26 research outputs found

    Ensemble deep learning for multilabel binary classification of user-generated content

    Get PDF
    Sentiment analysis usually refers to the analysis of human-generated content via a polarity filter. Affective computing deals with the exact emotions conveyed through information. Emotional information most frequently cannot be accurately described by a single emotion class. Multilabel classifiers can categorize human-generated content in multiple emotional classes. Ensemble learning can improve the statistical, computational and representation aspects of such classifiers. We present a baseline stacked ensemble and propose a weighted ensemble. Our proposed weighted ensemble can use multiple classifiers to improve classification results without hyperparameter tuning or data overfitting. We evaluate our ensemble models with two datasets. The first dataset is from Semeval2018-Task 1 and contains almost 7000 Tweets, labeled with 11 sentiment classes. The second dataset is the Toxic Comment Dataset with more than 150,000 comments, labeled with six different levels of abuse or harassment. Our results suggest that ensemble learning improves classification results by 1.5% to 5.4%

    Comparing deep learning and statistical methods in forecasting crowd distribution from aggregated mobile phone data

    Get PDF
    Accurately forecasting how crowds of people are distributed in urban areas during daily activities is of key importance for the smart city vision and related applications. In this work we forecast the crowd density and distribution in an urban area by analyzing an aggregated mobile phone dataset. By comparing the forecasting performance of statistical and deep learning methods on the aggregated mobile data we show that each class of methods has its advantages and disadvantages depending on the forecasting scenario. However, for our time-series forecasting problem, deep learning methods are preferable when it comes to simplicity and immediacy of use, since they do not require a time-consuming model selection for each different cell. Deep learning approaches are also appropriate when aiming to reduce the maximum forecasting error. Statistical methods instead show their superiority in providing more precise forecasting results, but they require data domain knowledge and computationally expensive techniques in order to select the best parameters

    Ensemble learning with discrete classifiers on small devices

    Get PDF
    Machine learning has become an integral part of everyday life ranging from applications in AI-powered search queries to (partial) autonomous driving. Many of the advances in machine learning and its application have been possible due to increases in computation power, i.e., by reducing manufacturing sizes while maintaining or even increasing energy consumption. However, 2-3 nm manufacturing is within reach, making further miniaturization increasingly difficult while thermal design power limits are simultaneously reached, rendering entire parts of the chip useless for certain computational loads. In this thesis, we investigate discrete classifier ensembles as a resource-efficient alternative that can be deployed to small devices that only require small amounts of energy. Discrete classifiers are classifiers that can be applied -- and oftentimes also trained -- without the need for costly floating-point operations. Hence, they are ideally suited for deployment to small devices with limited resources. The disadvantage of discrete classifiers is that their predictive performance often lacks behind their floating-point siblings. Here, the combination of multiple discrete classifiers into an ensemble can help to improve the predictive performance while still having a manageable resource consumption. This thesis studies discrete classifier ensembles from a theoretical point of view, an algorithmic point of view, and a practical point of view. In the theoretical investigation, the bias-variance decomposition and the double-descent phenomenon are examined. The bias-variance decomposition of the mean-squared error is re-visited and generalized to an arbitrary twice-differentiable loss function, which serves as a guiding tool throughout the thesis. Similarly, the double-descent phenomenon is -- for the first time -- studied comprehensively in the context of tree ensembles and specifically random forests. Contrary to established literature, the experiments in this thesis indicate that there is no double-descent in random forests. While the training of ensembles is well-studied in literature, the deployment to small devices is often neglected. Additionally, the training of ensembles on small devices has not been considered much so far. Hence, the algorithmic part of this thesis focuses on the deployment of discrete classifiers and the training of ensembles on small devices. First, a novel combination of ensemble pruning (i.e., removing classifiers from the ensemble) and ensemble refinement (i.e., re-training of classifiers in the ensemble) is presented, which uses a novel proximal gradient descent algorithm to minimize a combined loss function. The resulting algorithm removes unnecessary classifiers from an already trained ensemble while improving the performance of the remaining classifiers at the same time. Second, this algorithm is extended to the more challenging setting of online learning in which the algorithm receives training examples one by one. The resulting shrub ensembles algorithm allows the training of ensembles in an online fashion while maintaining a strictly bounded memory consumption. It outperforms existing state-of-the-art algorithms under resource constraints and offers competitive performance in the general case. Last, this thesis studies the deployment of decision tree ensembles to small devices by optimizing their memory layout. The key insight here is that decision trees have a probabilistic inference time because different observations can take different paths from the root to a leaf. By estimating the probability of visiting a particular node in the tree, one can place it favorably in the memory to maximize the caching behavior and, thus, increase its performance without changing the model. Last, several real-world applications of tree ensembles and Binarized Neural Networks are presented

    Wind Speed and Solar Irradiance Prediction Using a Bidirectional Long Short-Term Memory Model Based on Neural Networks

    Get PDF
    The rapid growth of wind and solar energy penetration has created critical issues, such as fluctuation, uncertainty, and intermittence, that influence the power system stability, grid operation, and the balance of the power supply. Improving the reliability and accuracy of wind and solar energy predictions can enhance the power system stability. This study aims to contribute to the issues of wind and solar energy fluctuation and intermittence by proposing a high-quality prediction model based on neural networks (NNs). The most efficient technology for analyzing the future performance of wind speed and solar irradiance is recurrent neural networks (RNNs). Bidirectional RNNs (BRNNs) have the advantages of manipulating the information in two opposing directions and providing feedback to the same outputs via two different hidden layers. A BRNN’s output layer concurrently receives information from both the backward layers and the forward layers. The bidirectional long short-term memory (BI-LSTM) prediction model was designed to predict wind speed, solar irradiance, and ambient temperature for the next 169 h. The solar irradiance data include global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DHI). The historical data collected from Dumat al-Jandal City covers the period from 1 January 1985 to 26 June 2021, as hourly intervals. The findings demonstrate that the BI-LSTM model has promising performance in terms of evaluation, with considerable accuracy for all five types of historical data, particularly for wind speed and ambient temperature values. The model can handle different sizes of sequential data and generates low error metrics

    Improving Demand Forecasting: The Challenge of Forecasting Studies Comparability and a Novel Approach to Hierarchical Time Series Forecasting

    Get PDF
    Bedarfsprognosen sind in der Wirtschaft unerlässlich. Anhand des erwarteten Kundenbe-darfs bestimmen Firmen beispielsweise welche Produkte sie entwickeln, wie viele Fabri-ken sie bauen, wie viel Personal eingestellt wird oder wie viel Rohmaterial geordert wer-den muss. Fehleinschätzungen bei Bedarfsprognosen können schwerwiegende Auswir-kungen haben, zu Fehlentscheidungen führen, und im schlimmsten Fall den Bankrott einer Firma herbeiführen. Doch in vielen Fällen ist es komplex, den tatsächlichen Bedarf in der Zukunft zu antizipie-ren. Die Einflussfaktoren können vielfältig sein, beispielsweise makroökonomische Ent-wicklung, das Verhalten von Wettbewerbern oder technologische Entwicklungen. Selbst wenn alle Einflussfaktoren bekannt sind, sind die Zusammenhänge und Wechselwirkun-gen häufig nur schwer zu quantifizieren. Diese Dissertation trägt dazu bei, die Genauigkeit von Bedarfsprognosen zu verbessern. Im ersten Teil der Arbeit wird im Rahmen einer überfassenden Übersicht über das gesamte Spektrum der Anwendungsfelder von Bedarfsprognosen ein neuartiger Ansatz eingeführt, wie Studien zu Bedarfsprognosen systematisch verglichen werden können und am Bei-spiel von 116 aktuellen Studien angewandt. Die Vergleichbarkeit von Studien zu verbes-sern ist ein wesentlicher Beitrag zur aktuellen Forschung. Denn anders als bspw. in der Medizinforschung, gibt es für Bedarfsprognosen keine wesentlichen vergleichenden quan-titativen Meta-Studien. Der Grund dafür ist, dass empirische Studien für Bedarfsprognosen keine vereinheitlichte Beschreibung nutzen, um ihre Daten, Verfahren und Ergebnisse zu beschreiben. Wenn Studien hingegen durch systematische Beschreibung direkt miteinan-der verglichen werden können, ermöglicht das anderen Forschern besser zu analysieren, wie sich Variationen in Ansätzen auf die Prognosegüte auswirken – ohne die aufwändige Notwendigkeit, empirische Experimente erneut durchzuführen, die bereits in Studien beschrieben wurden. Diese Arbeit führt erstmals eine solche Systematik zur Beschreibung ein. Der weitere Teil dieser Arbeit behandelt Prognoseverfahren für intermittierende Zeitreihen, also Zeitreihen mit wesentlichem Anteil von Bedarfen gleich Null. Diese Art der Zeitreihen erfüllen die Anforderungen an Stetigkeit der meisten Prognoseverfahren nicht, weshalb gängige Verfahren häufig ungenügende Prognosegüte erreichen. Gleichwohl ist die Rele-vanz intermittierender Zeitreihen hoch – insbesondere Ersatzteile weisen dieses Bedarfs-muster typischerweise auf. Zunächst zeigt diese Arbeit in drei Studien auf, dass auch die getesteten Stand-der-Technik Machine Learning Ansätze bei einigen bekannten Datensät-zen keine generelle Verbesserung herbeiführen. Als wesentlichen Beitrag zur Forschung zeigt diese Arbeit im Weiteren ein neuartiges Verfahren auf: Der Similarity-based Time Series Forecasting (STSF) Ansatz nutzt ein Aggregation-Disaggregationsverfahren basie-rend auf einer selbst erzeugten Hierarchie statistischer Eigenschaften der Zeitreihen. In Zusammenhang mit dem STSF Ansatz können alle verfügbaren Prognosealgorithmen eingesetzt werden – durch die Aggregation wird die Stetigkeitsbedingung erfüllt. In Expe-rimenten an insgesamt sieben öffentlich bekannten Datensätzen und einem proprietären Datensatz zeigt die Arbeit auf, dass die Prognosegüte (gemessen anhand des Root Mean Square Error RMSE) statistisch signifikant um 1-5% im Schnitt gegenüber dem gleichen Verfahren ohne Einsatz von STSF verbessert werden kann. Somit führt das Verfahren eine wesentliche Verbesserung der Prognosegüte herbei. Zusammengefasst trägt diese Dissertation zum aktuellen Stand der Forschung durch die zuvor genannten Verfahren wesentlich bei. Das vorgeschlagene Verfahren zur Standardi-sierung empirischer Studien beschleunigt den Fortschritt der Forschung, da sie verglei-chende Studien ermöglicht. Und mit dem STSF Verfahren steht ein Ansatz bereit, der zuverlässig die Prognosegüte verbessert, und dabei flexibel mit verschiedenen Arten von Prognosealgorithmen einsetzbar ist. Nach dem Erkenntnisstand der umfassenden Literatur-recherche sind keine vergleichbaren Ansätze bislang beschrieben worden

    A survey on different plant diseases detection using machine learning techniques

    Get PDF
    Early detection and identification of plant diseases from leaf images using machine learning is an important and challenging research area in the field of agriculture. There is a need for such kinds of research studies in India because agriculture is one of the main sources of income which contributes seventeen percent of the total gross domestic product (GDP). Effective and improved crop products can increase the farmer's profit as well as the economy of the country. In this paper, a comprehensive review of the different research works carried out in the field of plant disease detection using both state-of-art, handcrafted-features- and deep-learning-based techniques are presented. We address the challenges faced in the identification of plant diseases using handcrafted-features-based approaches. The application of deep-learning-based approaches overcomes the challenges faced in handcrafted-features-based approaches. This survey provides the research improvement in the identification of plant diseases from handcrafted-features-based to deep-learning-based models. We report that deep-learning-based approaches achieve significant accuracy rates on a particular dataset, but the performance of the model may be decreased significantly when the system is tested on field image condition or on different datasets. Among the deep learning models, deep learning with an inception layer such as GoogleNet and InceptionV3 have better ability to extract the features and produce higher performance results. We also address some of the challenges that are needed to be solved to identify the plant diseases effectively.Web of Science1117art. no. 264

    Positionnement visuel pour la réalité augmentée en environnement plan

    Get PDF
    Mesurer en temps réel la pose d'une caméra relativement à des repères tridimensionnels identifiés dans une image vidéo est un, sinon le pilier fondamental de la réalité augmentée. Nous proposons de résoudre ce problème dans des environnements bâtis, à l'aide de la visionpar ordinateur. Nous montrons qu'un système de positionnement plus précis que le GPS, et par ailleurs plus stable, plus rapide et moins coûteux en mémoire que d'autres systèmes de positionnement visuel introduits dans la littérature, peut êtreobtenu en faisant coopérer : approche probabiliste et géométrie aléatoire (détection a contrario des points de fuite del'image), apprentissage profond (proposition de boites contenant des façades, élaboration d'un descripteur de façades basé sur un réseau deneurones convolutifs), inférence bayésienne (recalage par espérance-maximisation d'un modèle géométrique et sémantique compactdes façades identifiées) et sélection de modèle (analyse des mouvements de la caméra par suivi de plans texturés). Nous décrivonsde plus une méthode de modélisation in situ, qui permet d'obtenir de manière fiable, de par leur confrontation immédiate à la réalité, des modèles 3D utiles au calcul de pose tel que nous l'envisageons

    Adaptive multi-classifier systems for face re-identification applications

    Get PDF
    In video surveillance, decision support systems rely more and more on face recognition (FR) to rapidly determine if facial regions captured over a network of cameras correspond to individuals of interest. Systems for FR in video surveillance are applied in a range of scenarios, for instance in watchlist screening, face re-identification, and search and retrieval. The focus of this Thesis is video-to-video FR, as found in face re-identification applications, where facial models are designed on reference data, and update is archived on operational captures from video streams. Several challenges emerge from the task of recognizing individuals of interest from faces captured with video cameras. Most notably, it is often assumed that the facial appearance of target individuals do not change over time, and the proportions of faces captured for target and non-target individuals are balanced, known a priori and remain fixed. However, faces captured during operations vary due to several factors, including illumination, blur, resolution, pose expression, and camera interoperability. In addition, facial models used matching are commonly not representative since they are designed a priori, with a limited amount of reference samples that are collected and labeled at a high cost. Finally, the proportions of target and non-target individuals continuously change during operations. In literature, adaptive multiple classifier systems (MCSs) have been successfully applied to video-to-video FR, where the facial model for each target individual is designed using an ensemble of 2-class classifiers (trained using target vs. non-target reference samples). Recent approaches employ ensembles of 2-class Fuzzy ARTMAP classifiers, with a DPSO strategy to generate a pool of classifiers with optimized hyperparameters, and Boolean combination to merge their responses in the ROC space. Besides, the skew-sensitive ensembles were recently proposed to adapt the fusion function of an ensemble according to class imbalance measured on operational data. These active approaches estimate target vs. non-target proportions periodically during operations distance, and the fusion of classifier ensembles are adapted to such imbalance. Finally, face tracking can be used to regroup the system responses linked to a facial trajectory (facial captures from a single person in the scene) for robust spatio-temporal recognition, and to update facial models over time using operational data. In this Thesis, new techniques are proposed to adapt the facial models for individuals enrolled to a video-to-video FR system. Trajectory-based self-updating is proposed to update the system, considering gradual and abrupt changes in the classification environment. Then, skew-sensitive ensembles are proposed to adapt the system to the operational imbalance. In Chapter 2, an adaptive framework is proposed for partially-supervised learning of facial models over time based on facial trajectories. During operations, information from a face tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition and for self-update of facial models. The tracker defines a facial trajectory for each individual in video. Recognition of a target individual is done if the positive predictions accumulated along a trajectory surpass a detection threshold for an ensemble. If the accumulated positive predictions surpass a higher update threshold, then all target face samples from the trajectory are combined with non-target samples (selected from the cohort and universal models) to update the corresponding facial model. A learn-and-combine strategy is employed to avoid knowledge corruption during self-update of ensembles. In addition, a memory management strategy based on Kullback-Leibler divergence is proposed to rank and select the most relevant target and non-target reference samples to be stored in memory as the ensembles evolves. The proposed system was validated with synthetic data and real videos from Face in Action dataset, emulating a passport checking scenario. Initially, enrollment trajectories were used for supervised learning of ensembles, and videos from three capture sessions were presented to the system for FR and self-update. Transaction-level analysis shows that the proposed approach outperforms baseline systems that do not adapt to new trajectories, and provides comparable performance to ideal systems that adapt to all relevant target trajectories, through supervised learning. Subject-level analysis reveals the existence of individuals for which self-updated ensembles provide a considerable benefit. Trajectory-level analysis indicates that the proposed system allows for robust spatio-temporal video-to-video FR. In Chapter 3, an extension and a particular implementation of the ensemble-based system for spatio-temporal FR is proposed, and is characterized in scenarios with gradual and abrupt changes in the classification environment. Transaction-level results show that the proposed system allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and by about 5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties of FR with different poses, affecting more significantly the lamb- and goat-like individuals. Compared to reference spatio-temporal fusion approaches, the proposed accumulation scheme produces the highest discrimination. In Chapter 4, adaptive skew-sensitive ensembles are proposed to combine classifiers trained by selecting data with varying levels of imbalance and complexity, to sustain a high level the performance for video-to-video FR. During operations, the level of imbalance is periodically estimated from the input trajectories using the HDx quantification method, and pre-computed histogram representations of imbalanced data distributions. Ensemble scores are accumulated of trajectories for robust skew-sensitive spatio-temporal recognition. Results on synthetic data show that adapting the fusion function with the proposed approach can significantly improve performance. Results on real data show that the proposed method can outperform reference techniques in imbalanced video surveillance environments
    corecore