11,516 research outputs found

    Injective edge coloring of graphs

    Get PDF
    Three edges e1,e2e_{1}, e_{2} and e3e_{3} in a graph GG are consecutive if they form a path (in this order) or a cycle of lengths three. An injective edge coloring of a graph G=(V,E)G = (V,E) is a coloring cc of the edges of GG such that if e1,e2e_{1}, e_{2} and e3e_{3} are consecutive edges in GG, then c(e1)≠c(e3)c(e_{1})\neq c(e_3). The injective edge coloring number χi′(G)\chi_{i}^{'}(G) is the minimum number of colors permitted in such a coloring. In this paper, exact values of χi′(G)\chi_{i}^{'}(G) for several classes of graphs are obtained, upper and lower bounds for χi′(G)\chi_{i}^{'}(G) are introduced and it is proven that checking whether χi′(G)=k\chi_{i}^{'}(G)= k is NP-complete.in publicatio

    Decompositions of edge-colored infinite complete graphs into monochromatic paths

    Get PDF
    An rr-edge coloring of a graph or hypergraph G=(V,E)G=(V,E) is a map c:E→{0,…,r−1}c:E\to \{0, \dots, r-1\}. Extending results of Rado and answering questions of Rado, Gy\'arf\'as and S\'ark\"ozy we prove that (1.) the vertex set of every rr-edge colored countably infinite complete kk-uniform hypergraph can be partitioned into rr monochromatic tight paths with distinct colors (a tight path in a kk-uniform hypergraph is a sequence of distinct vertices such that every set of kk consecutive vertices forms an edge), (2.) for all natural numbers rr and kk there is a natural number MM such that the vertex set of every rr-edge colored countably infinite complete graph can be partitioned into MM monochromatic kthk^{th} powers of paths apart from a finite set (a kthk^{th} power of a path is a sequence v0,v1,…v_0, v_1, \dots of distinct vertices such that 1≤∣i−j∣≤k1\le|i-j| \le k implies that vivjv_iv_j is an edge), (3.) the vertex set of every 22-edge colored countably infinite complete graph can be partitioned into 44 monochromatic squares of paths, but not necessarily into 33, (4.) the vertex set of every 22-edge colored complete graph on ω1\omega_1 can be partitioned into 22 monochromatic paths with distinct colors

    When the vertex coloring of a graph is an edge coloring of its line graph - a rare coincidence

    Get PDF
    The 3-consecutive vertex coloring number psi(3c)(G) of a graph G is the maximum number of colors permitted in a coloring of the vertices of G such that the middle vertex of any path P-3 subset of G has the same color as one of the ends of that P-3. This coloring constraint exactly means that no P-3 subgraph of G is properly colored in the classical sense. The 3-consecutive edge coloring number psi(3c)'(G) is the maximum number of colors permitted in a coloring of the edges of G such that the middle edge of any sequence of three edges (in a path P-4 or cycle C-3) has the same color as one of the other two edges. For graphs G of minimum degree at least 2, denoting by L(G) the line graph of G, we prove that there is a bijection between the 3-consecutive vertex colorings of G and the 3-consecutive edge colorings of L(G), which keeps the number of colors unchanged, too. This implies that psi(3c)(G) = psi(3c)'(L(G)); i.e., the situation is just the opposite of what one would expect for first sight

    Interval Edge-Colorings of Graphs

    Get PDF
    A proper edge-coloring of a graph G by positive integers is called an interval edge-coloring if the colors assigned to the edges incident to any vertex in G are consecutive (i.e., those colors form an interval of integers). The notion of interval edge-colorings was first introduced by Asratian and Kamalian in 1987, motivated by the problem of finding compact school timetables. In 1992, Hansen described another scenario using interval edge-colorings to schedule parent-teacher conferences so that every person\u27s conferences occur in consecutive slots. A solution exists if and only if the bipartite graph with vertices for parents and teachers, and edges for the required meetings, has an interval edge-coloring. A well-known result of Vizing states that for any simple graph G, χ0(G) ≤ ∆(G)+1, where χ0(G) and ∆(G) denote the edge-chromatic number and maximum degree of G, respectively. A graph G is called class 1 if χ0(G) = ∆(G), and class 2 if χ0(G) = ∆(G) + 1. One can see that any graph admitting an interval edge-coloring must be of class 1, and thus every graph of class 2 does not have such a coloring. Finding an interval edge-coloring of a given graph is hard. In fact, it has been shown that determining whether a bipartite graph has an interval edge-coloring is NP-complete. In this thesis, we survey known results on interval edge-colorings of graphs, with a focus on the progress of (a, b)-biregular bipartite graphs. Discussion of related topics and future work is included at the end. We also give a new proof of Theorem 3.15 on the existence of proper path factors of (3, 4)-biregular graphs. Finally, we obtain a new result, Theorem 3.18, which states that if a proper path factor of any (3, 4)-biregular graph has no path of length 8, then it contains paths of length 6 only. The new result we obtained and the method we developed in the proof of Theorem 3.15 might be helpful in attacking the open problems mentioned in the Future Work section of Chapter 5
    • …
    corecore