research

Improved perfluoroalkylether fluid development

Abstract

The objective of this program was to optimize and scale up the linear perfluoroalkylether stabilization process and to provide test data regarding the fluids' thermal oxidative stability in the presence of metal alloys. The stabilization of Fomblin Z-25 was scaled up to 300 g of fluid. The modified fluid was stable at 316 C in oxygen in the presence of M-50 alloy for more than 24 hrs but less than 40 hrs; the amount of volatiles produced after 24 hrs was 5.5 mg/g. In the presence of Ti(4Al,4Mn) alloy, under the above conditions, following an exposure of 24 hrs, the amount of volatiles formed was 6.2 mg/g; 56 hrs exposure yielded 13.9 mg/g. The commercial fluid at 288 C (in oxygen) in the presence of M-50 after 15 hrs of exposure decomposed extensively, 342 mg/g; in the presence of Ti(4Al,4Mn) alloy after only 8 hrs at 288 C, the amount of volatiles was 191 mg/g. Formulation of the commercial fluid with C2PN3 additive was not as effective as the stabilization processing. All the perfluoroalkylether fluids studied were stable in nitrogen at 343 C. The thermal oxidative stability in the absence of metal alloys varied, with Aflunox exhibiting the best behavior. All the fluids were degraded in oxygen at 316 C during 24 hrs exposure to Ti(4Al,4Mn) alloy with the exception of a perfluoroalkylether substituted triazine and the modified Z-25

    Similar works