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Abstract

The 3-consecutive vertex coloring number ψ3c(G) of a graph G is
the maximum number of colors permitted in a coloring of the vertices
of G such that the middle vertex of any path P3 ⊂ G has the same
color as one of the ends of that P3. This coloring constraint exactly
means that no P3 subgraph of G is properly colored in the classical
sense.

The 3-consecutive edge coloring number ψ′3c(G) is the maximum
number of colors permitted in a coloring of the edges of G such that
the middle edge of any sequence of three edges (in a path P4 or cycle
C3) has the same color as one of the other two edges.

For graphs G of minimum degree at least 2, denoting by L(G)
the line graph of G, we prove that there is a bijection between the
3-consecutive vertex colorings of G and the 3-consecutive edge col-
orings of L(G), which keeps the number of colors unchanged, too.
This implies that ψ3c(G) = ψ′3c(L(G)); i.e., the situation is just the
opposite of what one would expect for first sight.
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1 Introduction

Since the vertices of a line graph1 L(G) correspond to the edges of graph
G, it follows directly from the definitions that the edge colorings of G are in
one-to-one correspondence with the vertex colorings of L(G). This bijection
preserves lots of properties (the coloring to be proper, equitable, having at
least a given distance between any two elements of the same color or at
most a given diameter in each component of every color class, excluding
alternately bi-colored cycles, etc.), and hence the corresponding versions of
the chromatic index of G are equal to those of the chromatic number of
L(G). Equalities of this kind are automatic by definition in most cases.

In this short note, however, we present a rare example where the situ-
ation is just the opposite: a certain type of vertex colorings of a graph are
in one-to-one correspondence with the analogous edge colorings of the line
graph. The following notions will be investigated:

• Three distinct vertices v1, v2, v3 are consecutive in a graph G = (V, E)
if they form a path in this order; i.e., if v1v2, v2v3 ∈ E. A mapping
ϕ : V → N is a 3-consecutive vertex coloring if at least one of ϕ(v1) =
ϕ(v2) and ϕ(v2) = ϕ(v3) is valid whenever v1, v2, v3 are consecutive.
Equivalently, a 3 -consecutive vertex coloring of G means a partition
V1, V2, . . . , Vn of V satisfying that for every three consecutive vertices
v1, v2 and v3 there exists a class Vi such that at least one of the
relations {v1, v2} ⊆ Vi and {v2, v3} ⊆ Vi holds.

• Three distinct edges e1, e2, e3 are consecutive in G = (V,E) if, in
this order, they form a path or cycle of length 3. A mapping φ :
E → N is a 3-consecutive edge coloring if at least one of φ(e1) =
φ(e2) and φ(e2) = φ(e3) is valid whenever e1, e2, e3 are consecu-
tive. Equivalently, a 3 -consecutive edge coloring of G is a partition
E1, E2, . . . , En of E satisfying the following condition: if e1, e2 and
e3 are 3 -consecutive edges in G, then for some i, (1 ≤ i ≤ n) at least
one of the relations {e1, e2} ⊆ Ei and {e2, e3} ⊆ Ei holds. Note that
if e1, e2 and e3 are three edges of a triangle, then they are considered
three consecutive edges in the orderings e1e2e3, e2e3e1 and e3e1e2,
as well. Hence, in a 3-consecutive edge coloring every K3 subgraph
must be monochromatic.

A 3-consecutive vertex (edge) coloring is obtained by making the en-
tire vertex (edge) set monochromatic. Moreover, identifying any two color
classes in a 3-consecutive ϕ or φ we again obtain a 3-consecutive coloring.
Hence, the graph invariants which really matter in this context are:

1The line graph L(G) of a graph G has the edges of G as its vertices, and two distinct
edges of G are adjacent in L(G) if and only if they share a vertex in G.
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• ψ3c(G), 3-consecutive vertex coloring number : the maximum number
of colors in a 3-consecutive vertex coloring of G. (In [13], this is
called 3 -consecutive achromatic number.) Alternately, ψ3c(G) is the
maximum number of classes in a vertex partition of G such that each
vertex appears together with all but at most one of its neighbors in
the same partition class.

• ψ′3c(G), 3-consecutive edge coloring number : the maximum number
of colors in a 3-consecutive edge coloring of G. Alternately, ψ′3c(G) is
the maximum number of classes in an edge partition of G such that
at least one endpoint of each edge is a monochromatic star.

These parameters were introduced and related results presented in [4, 5,
11, 13], with various observations on structure, extremal values, and algo-
rithmic complexity. Colorings of similar kinds are investigated in [3, 6, 12].

Motivation. 3-consecutive colorings studied here are antipodal to proper
vertex and edge colorings in the following sense. For connected graphs of
order at least 3, a vertex coloring is a proper coloring if and only if every
P3 subgraph is colored properly; whilst it is a 3-consecutive vertex coloring
if and only if no P3 subgraph is colored properly.

We say that three consecutive edges e1e2e3 are colored properly if e1

and e2 and similarly, e2 and e3 have different colors. For connected graphs
not isomorphic to a star, an edge coloring is proper if and only if every
three consecutive edges are colored properly; whilst it is a 3-consecutive
edge coloring if and only if no three consecutive edges are colored properly.

Applications. As formulated in Lemmas 4 and 5, quoted from [4] and
[5], respectively, the kinds of coloring studied here are intimately related
with vertex- and edge-separators which, in turn, play substantial role in the
design of efficient algorithms for a great variety of problems [1, 2, 7, 9, 10].
More explicit examples for applications of 3-consecutive vertex and edge
colorings are described in [4, 5]. To mention just one, ψ3c is equal to
the possible maximum number of components in a communication network
after the failure of at most one link at each node.

Our results. In this note we focus on the relationship between ψ3c and
ψ′3c. Concerning the classic notions of chromatic index (edge chromatic
number) of G and vertex chromatic number of its line graph L(G), the
equality χ′(G) = χ(L(G)) is straightforward to prove. But the correspond-
ing equality is not valid for ψ′3c(G) and ψ3c(L(G)), in general. For example,
if G = K2,n then ψ′3c(G) = n and ψ3c(L(G)) = 2 for every n ≥ 2. Or even
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simpler, a star Sn with n ≥ 3 edges has the following values: ψ3c(Sn) = 2
and ψ′3c(Sn) = n, moreover ψ3c(L(Sn)) = ψ′3c(L(Sn)) = 1.

Restricting attention to graphs of minimum degree at least 2, however,
a surprising correspondence of opposite nature will be verified, namely in
Section 2 we prove that ψ3c(G) = ψ′3c(L(G)) always holds. This appears
to be a very rare kind of coincidence.

In Section 3, we recall two characterization theorems from [4] and [5].
Then, applying the result of Section 2, we point out a correspondence
between the maximum number of components which can be obtained when
certain types of edge sets and vertex sets are deleted from G and L(G),
respectively. In the last section we give tight upper bounds on the sums
ψ3c(G) + ψ′3c(G) and ψ′3c(G) + ψ′3c(L(G)).

Definitions and notation. We use the following notation from [8].

• α0(G), vertex covering number, transversal number : the minimum
cardinality of a vertex set meeting all edges of G.

• β0(G), vertex independence number, stability number : the largest
number of mutually nonadjacent vertices in G.

• β1(G), edge independence number, matching number : the largest
number of mutually vertex-disjoint edges in G.

By these definitions, the Gallai-type identity α0(G) + β0(G) = |V | follows
for every graph G.

2 Bijection between vertex and edge color-
ings

The goal of this section is to prove the following theorem which immediately
implies the equality of ψ3c(G) and ψ′3c(L(G)).

Theorem 1. For every graph G with minimum degree at least 2 and
for every positive integer k, the 3-consecutive vertex colorings of G with
exactly k colors and the 3-consecutive edge colorings of its line graph L(G)
with exactly k colors are in one-to-one correspondence.

Proof. Let us introduce the following notation. For an edge e of G = (V, E)
the corresponding vertex in L(G) will be denoted by e∗. We apply this
convention in the other direction, too; i.e., writing e∗ ∈ V (L(G)) we mean
that e∗ corresponds to e ∈ E(G).
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Consider first the vertex colorings of G. To any 3-consecutive vertex
coloring ϕ : V → {1, 2, . . . , k}, we associate an edge coloring φ : E(L(G)) →
{1, 2, . . . , k} of the line graph where φ is defined by the rule

φ(e∗f∗) = ϕ(v) where v = e ∩ f. (?)

Observe that the definition assigns a unique color to each edge e∗f∗ ∈
E(L(G)). We are going to prove that φ is a 3-consecutive edge coloring of
L(G).

Let e∗f∗, f∗g∗, g∗h∗ be three consecutive edges in L(G), where e∗ = h∗

is also possible, but otherwise the vertices must be mutually different. The
corresponding edges in G will be e = xv1, f = v1v2, g = v2v3 and h = v3y.
The coincidences x = y, x = v3 or y = v1 might hold, but since f and g are
distinct non-loop edges, v1, v2 and v3 are different 3-consecutive vertices
of G. Consequently, φ(f∗g∗) = ϕ(v2) is the same color as at least one of
φ(e∗f∗) = ϕ(v1) and φ(g∗h∗) = ϕ(v3). Thus, φ is a 3-consecutive edge
coloring of L(G). Moreover, due to the degree condition, every vertex of G
is the intersection of at least two edges, hence every color used in ϕ occurs
in the coloring φ, as well.

Because of the same reason, different 3-consecutive vertex colorings of
G are associated with different edge colorings of L(G). We will prove that
the correspondence ϕ 7→ φ is a bijection, invertible in a natural way starting
from φ.

Let φ be a 3-consecutive edge coloring of the line graph L(G), which
uses exactly k colors. Recall that every triangle of L(G) is monochromatic
in φ. By the degree condition, each vertex v ∈ V is incident with some
` = deg(v) ≥ 2 edges. Hence in the line graph, v corresponds to the edges
of a complete subgraph K`. These edges necessarily have the same color
in φ and therefore, the following definition determines a unique color for
every v ∈ V :

ϕ(v) = φ(e∗f∗) where e ∩ f = v. (?′)

To prove that ϕ is a 3-consecutive vertex coloring, assume three con-
secutive vertices v1, v2 and v3 in G. There exist some neighbor x of v1 and
y of v3 such that x 6= v2 6= y. The vertices (xv1)∗, (v1v2)∗, (v2v3)∗ and
(v3y)∗ induce either a path P4 or a cycle C4 or a K4 − e or just a K3 in
L(G). Since φ is a 3-consecutive edge coloring, the color φ((v1v2)∗(v2v3)∗)
coincides with φ((xv1)∗(v1v2)∗) or φ((v2v3)∗(v3y)∗). According to the def-
inition of ϕ, this means that ϕ(v2) is the same as ϕ(v1) or ϕ(v3), which
proves that ϕ is a 3-consecutive vertex coloring of G. Clearly, ϕ uses all
the k colors of φ. Moreover, one can check that the correspondences ϕ 7→ φ
and φ 7→ ϕ induced by the rules (?) and (?′) are exactly the inverses of
each other.
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By the above facts, (?) establishes a bijection between the 3-consecutive
vertex colorings of G with k colors and the 3-consecutive edge colorings of
its line graph L(G) with k colors. ¤

As an immediate consequence we obtain

Theorem 2. Let G be a graph with minimum degree at least 2. For
the 3-consecutive vertex coloring number of G and the 3-consecutive edge
coloring number of its line graph L(G), the following equality holds:

ψ3c(G) = ψ′3c(L(G)).

Remark 3. Similarly to the case of δ(G) ≥ 2, also for δ(G) = 1,
a 3-consecutive edge coloring φ of L(G) can be obtained from each 3-
consecutive vertex coloring ϕ of G by applying the rule (?). But if u is a
vertex of degree 1 then color ϕ(u) possibly does not occur in φ. In the other
direction, for any 3-consecutive edge coloring φ of L(G), we can construct a
3-consecutive vertex coloring ϕ of G with the same number of colors, if each
pendant vertex in G is assigned with the color of its unique neighbor and
otherwise the rule (?′) is applied. This proves that ψ3c(G) ≥ ψ′3c(L(G))
holds if δ(G) = 1. Moreover, the presence of isolated vertices does not
change L(G). Therefore, the inequality ψ3c(G) ≥ ψ′3c(L(G)) is valid for
every G.

3 Implication for vertex and edge separators

In this section we quote two results from the papers [4] and [5], which char-
acterize 3-consecutive colorings in terms of cutsets. We need the following
two definitions.

• By cut-(k, 1) subgraph of a (not necessarily connected) graph G =
(V, E) we mean a matching F ⊆ E whose deletion results in a graph
with at least k components.

• By stable k-separator of a (not necessarily connected) graph G =
(V, E) we mean an independent vertex set S ⊂ V for which G − S
has at least k components.

The next lemma follows from a more general characterization theorem
of the paper [4].

Lemma 4. For every integer k ≥ 2 and for every graph G, the relation
ψ3c(G) ≥ k holds if and only if G has a cut-(k, 1) subgraph.

The following necessary and sufficient condition was proved in [5].
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Lemma 5. Let G be a graph without isolated vertices. Then, for every
integer k ≥ 2, the 3-consecutive edge coloring number of G is at least k if
and only if G has a stable k-separator.

Based on these characterizations, Theorem 2 immediately implies:

Theorem 6. Let G be a graph with minimum degree at least 2. Then, for
each positive integer k, G has a cut-(k, 1) subgraph if and only if its line
graph L(G) has a stable k-separator.

For the particular case of connected G and k = 1, this statement has
been proved by Brandstädt et al. in [1].

4 Upper bounds on sums

In this section we consider ψ3c and ψ′3c together, also investigating their
behavior when both G and its line graph L(G) are involved. We begin with
a general estimate on ψ3c + ψ′3c, which will be improved later for graphs
without pendant vertices. As an auxiliary tool, let us recall the following
upper bounds from [11] and [5], respectively.

Lemma 7. For every connected graph G, the inequality ψ3c(G) ≤ α0(G)+
1 is valid.

Lemma 8. For every graph G, the inequality ψ′3c(G) ≤ β0(G) is valid.

Now, the following general upper bounds can be derived.

Theorem 9. Let G be a graph of order p.

(i) If G is connected, then the inequality

ψ3c(G) + ψ′3c(G) ≤ p + 1

holds and the bound is tight for all p ≥ 2.

(ii) For G and its line graph L(G) we have

ψ′3c(G) + ψ′3c(L(G)) ≤ p

and the bound is tight for all p ≥ 3.

(iii) If G has minimum degree at least 2, then (i) can be strengthened to

ψ3c(G) + ψ′3c(G) ≤ p

and the bound is tight for all even p ≥ 4.

7



Proof. The upper bounds can be verified as follows.

(i) Applying the identity α0(G)+β0(G) = p for the sum of the inequalities
in Lemmas 7 and 8, we obtain

ψ3c(G) + ψ′3c(G) ≤ α0(G) + 1 + β0(G) ≤ p + 1.

(ii) The edge independence number β1(G) is equal to the independence
number β0(L(G)) of the line graph. Hence, by Lemma 8 we obtain

ψ′3c(G) + ψ′3c(L(G)) ≤ β0(G) + β1(G) ≤ β0(G) + α0(G) = p.

(iii) The assertion follows from (ii) and Theorem 2.

Moreover, as noted in [5] and [13], the following equalities are obvious.
The path Pn on n ≥ 2 vertices has ψ3c(Pn) = bn/2c + 1 and ψ′3c(Pn) =
dn/2e; and the cycle Cn on n ≥ 3 vertices has ψ3c(Cn) = ψ′3c(Cn) = bn/2c.
These also imply ψ′3c(L(Pn)) = ψ′3c(L(Cn)) = bn/2c. Hence, tightness is
witnessed for (i) by all paths on at least two vertices, for (ii) by all even
cycles and all paths on at least three vertices, and for (iii) by all even
cycles. Further examples for (i) and (ii) are the stars. Indeed, for p ≥ 3 we
have ψ3c(K1,p−1) = 2 and ψ′3c(K1,p−1) = p − 1, while ψ′3c(L(K1,p−1)) = 1
since L(K1,p−1) ∼= Kp−1. ¤
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