71,997 research outputs found

    Lithium treatment reduces the renal kallikrein excretion rate

    Get PDF
    Lithium treatment reduces the renal kallikrein excretion rate. Lithium salts are widely used agents for the prophylactic treatment of affective disorders. Lithium salts may be associated with distal nephron dysfunction. Kallikrein is a protease which is generated by the distal nephron. We used an amidolytic assay of chromatographically purified enzyme to determine the urinary excretion rate of active kallikrein in relation to lithium treatment. All plasma lithium concentrations were within the therapeutic range (0.4 to 0.9 mmol/liter). In 15 patients the urinary excretion rate of active kallikrein was 267.4 65.6 mU/24 hrs before lithium treatment, and fell to 117.8 39.6 mU/24 hrs (P < 0.05) on day 14 of lithium treatment. This reduction was associated with a decrease of immunoreactive kallikrein in the same urines by 66%. In another 15 patients who had undergone lithium therapy for an average period of 5.6 years, the urinary excretion rate of active kallikrein was 86.1 14.5 mU/24 hrs, while 21 age-matched healthy controls had an excretion rate of 364.1 58.4 mU/24 hrs (P < 0.05). Measurements of immunoreactive kallikrein in the same urine samples demonstrated a reduction of kallikrein after long-term lithium treatment by 78%. These observations could not be attributed to changes in creatinine clearance, renal sodium or potassium excretion rates or plasma concentrations of aldosterone and vasopressin. Addition of lithium to the urine in vitro had no demonstrable effect on kallikrein measurement by amidolytic assay. We conclude that lithium in therapeutic plasma concentrations may directly suppress the secretion of kallikrein by renal connecting tubule cells

    Improved perfluoroalkylether fluid development

    Get PDF
    The objective of this program was to optimize and scale up the linear perfluoroalkylether stabilization process and to provide test data regarding the fluids' thermal oxidative stability in the presence of metal alloys. The stabilization of Fomblin Z-25 was scaled up to 300 g of fluid. The modified fluid was stable at 316 C in oxygen in the presence of M-50 alloy for more than 24 hrs but less than 40 hrs; the amount of volatiles produced after 24 hrs was 5.5 mg/g. In the presence of Ti(4Al,4Mn) alloy, under the above conditions, following an exposure of 24 hrs, the amount of volatiles formed was 6.2 mg/g; 56 hrs exposure yielded 13.9 mg/g. The commercial fluid at 288 C (in oxygen) in the presence of M-50 after 15 hrs of exposure decomposed extensively, 342 mg/g; in the presence of Ti(4Al,4Mn) alloy after only 8 hrs at 288 C, the amount of volatiles was 191 mg/g. Formulation of the commercial fluid with C2PN3 additive was not as effective as the stabilization processing. All the perfluoroalkylether fluids studied were stable in nitrogen at 343 C. The thermal oxidative stability in the absence of metal alloys varied, with Aflunox exhibiting the best behavior. All the fluids were degraded in oxygen at 316 C during 24 hrs exposure to Ti(4Al,4Mn) alloy with the exception of a perfluoroalkylether substituted triazine and the modified Z-25

    Reproducibility and Relative Validity of a Food Frequency Questionnaire Developed for Female Adolescents in Suihua, North China

    Get PDF
    BACKGROUND: This study aims to evaluate the reproducibility and validity of a food frequency questionnaire (FFQ) developed for female adolescents in the Suihua area of North China. The FFQ was evaluated against the average of 24-hour dietary recalls (24-HRs). METHODOLOGY/PRINCIPAL FINDINGS: A total of 168 female adolescents aged 12 to 18 completed nine three consecutive 24-HRs (one three consecutive 24 HRs per month) and two FFQs over nine months. The reproducibility of the FFQ was estimated using intraclass correlation coefficients (ICCs), and its relative validity was assessed by comparing it with the 24-HRs. The mean values of the 24-HRs were lower than those of the FFQs, except for protein (in FFQ1) and iron (in FFQ2). The ICCs for all nutrients and food groups in FFQ1 and FFQ2 were moderately correlated (0.4-0.8). However, all the ICCs decreased after adjusting for energy. The weighted κ statistic showed moderate agreement (0.40-0.6) for all nutrients and food groups, except for niacin and calcium, which showed poor agreement (0.35). The relative validity results indicate that the crude Spearman's correlation coefficients of FFQ1 and the 24-HRs ranged from 0.41 (for Vitamin C) to 0.65 (for fruit). The coefficients of each nutrient and food group in FFQ2 and the 24-HRs were higher than those in FFQ1 and the 24-HRs, indicating good correlation. Although all energy-adjusted Spearman's correlation coefficients were lower than the crude coefficients, de-attenuation to correct for intra-individual variability improved the correlation coefficients. The weighted κ coefficients of nutrients and food groups ranged from 0.32 for beans to 0.52 for riboflavin in FFQ1 and the 24-HRs, and 0.32 for Vitamin C to 0.54 for riboflavin in FFQ2 and the 24-HRs. CONCLUSION: The FFQ developed for female adolescents in the Suihua area is a reliable and valid instrument for ranking individuals within this study

    Methyl jasmonate and cis jasmone induce apoptosis in Pc-3 and LncaP prostate cancer lines

    Full text link
    Methyl jasmonate (MJ) and cis jasmone (CJ), lipid-derived plant stress hormones, were studied for their effects against both hormone dependent (LNCaP) and hormone independent (PC3) human prostate cancer cell lines. Both 2 mM MJ or CJ inhibited the growth of the cell lines. An alamar blue assay was used to determine IC50 values for MJ and CJ in both cell lines at 24 hrs, 48 hrs and 72 hrs. At 24 hrs the MJ IC50 values were 2.25 and 2.05 while the CJ values were 3.00 and 1.25 in the PC3 and LNCaP lines respectively. Cell cycle analysis revealed that MJ and CJ induced apoptosis in both cell lines as well as activated caspase-3. An in vitro assay showed that MJ and CJ did not significantly inhibit either 5-lipoxygenase or 15-lipoxygenase. 5-HETE was able to stimulate cell growth in the presence or absence of MJ in both the cell lines

    Effect of feeding frequency on performance of growing pigs

    Get PDF
    The influence of frequency of feeding on weight gain, feed efficiency, and carcass measurements was investigated, using 48 pigs averaging 40 pounds. Differences in daily gain among pigs fed ad libitum, twice a day or once a day were not significant. However, pigs fed only once/48 hours gained significantly (P\u3c.05) slower than pigs on the other treatments. Pigs allowed access to feed once/24 hrs. or once/48 hrs. were more efficient (P\u3c.05) in feed utilization than pigs fed twice/ 24 hrs. or those fed ad libitum. Carcass measurements did not differ significantly among pigs fed ad libitum, twice/ 24 hrs., or once/24 hrs. Pigs allowed access to feed only once/48 hrs. had significantly (P\u3c.05) less backfat and smaller loin eye areas than pigs fed more frequently.; Swine Day, Manhattan, KS, October 7, 197

    Effect of feeding frequency on performance of growing pigs

    Get PDF
    The influence of frequency of feeding on weight gain, feed efficiency, and carcass measurements was investigated, using 48 pigs averaging 40 pounds. Differences in daily gain among pigs fed ad libitum, twice a day or once a day were not significant. However, pigs fed only once/48 hours gained significantly (P\u3c.05) slower than pigs on the other treatments. Pigs allowed access to feed once/24 hrs. or once/48 hrs. were more efficient (P\u3c.05) in feed utilization than pigs fed twice/ 24 hrs. or those fed ad libitum. Carcass measurements did not differ significantly among pigs fed ad libitum, twice/ 24 hrs., or once/24 hrs. Pigs allowed access to feed only once/48 hrs. had significantly (P\u3c.05) less backfat and smaller loin eye areas than pigs fed more frequently.; Swine Day, Manhattan, KS, October 7, 197

    Photosynthetic parameters change in Lycopersicon esculentum leaves under nutrient deficiencies

    Get PDF
    Lycopersicon esculentum leaves cultivated hydroponically for 24 and 48 hrs with various specific mineral deficits had their photosynthetic characteristics examined. After 24 hrs of K+, NO3-, and PO42- deficiency, a substantial induction of net photosynthetic rate was observed. The net photosynthetic rate of SO42-, Mg2+, Fe2+, NO3-, Ca2+ and PO42- deficits was significantly induced by the 48 hr exposure. After 24 hrs of deficiencies in SO42-, Mg2+, Fe2+, NO3-, Ca2+ and PO42-, stomata conductance was dramatically increased. Deficiencies in SO42-, Fe2+, NO3-, Ca2+ and PO42- were continuously induced over 48 hrs. After 24 hrs of SO42-, Fe2+, NO3-, Ca2+ and PO42- deficiencies, intercellular CO2 concentration shows a considerable induction. After 48 hrs of K+, SO42-, Mg2+ and NO3-deficits, this behavior remained strongly induced. Water use efficiency considerably decreased in response to these changes after 24 hrs of SO42-, Fe2+, NO3- and PO42- deficiencies and this effect continued after 48 hrs of Mg2+, NO3-, Ca2+ and PO42- deficiencies. Deficits in K+, SO42-, Mg2+, Fe2+, NO3-, Ca2+ and PO42- for 24 hrs dramatically increased transpiration rate, which was modified by those deficiencies. A 48 hr exposure to NO3-, Ca2+ and PO42- deficiency dramatically increased the transpiration rate. After 48 hrs, an SO42- deficit drastically decreased the transpiration rate. The findings indicate that after a short term of exposure, it may be possible to diagnose a specific mineral shortage and determine which mineral influenced the parameters of photosynthesis in such a way that the selected parameters responded in a manner that was consistent with the duration of exposure

    Effect of induced epilepsy on some biochemical parameters in female rats

    Get PDF
    The activity of cholinesterase and some biochemical parameters of blood such as glucose, cholesterol and phospholipids were estimated in 52 epilepsy induced females of Wister albino rats. Animals of this experiment were divided into two groups, group (I) regarded as control and group (II) administrated subcutaneously by pentylenetetrazole 100mg/kg and divided in to three sub-groups according to the time of samples collection 3 hrs, 24 hrs and 1 week. The results revealed that epilepsy induction caused a significant inhibition of serum cholinesterase activity 3 hrs after induction while in the brain, the activity of cholinesterase was significantly increased after 24 hrs Serum glucose level was significantly elevated after 3 hrs and 24 hrs of induction, total cholesterol and phospholipids were not changed. From the results obtained in this study, it can be concluded that epilepsy caused significant changes in cholinesterase activity in brain and serum in addition to the glucose level in the serum

    SDF1-A Facilitates Lin−/Sca1+ Cell Homing following Murine Experimental Cerebral Ischemia

    Get PDF
    Background Hematopoietic stem cells mobilize to the peripheral circulation in response to stroke. However, the mechanism by which the brain initiates this mobilization is uncharacterized. Methods Animals underwent a murine intraluminal filament model of focal cerebral ischemia and the SDF1-A pathway was evaluated in a blinded manner via serum and brain SDF1-A level assessment, Lin−/Sca1+ cell mobilization quantification, and exogenous cell migration confirmation; all with or without SDF1-A blockade. Results Bone marrow demonstrated a significant increase in Lin−/Sca1+ cell counts at 24 hrs (272±60%; P<0.05 vs sham). Mobilization of Lin−/Sca1+ cells to blood was significantly elevated at 24 hrs (607±159%; P<0.05). Serum SDF1-A levels were significant at 24 hrs (Sham (103±14), 4 hrs (94±20%, p = NS) and 24 hrs (130±17; p<0.05)). Brain SDF1-A levels were significantly elevated at both 4 hrs and 24 hrs (113±7 pg/ml and 112±10 pg/ml, respectively; p<0.05 versus sham 76±11 pg/ml). Following administration of an SDF1-A antibody, Lin−/Sca1+ cells failed to mobilize to peripheral blood following stroke, despite continued up regulation in bone marrow (stroke bone marrow cell count: 536±65, blood cell count: 127±24; p<0.05 versus placebo). Exogenously administered Lin−/Sca1+ cells resulted in a significant reduction in infarct volume: 42±5% (stroke alone), versus 21±15% (Stroke+Lin−/Sca1+ cells), and administration of an SDF1-A antibody concomitant to exogenous administration of the Lin−/Sca1+ cells prevented this reduction. Following stroke, exogenously administered Lin−/Sca1+ FISH positive cells were significantly reduced when administered concomitant to an SDF1-A antibody as compared to without SDF1-A antibody (10±4 vs 0.7±1, p<0.05). Conclusions SDF1-A appears to play a critical role in modulating Lin−/Sca1+ cell migration to ischemic brain
    • …
    corecore