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Abstract. Three edges e1, e2 and e3 in a graph G are consecutive if they form a path (in this order) or a
cycle of lengths three. An injective edge coloring of a graph G = (V,E) is a coloring c of the edges of G
such that if e1, e2 and e3 are consecutive edges in G, then c(e1) , c(e3). The injective edge coloring number
χ
′

i (G) is the minimum number of colors permitted in such a coloring. In this paper, exact values of χ′i (G) for
several classes of graphs are obtained, upper and lower bounds for χ′i (G) are introduced and it is proven
that checking whether χ′i (G) = k is NP-complete.

1. Introduction

Throughout this paper we deal with simple graphs G of order n ≥ 2 (the number of vertices) and size
m ≥ 1 (the number of edges). The vertex set and edge set will be denoted by V(G) and E(G), respectively.
A proper vertex (edge) coloring of a graph G is an assignment of colors to the vertices (edges) of G, that is,
c : V(G)(E(G)) → C, where C is a set of colors, such that no two adjacent vertices (edges) have the same
color, that is c(x) , c(y) for every edge xy of G (c(e) , c(e′) for every pair of edges e, e′ incident on the same
vertex). The (edge) chromatic number (χ′(G)) χ(G) of G is the minimum number of colors permitted in a such
coloring.

Some variants of vertex and edge coloring have been considered.
An injective vertex coloring of G is a coloring of the vertices of G so that any two vertices with a common

neighbor receive distinct colors. The injective chromatic number χi(G) of a graph G is the smallest number of
colors in an injective coloring of G. Injective coloring of graphs was introduced by Hahn et. al in [6] and
was originated from Complexity Theory on Random Access Machines, and can be applied in the theory
of error correcting codes [6]. In [6] it was proved that, for k ≥ 3, it is NP-complete to decide whether the
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injective chromatic number of a graph is at most k. Note that an injective coloring is not necessarily a proper
coloring, and vice versa (see [2, 6]).

The following variant of edge coloring was proposed in [3]. In a graph G, three edges e1, e2 and e3 (in
this fixed order) are called consecutive if e1 = xy, e2 = yz and e3 = zu for some vertices x, y, z,u (where x = u
is allowed). In other words, three edges are consecutive if they form a path or a cycle of lengths 3. A
3-consecutive edge coloring is a coloring of the edges such that for each three consecutive edges, e1, e2 and
e3, the color of e2 is one of the colors of e1 or e3. The 3-consecutive edge coloring number of a graph G, ψ

′

3c(G),
is the maximum number of colors of a 3-consecutive edge coloring of G. This concept was introduced and
studied in some details in [3], where it is proven that the determination of the 3-consecutive edge coloring
number for arbitrary graphs is NP-hard.

An injective edge coloring (i-edge coloring for short) of a graph G is a coloring c : E(G) → C, such that if
e1, e2 and e3 are consecutive edges in G, then c(e1) , c(e3). The injective edge coloring number or injective edge
chromatic index of graph G, χ

′

i(G), is the minimum number of colors permitted in an i-edge coloring. We say
that graph G is k edge i-colorable if χ

′

i(G) ≤ k. Note that an i-edge coloring is not necessarily a proper edge
coloring, and vice versa. It is straightforward to see that for the edge chromatic number of G and the vertex
chromatic number of its line graph L(G), the equality χ

′

(G) = χ(L(G)) holds. However, it is not always true
that χ

′

i(G) = χi(L(G)). For instance, χ
′

i(K1,n) = 1 and χi(L(K1,n)) = n.
A motivation for the i-edge coloring is the following. We can model a Packet Radio Network (PRN)

as an undirected graph G = (V,E), where the vertices represent the set of stations and two vertices are
joined by an edge if and only if the corresponding stations can hear each other transmissions, i.e, the set
of edges E represents the common channel property between the pairs of stations (see [11, 12]). Assigning
channels or frequencies to the edges of G we may define the secondary interference as the one obtained
when two stations x and y that hear each other share the same frequency with one neighbor x′ , y of x and
one neighbor y′ , x of y. An assignment of channels or frequencies to the edges between stations to avoid
secondary interference corresponds to the i-edge coloring of the graph (where each color is a frequency or
channel).

i-edge coloring is closely related with the concept of star arboricity recently introduced by Axenovich et
al. [1]. The star arboricity of a graph G (isa(G)) is the smallest number of induced star-forests covering the
edges of G. Ferdjallah et al. [5] prove that χ

′

i(G) = isa(G).
In this paper we obtain exact values of χ

′

i(G) for several classes of graphs, give upper and lower bounds
for χ

′

i(G), and we prove that checking whether χ
′

i(G) = k is NP-complete.
For basic graph terminology we refer the reader to [7].

2. Exact values of χ
′

i
(G) for some classes of graphs

We start this section with a few basic results which are direct consequences of the definition of injective
edge coloring number. As usually, the path, the cycle and the wheel with n vertices will be denoted by
Pn, Cn and Wn, respectively. (The wheel Wn with n vertices is obtained by connecting a single vertex to all
vertices of Cn−1. The wheel Wn is often a Cn with a universal vertex added.) The complete graph of order
n is denoted by Kn and the complete bipartite graph with bipartite classes with p and q vertices is denoted
by Kp,q. When p = 1, the complete bipartite graph K1,q is called the star of order q + 1. The star K1,q is often
referred to as q-star. (In particular, P2 is the star K1,1 and P3 is the star K1,2.)

Considering the above notations and denoting the Petersen graph by P, the following values for the
injective edge coloring number can be easily derived.

Proposition 2.1.

1. χ
′

i(Pn) = 2, for n ≥ 4.

2. χ
′

i(Cn) =

{
2, if n ≡ 0 (mod 4),
3, otherwise.

3. χ
′

i(Kp,q) = min{p, q}.
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4. χ
′

i(P) = 5. (A feasible 5 i-edge coloring of the Petersen graph is shown in Figure 1. Note that no pair of the
edges labeled 1 to 5 can receive the same color.)

1

5

3

4

2

Figure 1: An injective edge coloring of Petersen graph with five colors.

Proposition 2.2. Let G be a graph. Then χ′i(G) = k if and only if k is the minimum positive integer for which the
edge set of G, E(G), can be partitioned into non-empty subsets E1, . . . ,Ek, such that the end-vertices of the edges of
each of these subsets E j induces a subgraph G j of G where each component is a star.

Proof. Let us assume that χ
′

i(G) = k and consider an injective edge coloring of the edges of G using k colors,
c1, . . . , ck. Then E(G) can be partitioned into the subset of edges E1, . . . ,Ek, where every edge in E j has the
color c j, for j = 1, . . . , k. Then, for each j ∈ {1, . . . , k} the end vertices of the edges of E j must induce a graph
without three consecutive edges (otherwise the color can not be the same for all the edges in E j). Therefore,
each component of the graph G j induced by the end vertices of the edges in E j are stars. Furthermore, the
positive integer k is minimum (otherwise if there exists such partition of E(G) into k′ < k subsets of edges
E′1, . . . ,E

′

k then χ
′

i(G) ≤ k′ < k).
Conversely, let us assume that k is the minimum positive integer for which E(G) can be partitioned as
described. Then, taking into account the first part of this proof, it is immediate that χ

′

i(G) = k.

Applying Proposition 2.2, we may conclude that the injective edge coloring number of a wheel Wn, with
n ≥ 4 vertices, is:

χ
′

i(Wn) =


6 i f n is even
4 i f n is odd and n − 1 ≡ 0 (mod 4)
5 i f n is odd and n − 1 . 0 (mod 4)

From Proposition 2.2, it follows that whenever χ
′

i(G) = k, the adjacency matrix AG of graph G can be given
by

AG =

k∑
j=1

AG j , (1)

where each G j is an induced subgraph of G, with at least one edge, and its components are stars or isolated
vertices. Therefore, χ

′

i(G j) = 1, for j = 1, . . . , k, and χ
′

i(G) is the minimum number of induced subgraphs G j
satisfying the conditions of Proposition 2.2.

Now, let us characterize the extremal graphs with largest and smallest injective chromatic index.

Proposition 2.3. For any graph G of order n ≥ 2, χ′i(G) = 1 if and only if G is the disjoint union of k ≥ 1 stars, i.e.,
G = ∪k

j=1K1,l j , with
∑k

j=1 l j = n − k and V(K1,l j ) ∩ V(K1,l j′ ) = ∅, for j , j′.
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Proof. The proof is a direct consequence of Proposition 2.2.

A trivial upper bound on the injective edge chromatic number of a graph G is its size, that is, χ
′

i(G) ≤
|E(G)|. The Proposition 2.4 characterizes the graphs for which this upper bound is attained.

Proposition 2.4. Consider a graph G of order n and size m, with no isolated vertices. Then χ′i(G) = m if and only if
G is complete.

Proof. Assume that G is the complete graph Kn, and consider two arbitrary edges ei and e j of Kn. Then
either ei is adjacent to e j and thus they are both included in a triangle or there exists an edge ek such that ei,
ek and e j are three consecutive edges. In any of these cases ei and e j must have different colors. Therefore,
we have χ

′

i(G) = n(n − 1)/2 = m.
Conversely, let us assume that χ

′

i(G) = m. Clearly G has to be connected, since otherwise the same color
could be used on edges from different components. If G has size one then it is complete. Let us suppose
that the size of G is greater than one and G is not complete. Since G is connected, there are two adjacent
edges in G not lying in the same triangle. Coloring these two edges by the color c1 and all the remaining
edges differently, we produce an injective edge coloring with less than m colors, which is a contradiction.
Therefore G is complete.

3. ω′ edge injective colorable graphs

The clique number of a graph G, denoted by ω(G), is the number of vertices in a maximum clique of G.
Denoting the number of edges in a maximum clique of G by ω

′

(G), it is immediate that ω
′

(G) =
ω(G)(ω(G)−1)

2 .

Proposition 3.1. For any connected graph G of order n ≥ 2, χ′i(G) ≥ ω
′

(G).

Proof. Let Kr be a maximum clique in G. From Proposition 2.4, χ
′

i(Kr) = r(r − 1)/2 = ω
′

(G). Therefore, we
need at least r(r − 1)/2 colors to color the edges of G, i.e., χ

′

i(G) ≥ r(r − 1)/2 = ω
′

(G).

Before to proceed let us recall the Turan’s theorem.

Theorem 3.2 (Theorem of Turan [14]). Let G be a graph of order n and size m, without a q-clique, with q > 1.
Then,

m ≤
(q − 2)n2

2(q − 1)
. (2)

As a consequence we have the following result.

Corollary 3.3. Let G be a graph of order n and size m, and consider a positive integer q > 1. Then

m >
(q − 2)n2

2(q − 1)
⇒ χ′i (G) ≥

q(q − 1)
2

.

Proof. From Theorem 3.2, m >
(q−2)n2

2(q−1) implies that G as a complete subgraph Kq, that is, ω(G) ≥ q. Therefore,

ω′(G) ≥ q(q−1)
2 and from Proposition 3.1 we obtain χ′i (G) ≥ q(q−1)

2 .

We say that G is an ω
′ edge injective colorable (ω

′

EIC-)graph if χ
′

i(G) = ω
′

(G).

Example 3.4. The following graphs are examples of ω′EIC-graphs.

1. The complete graph, Kn.
2. The star, K1,q.
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Figure 2: The friendship graph.

3. The friendship graph, i.e., the graph with n = 2p+1 vertices formed by p ≥ 1 triangles all attached to a common
vertex (see Figure 2).

Proposition 3.5. For any positive integer p ≥ 3, consider the complete graph Kp, with V(Kp) = {v1, . . . , vp}, and a
family of stars K1,q1 , . . . ,K1,qp , with q j ≥ 1. Let G be the graph obtained coalescing a maximum degree vertex of the
star K1,q j with the vertex v j of Kp, for j = 1, . . . , p. Then G is an ω′EIC-graph.

Proof. Consider the Hamiltonian cycle of Kp, Cp = v1, v2 . . . vp, v1. Color each edge ei = vivi+1, for i =
1, . . . , p− 1 of Cp with color ci, 1 ≤ i ≤ p− 1 and the edge ep = vpv1 with color cp. For each j ∈ {1, . . . , p}, color
all the edges of the star K1,q j with color c j. Now color all the remaining edges of Kp differently. Since this
coloring produces an injective edge coloring, we have

χ
′

i(G) ≤ p(p − 1)/2 = ω
′

(Kp) = ω
′

(G). (3)

The result now follows from Proposition 3.1

Notice that the corona Kp ◦ K1, that is, the graph obtained from Kp by adding a pendant edge to each
of its vertices, is a particular case of the graphs G considered in Proposition 3.5, which is obtained setting
K1,q j = K1,1 for j = 1, . . . , p.

In [15] a construction ofω
′

EIC-graphs (therein called perfectω
′

EIC-graphs) is obtained from a friendship
graph Fn, with n triangles T1, . . . ,Tn, replacing each triangle Ti by an arbitrary complete graph Kqi (in fact,
in [15, Lem. 2.2] by mistake it is written Ki instead of Kqi ).

Proposition 3.6. If G is a unicyclic graph with K3, then G is an ω′EIC-graph.

Proof. Let the vertices of the cycle K3 be v1, v2, v3, and the edges e1 = v1v2, e2 = v2v3, e3 = v3v1. Color
the edge ei with color ci, for i = 1, 2, 3. Let T1, T2 and T3 be the trees which are incident to v1, v2 and v3,
respectively, and color the edges of these trees as follows.

• Color the edges in T1 which are incident to v1 with color c1, and call C1
1 the set of these edges. Consider

the edges in T1 which are adjacent to C1
1 edges, and color all these edges with color c2. Call C1

2 the set
of these edges. Now consider the edges in T1 which are adjacent to edges of C1

2 \C1
1, color these edges

with color c3, and call the set of these edges C1
3. Again, consider the edges in T1 which are adjacent to

edges of C1
3 \ C1

2, color these edges with color c1, and call the set of these edges C2
1 edges. Continue

this procedure until all edges in T1 have been colored.

• Color the edges in T2 which are incident to v2 with color c2, and call the set of these edges C1
2. Consider

the edges in T2 which are adjacent to C1
2 edges, color all these edges with color c3, and call C1

3 the set of
these edges. Now consider the edges in T2 which are adjacent to C1

3 \ C1
2, color these edges with color

c1, and call C1
1 the set of these edges. Again, consider the edges in T2 which are adjacent to C1

1 \ C1
3

edges, color these edges with color c2, and call the set of these edges C2
2. Continue this procedure until

all edges in T2 have been colored.
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• Color the edges in T3 which are incident to v3 with color c3 and call the set of these edges C1
3. Consider

the edges in T3 which are adjacent to C1
3 edges, color these edges with color c1, and call the set of

these edges C1
1. Now consider the edges in T3 which are adjacent to C1

1 \ C1
3 edges, color these edges

with color c2, and call C1
2 the set of these edges. Again, consider the edges in T3 which are adjacent

to C1
2 \ C1

1, color these edges with color c3 and call the set of these edges C2
3. Continue this procedure

until all edges in T3 have been colored.

This clearly produces a feasible 3 i-edge coloring of G, and since 3 colors are needed for coloring the triangle
K3, we can conclude that χ

′

i(G) = 3 = ω
′

(G), and the result follows.

4. Bounds on the injective chromatic index

Now we consider the injective edge coloring number of bipartite graphs.

Proposition 4.1. If G is a bipartite graph with bipartition V(G) = V1 ∪ V2, and G has no isolated vertices, then
χ
′

i(G) ≤ min{| V1 |, | V2 |}.

Proof. The proof follows directly from Proposition 2.1 - item 3.

Note that the above bound is attained for every complete bipartite graph Kp,q.
We now combine Proposition 4.1 with results from [3] on the 3-consecutive edge coloring of graphs to

obtain bounds on the injective edge chromatic index for bipartite graphs.
Bujtás et. al [3] proved the following results.

Proposition 4.2. [3] If G is a bipartite graph with bipartition V(G) = V1 ∪ V2, and G has no isolated vertices, then
max{|V1|, |V2|} ≤ ψ

′

3c(G) ≤ α(G), where α(G) is the independence number of G.

Proposition 4.3. [3] Let G be a graph of order n.

• If G is connected, then ψ′3c(G) ≤ n − n−1
∆(G) , where ∆(G) denotes the maximum degree of G;

• ψ
′

3c(G) ≤ n − i(G), where i(G) is the independence domination number of G, i.e., the minimum cardinality
among all maximal independent sets of G.

From Propositions 4.1, 4.2 and 4.3 we can directly conclude the following.

Corollary 4.4. Let G be a connected bipartite graph of order n ≥ 2. Then

χ
′

i(G) ≤ n −
n − 1
∆(G)

,

χ
′

i(G) ≤ n − i(G),

χ
′

i(G) ≤ α(G).

Now we introduce an upper bound on the edge injective coloring number of a graph G in terms of its
size and diameter, which we denote by diam(G).

Proposition 4.5. For any connected graph G of size m ≥ 3, χ′i(G) ≤ m− diam(G) + 2. This upper bound is attained
if and only if G is Pm+1.

Proof. Let Pd be a diametral path of G. We can color the path Pd with 2 colors. Coloring all the other
edges differently with m − diam(G) colors, we produce an injective edge coloring of G, and then χ

′

i(G) ≤
m − diam(G) + 2.
The proof of the last part of this proposition can be divided in two cases:
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1. If G is a path, with n ≥ 4, it follows from Proposition 2.1- item 1 that χ
′

i(Pn) = 2 and, since diam(G) = m,
the result holds.

2. Let us assume that G is not a path.

• If diam(G) ≤ 2, Proposition 2.4 implies that

χ
′

i(G) < m − diam(G) + 2.

In fact, if diam(G) = 1, then G is complete and thus m−diam(G) + 2 > m = χ
′

i(G). If diam(G) = 2,
then G is not complete and thus m − diam(G) + 2 = m > χ

′

i(G).

• If diam(G) > 2, consider a diametral path Pd = x1, . . . , xd+1. Since G is connected and is not a path,
then there exists a vertex u < V(Pd) which has (i) one, (ii) two or at most (iii) three neighbors in
Pd, otherwise Pd is not diametral.
(i) Suppose u has a unique neighbor, say xi, in Pd. As Pd is a diametral path, xi has to be an

interior vertex of Pd, i.e., i , 1, d + 1, and the edges of Pd can be colored in a way such that
xi−1xi and xixi+1 have the same color c and this color c can also be used for coloring the edge
uxi.The remaining m−diam(G)− 1 edges can be colored with no more than m−diam(G)− 1
colors, and thus producing an i-edge coloring with at most 2 + m − diam(G) − 1 colors, and
therefore χ

′

i(G) < m − diam(G) + 2.
(ii) If u has two neighbors in Pd, say xi and x j, then they must have at most one vertex between

them, i.e., j = i + 1 or j = i + 2. If j = i + 2, the two edges uxi and ux j can be colored with the
same color, different from each of the two colors used for the edges of Pd, and using a different
color for each of the m − diam(G) − 2 other edges. Thus, χ

′

i(G) ≤ 2 + 1 + m − diam(G) − 2 <
m−diam(G)+2. If j = i+1, then use two colors to color the edges on path (Pd \xix j)∪uxi∪ux j,
a new color for edge xix j and a different color for each of the remaining m − diam(G) − 2
edges. Again, χ

′

i(G) ≤ 2 + 1 + m − diam(G) − 2 < m − diam(G) + 2.
(iii) If u has three neighbors in Pd, then they must be consecutive (otherwise Pd is not diametral),

say xi, xi+1, xi+2. Coloring again the edges of Pd using two colors, say c1 and c2, edges
uxi and uxi+2 can be colored with an additional color c3, and edge xi+1u with a different
color c4. Using a different color for each of the m − diam(G) − 3, we can conclude that
χ
′

i(G) ≤ 2 + 1 + 1 + m − diam(G) − 3 < m − diam(G) + 2.

Proposition 4.6. For any tree T of order n ≥ 2, 1 ≤ χ
′

i(T) ≤ 3.

Proof. If n = 2, χ
′

i(T) = 1. If n ≥ 3, an edge can be added to T in such a way that the resulting graph H
includes a triangle. We then have, χ

′

i(T) ≤ χ
′

i(H), and using Proposition 3.6, χ
′

i(H) = 3.

These lower and upper bounds are sharp. According to Proposition 2.3, the stars are the only connected
graphs G such that χ

′

i(G) = 1. Regarding the upper bound, the tree T′ of Figure 3 is a minimum size tree
with χ

′

i(T
′) = 3.

Figure 3: a minimum size tree T′ with χ
′

i(T
′) = 3.

Since for a subgraph H of a graph G, any 3-consecutive edges of H are also 3-consecutive edges of G, we
have the following result.

Proposition 4.7. If H is a subgraph of a connected graph G, then χ′i(H) ≤ χ
′

i(G).

As an immediate consequence, we have the corollary below.
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Corollary 4.8. Let G be a connected graph of order n.

1. If x is an edge of G, then χ′i(G) ≤ χ
′

i(G + x).
2. If G includes a cycle Cp and 4 ≤ p . 0 (mod 4), then χ′i(G) ≥ 3.
3. If G includes a complete graph Kp, then χ′i(G) ≥ p(p − 1)/2.
4. If G includes the tree depicted in Figure 3, then χ′i(G) ≥ 3.
5. If G is a tree T, which includes the subtree T′ depicted in Figure 3, then χ′i(T) = 3.

In computer science a perfect binary tree is a tree data structure with exactly one vertex of degree two and
where each of the other vertices has degree one or three. Now we have another corollary.

Corollary 4.9. Let T be a perfect binary tree with diam(T) ≥ 7. Then χ′i(T) = 3.

Proof. Note that every perfect binary tree T with diam(T) ≥ 7 has to include the tree depicted in Figure 3 as
induced subgraph. Therefore, from Corollary 4.8 - item 5, the result follows.

We proceed deriving a characterization of the injective edge chromatic index, which is checkable in
polynomial time for trees.

Let G be a graph of size m ≥ 1, Ḡ the graph with m vertices corresponding to the edges of G and where,
for every pair of vertices x, y ∈ V(Ḡ), xy ∈ E(Ḡ) if and only if there is an edge e ∈ E(G) such that x, e, y are
consecutive edges of G. We obviously have the following.

Lemma 4.10. If G is a graph of size m ≥ 1, χ′i(G) = χ(Ḡ).

From Lemma 4.10 we can conclude the following.

Proposition 4.11. If G is a graph of size m ≥ 1, then χ′i(G) ≤ 2 if and only if Ḡ is bipartite.

Proof. Note that the chromatic number of a graph with no edges is 1, and is equal to 2 if and only if it has
at least one edge and is bipartite. Lemma 4.10 completes the proof.

We therefore have the following characterization of graphs having injective edge chromatic index equal
to 2.

Proposition 4.12. Let G be a graph of size m ≥ 1. Then, χ′i(G) = 2 if and only if G is not a disjoint union of stars
and Ḡ has no odd cycle.

Proof. Proposition 2.3 states that χ
′

i(G) = 1 if and only if G is a disjoint union of stars. Proposition 4.11
states that if Ḡ is bipartite then χ

′

i(G) ≤ 2.

Taking into account Propositions 2.3 and 4.6, Proposition 4.12 reads for trees as follows.

Proposition 4.13. Let T be a tree. Then, either

• χ
′

i(T) = 1 if T is a star, or

• χ
′

i(T) = 3 if T̄ includes an odd cycle, or

• χ
′

i(T) = 2, in any other case.

For example, the graph T̄′ that is obtained from the tree T′ of Figure 3, which has χ
′

i(T
′) = 3, includes

cycles C5 and C7.
Note that Proposition 4.13 gives a polynomial time algorithm to determine the injective edge chromatic

index for trees.

The next result relates the injective edge chromatic index of a graph and of its square.
Let us denote the distance between the vertices u and v in G by dG(u, v). The square of a simple graph G

is the simple graph G2, where e = uv is an edge in G2 if and only if dG(u, v) ≤ 2. Using this concept and this
notation we have the corollary.
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Corollary 4.14. For any connected graph G, χ′i(G) ≤ χ
′

i(G
2).

Proof. Notice that G is a subgraph of G2. Therefore, applying Proposition 4.7, the result follows.

Previously we have considered the unicyclic graphs which include a triangle and we proved that
those are ω

′

EIC-graphs. Now, the following proposition states a lower and upper bounds on the injective
chromatic index of more general unicyclic graphs.

Proposition 4.15. Let G be a unicyclic graph and Cp the cycle in G. If p ≥ 4, then 2 ≤ χ
′

i(G) ≤ 4.

Proof. The left inequality follows directly from Proposition 2.1, item 2.
To prove that χ

′

i(G) ≤ 4, let v be an arbitrary vertex of the cycle Cp and consider G−v (the graph obtained
from G deleting v and every edge of G incident to v). As G − v is a forest we can properly i-coloring its
edges with three colors, say colors c1, c2, c3. Now use a different color, say c4, to color all edges of G incident
to vertex v. This is clearly a feasible i-edge coloring of G using 4 color, showing that the result holds.

Notice that the upper bound on the injective edge coloring number obtained in Proposition 4.15 is
attained for the unicyclic graph ℵ depicted in Figure 5. Regarding the lower bound, it is attained for a
graph G if and only if Ḡ is bipartite.

5. The injective chromatic index of some mesh graphs and cartesian products

Herein we call mesh graphs the graphs considered in [13]. Among these graphs we pay particular
attention to the cartesian products Pn�K2 and Pr�Ps and also to the honeycomb graph. The Cartesian
product G�H of two graphs G and H is the graph with vertex set equal to the Cartesian product V(G)×V(H)
and where two vertices (11, h1) and (12, h2) are adjacent in G�H if and only if either 11 = 12 and h1 is adjacent
to h2 or h1 = h2 and 11 is adjacent to 12.

Proposition 5.1. Let Pn be a path of order n ≥ 3. Then χ′i(Pn�K2) = 3

Proof. Mark all the vertices in Pn�K2 from the left to right as follows: mark the first upper vertex in the
ladder by 1, the second lower vertex by 2, the third upper vertex by 3 and so on, as it is in Figure 4. Now
color the edges with one end vertex labeled 1 by the color c1, the edges with one end vertex labeled 2 by the
color c2, the edges with one end vertex labeled 3 by the color c3 and so on. This coloring yields an injective
edge coloring of Pn�K2. Therefore, χ

′

i(Pn�K2) ≤ 3. On the other hand, it is easy to find C6 as a subgraph of
Pn�K2 and, from Proposition 2.1-2, χ

′

i(C6) = 3. Then, applying Proposition 4.7, it follows that χ
′

i(Pn�K2) ≥ 3.
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t

t
t

t
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2

3

1
c1

c2

c3 c3

c2 c1 c1

c2 c2

c3 c3

c1

c1 c2 c3 c1 c2 c3 c1

Figure 4: The Cartesian product Pn�K2 with χ
′

i(G) = 3.

Before the next proposition it is worth to recall that a two dimensional grid graph is the graph obtained
by the cartesian product Pr�Ps, where r and s are integers.

Proposition 5.2. If r, s ≥ 4, then χ′i(Pr�Ps) = 4.
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Proof. We start to choose a color, say red, for the edges having the upper left corner vertex v of G = Pr�Ps as
end vertex. Then, we color the edges having as end vertex the vertices which form a diagonal (starting at v)
of the grid G alternating between red and another color, say green. The parallel diagonals are colored in the
same way, using two different colors, say blue and yellow (see Figure 5). It is easy to check that this coloring
produces an injective edge coloring of G and therefore, χ

′

i(G) ≤ 4. Since the graph ℵ depicted in Figure 5 is
a subgraph of G such that χ

′

i(ℵ) = 4, applying Proposition 4.7, it follows that 4 = χ
′

i(ℵ) ≤ χ
′

i(G) ≤ 4.

ℵ

Pr�Ps

Figure 5: Injective edge coloring of G = Pr�Ps which has χ
′

i(G) = 4 and the unicyclic graph ℵ, where
χ
′

i(ℵ) = 4.

Figure 6: Injective edge coloring of a honey comb graph using three colors.

Honeycomb graphs are hexagonal tessellations which appear in the literature as models of many appli-
cations. Among several examples presented in [13] we may emphasize the applications to cellular phone
station placement, representation of benzenoid hydrocarbons, computer graphics and image processing,
etc.

Proposition 5.3. If G is a honeycomb graph, then χ′i(G) = 3.

Proof. Since the honeycomb graph G has a hexagonal tessellation, then C6 is a subgraph G and, by Proposi-
tion 2.1-2, χ

′

i(C6) = 3. Therefore, considering the coloring of the honeycomb graph G presented in Figure 6
which (as can be easily checked) is an injective edge coloring, it follows that 3 = χ

′

i(C6) ≤ χ
′

i(G) ≤ 3.

Proposition 5.4. For any connected graph G of order n ≥ 2, χ′i(G�K2) ≤ n2
− n, and this bound is sharp.

Furthermore, for any complete graph Kn with at n ≥ 2 χ
′

i(Kn�K2) = n2
− n.
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Proof. Let G′

and G′′

be the two copies of G in G�K2. Give different colors to all edges in G′

and G′′

say
1, 2, . . . ,m,m + 1, . . . , 2m ,where m ≤ n(n−1)

2 . Now consider the colorless edges in G′

, all colorless edges of G′

have one end vertex in G′

and the other in G′′

. We can color these edges by the colors 1, 2, . . . ,m + 1.

The n-cube Qn is defined repeatedly by Q1 = K2 and Qn = Qn−1�K2. Thus we have the following

Corollary 5.5. For the n-cube Qn, χ′i(Qn) ≤ 2(n−1)(n − 1).

6. Computational complexity of injective edge coloring

To establish the complexity of i-edge coloring we use a graph, denoted by Bk, which can properly be
i-edge colored with k colors. Graph B4 is represented in Figure 7 from which it should be clear how to
construct graph Bk, for arbitrary k ≥ 1. Note that if we remove from Bk all edges incident with bk and
vertices uk, bk, vk, we obtain Bk−1.

u4 b4 v4

u3 b3 v3

u2 b2 v2

u1 b1 v1

Figure 7: Graph B4

As shown for B4 in Figure 7, a feasible k i-edge coloring of Bk is obtained giving the same color to all the
edges incident with each vertex bi, and using different colors for edges incident with different bi.

It can be easily verified that

Lemma 6.1. χ′i(Bk) = k. Moreover, in every feasible k i-edge coloring of Bk all edges incident with vertex bi receive
the same color, i = 1, . . . , k, and pairs of edges, one incident with bi and the other with b j, i , j = 1, . . . , k, receive
different colors.

Proof. In any feasible i-edge coloring none of the colors of edges uk, bk and bk, vk can be used to color the
edges incident with bi, for i = 1, . . . , k − 1. Taking into account that the edges of Bk−1 are the edges of Bk
not incident with bk, this shows that Bk cannot be properly i-edge colored with less than k colors, thus
implying χ

′

i(Bk) = k, and additionally that edges ui, bi and bi, vi must have the same color in any feasible
i-edge coloring.

Since the color assigned to edge ui, bk (bk, vi) cannot have the same color of edges bi, vi (ui, bi), with
i = 1, . . . , k − 1, we can conclude that all edges incident with bk have the same color.

The remark above, noting that Bk−1 is obtained removing from Bk all edges incident with bk and vertices
uk, bk, vk, completes the proof.
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We now use Lemma 6.1 and the NP-completeness of deciding whether χ′(G) = k, for k ≥ 3 ([8, 10]), to
establish the computational complexity of i-edge coloring.

Theorem 6.2. It is NP-complete to recognize graphs having edge injective chromatic number equal to positive integer
k ≥ 3.

Proof. Given an arbitrary graph G with maximum degree ∆(G) = k, we construct graph G(Bk) replacing
every edge uv of G by graph Bk, such that each edge uv of G is now the edges ukbk and bkvk of Bk. Therefore,
in the modified graph G(Bk) we have a graph Bk for each edge of G. Given a k ≥ 3 edge coloring of G we
obtain a k i-edge coloring of G(Bk) by (i) assigning the color used on each edge uv of G to every edge incident
with vertex bk of subgraph Bk of G(Bk) corresponding to edge uv; and (ii) using the remaining k − 1 colors
to feasibly i-edge color the other edges of G(Bk). Clearly, the resulting k i-edge coloring of G(Bk) is feasible
if and only if the k edge coloring of G is feasible.

Conversely, given a feasible k ≥ 3 i-edge coloring of G(Bk), where each subgraph Bk corresponding to
each edge of G has exactly k colors, we obtain a feasible k edge coloring of G assigning to every edge uv of
G the color used on the edges incident with bk of the subgraph Bk of G(Bk) corresponding to uv.

We thus have χ
′

(G) = χ
′

i(G(B)). Finally, since recognizing graphs G with edge injective chromatic
number, χ

′

i(G), equal k is obviously in NP, the result follows.

7. Conclusions and open problems

In this paper we have characterized graphs having injective chromatic index equal to one (Propo-
sition 2.3) and two (Proposition 4.12), and graphs with injective chromatic index equal to their sizes
(Proposition 2.4). These graphs are recognized in polynomial time. We showed that trees have injective
chromatic index equal to 1, 2 or 3 (Proposition 4.13), and identified the trees T with χ

′

i(T) = i, for i = 1, 2, 3
(Proposition 4.13).

In Section 3, we have introduced the notion of ω
′EIC-graphs (for which χ

′

i(G) = ω
′

(G)) and presented a
few examples of these graphs. Following the results published in [4], a few additional families of these type
of graphs (therein called perfect ω

′EIC-graphs) were constructed in [15]. However, the characterizations of
ω
′EIC-graphs remains open.

Some lower and upper bounds on the injective chromatic index of a graph were obtained in Section 4.
Regarding mesh graphs, in Section 5, the injective chromatic index of the cartesian products Pn�K2 and

Pr�Ps as well as the honey comb graphs were determined. However, it is not known the injective chromatic
index of several other mesh graphs as it is the case of hexagonal mesh graphs (see [13, Fig. 2]). It is also
open to compute the injective chromatic index for planar graphs.

Finally, in Section 6, we have proved that determining the injective chromatic index of graphs is NP-hard.
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