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Abstract: Technology is changing the future of healthcare, technology-supported non-invasive
medical procedures are more preferable in the medical diagnosis. Anemia is one of the widespread
diseases affecting the wellbeing of individuals around the world especially childbearing age women
and children and addressing this issue with the advanced technology will reduce the prevalence
in large numbers. The objective of this work is to perform segmentation of the conjunctiva region
for non-invasive anemia detection applications using deep learning. The proposed U-Net Based
Conjunctiva Segmentation Model (UNBCSM) uses fine-tuned U-Net architecture for effective semantic
segmentation of conjunctiva from the digital eye images captured by consumer-grade cameras in
an uncontrolled environment. The ground truth for this supervised learning was given as Pascal
masks obtained by manual selection of conjunctiva pixels. Image augmentation and pre-processing
was performed to increase the data size and the performance of the model. UNBCSM showed good
segmentation results and exhibited a comparable value of Intersection over Union (IoU) score between
the ground truth and the segmented mask of 96% and 85.7% for training and validation, respectively.

Keywords: convolutional neural network (CNN); bio-medical applications; deep learning; computer-
aided diagnostics; image processing

1. Introduction

Anemia is a high prevalence blood-related disorder developed due to the decrease in the number
of red blood cells or hemoglobin level or a lowered oxygen-carrying capacity of the blood [1–3].
Severe anemia can cause damage to vital organs until death [4–7]; it is also responsible for increased
morbidity in pre-school children and pregnant women. Iron deficiency anemia is considered to be
among the most important contributing factors to the global burden of disease [8–13]. In fact, one-third
of anemia cases in adults are attributable to iron deficiencies, folate, and vitamin B12. Iron deficiency
anemia summarizes approximately 50% of nutrient-scarred anemia cases, of which bleeding caused by
gastrointestinal lesions is the first cause.

It is a subtle disease as has a slow evolution, does not show manifest symptoms until it becomes
severe, because the human body compensates lack of oxygen. The symptomatology varies but recurrent
symptoms include fatigue, dizziness or light-headedness, headache, pallor, chest pain, weakness,
irregular heartbeat, shortness of breath, and cold hands and feet. Prevention or early detection of
anemia will reduce serious complications and helps to lead a healthy life.

To carry out a preliminary and instantaneous diagnosis, the study of anamnesis and the physical
examination are often used in clinical practice [14–22]. Health professionals perform a physical
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examination of anatomical sites such as conjunctiva, tongue, palmar crease, nail beds since they are
indicators to raise suspicion of anemia, but it must also be said that there are less optimistic findings,
for example, Da Silva et al. [21] evaluated the correlation between the opinions expressed by different
doctors and pointed out that the ideal condition for examining skin color is with natural daylight
or without direct light on the skin: Therefore the different ambient lighting can influence a correct
diagnosis. However, also the result conceived by the examiner may differ from one another depending
upon their expertise level.

The gold standard test is blood cell counting that is normally invasive or at least minimally invasive.
Often this test is not recommended as an example in the case of infants, the elderly, and pregnant
women. Furthermore, frequent sampling is uncomfortable and expensive. Then, the techniques
described in this paper are considered to be extremely important, particularly for patients who need
frequent blood tests or who have difficulty going frequently to test labs. More generally, this type of
analysis is suitable in the increasingly frequent cases of managing patient diseases directly in their
homes, through appropriate diagnostic and therapeutic care pathways and services such as medical
records [23,24]. For this reason, it is of great interest to study methods and design tools that allow
us to monitor the hemoglobin concentration in a non-invasive way, with reduced costs, both in the
laboratory and at home.

This is the reason why many authors [25,26] show interest in the pallor of the exposed tissues of
the human body to estimate anemia. Pallor is characterized by a lack of color in the skin and mucous
membranes due to a low level of circulating hemoglobin. This may be evident on the entire body, but,
as we have said above, is easily observed in areas where blood vessels are close to the surface, such as
the palm, the nail bed, and mucous membranes such as the tongue or conjunctivae.

The technology-assisted diagnosis is increasing in the last years versus the traditional one, due to
its higher reliability and unbiased results. In the last years, speech and image analysis and computer
vision also powered by deep learning and its ability to rapidly extract the required information from
digital images or videos allowed the development of interesting medical applications and diagnostic
tools to support specialists [27–34].

Deep learning models can perform classification, classification with localization, semantic
segmentation, instance segmentation, and object detection tasks with a high level of understanding.

Image segmentation, the process of identifying or partitioning the needed information from the
digital images, nowadays is applied to microscopic images to satellite images for different applications.
Thresholding, Clustering, Histogram-based method, Edge detection, Region-growing, Watershed
transformation are a few traditional image processing techniques used for segmentation. Specifically,
semantic segmentation is the process of labeling each pixel of an image with a predefined class. In recent
years, researchers focusing towards deep learning-based image segmentation due to the availability of
online resource materials, easy accessibility of high computational power, availability of computer
vision and other supporting libraries, and the potential of Convolution Neural Network architecture in
obtaining effective segmentation results [35–39]. In the literature, an interesting application involving
neural networks and more broadly computer vision techniques is microscopy image analysis [40,41],
the analogy with our domain stands in various environmental factors which can lead to a false
interpretation of the results by human professionals.

As reported by earlier works, a pale conjunctiva is considered an accurate sign of anemia [42–44].
Hence, it is considered as a Region of Interest (ROI), and typically manual cropping is performed
on eye images to extract its color features, while automatic segmentation tried for this application
using image processing techniques still needs some improvement. To fully automate the diagnostic
support and automatically detect the suspicion of anemia, as an example on a mobile device or web
application, an automatic segmentation of the ROI is required to avoid the subjective choice of the ROI
by the patients.

In this paper, the transfer learning on U-Net architecture for semantic image segmentation is
applied, as well as the process of labeling each pixel of an image with a predefined class. Section 2
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describes the materials and methods used for the proposed U-net based segmentation model. Section 3
explains the details about the structure and organization of layer modules of the proposed U-net
architecture. Section 4 discusses the performance of the model during training and validation and the
segmentation results and Section 5 concludes the work.

2. U-Net Based Conjunctiva Segmentation Model (UNBCSM)

Researchers from related works used hundreds of samples for conducting and validating their
study [45–50] and most of the conjunctiva images were not publicly available such as retinal fundus
images. The acquisition system consists of a macro-lens assembled into a specially designed, 3D-printed
lightened spacer and a smartphone. The lens can take high-resolution images being attached to a
smartphone (Aukey PL-M1 25 mm 10 × macro lens). This device allows obtaining high resolution
images of the eye, insensitive to the ambient lighting conditions in conformity with diagnostic physical
examination procedures. The model uses 135 eye images with a clear visible lower eyelid for training
and validation. The semantic segmentation of conjunctiva is challenging due to the presence of fluids,
nerves, folds, light reflections, and shadows in the eye region which motivated us to apply deep
learning techniques. For this application we have chosen an architecture based on U-Net, a popular
convolutional neural network model which showed fast and better segmentation results for modest
data and promising results for biomedical image segmentation tasks. In Figure 1, we show the steps
involved in developing the proposed U-Net Based Conjunctiva Segmentation Model (UNBCSM),
which will be furtherly explained in Section 3.
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Figure 1. Flow graph of training the segmentation model.

2.1. Segmentation Mask Creation

UNBCSM architecture uses a RGB image in JPEG format provided to ‘input image’ block and a
manually segmented mask in a NumPy array format as the ground truth for training. Each digital
image underwent a manual segmentation process, isolating and cropping regions of palpebral and
forniceal conjunctiva, providing the labels to the supervised deep learning model using Pascal masking.
The mask selection has been supported by an interactive tool using the CV2 library, that we have
developed. The labeling of pixels is performed by choosing the eyelid region manually through the
mouse input. When an image is labeled, the mouse strokes are saved as a binary NumPy array. We call
this two-dimensional NumPy array a ‘mask’. The original segmentation masks, which are non-binary
RGB triplets, have been converted to PASCAL masks by grey scale conversion and thresholding.
We stored the segmented mask as a binary matrix with zeros referring to the background and ones
to the conjunctiva or meaningful ROI. Both the right and left corner area of the conjunctiva were not
included in the selection if affected by light reflections or shadows in the segmentation mask since
these portions are more likely affected by flaws caused by fluids and color changes. In a few images the
lower portion of the bulbar conjunctiva is similar in color with the palpebral conjunctiva hence these
portions are omitted. All the bright and dark spots are omitted during manual segmentation, giving to
the network the capability of focusing on meaningful details. Mask creation for all 135 images was
performed manually for augmentation by a specific program and the resulted mask was overlaid with
the corresponding augmented image and verified.
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2.2. Image Augmentation and Pre-Processing

To increase the data size for training the segmentation model image augmentation was performed.
The augmentation process utilized CV2 and NumPy libraries to create slightly different images of the
original ones using the following rotational and non rotational techniques:

• Angular Rotation (between −45 to 45 degrees) at angle increments of 5 degrees
• Horizontal flipping
• Gaussian Blur
• Noise addition

These techniques are randomly chosen and applied to the randomly selected original images
of training data (Figure 2). Each of these augmentation techniques has been applied to both the
feature images as well as the label NumPy array pixel-wise correspondingly. The image augmentation
technique is applied only for the training set images and its corresponding masks.
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To improve the training time and to reduce the memory, the required image resolution was
reduced to 512 × 384 by a resizing technique. The segmentation masks are also resized to the same
resolution to make it compatible with the resized images. Input data are normalized in order to feed
them to the model.

Vertical flipping, contrast enhancement, and warp shifting transformation techniques are also
used for image augmentation. Since the images are captured by the specially designed spacer, vertical
flipping, warp shifting, and angular rotations with a higher angle increments have not shown significant
improvement in results. These transformation techniques can be helpful in segmenting the conjunctiva
region from the unmodified smartphone captured eye images.

3. U-Net Architecture and Fine-Tuning

Traditional U-Net architectures use a dual path approach for retrieving and localize the overall
image context. A contracting path has been used to capture the context and a symmetric expanding
layer has been used for enabling precise localization [35]. This paper discusses a model that differs
from the traditional U-Net model in the following ways:

• Usually max-pooling layers appear at each stage whereas in this model, max pooling is attempted
only at the first stage in the first layer group. Convolutional layers with stride two are replacing
the max pooling layers.

• With this model we introduce more activation and normalization layers than the traditional model.
• Dropout layers have been removed in favor of making this model specific to the eye

segmentation application.
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The basic U-Net architecture consists of a contracting path which performs down sampling and
the right side as an expanding path responsible for the transposed convolution. The details about the
layers are clearly visible in Figure 3.
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The layers of this UNBCSM architecture shown in Figure 4 can be grouped as six Layer Modules
(LM), apart from these, there are some individual layers used as coupling between two Layer Modules.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 13 

 

The basic U-Net architecture consists of a contracting path which performs down sampling and 
the right side as an expanding path responsible for the transposed convolution. The details about the 
layers are clearly visible in Figure 3. 

 
Figure 3. Layer details of the layer modules of UNBCSM. 

The layers of this UNBCSM architecture shown in Figure 4 can be grouped as six Layer Modules 
(LM), apart from these, there are some individual layers used as coupling between two Layer 
Modules. 

 
Figure 4. UNBCSM architecture. Figure 4. UNBCSM architecture.



Electronics 2020, 9, 1309 6 of 13

Layer module 1 consists of normalization, padding, convolution, activating, and max-pooling
layers, being the only one with a max-pooling layer. This is to reduce the model’s sensitivity to
the location while keeping the overall context. As this application tries to detect a single class of
object by segmentation (eyelid/lower palpebral conjunctiva), the one max-pooling layer is sufficient.
Layer Module 2 has two subtypes where Layer Module 2a differs from Layer Module subtype 2b by
the stride value. Layer Module 2a is also known as Identity Block having a Conv 2D layer with stride 1
and Layer Module 2b having the Conv2D layer with stride 2 for dimensionality reduction. We have
employed ResNet-34 as a backbone, due to its efficiency obtained in the performance analysis.

As the model progresses downwards on the left side, the down sampling and convolutional
layers perform the segmentation task. This information is inherently saved in the model weights and a
schema arises which gets remapped back to the original size as the model progresses upwards on the
right side. The Layer Modules 4, 5, and 6 are fairly simpler compared to their left side counterparts
and they comprise of up-sampling, normalization, and activation layers. The output layer consists of a
final convolutional layer followed by a sigmoid activation function used to detect the labels for the
binary classification task.

Google Colab execution runtime with GPU has been used to train, validate, and assess the
performance of the segmentation model. UNBCSM was trained with 581 images which includes
108 original images and 473 images obtained by image augmentation techniques. The split validation
technique was used instead of the N-fold cross validation technique, since the augmented images
of the validation set present in the training set will over-fit the segmentation model. To avoid this
issue, 20% of the original images, 27 images were randomly selected and kept exclusive for validation.
The details about the number of images used at each stage are shown in Figure 5.
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For a fixed batch size, epochs, and learning rate the model was trained and validated with different
combinations of backbones such as ResNet-18, ResNet-34, ResNet-50, and ResNet-101 with ‘imagenet’
weights. The model trained with ResNet-34 showed a better performance showing competitive
execution time over ResNet-50 and ResNet-101. We performed an extensive model selection phase in
order to select the architecture that better minimizes the estimated risk, based on validation results.
The model was trained with different batch sizes (4, 8, 16, 32, and 64). As we would expect lower batch
sizes tend to increase the training time with no significant improvements in performance and batch
size 16 shows a comparable performance with less execution time. Balanced Cross Entropy_Jaccard
Loss (bce_jaccard_loss) is considered for training since it eliminates the class unbalanced issue
during training.

The model with a ‘ResNet-34′ backbone with pre-initialized weights from ‘imagenet’ was trained
with different learning rates. The lower learning rate reduces the difference between the training and
validation score but results less in the overall score. The higher learning rate (>0.001) creates spikes in
the learning curve. The learning rate for the model is assigned by the Learning Rate (LR) scheduling
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technique, it trains the model with four different learnings LR = 10−3 for epochs 1 to 10, LR = 10−4 for
epochs 11 to 20, LR = 10−5 for epochs 21 to 80, and LR = 10−6 for 81 to 100, and showed better learning
curves as shown in Figure 6. The selected parameters are shown in Table 1. The model requires 345 ms
to run a single batch step and 14 ms for an epoch.
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Table 1. Model parameters.

Model Parameters Selected

Model Name U-Net
Backbone ResNet-34

Encoder Weights Imagenet
No. of classes 1

Batch Normalization True
Activation Function Sigmoid

Validation Split 20%
Batch Size 16

Epochs 100
Metrics IoU score

Loss bce_Jaccard loss
No. of Trainable Parameters 24,438,804

No. of Non-trainable 17,350
Total No. of Parameters 24,456,154
Training time per Epoch 13 s

No. of Batches 37

4. Results and Discussion

The performance of the UNBCSM for this segmentation task can be visualized with the help of
graphs as shown in Figure 6. The learning curve shows that the model is neither suffering from an
under fitting or overfitting problem.

For this critical biomedical application, the Intersection over Union (IoU) score was chosen over
pixel accuracy and Dice Index (F1 score) due to the fact that the IoU metric quantitatively penalizes
every single instance of bad classification more than the F1 score even though both metrics recognize
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the bad classification in a given pixel the same way. The IoU score deals with the class imbalance issue
better than pixel accuracy.

The Intersection over Union (IoU) score is the ratio of the area of overlap between the predicted
segmentation and the ground truth to the area of union between the predicted segmentation and
the ground truth. Mathematically, IoU is calculated using the formula mentioned in Equation (1),
where G represents the number of pixels present in the groundtruth segmentation mask, P represents
the number of pixels in the segmentation mask predicted by the model, IoU being an overlapping
measure ranging from 0 to 1, gives us a useful perspective about the quality of the segmentation.

IoU Score =
G∩ P
G∪ P

(1)

The model proposed in this paper produced an average IoU score of 85.7% with standard deviation
of (+/−) 5.3% on unseen samples as shown in Table 2. Except for a single image all other samples
are having an IoU score of more than 0.77. Usually, a model producing an average IoU above 50%
is considered a good segmentation model. Since it achieved a mean IoU score of 96% and 85.7% for
training and validation respectively, this model will be more suitable for anemia detection application
over manual cropping.

Table 2. Performance of the model for validation set (27 images).

Parameters. IoU Score

Mean value 0.857
Standard Deviation (+/−) 0.053

Maximum value 0.928
Minimum value 0.661

With the aim of estimating the performance of the trained model, we compared for each sample the
proposed segmentation results with the manually selected ROI according to the IoU score. The latter
process is resumed in Figure 7 utilizing a sample from the test set. Figure 7a displays the original eye
image; Figure 7b shows the overlay of the original sample and the manually selected ROI providing
the label or ground truth for training. In Figure 7c, we show the cropped region of the manually
segmented region and its corresponding mask. The segmentation output from the trained model as
shown in Figure 7d,e is the overlay of Figure 7c,d for a better understanding of segmentation results.
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deviation of (+/−) 5.3% on unseen samples as shown in Table 2. Except for a single image all other 
samples are having an IoU score of more than 0.77. Usually, a model producing an average IoU above 
50% is considered a good segmentation model. Since it achieved a mean IoU score of 96% and 85.7% 
for training and validation respectively, this model will be more suitable for anemia detection 
application over manual cropping. 

Table 2. Performance of the model for validation set (27 images). 

Parameters. IoU Score 
Mean value 0.857 

Standard Deviation (+/−) 0.053 
Maximum value 0.928 
Minimum value 0.661 

With the aim of estimating the performance of the trained model, we compared for each sample 
the proposed segmentation results with the manually selected ROI according to the IoU score. The 
latter process is resumed in Figure 7 utilizing a sample from the test set. Figure 7a displays the 
original eye image; Figure 7b shows the overlay of the original sample and the manually selected ROI 
providing the label or ground truth for training. In Figure 7c, we show the cropped region of the 
manually segmented region and its corresponding mask. The segmentation output from the trained 
model as shown in Figure 7d,e is the overlay of Figure 7c,d for a better understanding of segmentation 
results. 

 

Figure 7. Segmentation results. (a) Original eye image, (b) overlay of original image and ground truth,
(c) manually segmented region of interest (ROI) and its mask, (d) segmentation of ROI by the model
and its mask, (e) overlay of ‘d’ and ‘e’ (IoU score = 0.8864).
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Figure 8 shows the segmentation capability of the model for the validation samples. Row I shows
the manually segmented conjunctive region of the images A, B, C, and D, respectively. Similarly,
row II shows the manually segmented conjunctive region and Row III images are the overlay of both
ground truth and the segmentation results. Column A and B images show a very good performance,
Column C and D images show the average and mediocre performance of the model. In Table A1
we have reported the values of the above mentioned metrics in a complete manner for each sample
included in the test set.
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5. Conclusions

Non-invasive anemia detection applications require a manual segmentation or a manual cropping
procedure of the region of interest as a preliminary step. Due to the existence of correlation between
pixel parameters of the conjunctiva region and the hemoglobin value, the segmentation capability of
this model will help in accurate diagnosis of anemia. The proposed model can also be serialized and
compressed to be installed in a mobile application to work in an offline mode, this can be useful in
low-end medical facilities in poor areas. Most of the existing conjunctiva-based hemoglobin prediction
algorithms are trained using a manually cropped portion of the conjunctiva region. By introducing
an automatic conjunctiva segmentation step, we pave the way for this to be used as a pre-processing
step for the existing works. A poor selection of ROI will make way for inaccurate predictions affecting
the automatic diagnostic tool or the examination carried out by the medical personnel. This paper
discussed automatic segmentation as a viable solution for this problem of conjunctiva segmentation to
be used in conjunction with other diagnosis methods. The proposed work identified the suitability of a
fine-tuned U-Net model (UNBCSM) for conjunctiva image segmentation with a mean IoU score of
84.5% for the validation set. Since this model does not drop any information that may be correlated to
the hemoglobin level (for example, the nerve pattern, color of the nerves in the conjunctiva region, etc.)
more accurate models can be derived from the existing research work by using this as a pre-processing
step. This research work opens a range of opportunities for using a wider spectrum of the image features
for hemoglobin level detection rather than just color averages in color spaces (RGB, YCrCb, etc.).
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Appendix A

Table A1. Each sample from the test set underwent a calculation of the segmentation metrics proposed
in this research with respect to the ground truth manually segmented images.

Image Id IoU F1 Score Hausdorff Distance

20200203_094523 0.901923 0.948433 7
20200203_190838 0.773579 0.872337 6.8556546
20200213_160045 0.856609 0.922767 6.164414003
20190611_080529 0.876626 0.934258 5.196152423
20190608_094356 0.81142 0.895894 6.8556546
20190608_100451 0.870507 0.930771 6.08276253
20190611_094951 0.891967 0.942899 6.480740698
20190610_083355 0.874597 0.933104 6.8556546
20190608_110432 0.832061 0.908333 10.04987562
20190611_082701 0.798844 0.888175 6.480740698
20190611_082501 0.879161 0.935695 7.211102551
20190611_075450 0.846478 0.916857 8.774964387
20190608_113406 0.859154 0.924242 7.280109889
20190608_090427 0.846292 0.916748 7.937253933
20190608_113211 0.927868 0.962585 6.708203932
20190611_090821 0.827521 0.905621 8.544003745
20190610_084118 0.844546 0.915723 8.306623863
20190610_084456 0.882187 0.937406 7
20190608_084856 0.912811 0.954419 5.477225575
20190610_075938 0.883677 0.938247 7.549834435
20190610_085835 0.852351 0.920291 6.480740698
20190608_102706 0.899887 0.947306 5.291502622
20190611_091248 0.842411 0.914466 6.480740698
20190611_080114 0.899091 0.946864 7.071067812
20190608_083544 0.912582 0.954293 5
20190608_091157 0.661386 0.796186 5.916079783
20190608_092503 0.831486 0.90799 7.615773106
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