69 research outputs found

    A novel approach to estimate the upper limb reaching movement in three-dimensional space

    Get PDF
    Background: In spite of the complexity that the number of redundancy levels suggests, humans show amazingly regularities when generating movement. When moving the hand between pairs of targets, subjects tended to generate roughly straight hand trajectories with single-peaked, bell-shaped speed profiles. The original minimum-jerk model, in which limb displacement is represented by a fifth order polynomial, has been shown to predict qualitative features of experimental trajectories recorded in monkeys performing intermediate speed one-joint elbow movements to a target. However, it is difficult to compare a real (experimentally measured) movement to its equivalent minimum-jerk trajectory (MJT) because the exact start and end times and positions of real movements are usually not well defined: even discrete movements usually exhibit an extended period of low (but non-zero) velocity and acceleration before and after a movement, making estimation of the exact start and end times inaccurate. Aim: The purpose of this study was to describe a method used for correctly fitting the minimum jerk trajectory to real movement data assuming that the minimum-jerk trajectory satisfies the same threshold condition as the real movement (the same position and the same percentage of maximum velocity), rather than the movements start and end at full rest. Thus, the original minimum-jerk model was revised. Materials and methods: Starting from the original minimum-jerk model, in this work is proposed a method used for correctly fitting the minimum jerk trajectory to real movement data defined by a threshold condition. This method enables users to accurately compare a minimum-jerk trajectory to real movements. The latter were recorded using APDM inertial sensors. To estimate if the ideal model fits adequately the real reaching movements we consider three kinematic indexes. Results: and Discussion: A total of 100 upper arm straight line reaching movements executed by healthy subjects were acquired. MJTs follow closely to the reaching movements when they have been computed considering the revised model. On the contrary, the MJTs do not follow the real profiles when considering the original formulation. This behaviour is confirmed when we consider the three kinematic indexes. These findings help us better understand important characteristics of movements in health. Future works will focus on the investigation of the performance of the upper arm straight line reaching movements in a larger healthy subjects sample and then in pathological conditions. Keywords: Reaching movements, Minimum jerk model, Reaching movements, Rehabilitatio

    Quantifying age-related differences of ankle mechanical properties using a robotic device

    Get PDF
    A deep analysis of ankle mechanical properties is a fundamental step in the design of an exoskeleton, especially if it is to be suitable for both adults and children. This study aims at assessing age-related differences of ankle properties using pediAnklebot. To achieve this aim, we enrolled 16 young adults and 10 children in an experimental protocol that consisted of the evaluation of ankle mechanical impedance and kinematic performance. Ankle impedance was measured by imposing stochastic torque perturbations in dorsi-plantarflexion and inversion-eversion directions. Kinematic performance was assessed by asking participants to perform a goal-directed task. Magnitude and anisotropy of impedance were computed using a multiple-input multiple-output system. Kinematic performance was quantified by computing indices of accuracy, smoothness, and timing. Adults showed greater magnitude of ankle impedance in both directions and for all frequencies, while the anisotropy was higher in children. By analyzing kinematics, children performed movements with lower accuracy and higher smoothness, while no differences were found for the duration of the movement. In addition, adults showed a greater ability to stop the movement when hitting the target. These findings can be useful to a proper development of robotic devices, as well as for implementation of specific training programs

    Semantic segmentation of conjunctiva region for non-invasive anemia detection applications

    Get PDF
    Technology is changing the future of healthcare, technology-supported non-invasive medical procedures are more preferable in the medical diagnosis. Anemia is one of the widespread diseases affecting the wellbeing of individuals around the world especially childbearing age women and children and addressing this issue with the advanced technology will reduce the prevalence in large numbers. The objective of this work is to perform segmentation of the conjunctiva region for non-invasive anemia detection applications using deep learning. The proposed U-Net Based Conjunctiva Segmentation Model (UNBCSM) uses fine-tuned U-Net architecture for effective semantic segmentation of conjunctiva from the digital eye images captured by consumer-grade cameras in an uncontrolled environment. The ground truth for this supervised learning was given as Pascal masks obtained by manual selection of conjunctiva pixels. Image augmentation and pre-processing was performed to increase the data size and the performance of the model. UNBCSM showed good segmentation results and exhibited a comparable value of Intersection over Union (IoU) score between the ground truth and the segmented mask of 96% and 85.7% for training and validation, respectively

    Estimate of Anemia with New Non-Invasive Systems—A Moment of Reflection

    Get PDF
    Anemia is a global public health problem with major consequences for human health. About a quarter of the world population shows a hemoglobin concentration that is below the recommended thresholds. Non-invasive methods for monitoring and identifying potential risk of anemia and smartphone-based devices to perform this task are promising in addressing this pathology. We have considered some well-known studies carried out on this topic since the main purpose of this work was not to produce a review. The first group of papers describes the approaches for the clinical evaluation of anemia focused on different human exposed tissues, while we used a second group to overview some technologies, basic methods, and principles of operation of some devices and highlight some technical problems. Results extracted from the second group of papers examined were aggregated in two comparison tables. A growing interest in this topic is demonstrated by the increasing number of papers published recently. We believe we have identified several critical issues in the published studies, including those published by us. Just as an example, in many papers the dataset used is not described. With this paper we wish to open a discussion on these issues. Few papers have been sufficient to highlight differences in the experimental conditions and this makes the comparison of the results difficult. Differences are also found in the identification of the regions of interest in the tissue, descriptions of the datasets, and other boundary conditions. These critical issues are discussed together with open problems and common mistakes that probably we are making. We propose the definition of a road-map and a common agenda for research on this topic. In this sense, we want to highlight here some issues that seem worthy of common discussion and the subject of synergistic agreements. This paper, and in particular, the discussion could be the starting point for an open debate about the dissemination of our experiments and pave the way for further updates and improvements of what we have outlined

    Robust and language-independent acoustic features in Parkinson's disease

    Get PDF
    Introduction: The analysis of vocal samples from patients with Parkinson's disease (PDP) can be relevant in supporting early diagnosis and disease monitoring. Intriguingly, speech analysis embeds several complexities influenced by speaker characteristics (e.g., gender and language) and recording conditions (e.g., professional microphones or smartphones, supervised, or non-supervised data collection). Moreover, the set of vocal tasks performed, such as sustained phonation, reading text, or monologue, strongly affects the speech dimension investigated, the feature extracted, and, as a consequence, the performance of the overall algorithm. Methods: We employed six datasets, including a cohort of 176 Healthy Control (HC) participants and 178 PDP from different nationalities (i.e., Italian, Spanish, Czech), recorded in variable scenarios through various devices (i.e., professional microphones and smartphones), and performing several speech exercises (i.e., vowel phonation, sentence repetition). Aiming to identify the effectiveness of different vocal tasks and the trustworthiness of features independent of external co-factors such as language, gender, and data collection modality, we performed several intra- and inter-corpora statistical analyses. In addition, we compared the performance of different feature selection and classification models to evaluate the most robust and performing pipeline. Results: According to our results, the combined use of sustained phonation and sentence repetition should be preferred over a single exercise. As for the set of features, the Mel Frequency Cepstral Coefficients demonstrated to be among the most effective parameters in discriminating between HC and PDP, also in the presence of heterogeneous languages and acquisition techniques. Conclusion: Even though preliminary, the results of this work can be exploited to define a speech protocol that can effectively capture vocal alterations while minimizing the effort required to the patient. Moreover, the statistical analysis identified a set of features minimally dependent on gender, language, and recording modalities. This discloses the feasibility of extensive cross-corpora tests to develop robust and reliable tools for disease monitoring and staging and PDP follow-up

    Wireless sensors system for stress detection by means of ECG and EDA acquisition

    Get PDF
    This paper describes the design of a two channels electrodermal activity (EDA) sensor and two channels electrocardiogram (ECG) sensor. The EDA sensors acquire data on the hands and transmit them to the ECG sensor with wireless WiFi communication for increased wearability. The sensors system acquires two EDA channels to improve the removal of motion artifacts that take place if EDA is measured on individuals who need to move their hands in their activities. The ECG channels are acquired on the chest and the ECG sensor is responsible for aligning the two ECG traces with the received packets from EDA sensors; the ECG sensor sends via WiFi the aligned packets to a laptop for real time plot and data storage. The metrological characterization showed high-level performances in terms of linearity and jitter; the delays introduced by the wireless transmission from EDA to ECG sensor have been proved to be negligible for the present application

    Swimming, back pain and electromyography: A brief review

    Get PDF
    Background: The low back is the most common site of pain in the population, especially in the adolescent population. Several scientific studies in the literature focused on swimming, its effects and the relationship with injuries and deformities of the spine. Purpose: this brief review, in an attempt to answer this question, aims to compare several studies that have focused attention on the relationship between the possible appearance of postural problems and swimming activity practiced at a competitive level. Methods: a literature search was conducted for articles published between 2000 and 2020 with the exception of two pilot studies from the 1990s.The review was carried out in the following databases: Web of Science, PubMed, Scopus, Science Direct and Google Scholar. In addition, further studies were consulted by accessing specific journals. The search terms used were: swimming, electromyography, back-pain, muscles activity, scoliosis, and crawl. To select the studies, the following criteria were identified: use of electromyography as an investigation tool; sample of competitive swimmers aged between 12 and 17 years. Results: the results were summarized in a table indicating authors, year of publication, objective, sample, swimming style analysed, research methodology and specific results. The analysis of the literature generally shows the existence of a relationship between intensity of training and the occurrence and aggravation of dysmorphisms or paramorphisms. In addition, the selected studies show the importance assigned to core training in the prevention of postural imbalances

    A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults

    Get PDF
    Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip ROM (23.0° vs. 27.3°) than normal weight subjects. Conclusions: The two systems can be considered interchangeable for what concerns joint kinematics, except for the hip, where discrepancies were evidenced. Differences between normal and overweight/obese subjects were statistically significant using STEP32. The same tendency was observed using H-Gait

    Smart sensing and AI for physical therapy in IoT era

    Get PDF
    It is well known that medical spending increase with disability status. Per capita spending for people with five or more limitations in activities of daily living (ADLs) is nearly five times the amount incurred by those with limitations in only one instrumental activities of daily living (IADLs). Physical therapy is the way to improve the motor capabilities however it takes a lot of time, it requires physiotherapists services, is often painful and the outcome are evaluated in subjective way. New technologies including smart sensors were adopted in healthcare including wearable solutions for cardiac and respiratory activity monitoring and successfully are contributing to reduce the costs of services. In the case of motor activity and particularly in physical rehabilitation the developments are still reduced the physical therapy services are using as hardware mechanical equipment without sensing, embedded processing and internet connectivity that significatively reduce the possibility to measure and evaluate the physical training outcomes in objective way. In this paper the disruptive solutions for physical therapy are presented that are based on hot technologies such as smart sensors, IoT, virtual reality (VR), mixed reality (MR), and artificial intelligence (AI). Applied AI may conduct to develop models, classifiers (gait classification) and short term or medium term prediction of physical therapy outcomes. Highly motivation of the patients under physical rehabilitation can be increased promoting serious game characterized by VR and MR scenariosinfo:eu-repo/semantics/publishedVersio
    • …
    corecore