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Abstract. For r ∈ N\{0} an r-edge coloring of a graph or hypergraph G = (V,E)
is a map c : E → {0, . . . , r−1}. Extending results of Rado and answering questions
of Rado, Gyárfás and Sárközy we prove that

• every r-edge colored complete k-uniform hypergraph on N can be partitioned
into r monochromatic tight paths with distinct colors (a tight path in a k-
uniform hypergraph is a sequence of distinct vertices such that every set of k
consecutive vertices forms an edge),

• for all natural numbers r and k there is a natural number M such that
the every r-edge colored complete graph on N can be partitioned into M

monochromatic kth powers of paths apart from a finite set (a kth power of a
path is a sequence v0, v1, . . . of distinct vertices such that |i− j| ≤ k implies
that {vi, vj} is an edge),

• every 2-edge colored complete graph on N can be partitioned into 4 monochro-
matic squares of paths, but not necessarily into 3,

• every 2-edge colored complete graph on ω1 can be partitioned into 2
monochromatic paths with distinct colors.

1. Introduction

Our goal is to find partitions of edge-colored infinite graphs and hypergraphs into
nice monochromatic subgraphs. In particular, we are interested in partitioning the
vertices of complete graphs and hypergraphs into monochromatic paths and powers
of paths.

An r-edge coloring of a graph or hypergraph G = (V,E) is a map c : E →
{0, . . . , r − 1}, where r ∈ N \ {0}. Investigations began in the ’80s with a result of
Rado [8] implying that every r-edge colored complete graph on N can be partitioned
into r monochromatic paths with distinct colors. We will abbreviate this statement
as

KN ⊏ (Path, . . . ,Path)r.

In Section 3, answering a question of Gyárfás and Sárközy from [3] we extend
this result for hypergraphs by proving that every r-edge colored complete k-uniform
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hypergraph on N can be partitioned into r monochromatic tight paths with distinct
colors (Theorem 3.3):

Kk
N
⊏ (TightPath, . . . ,TightPath)r.

Furthermore, Erdős, Gyárfás and Pyber [1] conjectured that the vertices of every
r-edge colored complete graph can be covered with r disjoint monochromatic cycles.

This conjecture was disproved by Pokrovskiy [6]. However, the case k = 2 of
Theorem 3.3(2) yields that the corresponding version of the conjecture above holds
for countable infinite graphs: Given an r-edge coloring of KN, we can partition the
vertices into r disjoint cycles and 2-way infinite paths of distinct colors.

In Section 4, we prove that for all natural numbers r and k there is a natural
number M such that the every r-edge colored complete graph on N can be partitioned
into M monochromatic kth powers of paths apart from a finite set (Theorem 4.6):

KN ⊏∗ (kth −Power of Path)r,M .

Using a recent result of Pokrovskiy on finite graphs we show that every 2-edge
colored complete graph on N can be partitioned into 4 monochromatic squares of
paths:

KN ⊏ (PathSquare)2,4.

Finally, in Section 5, we give a partial answer to a question of Rado from [8] (the
definitions are postponed to the section): every 2-edge colored complete graph on ω1

can be partitioned into 2 monochromatic paths of distinct colors:

Kω1
⊏ (Path,Path)2.

The paper ends with the short Section 6 on further results (without proofs) and
open problems.

2. Notations, preliminaries

The cardinality of a set X is denoted by |X|. For a set X and k ∈ N we will denote
the set of k-element subsets of X by [X ]k. The set of all subsets of X is denoted by
P(X). A graph is an ordered pair G = (V,E) so that E ⊂ [V ]2, and a hypergraph is
an ordered pair H = (V,E) so that E ⊂ P(V ); we will use the notation V (G), E(G)
for the vertices and edges of a graph or hypergraph G. A hypergraph H = (V,E) is
k-uniform if E ⊂ [V ]k.

For a graph G = (V,E) and v ∈ V we write

NG(v) = {w ∈ V : {v, w} ∈ E},

and for F ⊂ V

NG[F ] =
⋂

{NG(v) : v ∈ F}.

For a graph G and X ⊂ V (G) we let G[X ] denote the induced subgraph (X, [X ]2∩
E(G)).
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Let c : E → {0, . . . , r − 1} be an r-edge coloring of a graph G = (V,E). For an
edge {v, w} ∈ E we will simply write c(v, w) instead of c({v, w}). For v ∈ V and
i < r also let

NG(v, i) = {w ∈ NG(v) : c(v, w) = i},

and for F ⊂ V and i < r let

NG[F, i] =
⋂

{NG(v, i) : v ∈ F}.

As we always work with a fixed coloring, this notation will lead to no misunderstand-
ing (and sometimes we will even drop the subscript G).

We will use KN to denote (N, [N]2), that is, the complete graph on N. A path in
a graph is a finite or one-way infinite sequence of distinct vertices such that each
pair of consecutive vertices is connected by an edge. If P is a finite path and Q is a
disjoint path such that the end-point of P is connected by an edge with the starting
point of Q then P⌢Q denotes their concatenation. We say that Q end extends P if
P is an initial segment of Q.

Definition 2.1. Let G = (V,E) be a graph and A ⊂ V . We say that A is
infinitely linked iff there are infinitely many disjoint finite paths between any two
distinct points of A. We say that A is infinitely connected iff there are infinitely
many disjoint finite paths inside A between any two distinct points of A.

Remark. An easy recursive construction shows that A is infinitely linked iff for every
two distinct members v and w of A and every finite set F ⊂ V (G) \ {v, w} there is a
path connecting the two points and avoiding F . Similarly, A is infinitely connected
if we can additionally require that the path is inside A.

If we fix an edge coloring c of G with r colors, i < r, P is a graph property
(e.g. being a path, being infinitely connected...) and A ⊂ V then we say that A has
property P in color i (with respect to c) iff A has property P in the graph (V, c−1(i)).
In particular, by a monochromatic path we mean a set P which is a path in some
color.

Lemma 2.2. Let G = (V, [V ]2) be a complete countably infinite graph. Given any
edge coloring c : [V ]2 → {0, . . . , r − 1}, there is a partition dc : V → {0, . . . , r − 1}
and a color ic < r so that

N [F, i] ∩ Vic is infinite for all i < r and finite set F ⊂ Vi = d−1
c {i}.

In particular, Vi is infinitely linked in color i for all i < r and Vic is infinitely
connected in color ic.

Proof. Let U be a non-trivial ultrafilter on V , see e.g. [5]. (In other words, take a
finitely additive 0/1-measure on V assigning measure 0 to singletons, and let U be
the class of sets of measure 1.) For i < r define Vi = {v ∈ V : N(v, i) ∈ U} (e.g.
dc ↾ Vi ≡ i), and let ic be the unique element of {0, . . . , r− 1} with Vic ∈ U . It is not
hard to check that this works. �
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The next lemma looks slightly technical at first sight. However, note that for our
first application, that is for the proof of Rado’s theorem we can ignore the sets Aj ,
as well as the last clause.

Lemma 2.3. Suppose that G = (V,E) is a countably infinite graph and c is an edge
coloring. Suppose that {Cj : j < k} is a finite family of subsets of V and that each
Cj is infinitely linked in some color ij. Moreover, for j < k let Aj ⊆ Cj be arbitrary
subsets.

Then we can find disjoint sets Pj so that

(a) Pj is a path (either finite or one-way infinite) in color ij for all j < k,
(b) if Aj is infinite then so is Aj ∩ Pj,
(c)

⋃

{Pj : j < k} ⊃
⋃

{Cj : j < k}.

Moreover, if a Cj is infinite then we can choose the first point of Pj freely from Cj.

Proof. Let v0, v1, . . . be a (possibly finite) enumeration of
⋃

{Cj : j < k}.
For all the infinite Cj , fix distinct xj ∈ Cj as starting points for the Pjs. We define

disjoint finite paths {P n
j : j < k} by induction on n ∈ N so that

(i) P n
j is a path of color ij with first point xj ,

(ii) P n+1
j end extends P n

j (as a path of color ij),
(iii) the last point of the path P n

j is in Cj,

(iv) if Aj is infinite then the last point of P 2n
j is in Aj ,

for all j < k, and

(v) if vn /∈
⋃

j<k P
2n
j and vn ∈ Cj then vn is the last point of P 2n+1

j .

It should be easy to carry out this induction applying that each Aj is infinitely
linked in color ij . Finally, we let Pj = ∪{P n

j : n ∈ N} for j < k which finishes the
proof. �

In particular, we have the following trivial corollary:

Corollary 2.4. If a countable graph is infinitely connected then it is a single one-way
infinite path. If a countable set of vertices A is infinitely linked then it is covered by
a single one-way infinite path.

More importantly, the above lemmas yield

Theorem 2.5 (R. Rado [8]). For every r-edge coloring of KN we can partition the
vertices into r disjoint paths of distinct colors.

Proof. Apply Lemma 2.2 and find a partition N = {Vi : i < r} so that each Vi is
infinitely linked in color i. Now apply Lemma 2.3 with Ci = Vi (and Ai = ∅) to get
the desired partition into monochromatic paths. �

To abbreviate the formulation of certain result we introduce the following notation.
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Definition 2.6. Let G be a graph and F be a class of graphs. We write

G ⊏ (F)r,m

if given any r-edge coloring c : E(G) → {0, . . . , r − 1} the vertex set of G can be
partitioned into m monochromatic elements of F.

We write

G ⊏ (F,F, . . . ,F)r

if given any r-edge coloring c : E(G) → {0, . . . , r − 1} the vertex set of G can be
partitioned into r monochromatic elements of F in distinct colors.

In particular, G ⊏ (Path)r,m holds if given any r-edge coloring c of G the vertex
set of G can be partitioned into m monochromatic paths.

We write ⊏∗ instead of ⊏ if we can partition the vertex set apart from a finite set.

Using our new notation, Theorem 2.5 can be formulated as follows:

KN ⊏ (Path, . . . ,Path)r.

3. Partitions of hypergraphs

In this section, we briefly look at a generalization of Rado’s result, Theorem 2.5
above, to hypergraphs. Let k ∈ N \ {0}.

Definition 3.1. A loose path in a k-uniform hypergraph is a finite or one-way infinite
sequence of edges, e1, e2, . . . such that |ei ∩ ei+1| = 1 for all i, and ei ∩ ej = ∅ for all
i, j with i+ 1 < j.

A tight path in a k-uniform hypergraph is a finite or one-way infinite sequence of
distinct vertices such that every set of k consecutive vertices forms an edge.

Remark. Occasionally, we will refer to loose and tight cycles and two-way infinite
paths as well, with the obvious analogous definitions.

The following result was proved recently:

Theorem 3.2 (A. Gyárfás, G. N. Sárközy [3, Theorem 3.]). Suppose that the edges
of a countably infinite complete k-uniform hypergraph are colored with r colors. Then
the vertex set can be partitioned into monochromatic finite or one-way infinite loose
paths of distinct colors.

In the introduction of [3], the authors asked if one can find a partition into tight
paths instead of loose ones. We prove the following:

Theorem 3.3. Suppose that the edges of a countably infinite complete k-uniform
hypergraph are colored with r colors. Then

(1) the vertex set can be partitioned into monochromatic finite or one-way infinite
tight paths of distinct colors,

(2) the vertex set can be partitioned into monochromatic tight cycles and two-way
infinite tight paths of distinct colors.
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Proof. (1) Note that the case of k = 2 is Rado’s Theorem 2.5 above; we will imitate
his original proof here.

Let c :
[

N
]k

→ {0, . . . , r−1}. A set T ⊂ {0, . . . , r−1} of colors is called perfect iff
there are disjoint finite subsets {Pt : t ∈ T} of N and an infinite set A ⊂ N \

⋃

t∈T Pt

such that for all t ∈ T

(a) Pt is a tight path in color t,
(b) if 1 ≤ i < k and x is the set of the last i vertices from the tight path Pt and

y ∈
[

A
]k−i

, then c(x ∪ y) = t.

Since ∅ is perfect, we can consider a perfect set T of colors with maximal number of
elements.

Claim 3.3.1. If the vertex disjoint finite tight paths {Pt : t ∈ T} and the infinite
set A satisfy (a) and (b) then for all v ∈ N \

⋃

t∈T Pt there is a color t′ ∈ T , a finite
sequence v1, v2, . . . , vk−1 from A, and an infinite set A′ ⊂ A such that the tight paths

{

Pt : t ∈ T \ {t′}
}

∪ {Pt′
⌢(v1, v2, . . . , vk−1, v)}

and A′ satisfy (a) and (b) as well.

Proof of the Claim. Define a new coloring d :
[

A
]k−1

→ {0, . . . , r−1} by the formula
d(x) = c(x ∪ {v}). By Ramsey’s Theorem, there is an infinite d-homogeneous set
B ⊂ A in some color t′. Then t′ ∈ T , since otherwise T ∪ {t′} would be a bigger
perfect set witnessed by Pt′ = {v},{Pt : t ∈ T} and B.

Now pick distinct v1, v2, . . . , vk−1 from B and let A′ = B \ {v1, . . . , vk−1, v}. �

Finally, by applying the claim repeatedly, we can cover the vertices with |T | tight
paths of distinct colors.

(2) Let c :
[

N
]k

→ {0, . . . , r − 1}. Write V−1 = N. Using Ramsey’s Theorem, by

induction on n ∈ N choose d(n) < r and Vn ∈
[

Vn−1

]N
such that

c({n} ∪O) = d(n) for all O ∈
[

Vn

]k−1
. (3.1)

For i < r let
Ai = {n ∈ N : d(n) = i}. (3.2)

Let K = {i < r : Ai is finite}. By induction on i ∈ K we will define tight cycles
{Pi : i ∈ K} such that

⋃

i′<i,i′∈K

Ai′ ⊆
⋃

i′<i,i′∈K

Pi′

while some of the Pi’s might be empty.
Assume that {Pi′ : i′ < i, i′ ∈ K} is defined and suppose i ∈ K. Enumerate

Ai \
⋃

i′<i,i′∈K Pi′ as {x
j
i : j < t}.

Choose disjoint k − 1 element sets

Y j
i ⊆

⋂

j<t

V
x
j

i
\

⋃

i′<i,i′∈K

Pi′ for j < t. (3.3)
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Consider an ordering ≺i on Pi = {xj
i : j < t} ∪

⋃

j<t

Y j
i such that

x0
i ≺i Y

0
i ≺i x

1
i ≺i Y

1
i ≺i · · · ≺i x

t−1
i ≺i Y

t−1
i .

Then ≺i witnesses that Pi is a tight cycle in color i.
Now, let

P =
⋃

i∈K

Pi

and for each i ∈ {0, . . . , r − 1} \ K we define a 2-way infinite tight path Pi as
follows.

By induction, for every integer z ∈ Z and i ∈ {0, . . . , r − 1} \ K choose disjoint

sets {xz
i } ∈ [Ai \ P ]1 and Y z

i ∈
[

N \ P
]k−1

such that

Y z
i ⊂ Vxz

i
∩ Vxz+1

i

and
⋃

i∈{0,...,r−1}\K

Ai ⊂ P ∪
⋃

{{xz
i }, Y

z
i : i ∈ {0, . . . , r − 1} \K, z ∈ Z}.

Consider an ordering ≺i on Pi = {xz
i : z ∈ Z} ∪

⋃

z∈Z Y
z
i such that

. . . ≺i Y
−2
i ≺i x

−1
i ≺i Y

−1
i ≺i x

0
i ≺i Y

0
i ≺i x

1
i ≺i Y

1
i ≺i . . .

Then ≺i witnesses that Pi is a 2-way infinite tight path in color i. �

4. Covers by kTH powers of paths

Our aim is to prove a stronger version of Rado’s theorem; in order to state this
result we need the following

Definition 4.1. Suppose that G = (V,E) is a graph and k ∈ N\{0}. The kth power
of G is the graph Gk = (V,Ek) where {v, w} ∈ Ek iff there is a finite path of length
≤ k from v to w.

We will be interested in partitioning an edge colored copy of KN into finitely many
monochromatic kth powers of paths.

b b b b b b bb

b b bb

P P 2

P 3

Figure 1. Powers of paths.

We will investigate this problem by introducing the following game.
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Definition 4.2. Assume that H is a graph, W ⊂ V (H) and k ∈ N. The game
Gk(H,W ) is played by two players, Adam and Bob, as follows. The players choose
disjoint finite subsets of V (H) alternately:

A0, B0, A1, B1, . . .

Bob wins the game Gk(H,W ) iff

(A) W ⊂
⋃

i∈N Ai ∪Bi, and
(B) H [

⋃

i∈NBi] contains the kth power of a (finite or one way infinite) Hamiltonian
path (that is, a path covering all the vertices).

For k = 1, we have the following

Observation 4.3. If H = (V,E) is a countable graph and W ⊂ V then the following
are equivalent:

(1) W is infinitely linked,
(2) Bob wins G1(H,W ).

Proof. (1) ⇒ (2): By our assumption, Bob can always connect an uncovered point of
W to the end-point of the previously constructed path while avoiding vertices played
so far. This shows the existence of a winning strategy for Bob.

(2) ⇒ (1): Fix any two distinct points v, w ∈ W and a finite set F ⊂ V \ {v, w}.
Let Adam start with A0 = F and continue with Ai = ∅; the Hamiltonian path P
constructed by Bob’s strategy will go through a and b while P ∩ F = ∅. �

Now, we show how to produce a partition of the vertices into kth powers of paths
using winning strategies of Bob:

Lemma 4.4. Suppose that H = (V,E), V =
⋃

{Wi : i < M} with M ∈ N and let
Hi = (V,Ei) for some Ei ⊂ E. If Bob wins Gk(Hi,Wi) for all i < M then V can be
partitioned into {Pi : i < M} so that Pi is a kth power of a path in Hi.

Proof. We will conduct M games simultaneously as follows: the plays of Adam and
Bob in the ith game will be denoted by Ai

0, B
i
0, A

i
1, B

i
1, . . . for i < M . Let σi denote

the winning strategy for Bob in Gk(Hi,Wi), that is, if we set B
i
n = σi(Ai

0, B
i
0, . . . , A

i
n)

then Bob wins the game.
Now, we define Ai

n, B
i
n by induction using the lexicographical ordering <lex on

{(n, i) : n ∈ N, i < M}. First, let A0
0 = ∅ and B0

0 = σ0(A0
0). In general, assume that

Aj
m and Bj

m are defined for (m, j) <lex (n, i), and we let

Ai
n =

⋃

{Bj
m : (m, j) <lex (n, i)} \

(

⋃

{Ai
m, B

i
m : m < n}

)

(4.1)

and

Bi
n = σi(Ai

0, B
i
0, . . . , A

i
n).

One easily checks that the above defined plays are valid; indeed, for a fix i < M
the finite sets {Ai

n, B
i
n : n ∈ N} defined above are disjoint.



MONOCHROMATIC PATH DECOMPOSITIONS 9

Next, let Pi =
⋃

{Bi
n : n ∈ N} for i < M . As Bob wins the ith game we have that

Pi is a kth power of path in Hi. Note that Pi ∩ Pj = ∅ if i 6= j < M . Indeed, if
(m, j) <lex (n, i), then

Bi
n ∩ Bj

m ⊂ Bi
n ∩ (Ai

n ∪
(

⋃

{Ai
m, B

i
m : m < n}

)

= ∅

by (4.1).
To finish the proof, we prove

V = {Pi : i < M}. (4.2)

Indeed, first note that Wi ⊂
⋃

n∈N A
i
n ∪ Bi

n as Bob wins the ith game and hence

V =
⋃

n∈N,i<M

Ai
n ∪Bi

n.

Second, by (4.1), we have

Ai
n ⊂

⋃

{Bj
m : (m, j) <lex (n, i)}

and so
⋃

n∈N,i<M

Ai
n ⊂

⋃

n∈N,i<M

Bi
n

and hence V = {Pi : i < M}. �

The next theorem provides conditions under which Bob has a winning strategy:

Theorem 4.5. Assume that H is a countably infinite graph, W ⊂ V (H) is non-
empty and k ∈ N. If there are subsets W0, . . . ,Wk of V (H) such that W0 = W
and

Wj+1 ∩NH [F ] is infinite for each j < k and finite F ⊂
⋃

i≤j
Wi (4.3)

then Bob wins Gk(H,W ).

Proof. We can assume that V(H) = N.
Consider first the easy case when W0 is finite. Adam plays a finite set A0 in the

first round. Write N = |W0 \ A0|. Let Bob play B0 = W0 \ A0 = {bn,0 : n < N}. In
the jth round for 1 ≤ j ≤ k, let Bob play an N -element set

Bj = {bn,j : n < N} ⊂ Wj ∩NH

[

⋃

i<j
Bi

]

(4.4)

which avoids all previous choices, i.e. Bj ∩
⋃

{Ai′ , Bi : i
′ ≤ j, i < j} = ∅. For j > k

let Bob play Bj = ∅.
We claim that

(A) W0 ⊆
⋃

{An, Bn : n ∈ N}, and
(B) P = {bn,j : n < N, j ≤ k} is the kth-power of a path.
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(A) is clear because W0 ⊆ A0 ∪ B0.
To check (B) consider the lexicographical order of the indexes. Let (m, i) 6= (n, j) ∈

{0, . . . , N − 1} × {0, . . . , k}. Then bm,i and bn,j are the ((k + 1)m + i)th and ((k +
1)n+ j)th elements, respectively, in the lexicographical order.

Bj ⊆ Wj

Bi ⊆ Wi

B0 ⊆ W0

Bk ⊆ Wkb b b b

b b b b

b b b b

b b b b

i

j

k

N

bn,j

bm,i

Figure 2. bn,j and its k successors.

Assume that |((k + 1)m + i) − ((k + 1)n + j)| ≤ k; then i 6= j and, without
loss of generality, we can suppose that i < j. Then we have bm,i ∈

⋃

i′<j Bi′, so

bn,j ∈ NH(bm,i) by (4.4). In other words, {bm,i, bn,j} is an edge in H which yields
(B).

Consider next the case when W0 is infinite; let us outline the idea first in the case
when k = 2. Bob will play one element sets at each step and aims to build a one-
way infinite square of a path following the lexicographical ordering on N× {0, 1, 2}.
However, he picks the vertices in a different order, denoted by E later, which is
demonstrated in Figure 3.

k = 2

N

1. 2. 4. 7. 10.

6. 9. 12.

3. 5. 8.

⊆ W0

⊆ W1

⊆ W2

11.

Figure 3. The two orderings.
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This way Bob makes sure that when he chooses the 12th element he already picked
its two successors (in the 7th and 11th plays) and two predecessors (in the 8th and 4th

plays) in the lexicographical ordering, hence we can ensure the edge relations here.
Now, we define the strategy more precisely. In each round Bob will pick a single ele-

ment bn,j for some (n, j) ∈ N×{0, 1, . . . , k} such that
{

bn,j : (n, j) ∈ N×{0, 1, . . . , k}
}

will be the kth power of a path in the lexicographical order of N× {0, 1, . . . , k}.
As we said earlier, Bob will not choose the points bn,j in the lexicographical order

of N × {0, 1, . . . , k}, i.e. typically the ((k + 1)n + j)th move of Bob, denoted by
B(k+1)n+j , is not {bn,j}.

To describe Bob’s strategy we should define another order on N× {0, 1, . . . , k} as
follows:

(m, i) E (n, j) iff (m+ i < n+ j) or (m+ i = n+ j and i ≤ j).

Write (m, i)⊳(n, j) iff (m, i) E (n, j) and (m, i) 6= (n, j). Clearly every (n, j) has just
finitely many ⊳-predecessors. Let f(ℓ) denote the ℓth element of N× {0, 1, . . . , k} in
the order ⊳.

Bob will choose Bℓ = {bf(ℓ)} in the ℓth round as follows: if f(ℓ) = (n, j), then

(a) if j = 0 then

bn,j = min
(

W0 \
(

⋃

s≤ℓ

As ∪
⋃

t<ℓ

Bt

)

)

; (4.5)

(b) if j > 0 then

bn,j ∈ Wj ∩NH

[

{bm,i : (m, i) ⊳ (n, j), i < j}
]

. (4.6)

Bob can choose a suitable bn,j by (4.3) as {bm,i : (m, i) ⊳ (n, j), i < j} is a finite
subset of

⋃

i<j Wi.
We claim that

(A) W0 ⊆
⋃

{An, Bn : n ∈ N}, and
(B) P = {bn,j : n ∈ N, j ≤ k} is the kth-power of a path.

(A) is clear because in (4.5) we chose the minimal possible element.
Let (m, i) 6= (n, j) ∈ N × {0, . . . , k}. Then bm,i and bn,j are the ((k + 1)m + i)th

and ((k+1)n+ j)th elements, respectively, in the lexicographical order. Assume that
|((k + 1)m+ i)− ((k + 1)n+ j)| ≤ k. Then i 6= j and |m− n| ≤ 1.

Without loss of generality, we can assume that i < j. Then |m − n| ≤ 1 implies
m + i ≤ n + j and hence (m, i) ⊳ (n, j). Since i < j as well, bn,j ∈ NH(bm,i) must
hold by (4.6). In other words, {bm,i, bn,j} is an edge in H which yields (B). �

We arrive at one of our main results:

Theorem 4.6. For all positive natural numbers k, r and an r-edge coloring of KN

the vertices can be covered by r(k−1)r+1 one-way infinite monochromatic kth powers
of paths and a finite set.
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Proof. The set of sequences of length m (at most m, respectively) whose members
are from a set X is denoted by Xm (X≤m, respectively).

Recall that for each r-edge coloring c of KN Lemma 2.2 gives a partition of the
vertices, which we will denote by dc : N → {0, . . . , r − 1}, and a special color ic < r.
We define a set As ⊂ N for each finite sequence s ∈ {0, . . . , r − 1}≤(k−1)r+1 by
induction on |s| as follows:

• let A∅ = N,
• if As is defined and finite then let

As⌢0 = As and As⌢i = ∅ for 1 ≤ i < r, (4.7)

• if As is defined and infinite then let

As⌢i = {u ∈ As : dc↾As
(u) = i} for i < r. (4.8)

Fix an arbitrary s ∈ {0, . . . , r− 1}(k−1)r+1 such that As is infinite. Then there is a
color is < r and a k-element subset Hs = {h1 > h2 > · · · > hk} of {0, . . . , (k − 1)r}
such that

s(hj) = is
for all j = 1, . . . , k. Let W0 = As and Wj = As↾hj

for j = 1, . . . , k. Note that the
choice of is ensures that

Wj+1 ∩NGs
[F ] is infinite

for each j < k and finite set F ⊂
⋃

i≤j Wi, where Gs = (N, c−1{is}). Thus, by

Theorem 4.5, Bob has a winning strategy in the game Gk(Gs, As).
Playing the games

{Gk(Gs, As) : s ∈ {0, . . . , r − 1}(k−1)r+1 and As is infinite} (4.9)

simultaneously, that is, applying Lemma 4.4 we can find at most r(k−1)r+1 many
kth powers of disjoint monochromatic paths which cover N apart from the finite set
⋃

{As : As is finite}. �

In the case of k = r = 2, we have the following stronger result:

Theorem 4.7. (1) Given an edge coloring of KN with 2 colors, the vertices can be
partitioned into ≤ 4 monochromatic path-squares (that is, second powers of paths):

KN ⊏ (PathSquare)2,4.

(2) The result above is sharp: there is an edge coloring of KN with 2 colors such that
the vertices cannot be covered by 3 monochromatic path-squares:

KN 6⊏ (PathSquare)2,3.

To prove Theorem 4.7 we need some further preparation. First, in [7, Corollary
1.10] Pokrovskiy proved the following: Let k, n ≥ 1 be natural numbers. Suppose that
the edges of Kn are colored with two colors. Then the vertices of Kn can be covered
with k disjoint paths of color 1 and a disjoint kth power of a path of color 0.

Second, we will apply the following
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Lemma 4.8. Assume that P = v0, v1, . . . is a finite or one-way infinite path in a
graph G and there is W ⊂ V (G) \ P so that

(W ∩ NG[{vi, vi+1, vi+2, vi+3}]) is infinite for all vi ∈ P. (4.10)

Let F be a countable family of infinite subsets of W . Then G contains a square of
a path R which covers P while R \ P ⊂ W , and F \ R is infinite for all F ∈ F .
Moreover, if P is finite then R can also be chosen to be finite.

Proof. Let F0, F1, . . . be an enumeration of F in which each element shows up infin-
itely often.

Pick distinct vertices w0, f0, w1, f1, . . . from W such that

wi ∈ NG[{v2i, v2i+1, v2i+2, v2i+3}] and fi ∈ Fi.

Then

R = v0, v1, w0, v2, v3, w1, v4, . . . , v2i, v2i+1, wi, v2i+2, v2i+3, wi+1, . . . (4.11)

is a square of a path which covers P , R \P ⊂ W , and {fn : n ∈ N, Fn = F} ⊆ F \R
for all F ∈ F .

The last statement concerning the finiteness of R is obvious. �

Proof of Theorem 4.7(1). Fix a coloring c :
[

N
]2

→ {0, 1} and let Gi = (N, c−1{i})
for i < 2.

We will use the notation of Lemma 2.2. Let c0 = c and let

A0 = {v ∈ N : dc0(v) = ic0} and B0 = N \ A0. (4.12)

Let c1 = c0 ↾ B0 and provided B0 is infinite we let

A1 = {v ∈ B0 : dc1(v) = ic1} and B1 = B0 \ A1. (4.13)

We can assume that ic0 = 0 without loss of generality.

Case 1: B0 is finite.
First, G[B0] can be written as the disjoint union of two paths P0 and P1 of color

1 and a square of a path Q of color 0 by the above mentioned result of Pokrovskiy
[7, Corollary 1.10]. Applying Lemma 4.8 for G = G1, P = P0, W = A0 and F = ∅
it follows that there is a finite square of a path R0 in color 1 which covers P0 and
R0 \ P0 ⊂ A0. Applying Lemma 4.8 once more for G = G1, P = P1, W = A0 \ R0

and F = ∅ it follows that there is a finite square of a path R1 in color 1 which covers
P1, and R1 \ P1 ⊂ A0 \R0. Let A

′
0 = A0 \ (R0 ∪ R1).

Now, by Theorem 4.5, Bob wins the game G2(G0, A
′
0) witnessed by the sequence

(A′
0, A

′
0, A

′
0); thus G[A′

0] can be covered by a single square of a path S of color 0
by Lemma 4.4. That is, G can be covered by 4 disjoint monochromatic squares of
paths: R0, R1, Q and S.

Case 2: B0 is infinite and ic1 = 0.
Note that, by Theorem 4.5, Bob wins the games

(i) G2(G0, A0) witnessed by (A0, A0, A0),
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(ii) G2(G0, A1) witnessed by (A1, A1, A1),
(iii) G2(G1, B1) witnessed by (B1, A1, A0).

Hence, the vertices can be partitioned into two squares of paths of color 0 and a
single square of a path of color 1 by Lemma 4.4.

Case 3: B0 is infinite and ic1 = 1.
Since we applied Lemma 2.2 twice to obtain A0 and B0, and A1 and B1, and

B1 ⊆ B0 we know that

(a) Bob wins the game G2(G0, A0) witnessed by (A0, A0, A0);
(b) Bob wins the game G2(G1, A1) witnessed by (A1, A1, A1);
(c) N [F, 1] ∩ A0 is infinite for every finite set F ⊂ B1;
(d) N [F, 0] ∩ A1 is infinite for every finite set F ⊂ B1;
(e) N [F, 0] ∩ A0 is infinite for every finite set F ⊂ A0;
(f) N [F, 1] ∩ A1 is infinite for every finite set F ⊂ A1.

First, partition B1 into two paths P0 and P1 of color 0 and 1, respectively. Indeed,
if B1 is infinite this can be done by Theorem 2.5 and if B1 is finite one considers two
disjoint paths P0 and P1 in B1 of color 0 and 1 with |P0|+ |P1| maximal (as outlined
in a footnote in [2]); it is easily seen that P0 ∪ P1 must be B1.

Now, our plan is to cover P0 and P1 with disjoint squares of paths R0 and R1 of
color 0 and 1, respectively, such that R0 \ P0 ⊂ A1, R1 \ P1 ⊂ A0 while

(a’) Bob wins the game G2(G0, A0 \R1) witnessed by (A0 \R1, A0 \R1, A0 \R1),
(b’) Bob wins the game G2(G1, A1 \R0) witnessed by (A1 \R0, A1 \R0, A1 \R0).

Let

F0 = {N [F, 0] ∩A0 : F ⊂ A0 finite},

and

F1 = {N [F, 1] ∩A1 : F ⊂ A1 finite},

and note that these families consist of infinite sets by (e) and (f) above. Apply
Lemma 4.8 for G = G0, W = A1, P = P0 and F = F1 to find a square of a path R0

in G0 which covers P0, R0 \ P0 ⊂ A1 and F \R0 is infinite for all F ∈ F1, that is,

N [F, 1] ∩ (A1 \R0) is infinite for every finite set F ⊂ A1. (4.14)

Apply Lemma 4.8 once more for G = G1, W = A0, P = P1 and F = F0 to find a
square of a path R1 in G1 with R1 \ P1 ⊂ A0 which covers P1 and F \R1 is infinite
for all F ∈ F0, that is,

N [F, 0] ∩ (A0 \R1) is infinite for every finite set F ⊂ A0. (4.15)

Then, by Theorem 4.5, (4.15) yields (a’), and (4.14) yields (b’).
Hence (A0 \ R1) ∪ (A1 \ R0) can be partitioned into two monochromatic squares

of paths by Lemma 4.4 which in turn gives a partition of all the vertices into 4
monochromatic squares of paths. �
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Proof of Theorem 4.7(2). Fix a partition (A,B,C,D) of N such that A is infinite,
|B| = |C| = 4, and |D| = 1. Define the coloring c : [N]2 → {0, 1} as follows see
Figure 4:

c−1{1} = {{a, v} : a ∈ A, v ∈ B ∪ C ∪D} ∪
[

B
]2

∪
[

C
]2
. (4.16)

D

A

B C

Figure 4.

If P is a monochromatic square of a path which intersects both A and B ∪C ∪D,
then P should be in color 1, so P ∩ A should be finite. Thus every partition of KN

into monochromatic squares of paths should contain an infinite 0-monochromatic
square of a path S ⊂ A.

It suffices to show now that B ∪C ∪D cannot be covered by two monochromatic
squares of paths. Let D = {d}.

First, if P is a 1-monochromatic square of a path then P ′ = P ∩ (B ∪ C ∪D) is
a 1-monochromatic path. As two 1-monochromatic paths cannot cover B ∪ C ∪D,
two 1-monochromatic squares of paths will not cover B ∪ C ∪D neither.

Second, if Q is a 0-monochromatic square of a path which intersects B ∪ C ∪ D
then Q ⊂ B ∪ C ∪ D. Assume that d /∈ Q and let Q = x1, x2, . . . . If x1 ∈ B then
x2 ∈ C so x3 does not exists because Q is 0-monochromatic square of a path. Hence
d /∈ Q implies |Q ∩ B| ≤ 1 and |Q ∩ C| ≤ 1. If d ∈ Q, then cutting Q into two by d
and using the observation above we yield that |Q∩B| ≤ 2 and |Q∩C| ≤ 2. In turn,
two 0-monochromatic squares of paths cannot cover B ∪ C ∪D.

Finally using just one 0-monochromatic square of a path Q we cannot cover (B ∪
C) \ Q by a single 1-monochromatic square of a path because there is no 1-colored
edge between B \Q 6= ∅ and C \Q 6= ∅. �

5. Monochromatic path decompositions of Kω1

The aim of this section is to extend Rado’s Theorem 2.5 to 2-edge colored complete
graphs of size ω1.

First, we need to extend certain definitions to the uncountable setting.
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Definition 5.1 (Rado [8]). We say that a graph P = (V,E) is a path iff there is a
well ordering ≺ on V such that

{w ∈ NP (v) : w ≺ v} is ≺ -cofinal below v

for all v ∈ P .

Observation 5.2. Suppose that P = (V,E) is a graph and ≺ is a well ordering of
V . Then the following are equivalent:

(1) ≺ witnesses that P is a path,
(2) every v, w ∈ V are connected by a ≺-monotone finite path in P .

In particular, each vertex is connected to its ≺-successor by an edge and so this
general definition of a path coincides with the usual path notion for finite graphs.

The order type of (V,≺) above is called the order type of the path. We will say
that a path Q end extends the path P iff P ⊂ Q, ≺Q↾ P =≺P and v ≺Q w for
all v ∈ P,w ∈ Q \ P . If R and S are two paths so that the first point of S has
≺R-cofinally many neighbors in R then R∪S is a path which end extends R and we
denote this path by R⌢S.

Let Kω1
denote (ω1, [ω1]

2), i.e. the complete graph on ω1. Now we are ready to
formulate the main result of this section.

Theorem 5.3.

Kω1
⊏ (Path,Path)2.

That is, given any coloring of the edges of Kω1
with 2 colors, the vertices can be

partitioned into two monochromatic paths of distinct colors.

5.1. Further preliminaries. In the course of the proof we need more definitions.

Definition 5.4. Let G = (V,E) be a graph, κ a cardinal and let A ⊂ V . We say
that A is κ-linked iff there are κ many disjoint finite paths between any two points
of A. We say that A is κ-connected iff there are κ many disjoint finite paths inside
A between any two points of A.

We will apply this definition with κ = ω or ω1. We leave the (straightforward)
proof of the next observation to the reader:

Observation 5.5. Let G = (V,E) be a graph, κ an infinite cardinal and let A ⊂ V .
The following are equivalent:

(1) A is κ-linked (κ-connected),
(2) for every v, w ∈ A and F ⊆ V \ {v, w} of size < κ there is a finite path P

connecting v and w in V \ F (in A \ F respectively).

In the construction of a path longer than ω, the difficulty lies in constructing
the limit elements. Definition 5.6 will be crucial in overcoming this difficulty; the
idea is first finding all limit vertices of the path and then connecting these points
appropriately.

Recall that a set V ⊂ [V ]ω is a club (closed and unbounded) iff
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(1)
⋃

{Vn : n ∈ ω} ∈ V for every increasing sequence {Vn : n ∈ ω} ⊂ V, and
(2) for all W ∈ [V ]ω there is U ∈ V so that W ⊂ U .

Remark. An easy transfinite induction shows that every club on a set of size ω1

contains a club that is a well-ordered strictly increasing family of the form {Vα : α <
ω1}. Hence from now on we will tacitly assume that all clubs are of this form.

Definition 5.6. Suppose that G = (V,E) is a graph with |V | = ω1. We say that
A ⊂ V is a trail iff there is a club {Vα : α < ω1} ⊂ [V ]ω so that for all α < ω1 there
is vα ∈ A \ Vα such that for all α′ < α

NG(vα) ∩ (Vα \ Vα′) ∩ A is infinite. (5.1)

bb b b b b b
vα

VαVα′

A

Figure 5. Trails.

An important example of a path is the graph Hω1,ω1
i.e. (ω1 × 2, E) where

E =
{

{(α, 0), (β, 1)} : α ≤ β < ω1

}

.

Hω1,ω1
is a bipartite graph and we call the set of vertices in Hω1,ω1

with degree ω1,
(that is, ω1 × {0}) the main class of Hω1,ω1

.

Observation 5.7. The main class of Hω1,ω1
is ω1-linked and is a trail (indeed, let

Vα = ωα× 2).
If G is any graph and A ⊂ V (G) is a trail then

(1) C is a trail for any A ⊂ C ⊂ V (G),
(2) C \B is a trail for any B ∈ [C]ω,
(3) if {Wα : α < ω1} ⊂ {Vα : α < ω1} are clubs and {Vα : α < ω1} witnesses that

A is a trail then so does {Wα : α < ω1}.

We will make use of the following lemma regularly but the reader should feel free
to skip the proof when first working through this section.

Lemma 5.8. Let G = (V,E) be a graph with |V | = ω1, and let A ⊆ V be uncountable.
Then there is a club {Vα : α < ω1} of V such that

(1) Vα is an initial segment of ω1 and if ξ ∈ Vα then ξ + 1 ∈ Vα as well,
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(2) if A is ω1-linked (ω1-connected) then A ∩ (Vα+1 \ Vα) is infinite and ω-linked
(ω-connected) in Vα+1 \ Vα,

(3) if A is a trail then {Vα : α < ω1} witnesses this and, using the notation of
Definition 5.6, the node vα can be chosen in Vα+1 \ Vα.

Proof. Let M = {Mα : 0 < α < ω1} be an ∈-chain of countable elementary submod-
els of H(ω2) such that G,A,≺∈ M1, V ⊆

⋃

M and let M0 = ∅. Let Vα = V ∩Mα

for α < ω1. We claim that V = {Vα : α < ω1} is a club which satisfies the above
conditions.

First, V is a club as M is a continuous chain and V ⊆
⋃

M. Condition (1) is
satisfied by elementarity.

Now, suppose that A is ω1-linked and fix α < ω1. Also, fix v, w ∈ Vα+1 \ Vα and a
finite set F ⊂ Vα+1 \Vα. We prove that there is a path form v to w in Vα+1 \(Vα∪F );
this implies that A ∩ (Vα+1 \ Vα) is ω-linked by Observation 5.5. As A is ω1-linked
we have that

H(ω2) |= there is a finite path from v to w in V \ (Vα ∪ F ).

Hence, by elementarity of Mα+1 and by Vα, F, v, w ∈ Mα+1 we have

Mα+1 |= there is a finite path from v to w in V \ (Vα ∪ F ).

We choose any such path P in Mα+1 and so we have P ⊆ Vα+1 \ (Vα ∪F ) as desired.
The case when A is ω1-connected is completely analogous.

Finally, suppose that A is a trail. By elementarity, since A ∈ M1, there is a club
W = {Wα : α < ω1} ∈ M1 which witnesses that A is a trail. First, it is easy to
see that V ⊆ W and in particular, V witnesses that A is a trail. Second, the node
vα ∈ V \ Vα can be selected in Vα+1 as Vα ∈ Mα+1 and

Mα+1 |= there is v ∈ V \ Vα such that |NG(v) ∩ (Vα \ Vα′) ∩ A| = ω for all α′ < α.
(5.2)

This finishes the proof of the lemma. �

Finally, we state the obvious extension of Lemma 2.2.

Lemma 5.9. Given any edge coloring c : [κ]2 → {0, . . . , r−1} of the complete graph
on κ (where κ ≥ ω), there is a partition dc : κ → {0, . . . , r− 1} and a color i(c) < r
so that

|N [F, i] ∩ Vi(c)| = κ for all i < r and finite set F ⊂ Vi = d−1
c {i}.

In particular, Vi is κ-linked in color i for all i < r and Vi(c) is κ-connected in color
i(c).

Proof. Repeat tho proof of Lemma 2.2 but choose the ultrafilter U on κ to be uniform,
that is, |H| = κ for every H ∈ U . �
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5.2. Towards the proof of Theorem 5.3. The following two lemmas express the
connection between trails, ω1-linked sets and paths:

Lemma 5.10. Every path of order type ω1 is a trail and contains an uncountable
ω1-linked subset.

Proof. Suppose that P is a path of order type ω1 witnessed by the well ordering ≺.
Now, by Lemma 5.8, there is a club {Vα : α < ω1} of vertices of P such that Vα is a
≺-initial segment, v ∈ Vα implies that the ≺-successor of v is also in Vα and Vα ⊂ Vβ

for all α < β < ω1. Let vα denote the ≺-minimal element of V \ Vα. In order to
prove that P is a trail it suffices to show that

Claim 5.10.1. NP (vα) ∩ (Vα \ Vα′) is infinite for all α′ < α < ω1.

Proof. First, note that vα is a ≺-limit. Fix α′ < α. Vα′ is an initial segment of the
path P and has minimal bound vα′ . Note that vα′ ≺ vα. By the definition of a
path, the set {w ∈ NP (vα) : vα′ ≺ w ≺ vα} is infinite and it is clearly a subset of
NP (vα) ∩ Vα \ Vα′ by the choice of vα′ and vα. �

Second, we prove

Claim 5.10.2. The set A = {v ∈ V (P ) : |NP (v)| = ω1} is uncountable and
ω1-linked.

Proof. First, it suffices to show that there is a single vertex v with uncountable degree
in P as every end segment of P is also a path of order type ω1. Let {pα : α < ω1}
enumerate P according to the path well order ≺. Now, for every limit α < ω1 there
is µα < α so that {pα, pµα

} ∈ E(P ); Fodor’s pressing down lemma gives a stationary
set S ⊂ ω1 and µ ∈ ω1 so that {pα, pµ} ∈ E(P ) if α ∈ S, that is, the degree of pµ in
P is uncountable.

Now take any two distinct vertices, v and w, in A and fix an arbitrary countable
set F ⊂ V (P ) \ {v, w}. We will find a finite path from v to w in V (P ) \ F . There is
v′ ∈ NP (v) and w′ ∈ NP (w) so that both v′ and w′ are ≺-above all elements of F as
v, w ∈ A and |F | ≤ ω. Now, there is a finite ≺-monotone path Q between v′ and w′

by Observation 5.2; Q must avoid F and hence the path (v)aQa(w) connects v and
w in V (P ) \ F . By Observation 5.5, A must be ω1-linked. �

�

Now, we show that the converse of Lemma 5.10 is true as well:

Lemma 5.11. Suppose that G = (V,E) is a graph with |V | = ω1. If V is an
ω1-connected trail then G is a path.

Proof. Fix a club {Vα : α < ω1} as in Lemma 5.8 and pick nodes vα ∈ Vα+1 \ Vα

showing that V is a trail.
It suffice to construct sets Pα ⊂ V and orderings ≺α for α < ω1 so that

(i) (Pα,≺α) is a path with last point vα,
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(ii) Pα = Vα ∪ {vα},
(iii) Pβ end extends Pα for α < β < ω1.

Indeed, the ordering
⋃

{≺α: α < ω1} on V will witness that G is a path.
First, we set P0 = {v0}. Next, apply Corollary 2.4 to find a path R of order type

ω on vertices V1 with first point v0; this can be done as V1 is ω-connected. We let
P1 = R⌢(v1) and note that P1 is a path as the infinite set NG(v1) ∩ V1 is cofinal in
R and hence below v1.

In general, suppose that we have constructed Pα for α < β as above. If β is a limit
then let P<β =

⋃

{Pα : α < β}; note that P<β = Vβ is a path. It suffices to prove

Observation 5.12. Pβ = P<β
⌢(vβ) is a path.

Indeed, we know that NG(vβ) ∩ (Vβ \ Vα) is infinite for all α < β by the definition
of vβ.

If β = α+1 then we apply Lemma 2.4 to find a path R of order type ω on vertices
Vα+1 \ Vα with first point vα; see Figure 6.

b

b

b
b

b b

b

b
b

vα vα+1

Vα Vα+1

Pα R

Figure 6. Extending Pα to Pα+1.

We let Pα+1 = Pα
⌢R⌢(vα+1). Note that Pα+1 is a path as the infinite set

NG(vα+1) ∩ (Vα+1 \ Vα) is cofinal in R and hence below vα+1. �

We note that it is proved very similarly that if a set of vertices A ⊆ V is an
ω1-linked trail then A can be covered by a path of order type ω1.

Finally, before the proof of Theorem 5.3, we prove a simple result about finding
trails in 2-edge colored copies of Kω1

.

Lemma 5.13. Suppose that c is a 2-edge coloring of Kω1
and A ⊂ ω1. Then either

A is a trail in color 0 or we can find a copy of Kω1
in color 1 (inside A).

Proof. Suppose that A is not a trail in color 0. Let Vα = ωα ⊂ ω1 (regarded as a set
of vertices) for α < ω1. Let vα = min(A \ Vα) for α < ω1. Let

X = {α < ω1 : |N(vα, 0) ∩ (Vα \ Vα′) ∩ A| = ω for all α′ < α}.
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If there is a club C in X then {Vα : α ∈ C} witnesses that A is a trail in color 0.
Hence, as X cannot contain a club, there is a stationary set S in ω1 \ X . We can
suppose, by shrinking S to a smaller stationary set, that ωα = α for all α ∈ S. Now
for every α ∈ S there is να < α and finite Fα ⊂ Vα such that

Fα = N(vα, 0) ∩ (Vα \ Vνα) ∩A.

By Fodor’s pressing down lemma we can find stationary T ⊂ S, ν < ω1 and finite
set F such that

F = N(vα, 0) ∩ (Vα \ Vν) ∩ A

for all α ∈ T . It is clear now that B = {vα : α ∈ T} \ (Vν ∪ F ) is an uncountable
subset of A and c ↾ [B]2 ≡ 1. �

Now, we are ready to prove the main result of this section:

Proof of Theorem 5.3. Fix an edge coloring r : [ω1]
2 → 2 of the complete graph

Kω1
= (ω1, [ω1]

2). We distinguish two cases as follows:
Case 1: There is a monochromatic copy H0 of Hω1,ω1

.
We can suppose that H0 is 0-monochromatic by symmetry and let A denote the

main class of H0. As A is ω1-linked in color 0, we can extend A to a maximal subset
C ⊆ ω1 that is ω1-linked in color 0. Note that, by the maximality of C,

|N(v, 0) ∩ C| ≤ ω for all v ∈ ω1 \ C, (5.3)

and in particular ω1 \ C is ω1-linked in color 1.
Case 1A: ω1 \ C is countable.
Find a path P 1 in color 1 and of order type ≤ ω which covers ω1 \C (see Corollary

2.4).

Claim 5.13.1. C \ P 1 is an ω1-connected trail in color 0.

Indeed, if v, w ∈ C \ P 1 and F ⊂ V is countable then there is a path P of color 0
from v to w which avoids F ∪P 1 as C is ω1-linked in color 0; in particular, P is also
a subset of C \P 1 and in turn C \P 1 is ω1-connected in color 0. By Observation 5.7
C is a trail in color 0 witnessed by the copy of Hω1,ω1

, and hence , using Observation
5.7 again, C \ P 1 remains a trail as well. This finishes the proof of the claim.

Hence, by Lemma 5.11, C \ P 1 is a path in color 0 which finishes the proof of
Theorem 5.3 in Case 1A.

Case 1B: ω1 \ C is uncountable.

Claim 5.13.2. ω1\C is covered by a copy of Hω1,ω1
in color 1 with main class ω1\C.

Proof. Note that |N [X, 1]∩C| = ω1 for all X ∈ [ω1 \C]ω by (5.3). Enumerate ω1 \C
as {xα : α < ω1} and inductively select

yβ ∈ N [Xβ , 1] ∩ C \ {yα : α < β}

for β < ω1 where Xβ = {xα : α ≤ β}. Now (ω1 \ C) ∪ {yα : α < ω1} is the desired
copy of Hω1,ω1

in color 1. �
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Let H1 denote this copy of Hω1,ω1
. Our goal is to mimic the proof of Lemma 5.11

and, using H0 and H1, simultaneously construct two disjoint monochromatic paths
(one in color 0 and one in color 1) which cover V .

Using Lemma 5.8 twice, the observation that the intersection of two clubs is itself
a club, and also Observation 5.7, we can fix a club {Vα : α < ω1} in ω1 such that
C ∩ (Vα+1 \ Vα) and (ω1 \C)∩ (Vα+1 \ Vα) are ω-linked in color 0 and 1, respectively,
inside Vα+1 \ Vα for all α < ω1. Furthermore, we can suppose that Vα intersects H0

and H1 in initial segments of their respective Hω1,ω1
orderings for each α < ω1.

Now, we inductively construct disjoint sets P 0
α, P

1
α and well orderings ≺0

α,≺
1
α such

that

(i) (P i
α,≺

i
α) is a path in color i of order type ω for i < 2,

(ii) P i
β end extends P i

α for all α < β and i < 2,

(iii) A ∩ P 0
α is cofinal in P 0

α and (ω1 \ C) ∩ P 1
α is cofinal in P 1

α,
(iv) P 0

α ∪ P 1
α = Vα

for all α < ω1.
First, apply Lemma 2.3 to G[V1] and the sets C0 = C ∩ V1, C1 = (ω1 \ C) ∩ V1,

A0 = A ∩ V1 and A1 = ∅ to obtain two disjoint paths covering V1: P
0
1 in color 0 and

P 1
1 in color 1, both of order type ω. Since P 0

1 and P 1
1 are of order type ω, a subset

of such a path is cofinal iff it is infinite. Lemma 2.3 makes sure that A ∩ P 0
1 as well

as (ω1 \ C) ∩ P 1
1 are infinite (note that A0 is infinite), hence (iii) holds.

Suppose we have constructed P 0
α, P

1
α as above for α < β. Note that P 0

<β =
⋃

{Pα :

α < β} is a path in color 0, P 1
<β =

⋃

{P 1
α : α < β} is a path in color 1 and A∩P 0

<β is

cofinal in P 0
<β while ω1 \C is cofinal in P 1

<β. Thus if β is limit we are done. Suppose

that β = α + 1, i.e. P i
<β = P i

α for i < 2.

Claim 5.13.3. (a) There are v0α, w
0
α ∈ Vα+1\Vα such that A∩Vα ⊆ N(v0α, 0), w

0
α ∈ A

and c(v0α, w
0
α) = 0.

(b) There are v1α, w
1
α ∈ Vα+1 \ (Vα ∪ {v0α, w

0
α}) such that (ω1 \ C) ∩ Vα ⊆ N(v1α, 1),

w1
α ∈ ω1 \ C and c(v1α, w

1
α) = 1.

Proof. (a) We know that Vα intersects H0 in an initial segment and hence any element
v0α from (V (H0) \A)∩ (Vα+1 \ Vα) will satisfy A∩ Vα ⊆ N(v0α, 0). We can now select
w0

α ∈ A ∩ (Vα+1 \ Vα) such that c(v0α, w
0
α) = 0.

The proof of (b) is completely analogous to (a). �
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Vα Vα+1

A b

bb b

b b

v0α

w0
α

P 0
α

Q0
α

Figure 7. Extending P 0
α to P 0

α+1.

Note that P i
α
a(viα, w

i
α) is still a path in color i for i < 2; see Figure 7. Now, let us

find disjoint sets Q0
α, Q

1
α such that

(1) Qi
α is a path of color i and order type ω for i < 2,

(2) Q0
α ∪Q1

α = (Vα+1 \ Vα) \ {v
0
α, v

1
α},

(3) the first point of Qi
α is wi

α for i < 2,
(4) A ∩Q0

α is cofinal in Q0
α and (ω1 \ C) ∩Q1

α is cofinal in Q1
α.

Similarly as above, this is easily done by setting D = (Vα+1 \ Vα) \ {v0α, v
1
α} and

applying Lemma 2.3 to G[D] and C0 = C ∩D, C1 = (ω1 \ C) ∩D, A0 = A ∩D and
A1 = ∅. Note that

P i
α+1 = P i

α
a(viα)

aQi
α

is as desired (for i < 2).
Finally, let P i =

⋃

{P i
α : α < ω1} for i < 2. Then P 0 and P 1 are monochromatic

paths of distinct colors which partition ω1.
Case 2: There is no monochromatic copy of Hω1,ω1

.
Lemma 5.13 implies that any uncountable set of vertices must be a trail in both

colors. Let us find an uncountable A ⊂ V which is ω1-connected in some color by
Lemma 5.9. We can suppose that A is ω1-connected in color 0 and extend A to a
maximal ω1-connected set C in color 0.

Claim 5.13.4. V \ C is countable and ω1-linked in color 1.

Proof. Indeed, by the maximality of C, it is easy to see that |N(v, 0) ∩ C| ≤ ω for
every v ∈ V \C; this immediately gives that V \C is ω1-linked in color 1. Moreover,
if V \ C is uncountable then the proof of Claim 5.13.2 shows that we can find a
monochromatic copy of Hω1,ω1

which contradicts our assumption. �

Now cover V \ C by a path P 1 of color 1 and order type ω using Corollary 2.4.
By assumption, C \ P 1 is still a trail and remains ω1-connected in color 0; that is,
C \P 1 is a path P 0 of color 0 by Lemma 5.11. We conclude the proof by noting that
P 0 ∪ P 1 is the desired partition. �
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6. Further results and open problems

In general, there are two directions in which one can aim to extend our re-
sults: investigate edge colored non-complete graphs; determine the exact number
of monochromatic structures (paths, powers of paths) needed to cover a certain edge
colored graph.

First, for state-of-the-art results and problems concerning finite graphs and parti-
tions into monochromatic paths, we refer the reader to A. Pokrovskiy [6]. Second, let
us mention some results and problems about countably infinite graphs. Let Kω,ω de-
note the complete bipartite graph with two countably infinite classes. The following
statements can be proved very similarly to our proof of Theorem 2.5:

Claim 6.1. Let c : E(Kω,ω) → r for some r ∈ N. Then Kω,ω can be partitioned
into at most 2r − 1 monochromatic paths. Furthermore, for every r ∈ N there is
cr : E(Kω,ω) → r so that Kω,ω cannot be covered by less than 2r − 1 monochromatic
paths.

Claim 6.2. For every r-edge coloring of the random graph on N we can partition
the vertices into r disjoint paths of distinct colors.

Regarding Theorem 4.6 we ask the following most general question:

Problem 6.3. What is the exact number of monochromatic kth powers of paths
needed to partition the vertices of an r-edge colored complete graph on N?

Naturally, any result aside from the resolved case of k = r = 2 (see Theorem 4.7)
would be very welcome. In particular:

Problem 6.4. Can we bound the number of monochromatic kth powers of paths
needed to partition the vertices of an r-edge colored complete graph on N by a function
of r and k?

Finally, turning to arbitrary infinite complete graphs, we announce the following
complete solution to Rado’s problem from [8]:

Theorem 6.5 (D. T. Soukup, [9]). The vertices of a finite-edge colored infinite com-
plete graph can be partitioned into disjoint monochromatic paths of different colour.
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