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Abstract: Early detection and identification of plant diseases from leaf images using machine learning
is an important and challenging research area in the field of agriculture. There is a need for such
kinds of research studies in India because agriculture is one of the main sources of income which
contributes seventeen percent of the total gross domestic product (GDP). Effective and improved
crop products can increase the farmer’s profit as well as the economy of the country. In this paper, a
comprehensive review of the different research works carried out in the field of plant disease detection
using both state-of-art, handcrafted-features- and deep-learning-based techniques are presented. We
address the challenges faced in the identification of plant diseases using handcrafted-features-based
approaches. The application of deep-learning-based approaches overcomes the challenges faced
in handcrafted-features-based approaches. This survey provides the research improvement in the
identification of plant diseases from handcrafted-features-based to deep-learning-based models. We
report that deep-learning-based approaches achieve significant accuracy rates on a particular dataset,
but the performance of the model may be decreased significantly when the system is tested on field
image condition or on different datasets. Among the deep learning models, deep learning with an
inception layer such as GoogleNet and InceptionV3 have better ability to extract the features and
produce higher performance results. We also address some of the challenges that are needed to be
solved to identify the plant diseases effectively.

Keywords: plant disease; machine learning; deep learning; transfer learning; image segmentation;
feature extraction

1. Introduction

Agriculture is considered as one of the main sources of the economy in India. Like
human beings, plants also suffer from diseases which affect the normal growth of a
plant [1]. Diseases can be in any part of the plant including leaf, flower, fruit and root.
Due to the complexity and huge number of crops and cultivated plants, the number
of diseases is also large [2]. Thus, a pathologist may often fail to diagnose a disease
accurately. The precise and timely diagnosis of plant diseases protects crops from
quantitative and qualitative loss [3–5]. Most farmers have a lack of knowledge about
the effective detection of plant diseases [6]. The identification of plant disease by the
naked eye is also time-consuming, requires continuous monitoring and is less accurate in
nature. The automated identification of diseases reduces human effort and also provide
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accurate results [7]. An automated plant disease detection is highly beneficial to farmers,
since they know less about plant diseases.

In the current era, many works are ongoing in the domain of machine learning, which
can be used effectively in the field of health monitoring, the identification of diseases in
plants, etc. This kind of system provides reliable, precise results and reduces the time, cost
and manpower for maintaining and ensuring quality in real-time applications. In the field
of agriculture, there are a lot of opportunities for researchers to apply machine learning
techniques in many aspects, such as the identification of plants, early detection of diseases,
pesticide, nutrition requirement, etc. In this paper, we consider the diseases which occur on
the leaves of the plant. Several machine learning techniques are discussed in this paper,
which were proposed by different researchers based on color, shape, texture features and
deep learning models for detecting diseases in plant leaves.

The automated detection of diseases in plants has been studied largely in recent
times. The identification of diseases in plants requires accurate and precise information
regarding the quantitative measurement of diseases [8]. In [9,10], the authors studied
potato and tomato diseases and showed how these crops were affected by viruses. In [11],
authors surveyed several papers on the classification of rice diseases and also considered
different criteria such as the dataset used, disease classes, preprocessing and segmentation
techniques along with the classifier used. Prajapati et al. [12] conducted a survey on the
classification of cotton plant diseases using machine learning techniques. Iqbal et al. [13]
surveyed the classification of citrus plant diseases using image processing. Kaur et al. [14]
conducted a survey on the identification and classification of plant diseases through leaf
images. These studies discussed in [11–14] are based on handcrafted features. To classify
the diseases using handcrafted features, there is a need for the preprocessing, segmentation
and extraction of features from the images, which is laborious and time-consuming.

With the technological advancements, machine-learning-based artificial intelligence
has gained a lot of attention in the development of new techniques and models in computer
vision [15]. Deep learning models are used in fields such as image recognition [16], voice
recognition [17,18] and other complex applications such as self-driving cars, machine
interpretation, etc. The application of deep learning in agriculture [19] and particularly
in the plant disease detection [20] domain is very much new and limited. In [21], the
authors surveyed the identification of plant diseases based on deep learning techniques and
essentially focused on the data sources, models and preprocessing techniques used in the
proposed CNN models. In [22], the authors reviewed research works on the identification
of diseases using several types of deep learning techniques. In these papers, the authors
discussed mainly the different CNN models used in plant disease identification. However,
the comparative advantages and disadvantages were not clearly highlighted in these works.

In this work, we survey the different methodologies for the identification of plant
diseases using both handcrafted-features-based and deep-learning-features-based iden-
tifications. We also discuss several segmentation techniques used in the identification of
plant diseases along with their advantages and disadvantages. This paper aims to address
the drawbacks of the existing works on the identification of diseases based on both hand-
crafted features and deep learning approaches. We also consider the recent works on the
identification of plant diseases which are based on deep learning models. We point out
some of the challenging issues in the identification of diseases along with the advantages
and disadvantages of using deep learning models.

This paper is organized as follows: Section 2 provides the basic steps in the identifica-
tion of plant diseases from leaf images. Section 3 represents a comprehensive review on
the identification of plant diseases along with their relative advantages and disadvantages.
In Section 4, we discuss the different techniques and advantages of deep-learning- over
handcrafted-features-based approaches. Different challenges that are faced during the
identification of diseases and the areas that need to be focused on are discussed in Section 5.
Finally, Section 6, provides the conclusion and future directions in the classification of plant
diseases.
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2. Basic Steps in Identification of Diseases from Leaf Images

For the effective identification of plant diseases from the leaves of a plant, several
steps are required, and among all those, data collection and preprocessing are the first
steps. After preprocessing, the next step in the identification of diseases is the extraction of
features. Finally, the features are fit into different classifiers for classification.

2.1. Data Collection

The first step in plant disease identification is the collection of image data. Several
standard plant diseases datasets are available online such as the PlantVillage dataset [23],
Cassava dataset [24,25], Hops dataset [26], Cotton disease dataset [27] and Rice disease
dataset [28,29]. The PlantVillage dataset consists of 38 different classes of 14 different
plant species (vegetable and fruits) such as apple, blueberry, cherry, corn, grape, orange,
peach, pepper, raspberry, potato, soybean, squash, strawberry and tomato. The diseases
include apple scab, apple black rot, cedar apple rust, apple healthy, blueberry healthy,
cherry healthy, cherry powdery mildew, corn gray leaf spot, corn healthy, corn northern
leaf blight, grape black rot, grape black measles, grape healthy, grape leaf blight, orange
huanglongbing, peach bacterial spot, peach healthy, pepper/bell bacterial spot, pepper/bell
healthy, potato early blight, potato healthy, potato late blight, raspberry healthy, soybean
healthy, squash powdery mildew, strawberry healthy, strawberry leaf scorch, tomato
bacterial spot, tomato early blight, tomato healthy, tomato late blight, tomato leaf mold,
tomato septoria leaf spot, tomato spider mites, tomato target spot, tomato mosaic virus and
tomato yellow leaf curl virus. All the images were taken in a laboratory setup condition.
The Cassava disease dataset consist of five different classes of diseases and the images
are real-time field-captured images. Diseases in the Cassava dataset includes cassava
mosaic disease, cassava bacteria blight, cassava brown streak disease, cassava green mite
and cassava healthy. The Hops dataset consists of five different classes of diseases with
nonuniform background conditions. Diseases include downy, powdery, healthy, nutrient
and pest diseases. The Cotton dataset consists of healthy and diseased cotton leaves and
plants. The Rice disease dataset consists of four different classes of diseases captured in field
conditions. Diseases in the Rice disease dataset are bacterial blight, blast, brown spot and
tungro. Some of the researchers built their own diseases dataset in their work. Table 1 shows
the available standard datasets of images of plant diseases along with image environment.

2.2. Preprocessing

Preprocessing is one of the most important steps in the identification of plant diseases.
Several preprocessing steps exist such as the resizing of the images to fit the model, the
removal of noises, color transformation, morphological operations, the segmentation of the
disease region, etc.

Different filtering techniques, such as the Wiener filter, median filter [30] and Gaussian
filter [31], are used to remove the noises in the disease-affected image. Different color spaces
are used in image processing, such as RGB, HSV, CIEL*a*b* [32], YCbCr. To find the region
of interest (ROI)/disease area in the leaf images, different segmentation techniques are used
such as color thresholding [33,34], the Sobel edge detector [35], Otsu’s segmentation [36,37]
and K-means clustering [38–40].

2.3. Feature Extraction

Features play an important role in machine learning. Features are used to describe the
disease information in mathematical form, which makes the classification easier. For an
effective classification, a feature should contain the necessary information that is required to
differentiate the classes. Different types of features are used for the identification of diseases,
and they can be classified as color features, shape features [31,41], texture features [35,41,42]
and deep-learning-based features. Color features define the different color values of the
disease region. The area, perimeter, minor/major axis length, eccentricity, etc., are some of
the shape features. Texture-based features such as local binary pattern (LBP) [43], gray-level
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co-occurrence matrix (GLCM) [36], gray-level run-length method (GLRLM), Gabor texture
features [32] are used for the identification of diseases. Figure 1 shows some of the features
that are used in classification of plant diseases.

Table 1. Details of the datasets used.

Dataset Description Image Environment Link

PlantVillage dataset: 54,304 images of
14 different plant species and 38 different
classes including healthy leaf images

Captured in laboratory
setup condition

https://github.com/spMohanty/PlantVillage-Dataset
(accessed on 15 February 2022)

Rice leaf diseases: 120 images of three
different rice diseases

Captured on uniform
background

https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
(accessed on 25 February 2022)

Rice disease dataset: 5477 images of 3
different disease classes and 1 healthy class

Captured on white
background

https://www.kaggle.com/shayanriyaz/riceleafs
(accessed on 21 February 2022)

Rice disease dataset: 5932 images of
4 different disease classes Field images https://data.mendeley.com/datasets/fwcj7stb8r/1

(accessed on 27 February 2022)

Cassava dataset: 24,395 images of 5 different
disease classes including healthy leaf class

Field images with
complex background

https://www.kaggle.com/srg9000/cassava-plant-disease-merged-20192020
(accessed on 12 May 2022)

Hops disease dataset: 1101 images of 5 different
diseases including healthy leaves

Field images with
nonuniform background

https://www.kaggle.com/scruggzilla/hops-classification
(accessed on 3 March 2022)

Cucumber disease dataset: 695 images of disease-
infected leaves Field images https://www.kaggle.com/kareem3egm/cucumber-plant-diseases-dataset

(accessed on 27 March 2022)

Cotton disease dataset: 2310 images of healthy
and diseased cotton leaves and plant Field images https://www.kaggle.com/singhakash/cotton-disease-dataset

(accessed on 5 March 2022)

Corn disease dataset: 4188 images of four
different disease classes including healthy leaves Laboratory condition https://www.kaggle.com/smaranjitghose/corn-or-maize-leaf-disease-dataset

(accessed on 18 March 2022)

Plant Disease dataset: 125,000 images of 10 different
plants species containing 37 different categories of
diseases

Laboratory condition
and also complex background

https://www.kaggle.com/lavaman151/plantifydr-dataset
(accessed on 12 April February 2022)

New Plant Diseases dataset (Augmented): 87,000
images of 38 different classes Laboratory condition https://www.kaggle.com/vipoooool/new-plant-diseases-dataset

(accessed on 18 April 2022)

Figure 1. Some of the features used in plant disease detection.

2.4. Classification

Classification is the numerical analysis of various image features, and it organizes
the leaf image data into some of the disease categories. Classification is categorized as
supervised and unsupervised classification. Some of the commonly used classification

https://github.com/spMohanty/PlantVillage-Dataset
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://www.kaggle.com/shayanriyaz/riceleafs
https://data.mendeley.com/datasets/fwcj7stb8r/1
https://www.kaggle.com/srg9000/cassava-plant-disease-merged-20192020
https://www.kaggle.com/scruggzilla/hops-classification
https://www.kaggle.com/kareem3egm/cucumber-plant-diseases-dataset
https://www.kaggle.com/singhakash/cotton-disease-dataset
https://www.kaggle.com/smaranjitghose/corn-or-maize-leaf-disease-dataset
https://www.kaggle.com/lavaman151/plantifydr-dataset
https://www.kaggle.com/vipoooool/new-plant-diseases-dataset


Electronics 2022, 11, 2641 5 of 29

techniques are K-nearest neighbor (KNN) [32], support vector machine (SVM) [34,36,44],
logistic regression (LR), random forest (RF), decision tree (DT) [37], naive Bayes (NB),
artificial neural network (ANN) [43] and probabilistic neural network (PNN) [43].

3. Different Existing Machine Learning Based Techniques for Plant Disease Detection

Numerous works have been conducted to date related to the identification of plant
diseases. In this section, we discuss different methodologies that have been proposed by
researchers for the detection of different plant diseases. It is found that the disease detection
techniques based on machine learning can be classified by color-, shape-, texture-based
features and deep learning models. Figure 2 shows the basic steps in the identification of
plant diseases.

Figure 2. Basic handcrafted-features-based steps for identification.

3.1. Color-Features-Based Disease Detection

Disease detection by extracting color features was performed by Chaudhary et al. [45].
In their approach, they implemented YCbCr-, HSI- and CIE L*a*b*-based color models
on a leaf image to extract the color features of a diseased leaf and then compared all
these methods. From all of these color models, they chose the “A” component of the CIE
L*A*B model for the initial segmentation of the diseased leaf. A median filter was used
for preprocessing purpose. Hence, this method was affected by less noise from different
sources. Finally, the diseased area of the leaf was segmented by applying Otsu’s threshold
on the “A” component of the color space .

Singh [46] used a color slicing technique to detect the blast disease of paddy. In their
method, firstly they convert the RGB image to HSI and used color slicing to extract the
diseased area and neutralize the rest of the portion. They compared their technique with
disease boundary detection using the Sobel and Canny methods and obtained an accuracy
rate of 96.6%.

Sghair et al. [47] used different color models to identify diseases in plants. Firstly, they
transformed the images into different color models, followed by a noise reduction using a
median filtering technique and finally segmented the diseased region from the leaf. They
used three different color models: YCbCr, HIS and CIELAB. In their approach, they applied
Kapur’s threshold on the Cr component of the YCbCr model, the H component of the HIS
model and the A component of the CIELAB model to segment the diseased spot.

Husin et al. [48] identified chili leaf diseases using different color features. They
extracted the yellow, green and cyan color components from the leaves and used color
matching techniques to identify the diseased and healthy leaves.

Pugoy et al. [49] identified two different rice diseases (brown spot, leaf scald) using a
color analysis of the image. Threshold segmentation was used to segment the abnormalities,
followed by a histogram intersection to isolate the segmented region. K-means clustering
was used to assign the pixels into different clusters based on R, G and B color values. The
classification of disease was done by comparing and matching the color values. Majid et
al. [50] used fuzzy entropy to identify four different paddy (rice) diseases. A PNN was
used as the classifier, and it obtained an accuracy rate of 91.1%. One of the major issue in
their approach was that in the preprocessing step, they needed to crop the diseased region
manually before extracting the features.
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Shrivastava et al. [51] identified four different rice plant diseases using 172 color
features. In their approach, the authors used 13 different color spaces and from each color
channel, they extracted different color features such as mean, standard deviation, kurtosis
and skewness. Seven different classifiers SVM, DC (discriminant analysis), KNN, NB, DT,
RF and LR were used to classify the diseases and compare the performances. Among all the
classifiers, SVM gave better a performance accuracy with 94.65%. The main issue in their
work was that the images were already preprocessed and had a black uniform background.

The main disadvantage of disease detection using color values is that using a color
component is not sufficient to detect all types of diseases. Table 2 summarizes the method
with segmentation techniques and features used in the detection of diseases based on
color features.

Table 2. Summary of implemented details along with features based on color based method.

Author Plant/Disease Segmentation Feature Extraction Dataset Accuracy
(%)

Pugoy et al.
[49] (2011) Rice Thresholding R, G, B color values NA NA

Chaudhary et al.
[45] (2012)

Disease-affected
area on leaf

Otsu’s
method

Different color
components NA NA

Husin et al.
[48] (2012)

Chili leaf
disease

Color
clustering

Yellow, green and
cyan components

107 captured
images NA

Majid et al.
[50] (2013) Rice NA

Fuzzy entropy with
256 gray levels NA 91.4

Sghair et al.
[47] (2017) NA

Kapur’s
threshold NA NA NA

Singh et al.
[46] (2018) Blast disease Thresholding

Different color values
H, S, V, R, G, B values

100 captured
images 96.6

Shrivastava et al.
[51] (2021) Rice NA 172 color features

619 captured
images

94.6
(SVM)

In this table, NA indicates the information is not available.

3.2. Shape- and Texture-Based Disease Detection

In addition, diseases in plant can be detected by extracting the shape features of leaves.
Dey et al. [52] used the number of pixels in the disease-affected area to detect the rot disease
in betel leaf. Firstly, they converted the acquired RGB image into the HSV color space.
Then, a threshold value was calculated by applying Otsu’s method on the “H” component
of the HSV color space for segmentation purpose. The segmented binary image consisted
of the rotten area with white pixels. They calculated the total number of pixels in this rotten
portion to detect the affected disease.

Phadikar et al. [53] used color and shape features for the detection of rice diseases such
as leaf brown spot, rice blast, sheath rot, bacterial blight, etc. For segmentation purpose,
they used a Fermi energy based technique and genetic algorithm (GA) for the extraction of a
diseased leaf’s shape features. Fermi energy based region extraction had an advantage over
selecting a proper threshold value. For classification purpose, they used a rule generation
technique. The advantages of the implemented method included a smaller computational
complexity as it did not require a gain calculation of the rules.

Yao et al. [36] used both shape and texture features for detecting diseases in the rice
plant. After segmentation, shape features such as area, perimeter, long axis length and
width, along with texture features including contrast, uniformity, entropy, inverse differ-
ence, linearity and correlation were extracted from the GLCM of each image of a leaf from
every orientation angle. For classification, they used an SVM classifier and got an accuracy
rate of 97.2%. Though this method was effectively able to identify the diseases, it failed to
correctly identify diseases having a similar texture, and thus performance decreased.
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The method proposed by Islam et al. [33] aimed to detect and recognize potato diseases
(late blight, early blight, healthy leaf). First, they masked out the background as well as
the green region of the image using thresholding, by analyzing the color and luminosity
component of a different region in L*a*b* color spaces. Then, they extracted the ROI which
contained the disease-affected region. They used the GLCM to extract texture features such
as correlation, contrast, homogeneity and energy. The mean, entropy, standard deviation,
skew and energy were calculated from the histograms of the color planes. A multiclass
SVM was used for the classification of potato diseases from the PlantVillage dataset. In the
segmentation, it was difficult to set the threshold value in their method and the number of
training image was also small. One of the disadvantages included that the images in the
dataset were captured on a uniform background.

Camargo et al. [54] developed a disease segmentation algorithm to identify the
diseased area by using the distribution of intensities in the histogram and finding the
threshold according to the position in the histogram. Furthermore, they [31] identified the
diseases in cotton plants using an SVM classifier. A set of features such as shape, color,
texture and fractional dimension was extracted from the diseased area, and they obtained
an accuracy rate of 93.1%. One of the disadvantages was that the extraction of features was
time-consuming and identifying the proper set of features from a set of 54 features was
challenging. The number of images in the dataset was small.

In [55,56], the authors identified different cotton plant diseases using color, shape and
texture features. Chaudhari et al. [55] used K-means clustering for the segmentation and a
wavelet transform for the feature extraction. To reduce the number of features and speed
up the computation, a PCA was used as a feature reduction technique. A backpropagation
neural network was used for the classification, and it obtained an accuracy rate of 97%.
The advantage of using a wavelet transform was that it worked well on low-frequency
components and also in high-frequency transients. Bhimte et al. [56] identified three
different types of cotton plant diseases using image processing. A K-means clustering
technique was used to segment the images into three clusters as background, foreground
and diseased regions. Different color, shape and texture features were extracted from
the segmented images and an SVM was used to classify the images and it achieved an
accuracy rate of 98.46%. The number of images used to train and test the model was small.
The selection of a proper set of features by the classifier was an important issue in the
identification.

Wang et al. [57] identified two different grape diseases (grape downy mildew and
grape powdery mildew) and two different wheat diseases (wheat stripe rust and wheat
leaf rust) using a backpropagation (BP) network. In their approach, K-means clustering
algorithm was used to segment the images and they extracted 21 color features, 4 shape
features and 25 texture features from the segmented image, which were used for classifica-
tion. One of the major issues in their paper was that the images were captured in a fixed
condition. Seven different groups of feature combinations were used for the identification
and therefore, finding the proper set of features combinations to get the optimal result was
an important challenge.

Two different diseases in grapes, namely, downy and powdery mildew diseases, were
identified by Padol et al. [41]. In that paper, firstly, the diseased region was extracted
using K-means clustering techniques with three clusters. After the segmentation, nine color
features and nine texture features were extracted from each cluster and an SVM was used
for the classification. To train and test the model, they used 137 captured grape leaf images
and achieved an accuracy rate of 88.89%. Later on, the authors [42] extended their work
identifying the same diseases using both SVM and ANN classifiers. In order to improve
the classification, a fusion classification was performed, which created an ensemble of
classifiers from the SVM and ANN and reported a recognition accuracy of 100% for both
downy and powdery mildew diseases. The feature set used for the classification consisted
of nine color and nine texture features, as used in [41]. One of the issues was that only
two different disease categories were considered, and the dataset used was too small. The
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extraction of features was time-consuming as the system used 54 different features for the
identification.

Es-saady et al. [58] identified three pest insects damages (leaf miners, thrips and Tuta
absoluta) and three pathogen symptoms (early blight, late blight and powdery mildew)
using a serial combination of SVM classifiers. In that paper, the authors used a K-means
clustering technique for segmenting the diseased area. From the segmented image, they
extracted 18 color, 30 texture and 11 shape features. In their system, they used two SVM
classifiers where the first SVM took the color features and the second SVM took the
texture and shape features to classify the diseases. To train and test the system, they used
284 images captured on a uniform background and achieved an accuracy rate of 87.8%.
Issues regarding their model were that the images were captured on a uniform background
and the dataset size was very small.

In [59,60], the authors used a genetic algorithm (GA) to segment the diseased area from
the leaf image. They showed that the GA had advantages over a simple thresholding-based
segmentation or K-means clustering segmentation technique as the GA did not require user
input or the number of clusters at the time of segmentation. In [60], the authors identified
five different plant diseases using the minimum distance criterion (MDC) and an SVM
classifier. Firstly, the classification was achieved using the MDC with a K-Mean clustering
and they obtained an accuracy rate of 86.54%. The performance accuracy improved to
93.63% using the GA. Secondly, the classification was done using an SVM where the
performance improved to 95.71%.

Two tomato diseases (TSWV, TYLCV) were identified in [61] with the help of some
geometric and histogram-based features; the authors classified a diseased image using an
SVM classifier with different kernel values. The dataset used was 200 captured images
of both diseased and healthy leaves and they obtained an accuracy rate of 90%. One of
the disadvantages in their approach was that the images containing more than one leaves
needed to be cropped manually to extract a single leaf image, which made the process
complex. In [37], Sarbol et al. identified six different types of tomato diseases from images
of the leaf and the stem. Using Otsu’s segmentation technique, they extracted the diseased
area and different color, shape and texture features. They classified the leaves using a
decision tree classifier and obtained a classification accuracy rate of 97.3%.

Six different tomato diseases were identified by Hlaing et al. [30] using model-based
statistical features. From the preprocessed images, they extracted the SHIFT features and
to reduce the computational time and complexity, they reduced the dimensions using a
generalized extreme value (GEV) distribution. They used a 10-fold cross-validation to
analyze the performance accuracy and reported an accuracy rate of 84.7% using a quadratic
SVM. Furthermore, their proposed method took 56.832 s to train the classifier and achieved
12,000 predictions per seconds. The authors extended their work from [30] and identified
the diseases using SHIFT features with a Johnson SB distribution as a dimension reduction
technique [62]. They achieved a better performance accuracy of 85.1% and it took 33.889 s
to train the classifier. In both papers, they used tomato disease images from the PlantVillage
dataset, where the images were captured in a laboratory setup condition. Due to the loss
of information for the classification, they did not perform a segmentation technique. One
more advantage was that the implemented model was robust to various resolutions.

Later on, Titan et al. [63] developed an SVM-based multiple-classifier system (MCS)
to improve the accuracy of classification, and they used color, shape and texture features
for the identification of leaf diseases in wheat plant. They got an accuracy rate of 96.1%.
The selection of appropriate features among all extracted features which gave the best
classification accuracy was an important challenge in their approach.

Chouhan et al. [1] identified and classified plant diseases using bacterial-foraging-
optimization-based radial basis function neural network (BRBFNN). They used the region-
growing algorithm for searching and grouping the seeded region having common attributes
which were used for the feature extraction. They worked on some fungal diseases such as
common rust, cedar apple rust, late blight, leaf curl, leaf spot and early blight. The advan-
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tage of using region growing was the grouping of seed points having similar attributes,
which increased the efficiency of the network. Bacterial foraging optimization assigned
the optimal weight to the radial basis network, which made the network faster and also
increased the accuracy of the network. The main issues in their approach were that it
worked only for fungal diseases and it could not be extrapolated to identify other diseases
in plants.

Kaur et al. [44] used a color feature, texture feature and a combination of color and
texture features for detecting several diseases of soybeans, such as downy mildew, frog
eye, septoria leaf blight, etc. They used three clustering techniques for training. In the first
cluster, they found whether the leaf was affected by disease or healthy by calculating the
number of connecting components. If a more-connected component was there, then its four
neighbors corresponded to unhealthy leaf. They used an SVM classifier for classification.
Training the network with real-time images was an important area that needed to be done.

Masazhar et al. [64] identified the palm oil leaf disease by extracting 13 texture features
from the GLCM, and a multiclass SVM was used for classification purpose. First, they
converted the RGB image to the L*a*b* color space and for segmentation purpose, they
used the K-means clustering algorithm and evaluated the features from the segmented
image. The main issues in their method were that it was limited to palm oil leaf disease
only and the dataset used was very small.

Chuanlei et al. [34] used three different types of features such as shape, color, and tex-
ture features in the detection of diseases in apple leaf. Firstly, they removed the background
using a histogram, and region growing was applied to separate the diseased leaf spots from
the leaf image. They extracted 38 different features and reduced the dimensionality of the
feature space by selecting the most valuable features from the combination of a GA and a
correlation-based feature selection (CFS). Diseases were classified using an SVM classifier
and they obtained an accuracy rate above 94%. One of the advantages of the model was
that the dimensionality reduction reduced the time complexity of the model.

Pujari et al. [43] detected different fungal diseases that occur in different crops such as
fruit, vegetables and commercial plants. For each category, they used different segmentation
techniques to identify the diseased area, extract different features and also to identify the
diseases. For fruit crops, they used K-means clustering, for vegetables, they used Chan–
Vese and for commercial crops, they used a GrabCut segmentation technique. In the case
of fruit crops, they used the GLCM and GLRLM for feature extraction. For classification,
they used a nearest neighbor classifier and obtained an accuracy rate of 91.3%. For the
identification of diseases in vegetable crops, they extracted LBP features from the disease-
affected leaves and used an ANN for the classification; they obtained 95.1% accuracy. In
their method, performance decreased in the case of a high variability among the diseases.

Zhang et al. [65] designed an automatic system to identify and classify the cucumber
leaf diseases. Firstly, a superpixel operation was performed to divide the images into
several compact regions. Secondly, logarithmic-frequency pyramid histogram of orientation
gradients (PHOG) were extracted as features from the segmented lesion image, which was
obtained using an expectation maximization (EM) segmentation algorithm. They achieved
an accuracy rate of 91.48% using SVM classifier. Later on [66], the authors extended their
work to identify the diseases through the Internet of things (IoT). In that work, the authors
combined the architecture of the superpixel clustering and k-means clustering algorithms
to segment the diseased regions. PHOG-based image descriptors were used, and they
reported an accuracy rate of 92.15%. The running time of the implemented model was less,
since the original image was divided into many small compact regions using superpixels
and since the number of extracted features were reduced using PCA. Zhang et al. [67]
proposed another work to segment the diseased region from the image using superpixels
and EM techniques.

Dandawate et al. [68] identified soybean plant diseases from mobile captured images.
In their paper, a color- and cluster-based segmentation and extracted SHIFT features
were used. They recorded an accuracy rate of 93.79% using an SVM classifier. Some of
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the identification challenges such as background clutter, illumination, shadow, scale and
orientation were addressed. One of the issues in their paper was that they did not consider
individual disease classes. They considered only two classes, healthy and diseased.

Prajapati et al. [69] identified three different rice plant diseases using color, shape and
texture features. Before extracting the features, they used different background removal
and segmentation techniques and for the classification they used an SVM and achieved
an accuracy rate of 83.80% and 88.57% using 5- and 10-fold cross-validations, respectively.
Three different segmentation techniques were used, namely, Otsu’s segmentation, LAB-
color-space-based K-means clustering, and HSV-color-space-based K-means clustering.
Among the used techniques, the HSV-color-space-based K-means clustering performed
better. To evaluate the model performance, they extracted 88 features and built three
different models with different feature combinations.

Prasad et al. [32] proposed a novel approach to identify the plant diseases using
mobile devices. They used CIE’s L*a*b*-color-based unsupervised segmentation technique.
A Gabor wavelet transform (GWT) and the GLCM were used to represent the image
mathematically and they achieved a maximum accuracy of 96.3% using a KNN classifier.
The issues regarding their paper were that they considered only uniform background
images. Segmenting the leaf images captured in a complex background with different
lighting conditions may be a challenging issue for their method. The feature vector used
was very dense and the computation cost was high.

Singh et al. [60] identified the diseases in five steps as follows. First, they took the
input image, preprocessed the image followed by masking the green pixel, then segmented
the diseased area using GA; finally, they computed the feature using the co-occurrence
matrix and classified using an SVM classifier. We summarize the shape- and texture-based
methods as follows:

• Before the extraction of features, a lot of preprocessing is required, which makes the
model complex.

• Segmenting the diseased region from the images with a background object is challenging.
• The extraction of features and selecting the proper set of feature set giving the optimal

result is an important issue.
• The dataset used in the majority of the paper is small and only a few disease categories

is considered.
• The extraction of features in a large dataset is time-consuming as well as a laborious task.

Table 3 summarize the different segmentation techniques that were used to segment
the diseased region along with their advantages and disadvantages. Table 4 summa-
rizes the detection of diseases in plants using shape- and texture-based features with the
preprocessing techniques, classifier and dataset used.

Table 3. Summary of different image segmentation techniques.

Segmentation Type Complexity Advantages Disadvantages

Color thresholding Thresholding Medium Simple and powerful technique,
easy to implement

Difficult to set the threshold value,
more sensitive to noise

K-means clustering Clustering Low
Suitable for a large number of
datasets, computation is faster,
simple

Need to mention the clusters (K) at
the beginning of the algorithm, difficult
to choose the number of clusters

Sobel edge detection Thresholding Low
Simple and can detect the edges,
efficient for high contrast disease
images

For multiple edges, it does not give
good result, image boundaries have
to be very smooth

Otsu’s segmentation Thresholding High For two-class problem such as foreground
and background this method works well

It considers only two classes in the histogram,
does not work well with variable illumination

Genetic algorithm
based Stochastic High It supports multiobjective optimization,

works well on a discrete problem
Time-consuming,
designing an objective function is difficult

Fermi energy based Thresholding Low
Separates the infected and uninfected
pixel accurately, nonuniform illumination
images perform better

Calculating the energy value at each pixel
position is complex
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Table 4. Summary of implemented methods based on shape and texture.

Author Preprocessing Features Classifier Dataset Accuracy (%)

Qing et al.
[36] (2009)

Resizing, Otsu’s
segmentation method,

fill the hole

Area, perimeter,
GLCM,

texture features
SVM

216
captured
images

97.2

Camargo et al.
[31] (2009)

Color transformation,
Gaussian filter,

thresholding-based
segmentation

Color features,
shape features,
texture features

SVM
117

captured
images

93.1

Anthonys et al.
[35] (2009)

Thresholding,
Sobel Edge
detection

Color differences, area,
roundness, shape complexity,

length and concavity,
longer axis, shorter axis

Membership
function (MF)

50
captured
images

70

Bashish et al.
[38] (2010)

Color transformation,
K-Means clustering-
based segmentation

Angular moment,
mean intensity level variation,

correlation, contrast,
entropy, sum and

difference of entropies

ANN
192

captured
images

93 (precision)

Tian et al.
[63] (2011)

Thresholding-based
segmentation

Color features,
shape features,
texture features

NA
200

captured
images

95.16

Arivazhagan et al.
[70] (2013)

Color transformation,
masking pixel,
thresholding

GLCM
texture features

MDC
SVM

500
captured
images

94

Phadikar et al.
[53] (2013)

Fermy energy
based

segmentation

Color features,
shape features

position

Rule
mining

500
captured
images

94.21

Chaudhari et. al
[55] (2014)

Resizing,
K-means-clustering-
based segmentation

avelet transform BP NA 97

Mokhtar et al.
[61] (2015)

Resizing, K-means-
clustering-based

segmentation

Geometric features,
histogram-based features SVM 200 captured

images

90 (SVM)
91.5 (quadratic

kernel)

Dandawate et al.
[68] (2015)

Resizing, color
transformation, color-

based cluster-based
segmentation

SHIFT features SVM 120 captured
images 93.79

Pujari et al.
[43] (2015)

K-means clustering for
fruit,

Chan–Vese for
vegetable,

GrabCut for
commercial crops

GLCM,
GLRLM,

local binary pattern,
discrete wavelet transform

SVM
ANN
PNN

Not
mentioned

Fruit
98.08 (block wise

features),
vegetable

84.11 (ANN)
91.54 (Neuro KNN),

commercial crop
83.17 (Mahalanobis

distance)
86.48 (PNN)

Singh et al.
[39] (2015)

Filtering, contrast
enhancement,

K-means-clustering-
based segmentation

Entropy,
standard deviation SVM IRRI

database 82

Anand et al.
[40] (2016)

Histogram equalization,
resizing, color

transformation,
K-means-clustering-
based segmentation

GLCM,
texture features ANN NA NA

Prasad et al.
[32] (2016)

Color space transform,
noise removal,

image normalization,
CIE L*a*b*-color-

based segmentation

Gabor wavelet transform
(GWT) and GLCM KNN NA 93

Es-saady et al.
[58] (2016)

Resizing, filtering
K-means-clustering-
based segmentation

Color features,
GLCM-based texture

features, shape features
two SVM 284 captured

images 87.80

Padol et al.
[41] (2016)

Resizing, Gaussian
filtering, K-means-
clustering-based

segmentation

Shape features,
color features,

texture features
SVM 137 captured

images 88.89
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Table 4. Cont.

Author Preprocessing Features Classifier Dataset Accuracy (%)

Padol et al.
[42] (2016)

Resizing, Gaussian
filtering, K-means-
clustering-based

segmentation

Shape features,
color features,

texture features

SVM
ANN

137 captured
images

88.33 (SVM)
89.17 (ANN)
100 (fusion)

Sabrol et al.
[37] (2016)

Otsu’s segmentation
techniques

Shape features,
color features,

texture features

Decision
tree

383 captured
images 97.3

Hlaing et al.
[30] (2017)

Color-thresholding-
based segmentation,

median filtering,
region hole filling

Color statistics features,
SHIFT-based texture features

with GEV dimension
reduction technique

SVM

3474 images
from

PlantVillage
dataset

84.7

Mishra et al.
(2017)

Remove distortion,
genetic algorithm-

based segmentation
Texture features MDC

SVM NA 93.63 (MDC)
95.71 (SVM)

Monzurul et al.
[33] (2017)

Masking, color
threshold-based

segmentation

GLCM,
histogram

color features
SVM

300
PlantVillage

potato
95

Prajapati et al.
[69] (2017)

Cropping, resizing, image
conversion, masking, K-means-
clustering-based segmentation

Color features,
shape features,
texture features

SVM 120 captured
images 88.57

Zhang et al.
[65] (2017)

Superpixel,
expectation

maximization (EM)

Pyramid of
histograms of orientation

gradients (PHOG)
SVM 300 captured

images 51.83

Chuanlei et al.
[34] (2017)

Color transformation,
threshold-based

background removal,
region-growing

segmentation algorithm

Color features,
shape features,
texture features

SVM
90

captured
images

90

Zhang et al.
[66] (2018)

Superpixel clustering,
K-means clustering

algorithm to segment
PHOG SVM

150 apple,
150 cucumber

captured images

85.64 (apple)
87.55 (cucumber)

Bhimte et.al
[56] (2018)

Cropping, resizing,
color transform, noise

removal, K-means-clustering-
based segmentation

GLCM SVM 130 captured
images 98.46

Hlaing et al.
[62] (2018)

Color-thresholding-
based segmentation,

median filtering,
region hole filling

Color statistics features,
SHIFT-based texture features
with Johnson SB distribution

for dimension reduction

SVM

3535 images
from

PlantVillage
dataset

85.1

Kaur et al.
[44] (2018)

Resize, color
space conversion,

K-means clustering

Color features,
texture features SVM

4775
PlantVillage

soybean
90

In this table NA denotes the information is not available. The term accuracy defines the ratio of the number of
correct predictions to the total number of images used in the dataset.

3.3. Deep-Learning-Based Identification of Diseases

Recently, deep learning (DL) has achieved an exponential growth in the field of
computer vision tasks such as object detection, pattern recognition, classification and
biometry. DL models exhibit outstanding performance in image recognition task such
as the ImageNet challenge. This image recognition idea extended to the agricultural
field plant identification [71], disease detection [2,72–74], pest recognition [75,76], fruit
identification [77,78] and weed detection [79]. In DL, there is no need for segmentation and
feature extraction as a DL model has the ability to learn the features automatically from the
input images.

Kawasaki et al. [80] identified two different types of cucumber diseases, i.e., melon
yellow spot virus (MYSV) and zucchini yellow mosaic virus (ZYMV) using a CNN. In their
paper, they used a rotation of images to increase the data size and showed that increasing
the number of images increased the performance. The accuracy obtained with the proposed
DL model was 94.9%. In [81], the authors extended their previous work to identify seven
different types of cucumber diseases using two CNN architectures with a large dataset.
In the dataset, they considered the a variety of images aspects such as the distance, angle,
background, and a nonuniform lighting condition. Three data augmentation techniques,
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namely, shifting, rotation and image mirroring were used to increase the size of the dataset.
The CNN configuration was based on VGG Net [82] and the Caffe framework [83]. The
performance of CNN-1 decreased more in the case of a bad image condition than that of
CNN-2 as the CNN-2 model was trained with both good and bad condition images. They
attained an accuracy rate of 82.3% with fourfold cross-validation.

Sladojevic et al. [84] used pretrained fine-tuned CaffeNet model for the identification
of 13 different plant diseases. To train and evaluate the performance of the model, they
used 4483 internet-downloaded images and a data augmentation technique to increase
the data size. A 10-fold cross-validation technique was used to evaluate the performance
accuracy of model and they achieved an accuracy rate of 96.3%. Pretrained AlexNet
and VGG16 net were used by Rangarajan et al. [85] to identify six different tomato leaf
diseases. The classification accuracy obtained was 97.29% for VGG16 net and 97.49% for
the AlexNet architecture.

Mohanty et al. [72] used two eminent established architecture of CNN, AlexNet
and GoogLeNet, in the classification of 26 different diseases in 14 crop species using
54,306 images. To keep track of model overfitting, they split the dataset into different sets
of training and testing ratios. Three different image data (color, grayscale, segmented)
were used and the highest training accuracy of 99.35% was achieved on RGB images using
GoogLeNet. Several issues existed in their method, including that the entire process was
exclusively done in laboratory setup images, not in real-time images from cultivation fields.
Performance decreased to 31% when the model was tested on images from different sources.
One more limitation was that these models were based on the classification of front-facing
single leaves on homogeneous background images.

Multiple CNN architectures were used by Nachtigall et al. [86] to identify six different
apple leaf diseases. The best result were obtained using the AlexNet [87] architecture
and an accuracy rate of 97.3% was achieved. In order to compare the CNN results, they
used a multilayer perceptron (MLP) as an MLP can achieve a high recognition accuracy in
image classification [88]. The Caffe [83] and DIGITS tools were used to design the CNN
architecture. A LeNet [89] based deep CNN architecture was used by Amara et al. [90] to
identify banana leaf diseases. Their proposed approach was effective under challenging
conditions such as the illumination, a complex background, different resolutions, sizes,
poses, and orientations of real scene images. To evaluate the performance, they used
both color and grayscale images and recorded an accuracy rate of 98.61% and 94.44%,
respectively.

The fusion of shape- and texture-based features such as Hu’s moments [91], Zernike
moments [92] with a CNN was used by [93] to identify olive leaf diseases. After
300 epochs, the authors [93] reported an accuracy rate of 98.61%. A fine-tuned AlexNet
architecture was used by Atole et al. [94] to identify rice plant diseases and they achieved
an accuracy rate of 91.23%.

Ferentinos et al. [2] used five different deep CNN architectures (AlexNet, AlexNe-
tOWTBn, GoogLeNet, Overfeat and VGG) for the identification of plant diseases through
leaf images of healthy and diseased leaves. The dataset used consisted of 58 different
classes of images and they achieved the highest accuracy rate of 99.53% using the VGG [82]
architecture. The dataset used was the largest available plant disease dataset, which in-
cluded partial shading on leaves, images with different objects such as hands, finger, shoes,
etc. The average time required to train these models was much more. One of the issues
related to their method was the expansion of the existing database to incorporate a wider
variety of plant species and diseases. Another issue was that the testing dataset used for
the classification of the models was part of the same database that constituted the training
set.

Five different eggplant diseases were identified by Rangarajan et al. [95] using a
pretrained VGG16 network. To evaluate the result, they also used three different color
spaces of the images, namely, HSV, YCbCr and grayscale. They obtained an accuracy rate
of 99.4% with the RGB and YCbCr images. Images used to train and test the network were
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captured by mobile devices in both laboratory and field conditions. Six different pretrained
network were used in [96] to identify 10 categories of several crop (eggplant, beans, lime,
ladies finger) diseases. Among all the models, VGG16 gave the highest accuracy of 90%.
We summarize the above papers as follows:

• The use of a pretrained deep learning model eliminates the preprocessing and feature
extraction in the identification of disease.

• A fine-tuned and transfer-learning approach where the model is pretrained with a
large dataset performs better than learning from scratch.

• RGB images give better performance accuracies than other formats of images.
• The number of parameters used in LeNet, AlexNet, VGG and GoogLeNet is large and

hence the computation takes longer.
• The required training time is much longer in these models and requires high-power

GPUs to train the model.

Lee et al. [97] used the VGG16, InceptionV3 and GoogLeNetBN architectures to
identify diseases in plants. In their paper, they examined and compared the performances
of these models based on a transfer-learning approach. They proved that disease detection
using a pretrained model reduced the overfitting impact. Picon et al. [98] extended the work
from [99] for the identification of three different wheat diseases based on mobile devices. A
modified ResNet50 architecture was used in that paper. Firstly, a 7×7 convolution layer
of ResNet50 was replaced by two consecutive 3 × 3 convolution layers. Secondly, a dense
layer with a softmax activation function was replaced by a sigmoid function, which was
able to detect multiple diseases on the same leaf. They obtained an improved accuracy
rate of 87% using a superpixel segmentation approach and images containing the artificial
background used in training.

Fuentes et al. [73] designed a practical and applicable solution in the real-time detec-
tion of tomato diseases and pests recognition using a robust deep-learning-based method.
Furthermore, their model was able to deal with some of the complexities such as illumi-
nation conditions, object dimension and background variation. In their approach, they
used a meta-architecture of CNNs, such as Faster R-CNN, SSD and R-FCN models; for
the extraction of features, VGG16 [82], ResNet-50 [100], ResNet-101 models were used. A
smooth L1 loss function was also used. They obtained an accuracy rate of 83%. In their
model, they also included the stage of a disease on the leaves and the position where
it occurred.

Ramcharan et al. [24] used an image-based DL method for the identification of diseases
in cassava plants. They used a transfer-learning approach on the InceptionV3 model to
train the network for the identification of three diseases and two pest damages. They used
two different datasets, namely, the original cassava dataset consisting of multiple leaves on
a single image and the leaflet cassava dataset consisting of single leaf images. There was an
improvement in the accuracy for the leaflet dataset in comparison with the original cassava
dataset. To analyze the performance, they used a softmax layer, SVM and KNN classifiers
and obtained the maximum accuracy of 98% using an SVM classifier.

Ahmad et al. [101] identified four different tomato diseases using pretrained deep
learning models, namely, VGG16, VGG19, ResNet and InceptionV3. They also fine-tuned
the network to obtain the optimal result. The authors used two datasets, one of images in
laboratory conditions, and another of self-collected field images; They observed that the
laboratory images performed better. Among the DL models, InceptionV3 gave the best
performance accuracy of 99.60% and 93.70% on laboratory and field images, respectively,
after fine-tuning the parameters.

Oyewola et al. [25] identified five different cassava plant diseases using a plain
convolution neural network (PCNN) and a deep residual network (DRNN) and showed
that the DRNN outperformed the PCNN by a margin of 9.25%. A MobileNet CNN-based
model was used by Elhassouny et al. [102] to identify the 10 most common types of tomato
diseases and they obtained an accuracy rate of 90.3%.
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Li et al. [103] identified ginkgo leaf diseases using VGG16 and InceptionV3 with
images under both laboratory and field conditions. Between the two models, InceptionV3
gave better a performance accuracy on field images and VGG16 gave a better performance
accuracy on laboratory images. The InceptionResNetV2 architecture was used by Yong
Ai et al. [104] to identify different crop diseases and insect pests in crops. They built an
Internet of things (IoT) platform in remote areas, such as mountains, and identified diseases
and insect pests with an accuracy rate of 86.1%. We summarize the above the papers
as follows:

• Extracting multiple features from different filter sizes in parallel improves the model
performance.

• A CNN with residual connection can train a large model without increasing the
error rate.

• A residual connection handles the vanishing gradient issue using identity mapping.

A pipeline CNN architecture was used by DeChant et al. [105] to identify maize plant
diseases. Three layers of CNNs were trained: firstly, several CNNs were trained to classify
small regions of images that contains the lesions; secondly, the predictions of the first layer
were combined into a separate heat map; and finally, they were fed into the CNN layer
to classify whether it was affected by the disease or not. A Faster R-CNN was used by
Ozguven et al. [106] to identify sugar beet diseases and a correct classification rate of 95.48%
was obtained.

Oppenheim et al. [107] detected four different potato diseases using a deep CNN. In
that paper, the database of images used contained potatoes of different shapes and sizes
and the images were labeled manually by experts. Several dropout layers were used to deal
with the problem of overfitting, and the dataset was split into different training and testing
ratios; the best accuracy of 96% was achieved with a 90%–10% training and testing ratio.

A nine-layer deep convolution neural network was used by Geetharamani et al. [108]
to identify different plant diseases. In that paper, they showed that increasing the size of the
dataset using data augmentation techniques such as image flipping, noise injection, gamma
correction, color augmentation, scaling and rotation increased the validation accuracy from
91.43% to 96.46%. They also compared their results with traditional machine-learning-based
approaches and showed that a deep-learning-based approach outperformed traditional
approaches.

Wang et al. [109] used a deep convolution network fine-tuned by transfer learning for
the detection of apple leaf diseases. They compared two architectures, namely, building a
shallow network from scratch and transfer learning by fine-tuning. The shallow network
consisted of some convolution layer with some filters, and there were two fully connected
layers and one softmax layer to predict the output. Transfer learning is a useful approach
to build powerful classification network using few data, by fine-tuning the parameters of a
network pretrained on a large dataset, such as ImageNet [110].

The CNN-based architectures GoogLeNet and Cifar10 were used in [111] to identify
nine different types of maize leaf diseases. In that paper, the authors used data augmenta-
tion techniques to increase the data size and improved some hyperparameters by changing
the pooling combinations, adding dropout operations and rectified linear unit functions. In
the GoogLeNet model, the average identification accuracy obtained was 98.9%, and the
Cifar10 [112] model achieved an average accuracy of 98.8%.

A novel deep convolution network based on the AlexNet and GoogLeNet architectures
was used by Liu et al. [113] to identify four different apple leaf diseases using leaf images.
In their model, they replaced the fully connected layer of AlexNet by a convolution layer
and an inception layer, which reduced the model parameter by a large number with a higher
accuracy rate of 97.62%. The optimizer used in their paper was Nesterov’s accelerated
gradient (NAG).

Later on Ramcharan et al. [114] extended the work in [24] into a mobile-based cassava
disease detection. They utilized the single-shot multibox (SSD) model with the MobileNet
detector and classifier, which was pretrained on the COCO dataset [115]. To evaluate



Electronics 2022, 11, 2641 16 of 29

the performance, they used both image and video files of diseased leaf images. In total,
2415 images of six different diseases were used to train the CNN network and they obtained
an accuracy of 80.6% and 70.4% in the case of image and video, respectively.

Toda et al. [116] designed a deep CNN based on the InceptionV3 [117] architecture. In
their approach, they used attention map and identified and removed several layers which
were not contributing to the identification. The removal of the layers reduced the number
of parameters by 75% without affecting the classification accuracy and a top accuracy of
97.1% was achieved.

Lu et al. [118] proposed a novel deep CNN method inspired from LeNet and AlexNet
to identify 10 different rice diseases. To achieve the optimal result, different convolution
filter sizes and pooling operations were carried out. The maximum accuracy obtained using
stochastic pooling was 95.48% and 93.29% using a 16 × 16 convolutional filter. Stochastic
pooling has the advantages of max-pooling and also prevents the model from overfitting.
One of the advantages of these models is that their computation time decreases as the
number of layer used is less.

A SqueezeNet [119] architecture was used by Durmus et al. [120] to identify tomato
leaf diseases. They used a robot to detect the diseases on the plants autonomously in the
field or in the greenhouse and obtained an accuracy rate of 94.3% using the SqueezeNet
architecture. They compared their performance with that of the AlexNet architecture,
whose size is 227.6 MB, while the size of SqueezeNet is 2.9 MB.

A modified Cifar10 quick CNN model was used by Gensheng et al. [121] to identify
four different tea leaf diseases. In their paper, the standard convolution was replaced
by a depthwise separable convolution, which reduced the number of parameters. They
also compared their results with traditional machine-learning-based techniques and some
classical CNN models such as LeNet-5 [122], AlexNet and VGG16 [109], and achieved an
improved accuracy rate of 92.5%.

Bi et at. [123] proposed a low-cost mobile deployable model to identify two different
common types of apple leaf diseases. They used the MobileNet deep learning model and
compared its performance with that of ResNet152 and InceptionV3. The dataset used were
collected by agricultural experts. The authors achieved accuracy rates of 73.50%, 75.59%,
and 77.65% for MobileNet, InceptionV3 and ResNet152, respectively. The average handling
time in MobileNet was much less than that of InceptionV3.

Rice and maize leaf diseases were identified by Chen et al. [74] using the INC-VGGN
method. In their approach, they replaced the last convolution layer of VGG19 with two
inception layers and one global average pooling layer. In their model, basic features were
extracted using a pretrained model and high-dimensional features by the inception layer.
They obtained an accuracy rate of 92% and 80.38% in rice and maize, respectively.

Atila et al. [124] used an EfficientNet architecture to identify different diseases in
plant. The performance of their model was compared with that of other CNN models
such as AlexNet, ResNet50, VGG16 and InceptionV3 and it showed that EfficientNet
outperformed the other CNN models. The highest accuracy rate of 99.91% was obtained
using EfficientNetB5 on the original dataset and 99.97% using EfficientNetB4 on the original
dataset. The number of parameters generated in the EfficientNet model was much less that
that of the other deep learning models and hence it required less time to train the network.

A. Tuncer [125] used a hybrid CNN approach to identify plant leaf diseases. In that
paper, the author used an inception network with a depthwise separable convolution,
which reduced the number of parameters and computational cost of the model. Using a
k-fold cross-validation, the model achieved a maximum accuracy of 99.27% and an average
accuracy of 99% on the PlantVillage dataset. We summarize the above papers as follows:

• Removing convolution layers, changing the filter sizes, replacing the standard convo-
lution by a depthwise separable convolution reduce the number of parameters.

• An attention network which focuses on a particular region reduces the complexity of
the network.

• The time required to train the network is much less.
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• It is easy to implement on small devices and the computation time is reduced.

In [126], the authors used CNN, VGG and Inception architectures to identify plant leaf
diseases. In their approach, they used 15% images of the PlantVillage dataset and some
real-time captured images to evaluate the accuracy and obtained an accuracy rate of 98%
and 95%, respectively, with the CNN architecture. Pretrained AlexNet and GoogleNet [127]
were used in [128] to detect three different soybean diseases from healthy leaf images with
some modified hyperparameters such as minibatch size, max epoch and bias learning rate.
In [129], the authors classified the maize leaf diseases from healthy leaves using deep forest
techniques. In their approach, they varied the hyperparameters of the deep forest, such
as the number of trees, number of forests, number of grains, and compared their results
with traditional machine learning models such as SVM, RF, LR and KNN. The deep forest
model achieved an accuracy rate of 96% and a maximum F1 score of 0.96 among all other
classifiers.

Using the principles of deep learning, a fully connected CNN model was built by
Sibiya et al. [130] to classify maize leaf diseases. The model was able to recognize three
different types of maize diseases with an accuracy rate of 92.85%. A multilayer CNN
was used by Singh [131] to identify mango leaf diseases and obtained an accuracy rate of
97.13%.

Different CNN architectures, such as AlexNet, VGG16, VGG19 and ResNet, were used
in [132] to identify the diseases in plant. In their approach, they used the camera-captured
images of eight different diseases to train the model. For the feature extraction, they used
these CNN models and for classification purposes, they used different classifiers such as
KNN, SVM and extreme learning machine (ELM). They achieved a maximum accuracy
rate of 97.86% using the ResNet architecture. A NASNet-based deep CNN architecture
was used in [133] to identify leaf diseases in plants and they obtained an accuracy rate of
93.82%.

A shallow CNN (SCNN) was used by Yang Li et al. [134] for the identification of
maize, apple and grape diseases. First, they extracted the features from the CNN and then
classified the diseases using SVM and RF classifiers. In their approach, they claimed that
the combination of a shallow CNN and classic machine learning classification had a good
ability to identify plant diseases and the kernel SVM and random forest had the ability to
overcome overfitting. A number of deep CNN architectures were used by Sethi et al. [29]
for the identification of four different rice diseases. In their approach, they extracted the
features from the deep learning model and classified the diseases using an SVM classifier;
they showed that the SVM performed better compared with the deep learning classifier.
We summarize the above papers as follows:

• The extraction of features using a CNN model and the classification using different
machine learning classifiers also give higher performance accuracies.

• A CNN model extracts better features, which make a classifier such as an SVM or RF
give better performance results.

• An SVM and RF can tackle the overfitting issues.
• A CNN model is used only for extracting the features and hence the training of the

model is not required.

Table 5 summarizes the DL models along with the dataset used to identify the dis-
eases in plants with their class and labels. Table 6 shows the limitations of some of the
implemented deep-learning-based techniques for the identification of plant diseases. From
Table 6 it is seen that most of the researchers used the same dataset to train and test the
DL models. It is also seen that the number of works on the identification of plant diseases
having multiple diseases on a single leaf is also relatively small.
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Table 5. Summary of deep-learning-based implemented methods.

Author Plant/Disease Model Dataset Class Accuracy
(%)

Mohanty et al.
[72] (2016) Multiple AlexNet,

GoogLeNet

54,306 images
of PlantVillage

dataset
38 99.35

Sladojevic et al.
[84] (2016)

Apple,
grape

Fine-tuned
CNN architecture

4483 internet-
downloaded

images
4 96.3

Nachtigall et al.
[86] (2016) Apple AlexNet 1450 captured

images 6 97.3

Wang et al.
[109] (2017) Apple VGG 16 with

transfer learning

2086 images
of PlantVillage

dataset
1 90.4

Fuentes et al.
[73] (2017) Tomato Faster R-CNN

(ResNet)
5000 images
from farm 10 83

Durmus et al.
[120] (2017) Tomato Alexnet,

SqueezeNet

Images of tomato
diseases from

PlantVillage data
10 95.65 (AlexNet),

94.3 (SqueezeNet)

Lu et al.
[118] (2017) Rice Multistage CNN 500 captured

images 10 95.48

Cruz et al.
[93] (2017) Olive

Lenet hybridized
with shape, edge,
Hu’s moments,

Zernike moments
features

299 captured
images 3 98.60

DeChant et al.
[105] (2017) Maize Layers of CNN

architecture
1796 captured

images 2 96.7

Amara et al.
[90] (2017) Banana LeNet 3700 captured

images 3 98.61 (color image),
94.44 (gray image)

Ramcharan et al.
[24] (2017) Cassava Inception V3

based on GoogLeNet

2756
captured
images

6 98

Ferentinos et al.
[2] (2018) Multiple AlexNetOWTBn,

VGG
87,848
images 58 99.49 (AlexNet),

99.53 (VGG)

Atole et al.
[94] (2018) Rice AlexNet 857 captured

images 3 91.23

Rangarajan et al.
[85] (2018) Tomato AlexNet,

VGG16

13,262 images
of PlantVillage

data
6 97.29 (ALexNet),

97.49 (VGG16)

Liu et al.
[113] (2018) Apple AlexNet with

inception layer
13,689 captured

images 4 97.62

Ramcharan et al.
[114] (2019) Cassava MobileNet 2415

images 7 80.6

Adedoja et al.
[133] (2019) Multiple NASNet

54,306 images
of PlantVillage

dataset
38 93.8
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Table 5. Cont.

Author Plant/Disease Model Dataset Class Accuracy
(%)

Turkoglu et al.
[132] (2019)

8 different plant
diseases

Different DL model
with SVM, ELM, KNN

1965 captured
images 8 95.5 (ALexNet),

95 (VGG16)

Ozguven et al.
[106] (2019) Beet Faster R-CNN 155 captured

imaged 4 95.48

Gensheng et al.
[121] (2019) Tea Modified Cifar10 134 captured

images 4 92.5

Singh et al.
[131] (2019) Mango Multilayer CNN 1070 captured

images 2 97.13

Elhassouny et al.
[102] (2019) Tomato MobileNet

7176 images
of PlantVillage

data
10 90.3

Arora et al.
[129] (2020) Maize Deep Forest 400 image 4 96.25

Lee et al.
[97] (2020) Multiple

VGG16,
InceptionV3,

GoogLeNetBN with
Transfer learning and
Training from scratch

54,306 images
of PlantVillage

dataset
38

99.09(GoogLeNetBN),
99.00 (VGG16),

99.31 (Inception V3),
99.35 (GoogLeNet)

Zeng et al.
[135] (2020)

Rice,
cucumber SACNN AES-CD9214,

MK-D2 6 95.33 (AES-CD9214),
98.00 (MK-D2)

Chen et al.
[74] (2020)

Rice,
maize INC-VGGN

500 rice images,
466 maize

images,
9 92.00

Li et al.
[75] (2020) Cotton pest CNN NBAIR 50 95.4

Sethy et al.
[29] (2020) Rice Different DL model

with SVM 5932 4 98.38 (F1-score)

Li et al.
[134] (2020) Maize Shallow CNN with

SVM, RF

2000 images
from Plant

Village dataset
4 94

Ahmad et al.
[101] (2020) Tomato

VGG16,
VGG19,
ResNet,

InceptionV3

2364 laboratory
images

317 real-time
images

6 93.40 (lab),
85.00 (real)

Bi et al.
[123] (2020) Apple MobileNet 334 captured

images 2 73.50

Atila et al.
[124] (2021) Multiple EfficientNet

55,448 images
of PlantVillage

data
39 99.91

Oyewola et al.
[25] (2021) Cassava DRNN 5656 images of

cassava plant 5 96.75

Tuncer et al.
[125] (2021) Multiple Hybrid CNN

50,136 images
of PlantVillage

dataset
30 99
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Table 6. Limitation of deep learning models for the identification of plant diseases.

Author

Limitations

Large
Number
of Images
in Dataset

Large
Number
of Species
Considered

Accuracy
on Testing
Field Images

Multiple
Diseases
on Same
Image

Consider
Complex
Background

Train/Test
Data Are from
Different
Datasets

Mohanty et al. [72] yes yes low × × ×
Ferentinos et al. [2] yes yes low × × ×
Liu et al. [136] × × × × × ×
Amara et al. [90] × × × × × ×
Fuentes et al. [73] × × yes yes yes ×
Geetharamani
et al. [108] yes yes × × yes ×

Barbedo et al. [137] yes yes low yes × ×
Cruz et al. [93] × × × × × ×
Sladojevic et al. [84] × yes × × yes ×
Brahimi et al. [138] yes yes × × yes ×
Ozguven et al. [106] × × × × × ×
Wang et al. [109] × × × × × ×
lee et al. [71] yes yes yes × yes ×
DeChant et al. [105] × × × × × ×
Ramcharan et al. [114] × yes yes × yes yes

Oyewola et al. [25] × yes × × yes ×
Ramcharan et al. [24] × yes × × yes ×

In this table large images in a dataset are considered yes when the number of images is more than 1000/class.

4. Discussion

From our survey, we showed that deep-learning-based techniques outperformed the
traditional classification approaches such as KNN, SVM, RF, LR, ANN and others. In deep
learning, features are learned automatically from the networks, which is more effective
and gives more accurate results at the time of classification than the traditional feature
extraction approaches relying on color, shape, SIFT, texture-based, GLCM, histogram,
Fourier description, etc., features. A large number of deep learning architectures are used
for the identification of plant diseases. We summarized these deep learning models in
Figure 3. From Figure 3, it is seen that AlexNet, VGG16, GoogleNet and InceptionV3 are
the most frequently used DL models. VGG19 and ResNet50 are the next most used DL
models. A summary of different DL models along with the number of layers, number of
parameters and the size of each DL model is shown in Table 7. Figure 4 gives the number
of research papers with respect to individual plant classes. Multiple plants are included
in the PlantVillage dataset, which consists of 14 different plant species and 38 categories
of diseases and is the most frequently used plant dataset by researchers. Rice and tomato
are the next most-used plants in plant diseases identification areas. Figure 5 shows the
histogram representation of the discussed papers published from 2009 to 2021 in the field of
the identification of plant diseases. From Figure 5, it is seen that the identification of plant
diseases has gained much attention after 2016. There are several advantages of using a DL
model over a handcrafted-features-based approach. The extraction of hand-engineered
traditional features requires extra effort and is time-consuming; moreover, searching for
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features that give the most precious results is not an easy task. DL-based features reduce
this effort and gives the best results [109]. A DL model is robust under some challenging
issues such as a complex background, illumination, size and orientation [73]. DL models are
robust in scenarios containing challenging images, several intra and extraclass variations
and they have the ability to deal with complex scenarios from a plant’s surrounding area.

Table 7. Different DL models with respect to number of layers and parameters and size.

Model No. of Layer Parameters (Million) Size

LeNet 5 0.06 -
AlexNet 8 60 240 MB
VGG16 23 138 528 MB
VGG19 26 143 549 MB
InceptionV1 27 7 51 MB
InceptionV3 48 23.85 93 MB
Xception 126 22.91 88 MB
ResNet50 50 23 98 MB
ResNet101 101 50 171 MB
ResNet152 152 44 232 MB
InceptionResNetV2 572 55.87 215 MB
DenseNet121 121 8.06 33 MB
DenseNet201 201 20.24 80 MB
NASNetMobile - 5.32 23 MB
Squeezenet 69 1.23 5 MB
Shuffle Net - 3.4 -
MobileNetV1 88 4.2 16 MB
MobileNetV2 88 3.37 14 MB
EfficientNet B0 - 5.33 29 MB
EfficientNet B1 - 7.85 31 MB

Figure 3. Number of research papers for various deep learning models.
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Figure 4. Number of research papers for different plant categories.

Figure 5. Histogram of number of papers published with respect to years.
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5. Challenges

The identification of diseases in plants from the leaf image faces some challenges.
Resolving these challenges and issues is a key point to design a practical plant disease
identification system on real-time images with diverse field conditions. In this section, we
discuss some of the unresolved issues in the identification of diseases in plants.

5.1. Dataset of Insufficient Size and Variety

In many papers and articles, the main limitation is the dataset used to train the CNN
network, which leads to a worse performance accuracy for the identification of disease. In
DL, there is a need for a large dataset with a wide variety of images. The PlantVillage [23]
and Image Database of Plant Disease Symptoms (PDDB) [137] dataset are the only freely
available large diseases dataset at the present time. The images available are from a
laboratory setup and were captured with a uniform background. However, the collection
of images from the field is expensive, and it requires agriculture expertise for the accurate
identification of diseases.

5.2. Image Segmentation

Segmentation consists in finding the region of interest from the image. Two approaches
exist in segmentation, a traditional approach and a soft-computing-based approach. K-
means clustering and color thresholding are traditional and fuzzy logic, artificial neural
network and region growing are soft-computing-based segmentation techniques. Segment-
ing a leaf image from a complex background is a challenging issue for the identification
of diseases. The segmentation of the leaf region can improve the performance accuracy.
Images with many illegitimate elements often cause difficulties in the identification.

5.3. Identification of Diseases with Visually Similar Symptoms

Some of the diseases have similar symptoms, which even experts often fail to dis-
tinguish properly by the naked eye. Sometimes one disease symptom may vary due to
geographic locations, crop development stage and weather condition. Until now, no work
has been found in the literature that incorporates these issues in the identification of plant
diseases.

5.4. Simultaneous Occurrence of Multiple Diseases

Most of the plant disease identification model assumes that there is only one type of
diseases in the image. However, multiple diseases as well as some nutritious disorders may
occur simultaneously. This can affect the identification of diseases. From the survey, we
can see that few works exist in the field that identify multiple diseases. Fuentes et al. [73]
only considered the identification of multiple diseases in tomato leaves.

5.5. Identification of Diseases from Real-Time Images

From the literature, we observed that most papers are based on the identification of
diseases using laboratory images. The performance of a model decreases in the case of a
real-time identification of diseases. In [72], the authors obtained an accuracy rate of 99.35%
on the PlantVillage dataset and the model performance decreased to 31% when the model
was tested with a different dataset. In [2], the authors recorded an accuracy rate of 99.53%
on a wide variety of datasets. When the model was trained solely on laboratory images and
identified field-captured images, the success rate decreased to 66%. Therefore, the effective
identification of diseases in real-time field images is an important challenging issue.

5.6. Design a Light Deep Learning Model

Most of the deep learning architectures that were implemented in the literature are
based on AlexNet, VGG, GoogleNet, ResNet, DenseNet and InceptionV3. Deep learning
requires high-performance computing devices, expensive GPUs and hundreds of machines.
This increases the cost to the users. Small CNN models will be highly desirable especially
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in embedded, robotic and mobile applications where real-time performance and a low
computational cost are required. It requires a very large quantity of data in order to perform
better than other techniques. It is extremely expensive to train due to complex data models.

6. Conclusions and Future Directions

In this paper, we presented a survey of different machine learning approaches for the
identification of plant diseases using leaf images. As in humans, plants suffer from different
diseases which affect their normal growth. This survey consisted of the identification of
diseases using handcrafted-features-based method and DL-based methods. We compared
the performance in terms of the preprocessing and segmentation techniques used, the
features used to classify the diseases, along with the dataset used in each paper. Through
the survey of the identification of diseases using shape- and texture-based features, we can
conclude that preprocessing and segmentation techniques play a major role in increasing
accuracy. The SVM was the most widely used classification technique for the identifica-
tion of diseases. From the survey, it was observed that the performance of deep learning
models outperformed traditional handcrafted-features-based techniques. From the accu-
racy of different deep learning models, we can say that the ResNet50, InceptionV3 and
DenseNet201 architectures are suitable for the identification of plant diseases. MobileNetV2
and SqueezeNet are suitable architectures for lightweight devices such as mobile phones.

The early detection of diseases would help farmers to improve the crop yield and the
problem of the expensive domain expert. Several gaps are there in the existing literature
and some are highlighted as future research work for the identification of diseases in plants.
The collection of large datasets with a wide variety of images and images from different
geographical locations is an important research issue. From the survey, we also conclude
that if the disease symptom changes significantly during different stages of infection, then
the reliability of detecting diseases will be less. Future work includes developing a reliable
lightweight deep CNN model and adopting these models for mobile devices.
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