigation, and & varjety of systems have been both researched
and tested. Most require an engineered environment, meaning
that something has been added to the environment to aid
navigation. The distance between acoustic baselines is generally
used to define an acoustic positioning system; that is the distance
between the active sensing elements. Three types of system have
been primarily employed; ulma short baseline (USBL), short
baseline (SBL) and long baseline (LBL) with distance between
acoustic baselines less than 10 cm, between 20 to 50m and
between 100 to 6000m respectively'.

USBL systems (Fig 2a) employ a single beacon on the bottom
of the seafloor which emits acoustic pulses without being interro-
gated from an AUV. The onboard AUV equipment consists of a
two-dimensional hydrophone array mounted on the bottom of
the AUV, USBL systems measure the time- or phase difference of
the amival of an acoustic pulse between individual elements of the
hydrophones. This time- or phase difference is used to determine
the bearing from the USBL transceiver to the beacon. If a ime-of-
flight interrogation technique is used, a range to that beacon will
also be available from the USBL system. In SBL (Fig 2b) three or
more transceivers are rigidly mounted on the hull of the AUV,
making either an equilateral or a right-angled triangle. The dis-
tance between each transceiver is precisely known. A bearing to
the tansponder is derived from the detection of the relative time-
of-arrival as an acoustic pulse passes each of the transceivers. If the
time-of-flight interrogation technique is used, a range to that
beacon will also be available from the SBL system. Any range and
bearing position derived from USBL and SBL systems are with
respect to the transceivers mounted on the AUV and, as such, the
systems need a vertical reference unit (VRU), a gyroscope and,
possibly, a surface navigation system to provide a position that is
seafloor (Earth) referenced'®.

In IBL navigation systems (Fig 2c), an amay of acoustic
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beacons separated by a range of 100m to a few kilometres is
deployed on the seabed'®!!, The vehicle determines its position
by listening to the pulses emitted from the beacons and recording
the arrival times. The location of these beacons must be provided,

* and'the vehicle: must be able to detect and-distinguish berween

their signals. The two major-types of LBL navigation are descxibed
as spherical and hyperbolic. In spherical navigation, the vehicle
interrogates the amray by emitting its own pulse and then listens
for the responses from the beacons. In hyperbolic LBL navigation,
the vehicle does not interrogate the array, but instead listens
passively to the synchronised pulses emitted by the beacons'.
Any range/range position derived from a LBL system is with
respect to relative or absolute seafloor co-ordinates. Assuch a LBL
system does not require a VRU or gyroscope!'®.

Terrain-Relative Navigation

For some applications of AUVs, the use of acoustic beacons is
undesirable or impractical. In particular, the acoustic beacons
must be pre-deployed for every mission and the vehicles can
operate only aver relatively short ranges, and they are far too
expensive to be practical in low cost civilian AUV work. Also the
accuracy of the acoustic signals tend to degrade due to noise and
reverberation problem. This then motivates the use of onboard
terrain sensors for the purpose of navigaton of an AUV, An
onboard sensor is used to obtain informaton on the terrain
surrounding the vehicle in the form of features or landmarks. The
vehicle maintains a map of these landmarks which may or may not
have been provided a priori. As the vehicle moves through the
environment, the landmark.observations obtained from the ter-
rain sensor are matched to the landmarks maintained in the map
and used, in much the same way as beacon observations, to
correct and update the estimated location of the vehicle. In
underwater environments it is very rare that an a priori terrain map
will exist. Unlike surface applications, satellite or aircraft imagery
cannot be used to build an underwater terrain map. This then
precludes the commion use of digital terrain elevation data (DTED)
as employed by systems such as terrain contour matching
(TERCOM) used for cruise missiles'. This limitation then moti-
vates the development of simultaneous localisation and mapping
(SLAM) for AUV navigation:(see Fig 3).

SLAM is the process of concurrently building a feature-based
map of the environment and using this map to obtain estimates of
the location of the vehicle. In essence, the vehicle relies heavily on
its ability to extract useful navigation information from the data
returned by its sensors. The vehicle typically starts at an unknown
location with no a priori knowledge of landmark locations. From
relative observations of landmarks, it simultaneously computes an
estimate of vehicle location and an estimate of landmark locations.
While continuing in motion, the vehicle builds a complete map of
the landmarks and uses these to provide continuous estimates of
the vehicle location. By tracking the relative position between the
vehicle and identifiable features in the environment, both the
position of the vehicle and the position of the features can be
estimated simultaneously. The SLAM algorithm has recently seen
a considerable amount of interest from AUV community as a tool
to enable fully autonomous navigation!*1>1%,

MULTISENSOR DATA FUSION

Itis clear from the previous discussion thatinformation from
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sensors-used in one navigation system need to be combined or
fused with information from sensors of other.navigation systems
to improve the overall accuracy of the system. To achieve this,
MSDF techniques; which combine.data from multiple sensors
and related information from associated databases can be used!” 18,
Varshney'® describes MSDF as the acquisition, processing and
synergistic combination of information gathered by variousknowl-
edge sources and sensors to provide a better understanding of a
phenomenon. In this section, a general introduction to MSDF is
provided. The description on benefits of MSDF, problems and
issues, levels of MSDF where fusion takes place and MSDF
algorithms are presented. :

Benefits of MSDF

In general, fusion ol multisensor data provides significant
advantages over single source data. The advantages can be sum-
marised as follows!®2%:

1. Improved system reliability and robustness. Multiple sensors
have inherent redundancy. Due to the availability of data from
multiple sensors, uncertainty can be reduced, noise can be
rejected and sensor failure canvbe tolerated.

2. Extended coverage. An increase in both spatial and temporal
coverage of an observation is made possible by the use of muldple
sensor systems. Multiple sensors can observe a region larger than
the one observable by a single sensor.

3. Increased confidence. Joint data from multiple sensors con-
firm the set of hypotheses about an object or event. The confirma-
tion can be used to exclude some hypotheses to produce a
reduced set of feasiblé options and as a result reduce the effont
required to search for the best solution.

4. Enhanced resolution. Multiple sensors with different resolu-
tion" can result in a greater resolution than a single sensor can
achieve. '

Problems and Issues

A technique for MSDF should consider several key issues,
summarised below!%2¢:

1. Registration/data alignment. Each sensor provides data in
its local frame. The data fromn different sensors must be converted
into a common reference frame before combination. This prob-
lem of aligning sensor reference frames is often referred to as a
registration problem.

2. Correspondence/data asseciation. Once the sensors are reg-
istered, there is still a need to establish which data features in one
sensor refer to the same aspect environment of the sensor.

3. Fusion. The fusion of data from multiple sensors orasingle
sensor over time can take place at different levels of representa-
tion. A useful categorisation is to consider MSDF as taking place
at signal-, pixel-, feature- and symbol levels of representation.

4. Inference and estimation. Once the data has been fused, itis
necessary to infer the sensed data due to the inherent uncerainty
in the combined measurements. .

5. Sensor Management. Sensor management can take the form
of active data gathering where the sensors are directed via feed-
back to specific fusion stage, physical reconfiguration of the
spatial pattern of the sensors and sensor type, or algorithmic
changes to the combination of data.

!Lévels of MSDF

The common fused representation may range from a low-level
probability distribution for statistical inference to high level

- logical proposition used in productic_m tules for Jogical infe rence.
Luc and'Kay* and Luo et al' 2 divide the levels of represen tation

of MSDF into signal-, pixel-,.feature- and symbol levels.
1. Signal-level. Signal-level fusion deals with the combimation
of signals from a group of similar sensors with the aim of deriving

‘asingle composite signal, usually of the same form as the original

signals but with a higher quality. The sighals produced by the
sensors can be modelled as random variables corrupted by
uncorrelated noise, with the fusion process considered as an
estimation procedure. A high degree of spatial and temporal
registration between the sensed data is necessary for fusion totake
place. '

2. Pixel-level. Pixel-level fusion deals with the combination of
multiple images inio a single image with a greater information
content. The fused images can be modelled as a realisation of a
stochastic process across the image, with the fusion process
considered as an estimation procedure. In order for pixel-level to
be feasible, the data provided by each sensor must be able to be
registered at the pixel-level and, in most cases, must be sufficiently
similar in terms of its resolution and information content.

3. Feature-level. Feature-level fusion deals with the combina-
tion of features derived from signals and images into meaningful
internal representations or more reliable features. A feature pro-
vides for data absmaction and is created either through the
attachment of some type of semantic meaning to the results of the
processing of some spatial and/or temporal segment of the
sensory data or through a combination of existing features. As
compared to the signal- and pixel-level fusion, the sensor registra-
tion requirements for feature-level fusion are less stringent, with
the result that the sensors can be distributed across diflerent
platform.

4. Symbol-level. Symbol-level fusion deals with the combina-
tion of symbols with an associated uncenainty-measure, each
representing some decision, into symbols representing composite
decisions. A symbol derived from sensory information represents
a decision that has been made conceming some aspect of the
environment. The decision is usually made by matching features
derived from the sensory information to a model. The sensor
registration is usually not explicitly considered in symbol-level
fusion because the spatial and temporal extent of the sensory
information upon which a symbol is based has already been
explicitly considered in the generation of the symbol.

MSDF Atgorithms

This section presents fusion algorithms for MSDF. Luc et al”
classify MSDF algorithms as follows: estimation methods, clas-
sification methods, inference methods and artificial intelligence
methods. Each of these methods will be discussed here and
applications to AUV navigation are presented later.

1.Estimation methods. A general estimation method of fusion
is to take a weighted average of redundant information provided
by a group of sensors and use this as the fused value. While this
method provides real-time processing capability of dynamic
low-level data, the Kalman filter is generally preferred as it
provides a method that is nearly equal in processing require-
ment and results in estimates for the fused data that are optimal
in a siatistical sense. Kalman filtering is an estimation method
that combines all available measurement data, plus prior knowl-
edge about the system and measuring devices, to produce an
estimate of the state in such a manner as to minimise the error
statistically™®. A dewailed formulation of Kalman filter is given in
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appendix A. :

~ 2. Classification methods. Classification rnethods involve parti-
tioning of the multidimensional feature space (by geometrical or
statistical boundaries) into distinct regions, each representing an
identity class. In this method, the location of a feature vector to
prespecified locations in feature space is compared. A similarity
measure must be computed and each observation is compared to
a priori classes. In the cluster analysis approach, geometrical
relationships on a set of sample data in a training process are
established?. Other approaches include unsupervised or self-
organised leaming algorithms such as K-means clustering and the
associated adaptive update rule, the Kohonen feature map?. To
fuse sensory data in an adaptive manner and allow to automati-
cally adjust the granularity of the classifier and to maintain
stability against category proliferation in the presence of drifting
inputs and changing environments, ART, ARTMAP and Fuzzy
ART nerwork approaches can be used.

3. Inference methods. Bayesian inference and Dempster-Shafer
evidential reasoning are the main approaches in inference meth-
ods. Bayesian inference provides formalism for MSDF that allows
sensory data to be fused according to the rules of probability
theory. This approach relies on the use of Bayes’ rule where a
relationship between the a priori probability of a hypothesis, the

.conditional probability of an observation given a hypothesis and
the a posteriori probability of the hypothesis is provided’®. An
immediate problem in this approach is that the required knowl-
edge of the a priori probability and the conditional probability
may not be always;ayailable. Also in defining these probabilities,
often subjective Judgemems are necessary’’. An extension to the
Bayesian inference method, Dempster-Shafer evidential reason-
ing, overcomes these drawbacks by keeping track of an explicit

probabilistic measure of the lack of information conceming a -

proposition’s probability. The cost of this approach is the addi-
tional time required for computation.

4. Artifictal intelligence methods. Arntificial intelligence is a vast,
loosely defined area encompassing various aspects of pattern
recognition and image processing, natural language and speech
processing, automated reasoning and a host of other disciplines.
Fuzzy logic and neural network are two of the most widely used
approaches in artificial intelligence methods for combining
multisensor data. Fuzzy logic involves extension of Boolean set
theory and Boolean logic to a continuous-valued logic via the
concept of membership functions to quantify imprecise concepts.
Neural network is a method designed to mimic a theory of how
biclogical nervous systems work. In this method, an individual
neuron takes weighted input from a number of sources, perform
a simple function and then produces a single output when the
required threshold is reached. Neurons can be trained to repre-
sent sensor data and, through associate recall, complex combina-
tions of the neurons can be activated in response to different
sensor stimuli®.

APPLICATIONS OF
MULTISENSOR: DATA FUSION

The discussion here focuses on a variety of approaches to the
fusion of information from combinations of different types of
Sensors.

Inertial and GPS-Based Systems
McGhee et al*® describe a navigation system employed by the
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Phoenix AUV using an inertial and differential GPS (DGPS)
navigational'suite to conduct shallow-water mine-detection and
coastal environment monitoring missions. In the course of its
mission, Phoenix combines signal-level information from a gyro-
scope, depth sensor, speed sensor, and a compass heading to
predict its position while operating underwater. The vehicle
surfaces periodically-to obtain an update of its position from a
DGPS fix and then submerges (Fig 4a). Problems with this setup
concern the timé required to acquire the DGPS data and the
influence of water covering the DGPS antenna during position
lixing were examined in Norton®®. The inertial navigation sensors
described in McGhee et al*® obtain accelerations and angular rates
of change for the vehicle. A 'nine state' Kalman filter is used to
process the dataand to give the prediction of the vehicle position.
The DGPS data is then used to update the predicted position
resulting in an estimated position. The nine state Kalman filtercan
be divided into seven continuous-time states (three Euler angles,
two horizontal velocities, and two horizontal positions) and two
discrete-time states (estimated east and north current derived
from the DGPS fixes). The method used to fuse sensory informma-
tion discussed by McGhee et al?® can be shown as in Fig 4b.
The main problem with the Kalman filteremployedin McGhee
et al® is the need for a tuning system to prevent filter divergence.
This problem can be overcome by the use of artificial intelligence
(AD techniques as have been applied in helicopters®, automo-
biles*' and targer tracking system*? applications. Kobayashi et al™
wished to determine accurately the position of an automobile
using DGPS. In their work, a fixed fuzzy rule based algerithm is
used to tune the covariance factors of a Kalman filter. The shape
and positioning of the various fuzzy.sets on their respective

- universes of discourse having been decided by heuristic means.

The main problem with the Kobayashi et al’! methedology is the
reliance on trial and error to generate the fuzzy rule based
algorithms. Similar comments can also be made concerning the
robot positioning work of Jetto et al**. To overcome such draw-
backs genetic algorithms*** have been used to optimise fuzzy
systems. Otherintelligent optimisation techniques such as chemo-
taxis, alopex and simulated annealing have also been successfully
employed in the design optimisation of fuzzy control systems*6-7,

Acoustic-Based Systems

Atwood etal*® have builtand tested an AUV that utilises a LBL
navigation system with an innovative fix-finding algorithm and
commercially-available hardware. They use a spherical navigation
system, in which the vehicle actively interrogates acoustic mans-
ponders and calculates ranges from round tip transit times,
resulting in a greater accuracy (about lm} compared to the
hyperbolic method proposed by Bellingham et al'?. In this system,
the vehicle can use two operating modes, master mode and
transponder mode. In the first mode, the vehicle triggers the
acoustic transponders, which reply with an acoustic signal. The
vehicle computer can then calculate distances and, applying
acoustically measured depth, a position. Using the first mode,
operation over an area of 1 km!? is possible. In the second
operating mode, asurface vessel triggers the vehicle, which in tum
interrogates the transponders. Position of the AUV can then be
calculated in the surface vessel through an established GPS
position and knowledge of the relative positions of the AUV and
the transponders. This procedure s called the fish solution, asitlets
the operator on the ship monitor vehicle progress. The second
mode is developed to have operational areas as large as 10 km?2.
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APPENDIX B

THE HAMMERHEAD STATE SPACE MODEL PROPERTIES

The properties of nine different Hammerhead state space models are shown in Figure
B.1 - B.9. These include the fit between simulated and measured output, model resid-
nals, step response, impulse response and pole-zero map. In this thesis, second order
model] is deemed to be sufficient for the analysis of the proposed MSDF techniques.
This is based on the fact that the difference between the fit (between simulated and
measured output) of second order system and higher order systems is infinitesimal.
Autocorrelation function of the residual and the cross correlation between the residual
and the input are also computed and displayed. The 95% confidence interval of these
values are shown by the dashed curves. It is evident by visual inspection of Figure
B.1(b), B.2(b) and B.3(b), that the second order model could produce an autocorrela-
tion function that goes inside the confidence interval better than the third and fourth
order models do. Further comparison between the second order model and the fifth to
the tenth order models shows that more autocorrelation of these models lie inside the
95% confidence intervals. However, the use of these models could increase the level of
complexity in the development of the proposed algorithm. This is also one of the rea-

son behind the preference to use the second order model over the higher order models.

Further analysis can be made by observing the step response of these models in
conjunction with their pole-zero plots. The step response, which are shown in Figure
B.1(c)-B.9(c), displays a particular behaviour, which generally belongs to an inte-
grator type of system where the output is produced by integrating the input. This
behaviour is mainly caunsed by the presence of the poles at the axis of the unit circle
(z = 1 or equivalent to s = 0), which along with the step input will form a ramp

function, whose output magnitude can increase without bound as time progresses.
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The impulse response of the identified Hammerhead systems are shown in Figure
B.1(d)-B.9(d). A comparison can be made between the response of the second order
system and its higher order counterparts. The second order system dies away to a

constant heading at approximately 10(sec), whilst the higher order systems, with the
exception of the seventh order system, die away at approximately 2-3(sec). However,
observation on the response also reveals the nature of oscillation of the systems.
Although they die away more rapidly than the second order system, the higher order
systems are more oscillatory and consequently may require a complex proper control
system design. This is also one of the reason behind the choice on the second order

system.
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The minus sign (-) on ., indicates that the estimate is an a priori estimate for
the next step. The state estimate update in Equation (D-3) does not equal the true
state update in Equation (D-1). Therefore, the covariance of the estimation error

(P}) needs also to be propagated:
e = AxPRAY + Qp (D-4)

Equation (D-3) and (D-4) are referred to as the time update/prediction equations of
the Kalman filter. If a measurement available, the estimate is updated by incorporat-
ing the incoming data with a gain that takes the covariance of the estimation error

and the new data into account:
K. = P,H][H,P;H] + Ry’ (D-5)

Iy = '%; + Kk[zk - Hk.’i:;] (D-G)

The gain, K, is denoted the Kalman gain and is the gain that minimises the trace
of the resulting covariance matrix, P;. The covariance after the incorporation of new
measurement, is:

P, = [I - K H P, (D-7)

Equation (D-5)-(D-7) are referred to as the measurement update of the Kalman filter.

D.2 THE EXTENDED KALMAN FILTER

Various attempts have been made to modify or generalise the Kalman filter to fit
circumstances beyond linear system and additive Gaussian noise. One of the most
popular representation of these filters is the eztended Kalman filter, used when the

process or output equations are non-linear.

A non-linear system is given by:

Tt = Ty, ug) + wi,wy ~ N(0, Qi) (D-8)

zr, = h(x) + vg, v ~ N(0,Ry) (D-9)
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APPENDIX E

FUZZY LOGIC

Human brains do not reason in the same way as computers. The way computers
reason is in clear steps with strings of s and 13. Humans reason with a sense of a
gradual degree of truth to attributes like big, fast and young. However, these vague-
ness way of thinking is usually avoided in classical logic and computing, because it
is considered as having a negative influence in their inference processes (Nauck et
al., 1997). This conundrum has been noticed by several scholars in the past and
subsequent attempts to develop a mathematical structure capable of encapsulating
the human way of reasoning have then undertaken. In effect, several methodologies
have been proposed and nowadays they are developed under a domain so-called soft

computing (SC) technology.

The term SC was invoked by Zadeh (1994), to refer to systems that are capable
of providing tolerance to uncertainty and an imprecision in their reasoning. SC con-
stitutes several techniques with fuzzy logic (FL), genetic computing (GP), neural
networks (NN) and probabilistic reasoning (PR) as the cardinal members (Tsotkalas
and Uhrig, 1997). FL, GP, NN and PR mostly contribute to different research do-
mains and therefore they are synergistic and complementary rather than competitive
in nature. The blend between these "substances” leads to the so called "hybrid in-
telligent systems” (Jang et al., 1997). Nowadays, one of the most noticeable and

burgeoning of the hybrid intelligent systems are fuzzy-genetic systems.

Fuzzy-genetic systems integrate synergistically two complementary approaches: fuzzy
logic and the genetic algorithm (GA) (discussed in details in Appendix F). On the

one hand, fuzzy inference systems can incorporate human knowledge and perform
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inferencing and decision making thereof; while 2 GA can be used to perform sys-
tematically a random search in order to find an optimal solution to an engineering
problem. What genetic-fuzzy systems together can provide is a single methodology

with all the above characteristics and these are desirable in many MSDF applications.

E.1 BRIEF CHRONOLOGICAL RETROSPECTIVE

Zadeh proposed mathematical theory of approximate reasoning capable of emulating
human logic in his breakthrough paper on fuzzy sets in 1965 (Zadeh, 1965). The word
Jfuzzy s mentioned first in this paper to mean "vague” in the technical sense. In the
first decade after this paper was published, most application oriented papers in this
field were focused on theoretical studies toward possible applications and sometimes
with real applications on a laboratory scale. One of the most noticeable idea was the
concept of fuzzy control pioneered by Mamdani and Assilian (1975). In this work,
control behaviour was described by a qualitative algorithm. The first application of
the proposed method was the design of the automatic control of a steam engine/boiler
combination in the laboratory. But not long after that, Holmblad and @stergaard
(1982) realised the automatic control of a cement kiln. Since then the concept of fuzzy
systems was soon to be associated with a vast number of practical applications. One
well known example was the the design of an automatic drive fuzzy control system
for subway trains in Sendai city, Japan (Reznik, 1997). Indeed, fuzzy logic eventually
received formal recognition by the technological world and lately efforts have increased
to define a standard, based on ISO-9000, the general system development guidelines,
for the methodology of fuzzy logic systems (Schram et al., 1997).

E.2 FUZZY SYSTEMS

The fuzzy set paradigm of Zadeh’s theory of approximate reasoning established a
connection between concrete and ambiguous ways of reasoning. Mathematical for-
mulation was developed to allow the concept of fuzzines or ambiguity captured in a
language that can be comprehended by computers, to provide capabilities to emulate

the human mind as a decision maker. Later, Dubois and Prade (1988) and Klir and
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Yuan (1995) devised the theory of possibility developed on the ground of this new

methodology.

The fundamental principle of fuzzy sets is a variable notion of membership. That
is to say that elements can belong to sets to a certain degree. The fuzzy set theory
was developed to handle situations that have no sharp boundaries or in which the
events are ambiguously defined. Consider for example the set of HIGH, assuming
that the perception of high is the velocity of an object that moves with no less than
80(km/hour):

HIGH = {z € P | Velocity (z) > 80} (E-1)

over some domain P of all moving objects and using a function Velocity that returns
the velocity of an object z € P in km/hour. Characteristic function can also be

defined for the same problem:

1 : Velocity (z) > 80
puicu(z) = v ) B (E-2)
0 : 80 < Velocity (z)

which assigns to elements of P a value of 1 whenever this element belongs to the set
of HIGH, and 0 otherwise. This characteristic function can be seen as a membership
Junction for the set HIGH, defining the set HIGH on P.

Using this perception, an ohject that moves 79:99(km/hour) is therefore not consid-
ered moving with a high-velocity. Hence, defining the set HIGH using such a sharp
boundary seems not very appropriate. Using the fundamental principle of fuzzy sets,
it can be specified that 79.99 (km/hour) still belongs to the set of HIGH, but only to

a degree less than one. The corresponding membership function would look slightly

different:
1 . Velocity (z) > 80
picn({z) = ¢ 1 - %= "e;gcity(-"«')) 60 < Velocity (r) < 80 (E-3)
0 : Velocity () < 60

The set HIGH contains the velocity ol an object between 60 and 80(km/hour) with
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a linearly decreasing degree of membership, that is to say, the closer the velocity of
an object approaches 60, the closer its degree of membership to the set of HIGH ap-
proaches zero. Hence, the fuzzy set allows an ambiguous proposition to be described
in a logical sense using the entire interval [0,1] to create degrees of possibility of truth,
in contrast to classical sets, where an element can only either belong to a set (Boolean

value 1) or lies completely outside of this set {Boolean value 0).

Essentially, [uzzy sets can be considered as look-up tables that contain a series of
truth membership values that encode the imprecision associated with certain events.
Consequently, unlike their classical counterparts which are not capable of capturing
the ambiguity of many real-life situations, fuzzy sets have more expressive power in
this respect. In conclusion, fuzzy logic can be defined as the discipline that represents
vagueness, imprecision or uncertainty by handling multi-valent membership degrees.

It is a precise discipline dealing with tmprecise data.

From a practical point of view, Zadel’s philosophy allows the mechanism of human
reasoning to be incorporated into the systems theory and led to the development of a
linguistic type of systems called fuzzy systems. The use of fuzzy sets to enhance the
performance of a system that employs MSDF techniques, permits a generalisation
of information and a quantification of imprecision, often required in the design and
implementation of such a system. Fundamentally, the representation of information
in fuzzy systems imitates the mechanism of approximate reasoning performed in the

human mind.

A fuzzy system comprises of four major components:

1. A fuzzification interface, which maps real crisp inputs into fuzzy inputs, by

means of fuzzy sets,

2. A rule base containing a number of rules in the form of "IF < antecedent >

THEN < consequent >", where knowledge about the problem is acquired,

3. A mechanism of inference, which deals with the fuzzy rules in order to generate

fuzzy conclusions (consequent) from fuzzy premises (antecedents),
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For the example presented herein, the membership function has a Gaussian shape, but
in practice these functions may take various forms: triangular, trapezoidal, etc. Due
to simple formula and computational efficiency, triangular membership functions have
been used extensively, especially in real-time implementations. However, since these
functions are composed of straight line segments, they are not smooth at the corner
points specified by the parameters. Gaussian is a type of membership functions de-
fined by smooth, non-linear differentiable functions. Although Gaussian membership
function achieve smoothness, they are unable to specily asymetric functions, which

are important in certain applications (Gorzalczabny, 2002).

A fuzzy set A is thus defined through a set of pairs of a membership function 4
that assign each element v in the Universe of Discourse U, a degree of membership
A, pa(v):

A= {(v,pa(®))|v € U, palv) : U — [0,1]} (E-4)

with the partitions corresponding to each fuzzy set in U are known as domains. Con-
sidering the example presented in Figure E.1, the U is the interval [0,10] and the
domain for the fuzzy set HIGH is [50,110], with Velocity constitutes a fuzzy model
parameter. To define completely a problem in terms of fuzzy logic, the allowable
range of each model parameter (Velocity, Acceleration, etc.) is divided into over-
lapping regions (SLOW, MEDIUM, HIGH), each region describing, semantically,
a domain of the associated fuzzy variable, as presented in Figure E.2. The overall
process of collecting the current real-world crisp number and to transform the values
-appropriately into a fuzzy number by means of fuzzy sets is known in the literature

as the process of fuzzification.

E.4 FUZZY RULE BASE

Fuzzy systems rely on the knowledge possessed by human expert, with which qual-

itative IF-THEN  rules are then developed and embedded in the system structure.
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known as Maemdani (Mamdani and Assilian, 1975) or linguistic fuzzy systems. In
many applications, rules that assign crisp equations to the output variable are also
used. Most commonly there are either linear or quadratic dependencies on one or more
input variables (first order or second order Takagi-Sugeno) fuzzy system (Takagi and
Sugeno, 1985). The later system emerged as an alternative to Mamdani’s linguistic
formulation, and the idea was to alter the nile structure so that qualitative and quan-

titative knowledge can be equally incorporated into the knowledge base.

A correct definition of the rule base is ensured if the following criteria are satisfied:

1. Completeness - any combination of inputs.should result in appropriate output
2. Consistency - The rule base does not contains contradictions,

3. Continuity - neighbouring rules generate output fuzzy sets with non-empty in-

tersections.

E.5 INFERENCE ENGINE

The inference engine is often regarded as the heart of the fuzzy system, a description
that reflects the primary importance of this system component in processing fuzzy
data. The inference engine is an interpreter of the rule base, with the task to derive a
fuzzy conclusion from a set of fuzzy IF-THEN rules. The basic inference mechanism
is-the generalised modus ponens (GMP) (Lee, 1990; Jang and Sun, 1995). The GMP
is the extension of the classical Boolean logic modus ponens (MP) rule of inference.

The MP can be illustrated as follows:

Rule: IFzIS ATHEN y 1S B
Fact: 7 IS A
Conclusion: yIS B

where A and P designate predicates which characterise properties of z and y respec-
tively. According to MP, a truth of a proposition y IS B can be inferred from the
truth £ IS A and the implication IF 2 IS A THEN y IS B. However, in much human

reasoning MP is employed in an approximate manner, which can be written as:
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Rule: IFzISATHEN 3 1S B
Fact: IS A
Conclusion: yIS B’

This inference procedure is the so-called GMP as it has MP as a special case. When
A’ and B’ are input and output fuzzy sets in U and V respectively, the A’ is' mapped

to B’ through the fuzzy inference engine.

In MP, the equivalent of a rule < IF p THEN ¢q > is the implication p — g¢.
Similarly, the interpretation of the fuzzy IF-THEN operation is given by a logi-
cal function whose arguments are the membership functions of the antecedent and
consequent part of the rule. This logical operation results in a membership func-
tion ug associated with the evaluated rule; the process of doing so is known as fuzzy
implication. Driankov et al. (1993) and Wang (1997) detailed the various types of
implication that have been proposed in the literature. E.g., the implication proposed
by Mamdani, calculates the membership funetion of a rule with minimum operation.
For the rule:e< IF z IS A THEN y IS B >, where < z IS A > and < y is B
> are fuzzy propositions defined in U and V, respectively. According to Mamdani

implication, the corresponding membership function is

tig(z,y) = min(ua(z), pp(y)) (E-8)

where z defined in U, y defined in ¥ (implying that @ is defined in U x V', where
% denotes the Cartesian product operator). If a fuzzy proposition (FP) in a rule
contains connectives AND, then logical operations min is basically used to calculate

its overall membership degree:

FP: 2, IS A, AND 2, IS A, AND..AND z, IS 4, &

prp(Th, - Ty) = mi“(ﬂm (:El )1 U/\z(m‘l)"" La, ('En)) (E—Q)

The Mamdani implication can be written as:
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nq(z,y) = min(urp,,, (), BrP., (1)) (E-10)

if the general expression for a rule with connectives (IF FP,,;, THEN FP,,,, with
FP,,, defined in U = Uy x Uy X ... x U, and FPp,, defined in V =V, x Vo x ... x V;})

is adopted. Logically, the Mamdani implication is equivalent to: p 4+ ¢=pAq.

Finally, an output B’ given a set A’ in U and having determined g, is.obtained by

means of compositional rule of inference proposed by Zadeh (1973):

B=AoR=A0(A—> D) (E-11)

with o is the sup-min operator, [t = A — B is a fuzzy relation in the product space
UxV,and

e (y) = Sl;p(min(#,v , ig(z, ) (E-12)

This relation is called sup-min composition. In its general form, a compositional
operator is expressed as a sup-f composition, where ¢ represents the logical {-norm

operator {min, algebraic product, bounded product and drastic product).

The substitution of yg in (E-10) with the expression from (E-12) yields:

pp(y) = sup (min(pa(x),min(ppp, o, (2)s LFP.. (¥)))) =
Slép (Min (A (T} Pane (), 1P Peons (¥))) = 5‘;1) (min(7i, P P,on, (¥))) (E-13)

with 7; is defined as the degree of matching or fulfillment (DOF). The DOF of each
individual rule can be obtained by matching the facts with the rule premises. This
degree of matching is given by the actual membership degree of a fuzzy set A’ to the

input fuzzy set A.
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The discussion so far is based on a rule base that consists only one rule. In any

practical application, a fuzzy system can be formed by several rules. In such a case,

a method to combine all the rules should be utilised in order to generate the appro-

priate fuzzy output. composition based and individual rule based are two categories

of inference on a set of rules that are identified by Wang (1997).
In composition based inference, a logical operation, normally the union (maz) are

used to combined all the component rules of the rule base into a single rule. The

membership function associated to the entire rule is described as:

HQ 4 (T, y) = max(ugn)(z, ¥), o) (2, ¥), - Hon (T, 1)) (E-14)

where fig(;) is the membership function related with the 4-th rule. Similar to (E-12),

the fuzzy output is then calculated as it would be the outcome of a single, resultant

rle :

we (y) = sup(min(pr (), 11g.u (1)) (E-15)

In individual-rule based inference, a logical operation is used to aggregate the outputs
of individual rule. The output membership function pg ;) (#=1: N) of each rule is
calculated with {(E-12), and by aggregating the value of all individual rule outputs,

the final output can be obtained:
pe(y) = max(ppny(y), npe) (), --Lew)(y) (E-16)

According to Driankov et al. (1993), this kind of inference has proven to be more

efficient in terms of computational time and memory, and is more frequently used.
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E.6 DEFUZZIFICATION

The defuzzification process is a mapping from a space of fuzzy sets defined over the
output universe of discourse into a space of crisp values. There are several meth-
ods to perform the process of defuzzification (Lee, 1990; Jang et al., 1997; Driankov
et al,, 1993). The most commonly found method in practice, as in the majority
cases it leads to quite good results, although being computationally extensive, is the
centre of area (COA) (Driankov et al., 1993; Nauck et al., 1997). This method ob-

tains the crisp output value by applying the following formula:

X

— i=1 Yi ' Hi

g ez il 1 Vi P (E-17)
i=1 Hi

where x indicates the number of rules, y; the corresponding degree of membership

for each linguistic value and ; is the centre of the i-th output fuzzy set.

E.7 FUZZY SYSTEMS TUNING AND OPTIMIZATION

The simplicity of designing fuzzy systems has beén the main drive of their successful
implementation. However, there remain a number of drawbacks. A fuzzy system is
usually designed by incorporating an expert’s implicit knowledge of the underlying
process and formulate them into a set of linguistic variables and fuzzy rules. The com-
plexity in developing these parameters increases with the complexity of the process.
Fuzzy systems also consist of a number of other parameters that are needed to be
selected and configured in prior, such as selection of scaling factors and configuration

of the shape of the membership functions.

Due to their learning capability, neural networks are being sought in the development
of nenro-fuzzy systems or adaptive fuzzy systems: Typically, the fuzzy system is trans-
ferred into a neural network-like architecture, which is then trained by some learning
method, such as gradient descent or non-linear regression techniques (Jang, 1993).
Neuro-fuzzy approaches are suitable for supervised learning tasks, where the objec-

tive is to minimize the error between the output of the fuzzy system and the target
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value. DBerenji (1992) developed a fuzzy system that is capable of learning as well
as tuning of its parameters by using neural networks trained through a reinforce-
ment learning method. Jang (1992) developed a self-learning fuzzy system based on
a neural network trained by temporal back-propagation. Lee et al. (1995) proposed
a self-organizing fuzzified basis function based on the competitive learning scheme.

A more recent technique in implementing adaptive or self-tuning fuzzy systems is by

using genetic algorithms (GAs), which are discussed in details in Appendix F.
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APPENDIX F

GENETIC ALGORITHM

G As provide both global and robust optimization techniques that mimics the - mechan-
ics of natural genetics (Goldberg, 1989). That all natural species can survive by adap-
tation is the underlying power of GAs. GAs combine a Darwinian survival of the fittest
strategy to eliminate unfit components and use random information exchange, with
an exploitation of knowledge contained in old solutions, to eflect a search mechanism
with surprising power and speed. GAs employ multiple concurrent search points
called ”chromosomes” which process through three genetic operations, reproduction,
crossover and mutations, to generate new search points called "offspring” for next
iterations. Such operations ensure the discovery of an optimal solution to the prob-
lem in an appropriate manner. Owing to its generality, it can be applied easily to
nonlinear, discontinuous and multi-objective optimization problems that are difficult

to solve using classical optimization technigues.

F.1 SINGLE OBJECTIVE GENETIC ALGORITHMS

The GA approach was first proposed by Holland (1975). Goldberg (1989) further
elaborated and developed the mechanisms of a GA. With a GA, a population of in-
dividuals undergoes a sequence of unary (mutation type) and higher order (crossover
type) transformations. ”"Good” individuals, measured by "fitness”, have a higher
chance to survive to the next generation. After some number of generations, the al-
gorithm converges to the best individuals. The quality of the individuals (solutions)
depends npon many factors, such as termination condition, the coverage of the pop-
ulation, the size of the population, and the evolition mechanisms. The structure of a
simple, single objective GA is depicted in Figure F.1. Starting.from generation 0, the

initial population is generated either by randomly choosing from the feasible domain
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3. The algorithm tends to converge to local minima,

The GA is able to facilitate the solutions to these problems. It is important to note
that there are other heuristic methods, such as simulated annealing (SA) or tabu
search (TS) that allow solutions to these problems to be found. However, these
methods are more suitable for single objective optimization problems since they deal
with just one solution at a time (Fonseca and Fleming, 1995). If SA or TS are used, a
multi-objective optimization problem has to be formulated as a single-objective prob-
lem prior to optimization so that the quality of a solution represented by a scalar value
can be used to justify whether a solution should be accepted as a current solution
(Fonseca and Fleming, 1995). In MSDF problems, where objective function of each
individual sensor are different from one another, and need to be optimized simultane-
ously, a GA in multi-objective mode seems to be more suitable and promising since
it can manage a set of solutions in the population at each generation and provide a
basis for handling a set of non-dominated solutions. Also unlike in the case of SA or
TS, the process to:choose weights arbitrarily to aggregate multiple objectives into one
single objective need not to be done. Therefore, for these reasons a multi-objective

genetic algorithm is proposed in this thesis and is the subject of the next section.

F.2 MULTI-OBJECTIVE GENETIC ALGORITHMS

The form of optimization problems that can be tackled by the single objective GAs

as described in the previous section is limited to:

:;:“elsnl f(z) (F-1)

where =[z,, T,, ...z¢] defines the design parameters of the problem, subject to any
constraint on those parameters, in the hyperspace €. In this case, the objective
function to be minimised, f, is a scalar function of the design parameters. In most
practical problems, however, several competing objectives need to be satisfied si-

multaneously. The multi-objective (MO) optimization problem is, the problem of

simultaneously minimising the n components f;, j = 1,...,n, of a possibly nonlinear
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function F of a general design parameters x in 2,

misr.lz F(z) = ;ﬂela [f1(x),fo(z),.... fu ()] (F-2)

Te

The MO problems usually have no unique, perfect solution, but instead a set of non-
dominated alternative solutions, known as the Pareto optimal set (Ben-Tal, 1980),
for which an improvement in one of the objectives will lead to a degradation in one
or more of the remaining objectives. These solutions are also known as non-inferior
or non-dominated solutions. The goals of the optimization contain the desired level
(or target) of attainment associated with each objective function and are declared in
a vector with dimension n. Based on some additional information, a decision maker
(human or machine) can then choose a preferred solution. This solution is regarded

as the final solution to the problem.

The solutions to MO problems can therefore be divided into two stages: an op-
timization stage and a decision stage. Most existing MO techniques such as -
constraint, weighted-sum and global attainment methods, require the decision to
be undertaken prior to the optimization (Hwang and Masud, 1979). In Pareto ap-
proaches (Goldberg, 1989), typically the decision is performed after the exploration
of the Pareto optimal surface to present the designer with a varied set of solutions
from which an appropriate compromise solution can then be selected with ease. As
it is often difficult in MO problems to establish the relative emphasis on each ob-
Jective a priori, this fact may be regarded as the benefit of the Pareto approaches.
This is exactly how the multi-objective genetic algorithm (MOGA) (Fonseca and
Fleming, 1995) behaves, and due to these facts, it is therefore considered as an ideal
vehicle for the optimization of the fuzzy systems used in the MSDF system employed

in the AUV navigation in this thesis.

Figure I.2 shows the structure of MOGA which is clearly composed of more operators
than the GA shown in Figure F.1. Pareto ranking is considered to be the most im-
portant operators and it is closely associated with the graphical user interface (GUI),

and these are the topic of the next section.
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G.2 TRANSFORMATION FROM EARTH-CENTERED-EARTH-FIXED
TO NORTH-EAST-DOWN CO-ORDINATE FRAME

In. the Hammerhead AUV, a GARMIN GPS25-LVS is installed to acquire absolute
position data in world geodetic system 1984 (WGS84). In this datum, one degree
of latitude corresponds to approximately 111(km): therefore one minute of latitude
corresponds to that number divided by 60, or approximately 1845(m). The length of
a minute of longitude, measured along a parallel, depends upon the latitude of that
parallel. The length varies from approximately 1855(m) at the equator to 0(m) at the
pole. One minute of longitude corresponds to approximately 1855(m) multiplied by
the cosine of that latitude. The conversion of latitude and longitude from deg-min-sec
to meters is therefore transforming the absolute position defined in the ECEF to the
NED co-ordinate frame. Readers interested in the details are referred to Kennedy
(2002).

During a particular surface mission, the position of an AUV in NED co-ordinate frame
derived from the latitude and longitude GPS data can therefore be easily obtained.
Finally, by subtracting the initial value of the NED position from all subsequent val-
ues, integration with the NED data derived using the techniques discussed in the

previous section can be performed.
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