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Abstract
Machine learning has become an integral part of everyday life ranging from applica-
tions in AI-powered search queries to (partial) autonomous driving. Many of the ad-
vances in machine learning and its application have been possible due to increases in
computation power, i.e., by reducing manufacturing sizes while maintaining or even
increasing energy consumption. However, 2-3 nm manufacturing is within reach,
making further miniaturization increasingly difficult while thermal design power lim-
its are simultaneously reached, rendering entire parts of the chip useless for certain
computational loads. In this thesis, we investigate discrete classifier ensembles as
a resource-efficient alternative that can be deployed to small devices that only re-
quire small amounts of energy. Discrete classifiers are classifiers that can be applied
– and oftentimes also trained – without the need for costly floating-point operations.
Hence, they are ideally suited for deployment to small devices with limited resources.
The disadvantage of discrete classifiers is that their predictive performance often
lacks behind their floating-point siblings. Here, the combination of multiple dis-
crete classifiers into an ensemble can help to improve the predictive performance
while still having a manageable resource consumption. This thesis studies discrete
classifier ensembles from a theoretical point of view, an algorithmic point of view,
and a practical point of view. In the theoretical investigation, the bias-variance de-
composition and the double-descent phenomenon are examined. The bias-variance
decomposition of the mean-squared error is re-visited and generalized to an arbi-
trary twice-differentiable loss function, which serves as a guiding tool throughout the
thesis. Similarly, the double-descent phenomenon is – for the first time – studied
comprehensively in the context of tree ensembles and specifically random forests.
Contrary to established literature, the experiments in this thesis indicate that there is
no double-descent in random forests. While the training of ensembles is well-studied
in literature, the deployment to small devices is often neglected. Additionally, the
training of ensembles on small devices has not been considered much so far. Hence,
the algorithmic part of this thesis focuses on the deployment of discrete classifiers
and the training of ensembles on small devices. First, a novel combination of ensem-
ble pruning (i.e., removing classifiers from the ensemble) and ensemble refinement
(i.e., re-training of classifiers in the ensemble) is presented, which uses a novel prox-
imal gradient descent algorithm to minimize a combined loss function. The resulting
algorithm removes unnecessary classifiers from an already trained ensemble while
improving the performance of the remaining classifiers at the same time. Second,
this algorithm is extended to the more challenging setting of online learning in which
the algorithm receives training examples one by one. The resulting shrub ensembles
algorithm allows the training of ensembles in an online fashion while maintaining a
strictly bounded memory consumption. It outperforms existing state-of-the-art algo-
rithms under resource constraints and offers competitive performance in the general
case. Last, this thesis studies the deployment of decision tree ensembles to small de-
vices by optimizing their memory layout. The key insight here is that decision trees
have a probabilistic inference time because different observations can take different
paths from the root to a leaf. By estimating the probability of visiting a particular
node in the tree, one can place it favorably in the memory to maximize the caching
behavior and, thus, increase its performance without changing the model. Last, sev-
eral real-world applications of tree ensembles and Binarized Neural Networks are
presented.
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1 | Introduction

Machine learning (ML) has become an integral part of our everyday life ranging from
AI-powered search queries on the web to (partially) autonomous driving. As machine
learning practitioners, we are more often than not concerned with the best predictive
power re-training models over and over until we find the best combination of data
processing, ML method, and hyperparameters for a specific task. This short feedback
loop of training and re-evaluating the model makes machine learning fundamentally
different from high-performance computing which usually runs large batch jobs on
clusters over days, if not weeks. Hence, it is no surprise that machine learning has
become one of the main driving forces for new software, hardware and programming
approaches alike in a search for faster model training. For example, the MapReduce
programming paradigm has been largely introduced with machine learning problems
[CKL+06, DG08], whereas deep learning is nearly indistinguishable from advances
in processing power [HB].

Every ML problem faces two fundamental resource constraints: First, the amount
and quality of the data are vital for training a good predictor. Second, the energy that
is available to explore and compare different ML pipelines determines the quality
of the final product. While finding and extracting good data is an integral part of
machine learning it is tightly interconnected with the specific use case and hence it is
difficult to make general recommendations from a technical point of view. This thesis
focuses on the second resource constraint: Energy. The total amount of energy used
for an ML pipeline is given by

W = P · t (1.1)

where P is the power required to run the hardware and t is the amount of time this
hardware needs to execute the pipeline. Thus, in order to reduce energy consumption
we may use smaller hardware, faster methods, or both. In practice there is often
a trade-off between both quantities (c.f. Figure 1.1): Hardware that has a lot of
processing power can execute a pipeline very quickly, but often also requires much
more energy. Similarly, less powerful hardware may take longer to execute a given
pipeline while the overall energy consumption is smaller since it requires less power.

Once an ML problem has been sufficiently explored, and the performance is sat-
isfactory, the workload shifts from training the model to continuously applying it.
While models in production are still retrained from time to time in order to account
for new training data and possible concept drift, they are primarily applied continu-
ously. This continuous application suddenly can become much more costly in terms
of runtime, processing power, and energy than the original model training. To illus-
trate this point, consider the following two examples:
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FIGURE 1.1: The power consumption and execution time for the
Raspberry Pi 0, Raspberry Pi 2, Raspberry Pi 3, and Raspberry Pi
4. The processing power of each device is measured using the core-
mark benchmark (https://www.eembc.org/coremark/), and the ex-
ecution time is its corresponding runtime. The measurements are
taken from https://github.com/fm4dd/sbc-benchmarks. The en-
ergy consumption is measured running each device on full load
and is taken from https://www.pidramble.com/wiki/benchmarks/
power-consumption and https://raspberrypi.stackexchange.
com/questions/63519/power-consumption-of-pi-zero-w. The
Raspberry Pi 1 was excluded from this comparison because no reli-
able measurements of its power consumption could be found. Green
indicates the power consumption, and blue indicates the execution

time. Best viewed in color.

Online Search

One of the main reasons for the success of the internet are search engines that help
the user to find relevant and interesting information using keyword searches. The
second-largest search engine by market share is Microsoft’s bing.com (As of 2017,
see https://tinyurl.com/2evswsuv). This search engine largely utilizes machine
learning models such as Gradient Boosted Trees (https://tinyurl.com/2nwyvv3m)
to rank search results for their relevancy and present these to the user. Bing processed
roughly 12 billion search queries a month worldwide in 2019 (https://tinyurl.
com/2evswsuv), which are roughly 4 480 287 queries per second. Assuming that a
machine learning model is executed for each of these requests with a computational
budget of 1 ms, then 4 481 CPUs are required to run these models and keep up with
the queries. Now assuming that a regular Intel i7-7700K CPU (with a TDP of 91
W, https://tinyurl.com/4dzvmufa) is used to serve all requests, then 407 771 W
of energy is required leading to a total energy consumption of approximately 3.57
TWh for the entire year. Differently put, the largest black coal plant in Germany
(https://tinyurl.com/4p723pnv) would be required to power the model inference
for all search queries on bing.com.

https://www.eembc.org/coremark/
https://github.com/fm4dd/sbc-benchmarks
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://raspberrypi.stackexchange.com/questions/63519/power-consumption-of-pi-zero-w
https://raspberrypi.stackexchange.com/questions/63519/power-consumption-of-pi-zero-w
bing.com
https://tinyurl.com/2evswsuv
https://tinyurl.com/2nwyvv3m
https://tinyurl.com/2evswsuv
https://tinyurl.com/2evswsuv
https://tinyurl.com/4dzvmufa
https://tinyurl.com/4p723pnv
bing.com
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Self-Driving Cars

With advances in image classification and machine learning, self-driving cars are now
within reach. Current prototypes, such as Tesla’s autopilot, not only rely on deep-
learning approaches for image recognition but also for fundamental steering (https:
//tinyurl.com/mz2y9abj). Thus, again, the ML model must run continuously to
provide autopilot functionality. To power the deep learning model, Tesla introduced
their own chip that requires 57 W to run (https://tinyurl.com/ycxvr2d5). It can
be estimated that personal motorcars traveled a combined distance of 630 Billion
kilometers in Germany alone in 2018 (https://tinyurl.com/yckpfrd9). Assuming
the average speed is around 45 km/h [PFM+12] and that Tesla’s autopilot is used
in each of these trips then the autopilots are running for 14 Billion combined hours
for all trips, which are equal to 0.79TWh of energy consumption per year. This is
roughly the amount of energy produced by the largest run-of-the-river hydroelec-
tricity plant in Germany (https://tinyurl.com/ky6sxv6j) to provide an autopilot
feature in self-driving cars.

It is clear that the energy consumption of model application must be addressed at
some point during the deployment process – for example, right at the beginning of
the ML pipeline where new models are trained, as a post-processing step right before
deployment, or somewhere in between these steps. Part of this process is to choose
the hardware platform that ultimately trains and applies these models. Although
it has become the norm to execute ML models on mid to high-end smartphones,
‘smaller’, more resource-constraint devices are rarely considered even though they
have the potential to offer a better performance-energy trade-off.

Runtime and the efficient use of the hardware was always a major concern in
machine learning. However, the direct connection between hardware and machine
learning – especially in the context of small, resource-constraint systems – has only
recently become an issue in the machine learning community. Deep learning has
transformed the landscape of machine learning and hardware platforms alike, as it
not only achieved super-human performance in some tasks but required excessive
amounts of computation to do so. Hence, it not only sparked new interest in neu-
ral network research but also resulted in new advances in hardware accelerators as
well as a whole new ecosystem of frameworks and software libraries. The miniatur-
ization of deep learning closely followed these new trends in an attempt to reduce
its resource consumption while preserving its performance. Over the course of this
thesis, the term ‘TinyML’ became more and more popular to describe the combina-
tion of machine learning and small, resource-constrained devices. Somewhat con-
fusing, this term is most often used to describe the miniaturization of deep learning
and its application on small devices, but not the application of ‘classical’ methods
in resource-constraint contexts. However, these classical methods often outperform
deep networks in many applications while using fewer resources.

One of the major drawbacks of deep learning is that it requires the consecutive
computation of a matrix-vector product with floating-point inputs. In order to com-
pute a floating-point product, roughly 37 times more energy is required compared to
an integer product (cf. Table 1.1). Moreover, double variables take two times more
space than integers and thereby doubling the high energy cost of accessing caches
and RAM. Hence, the miniaturization of deep learning – while certainly a fruitful
endeavor – will always have to battle the inefficiency of floating-point computations.
A natural question arises here: What happens if we remove floating-point computa-
tions altogether? Can we achieve a good classifier that does not use any floating-point

https://tinyurl.com/mz2y9abj
https://tinyurl.com/mz2y9abj
https://tinyurl.com/ycxvr2d5
https://tinyurl.com/yckpfrd9
https://tinyurl.com/ky6sxv6j
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operations?

TABLE 1.1: Energy consumption of instructions and memory access
based on word size in CMOS 45nm structures [Hor14]. For compari-
son, the relative costs depict the costs relative to a single 32-bit integer

addition.

Operation Energy [pJ] Relative Cost

8 bit integer ADD 0.03 0.3
32 bit integer ADD 0.1 1
8 bit integer MULT 0.2 2
16 bit float ADD 0.4 4
32 bit float ADD 0.9 9
16 bit float MULT 1.1 11
32 bit integer MULT 3.1 31
32 bit float MULT 3.7 37

Cache access 5-50 50-500
DRAM access 320-640 3200-6400

1.1 Contributions and Outline

Discrete classifiers are machine learning models that can be executed without any
floating-point operations. Moreover, many discrete classifiers can also be trained
without floating-point operations, making them ideal candidates for small devices.
Unfortunately, the predictive performance of discrete classifiers often lacks behind
their continuous counterparts. To circumvent this problem, one can train multiple
discrete models and combine them into an ensemble that offers better predictive
performance while maintaining a low resource consumption. The training and appli-
cation of an ensemble on a small device that might already be challenged by a single
model seem counterintuitive at first but brings numerous advantages with it:

• Ensembles are well-known to improve the performance over single classifiers,
especially when the single models are ‘weak’.

• Ensembles of discrete classifiers offer fine-grained control over the resource
consumption of the final model. One can either increase the complexity of the
individual ensemble members, increase the size of the ensemble or balance both
quantities to achieve the best performance.

• Ensembles are robust to changes in the hyperparameters: Changing a single hy-
perparameter (e.g., the number of classifiers in the ensemble) usually does not
change the overall behavior of the ensemble, and the predictive performance
remains similar across regions of hyperparameters.

Arguably the most well-known and one of the most widely used machine learning
methods are random forests (RF), which are an ensemble of discrete classifiers. In-
terestingly, despite their wide usage, random forests have not been explicitly studied
in the context of small devices in recent years. And indeed, RFs are often regarded
as ‘small’ models compared to, e.g., deep learning models. In this thesis, we will re-
visit additive ensembles of discrete classifiers and, in particular, RFs in the context of
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small devices. Due to their wide use, large parts of the thesis focus on decision tree
ensembles, but more recent developments in the context of discrete classifiers, such
as binarized neural networks, will also be discussed. This thesis is split into four parts
and makes the following contributions:

Part I: Chapter 1 gives an introduction and offers an overview of the thesis. Chapter
2 introduces the necessary background for this thesis. It first surveys the landscape of
small devices and introduces the basic principles of the von Neumann computer archi-
tecture. Then, three types of discrete classifiers, namely decision trees (DT), binarized
neural networks (BNN), and naive Bayes (NB), are introduced. All methods are pre-
sented in a general framework that allows practitioners to fine-tune the algorithmic
implementation for their specific task at hand. For each method, the properties of
universal function approximation and consistency are discussed. While most of this
chapter summarizes existing works, it contains some original work in the context of
decision trees. In particular, the universal function approximation property of DTs is
shown, to the best of my knowledge, for the first time using the Simple Function Ap-
proximation Theorem. This theorem simplifies the analysis while implying that any
model tree with constants in the leaf nodes is a universal function approximator.

Part II: Chapter 3 formally introduces additive ensembles and the bias-(co-)variance
decomposition. It introduces the well-known bias-variance decomposition for the
mean-squared error and surveys existing decompositions that generalize it to other
loss functions. Then, a novel decomposition for twice differentiable loss functions
using a second-order Taylor approximation is presented, and examples are discussed
at the end of the chapter. In particular, this novel decomposition shows that for
some losses, a second-order approximation can have an unbounded remainder im-
plying that such losses cannot be fully explained in terms of bias and variance, but
higher moments are also required. Chapter 4 introduces the novel generalized neg-
ative correlation learning (GNCL) objective that is based on the new bias-variance
decomposition. Existing ensembling algorithms are surveyed, showing how many of
them can be recovered as a special case in the novel GNCL framework. Chapter 5 dis-
cusses the double-descent phenomena in the context of additive tree ensembles and,
specifically, random forests. While this phenomenon has been studied in the context
of neural networks and deep learning, it has not been studied explicitly for additive
ensembles and random forests. This chapter offers the first comprehensive analysis
of the complexity of additive tree ensembles in the PAC framework based on the cur-
rently available theory and shows experimentally that there is no double-descent in
random forests.

Part III: Chapter 6 focuses on the problem of training a small ensemble that can be de-
ployed to small devices. To do so, the framework of ensemble pruning is introduced,
which is based on the principle of ‘overtrain and remove’. Similarly, the idea of leaf-
refinement of DTs is introduced as a different approach to training small ensembles.
Then, both approaches are combined into a novel objective that refines the leaves in
the DTs of an ensemble while removing unnecessary trees using a L1 regularization
term. A novel pruning algorithm is introduced that minimizes this objective using
proximal gradient descent, and the chapter is concluded with an extensive experi-
mental analysis that shows the usefulness of the novel pruning algorithm. Chapter 7
expands the ideas on ensemble pruning and leaf-refinement to the more challenging
setting of on-device training. To do so, online learning in which each observation is
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presented exactly once to the algorithm is formally introduced. Then, existing en-
sembling algorithms for online learning are discussed. The novel leaf-refinement and
pruning objective is adapted to the online-learning setting. In particular, the L1 reg-
ularization is replaced with a L0 regularization that guarantees a maximum memory
consumption during training at all times. This leads to a more challenging optimiza-
tion scenario which is solved by a novel shrub ensembles algorithm based on proxi-
mal gradient descent. After the behavior of shrub ensembles is formally established,
the chapter finishes with an experimental analysis that highlights the usefulness of
shrub ensembles in resource constraint environments. In chapter 8, the deployment
and optimal implementation of (tree) ensembles are discussed. Based on a novel
probabilistic view of DT inference, several optimizations to existing implementation
schemes are presented that maximize cache efficiency. In a series of experiments,
the benefits of the novel memory layout are shown. The second part of the chapter
analyzes the optimal implementation of DTs from a more theoretical perspective. To
do so, a theoretical von Neumann architecture, as well as a theoretical FPGA design,
are introduced, which is then combined with the probabilistic view of DT inference to
determine the optimal implementation for a given tree ensemble and a given target
architecture.

Part IV: Chapter 9 gives a short overview of existing software and introduces two
software projects that were implemented as part of this thesis. In particular, the
PyPruning library is introduced, which includes ensemble pruning algorithms and al-
lows the implementation of novel ensemble pruning algorithms. Second, the model
compiler FastInference is presented that generates architecture- and model-specific
code for pre-trained models. Chapter 10 gives an overview of three practical use
cases of discrete-classifier ensembles that have been studied over the course of the
research for this thesis. It starts with applying ensemble pruning and leaf refine-
ment in the context of the PhyNetLab. The PhyNetLab is an IoT warehouse test
environment that has been built as a part of the SFB876 project at the TU Dortmund
University. The task in this application is to deploy ML models to ultra-low power
devices so that these devices can predict the position of their respective storage boxes
in a warehouse given environmental sensor measurements. The second example is
due to the physics cooperation in the SFB 876. Here, astrophysicists are monitoring
the sky with a Cherenkov Telescope and use random forests to distinguish interesting
gamma-ray events from the hadronic background noise of the universe. This chapter
details how to deploy random forests for such a task and discusses binarized neural
networks that can process the raw data directly from the telescope using a reference
FPGA implementation as an alternative. Third, this chapter showcases how BNNs
could potentially be used on devices with approximate memory. Approximate mem-
ory requires much less energy than conventional memory architectures but also has a
much higher bit-error rate during readout. Hence, error-resilient BNNs that maintain
a high accuracy even under a large number of bit errors seem favorable. To do so,
the chapter introduces a novel loss function based on the max-margin approach that
leads to more resilient BNNs that can cope with large amounts of bit errors. Finally,
chapter 11 concludes the thesis.

1.2 Publications Covered by this Thesis

The work on this thesis was partially funded by the Deutsche Forschungsgesellschaft
(DFG) through their grant on the collaborative research center SFB 876, Providing
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2 | Background

Discrete classifiers and ensembles of such can be powerful classifiers ideally suited
for small, embedded systems. This chapter offers the necessary background to study
them. The following section will give an overview of computer architectures in gen-
eral and small devices specifically. After that, some general terminology in machine
learning is discussed. The chapter finishes with three discrete classifiers that are con-
sidered throughout this thesis.

2.1 Small Devices

There is a wide range of different computing devices available, starting from entry
points into large networks (e.g., edge devices or Internet Of Things (IoT) devices),
tightly integrated computing devices with sensing and acting capabilities (e.g., em-
bedded systems) as well as ‘regular’ desktop and server hardware. In the context
of this thesis, we will focus on small devices: A computing device is a small device
whenever the task we want to solve with it is much more complex than the resources
offered by that device. In this sense, every computing device can be considered ‘small’
if the task we want to solve is big enough. Likewise, any device can be ‘big’ if it only
performs a comparably simple task.

Since this definition does not exclude or include any specific types of hardware it
can sometimes be difficult to derive general guidelines for designing resource-efficient
ML algorithms. Hence, to ease the discussion and make it more tangible, we will
look at embedded systems and IoT devices specifically to study resource-efficient ML
algorithms theoretically as well as practically in experiments. However, virtually all
algorithmic aspects discussed in this thesis can directly be translated to desktop or
server hardware as well. Table 2.1 gives some examples of typical microcontroller
units (MCUs) found in embedded systems and edge devices. For comparison, the
Intel i7-770K as a typical desktop / server CPU is also added. Two main conclusions
can be drawn from this table: First, the landscape of IoT and embedded devices
is very heterogeneous. It ranges from very small devices clocked at 16 Mhz with
only little memory and a limited set of features to feature-rich devices clocked in the
Gigahertz range with an abundance of memory. Second, there is a clear trend in the
energy consumption of devices. The ‘smaller’ a device is, the less power it requires.

2.1.1 Von Neumann architecture

The vast majority of CPUs are implemented using the von Neumann architecture, in
which code and data reside in the same memory. A comprehensive overview of von
Neumann CPUs can be found in [HP11]. A sketch of the von Neumann architecture is
depicted in Figure 2.1a. Code and data are fetched using a common communication
bus. The control logic of the CPU decodes instructions and loads data into registers,
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TABLE 2.1: Typical microcontroller units (MCUs) found in edge and
IoT devices. The top group shows bare-metal MCUs, which typically
do not run an operating system. The bottom group shows MCU, which
typically also runs an operating system. ✓ denotes the availability
of a feature, ✗ marks its absence, and ✚ denotes optional/partial
support. The original table is due to [BFC19] but the float, SIMD, and
architecture columns have been added by taking the corresponding
values from the referenced data sheets. For comparison, the Intel i7-
7700K CPU has also been added as a typical desktop / server CPU. The

data-sheet can be found under.

MCU Clock Float Arch. SIMD Flash (S)RAM Power
Arduino Uno (ATMega128P) 16MHz ✗ 8bit ✗ 32KB 2KB 12mA
Arduino Mega (ATMega2560) 16MHz ✗ 8bit ✗ 256KB 8KB 6mA
Arduino Nano (ATMega2560) 16MHz ✗ 8bit ✗ 26-32KB 1-2KB 6mA
STM32L0 (Cortex-M0) 32MHz ✗ 32bit ✗ 192KB 20KB 7mA
Arduino MKR1000 (Cortex-M0) 48MHz ✗ 32bit ✗ 256KB 32KB 4mA
Arduino Due (Cortex-M3) 84MHz ✗ 32bit ✗ 512KB 96KB 50mA
STM32F2 (Cortex-M3) 120MHz ✗ 32bit ✗ 1MB 128KB 21mA
STM32F4 (Cortex-M4) 180MHz ✚ 32bit ✚ 2MB 384KB 50mA
Raspberry PI A+ 700MHz ✓ 32bit ✗ SD Card 256MB 80mA
Raspberry PI Zero 1GHz ✓ 32bit ✗ SD Card 512MB 80mA
Raspberry PI 3B 4@1.2GHz ✓ 64bit ✓ SD Card 1GB 260mA
Intel i7-7700K 4@4.5GHz ✓ 64bit ✓ HDD/SSD 2 - 64GB ≈ 80A

accordingly. Operations are performed on these registers, and results are written back
into the main memory using the communication bus if needed.

Since the common communication bus is used for data and instruction codes, it
forms the bottleneck of the von Neumann architecture. Moreover, a memory wall
amplifies this bottleneck: With increasing manufacturing capabilities, CPUs have be-
come faster and faster, nearly doubling their processing power every 2 years. Mem-
ory access speed as well as memory transfer rates, however, could not keep up with
this rapid speed-up, making access to main memory a magnitude slower than data
processing inside the CPU [BC]. In a von Neumann architecture, instructions are
clocked, i.e., the execution of each instruction is synchronized to a common clock.
Von Neumann CPUs are inherently a single instruction, single data (SISD) system, in
which one instruction performs one operation on one data item per clock. In order
to cope with data and computation-intensive applications, several enhancements for
von Neumann CPUs have been introduced:

Parallelized memory access

CPUs perform operations on packs of bits called words. The word size of a CPU thus
denotes how fine-grained a CPU can access individual bits. In order to reduce address
lookup, memory access is performed on packs of words in which each memory access
loads neighboring words.

Pipelining

Executing an instruction involves multiple tasks, such as decoding the instruction,
loading its operands, doing the desired calculation, and finally saving the result in
some register or into main memory. However, once an instruction is decoded, the
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(A) Sketch of the von Neumann architecture. The
communication bus connects the main memory
and cache, which in turn is connected to the CPU.
The CPU performs arithmetic logical operations on
register values using the arithmetic logical unit
(ALU). Vectorization instructions are performed by
the vectorization unit on special vector registers. A
control logic administers register accesses and in-

struction execution.
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(B) Sketch of a four-stage pipeline. The fetch unit
fetches the next instruction from memory, the de-
code unit decodes its operands, whereas the execu-
tion units actually execute the operation. Finally,
the writeback unit writes any results back into the

memory.

FIGURE 2.1: Sketch of the von Neumann architecture with its pipeline.

functional unit used for decoding is in an idle state. Pipelining (c.f. Figure 2.1b) now
explicitly breaks down every instruction into these smaller sub-operations and tries
to maximize the utilization of every functional unit. To do so, the next instruction
is already fetched and decoded, while the current instruction just loads its operands.
Pipelines nearly utilize the given hardware to its fullest but sometimes need to be
stopped or even flushed and restarted. Every time a program needs to branch, e.g.
when an if-else instruction is executed, then the branch condition needs to be eval-
uated first before any further operations can be fetched. This introduces a halt of
the pipeline, also known as NOP (no operation) into the pipeline reducing its overall
efficiency.

Branch prediction

Since a pipeline needs to be stopped and sometimes even flushed when a branch
occurs, CPUs may perform a simple branch prediction. The next possible branch is
predicted based on the branches seen so far, and the next instruction is fetched based
on this prediction. If the prediction was correct, nothing happens, and execution con-
tinues. However, if the prediction is wrong, the pipeline has to be flushed, and the
state before the last branch needs to be reverted, adding an even larger performance
penalty.

Vectorization

With more and more transistors available, more specialized hardware can be added to
the same CPU circuit. Therefore, many CPUs offer additional digital-signal processing
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(DSP) and single instruction multiple data operations (SIMD). These vectorization in-
structions execute the same operation on a vector of inputs and have the potential to
greatly improve the performance of data-intensive operations.

Memory hierarchy

Memory is arranged in hierarchies so that instructions and data can be fetched from
different hierarchy levels. The idea of a memory hierarchy is to hide memory laten-
cies by providing different hierarchy levels with different memory speeds. On the
lower hierarchy levels, small but fast memory, such as caches, can be found, whereas,
on higher hierarchy levels, larger but slower memory, such as the main memory, is
placed. While instructions and data reside in the same memory in the von Neumann
architecture, they are often placed in different caches so that they do not interfere
with each other. Data is placed in the (usually larger) data cache (D-cache), whereas
instructions are placed in the (usually smaller) instruction cache (I-cache). The key
assumption of the memory hierarchy is the locality:

• Temporal locality: Recently accessed items will be accessed in the near future,
e.g. constants that are used during the execution of loops.

• Spatial locality: Items at addresses close to the addresses of recently accessed
items will be accessed in the near future, e.g. sequential accesses to elements
of an array.

When retrieving a data item, the CPU will first attempt to find it in the lowest cache. If
the data item is found, this lookup results in a cache hit, and processing can continue.
If the data item is not found in the cache, the lookup results in a cache miss, and the
CPU will access the next higher cache in the memory hierarchy until the data item is
fetched from the main memory. Figure 2.2 shows an example of a memory hierarchy
with two CPUs. Note that due to the manufacturing, data items in the cache are
arranged in cache lines, and the CPU receives the entire cache line upon requesting
an item.

CPU 1

Cache 1

CPU 2

Cache 2

Shared Cache

Main memory

Cache line

Cache set

Data

FIGURE 2.2: Sketch of a memory hierarchy. Each CPU has its own
unique cache and a larger shared cache. If data cannot be found in

either of these caches, the main memory is accessed.

By design, a cache can only hold limited information, and hence at some point,
some information in the cache must be replaced. There are three main strategies to
do so: A fully associative cache can replace any cache line with any content from the
main memory, maximizing the utilization of the cache for higher operating costs. In
a set-associative cache, each memory block of the main memory is mapped to several
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cache lines. A memory block can only be placed into one of its corresponding cache
lines. The operating costs for a set-associative cache are smaller because only the set
of cache lines must be checked instead of the entire cache. However, the utilization
of the cache also suffers because not all cache lines can be accessed freely. A direct-
mapped cache is an extreme form of a set-associative cache in which each memory
block can only be placed into a single cache line. This approach is by far the simplest
but can severely underutilize the cache. During the operation of the cache, three
types of cache misses can occur: compulsory, conflict, and capacity cache misses. The
compulsory misses are due to the first access to a memory block, which by definition,
is not in the cache. The capacity misses occur when some memory blocks are dis-
carded from the cache due to the limited cache capacity, i.e., the program working
set is much larger than the cache capacity. The conflict misses occur in set-associative
or direct-mapped caches when several blocks are mapped to the same cache set.

Representing real numbers

One of the most fundamental challenges in the design of CPUs is how to represent
and process numbers (i.e., add, subtract, multiply, divide, etc.) in a binary format. A
comprehensive introduction to this topic justifies a thesis in its own right, so we will
skip over the basics on how to represent numbers here. A deeper discussion on this
topic can, e.g., be found in [Tan].

As depicted in Table 1.1 the energy cost of an operation differs significantly de-
pending on the data type and data width. Especially float point numbers that require
circuitry for dealing with exponents, mantissa, and normalization are 4 to 37 times
more expensive than integer operations. Hence, many small devices do not natively
support floating-point data types, as shown in Table 2.1, and compilers often resort
to the (even more costly) emulation of floating-point data types through software. In
these cases, the use of fixed-point data types can be beneficial. Fixed-point numbers
are numbers with a pre-set number of bits before and after the decimal point:

Xfx =

Nt⏟ ⏞⏞ ⏟
X(1)X(0)⏞ ⏟⏟ ⏞

Nl

.X(−1)X(−2)X(−3)X(−4)⏞ ⏟⏟ ⏞
Nr

where Nt is the total number of bits, Nl is the number of bits left of the decimal point,
andNr is the number of bits to the right of the decimal point. Fixed and floating-point
numbers are easily converted to one another:

Fixed→ float: Xfl =

Nl∑︂
i=0

X(i)2
i +

−Nr∑︂
i=−1

X(−i)2
−i (2.1)

Float→ fixed: Xfx = ⌊Xfl · 2Nr⌋ (2.2)

The addition (and subtraction) for fixed-point numbers mostly remain the same,
whereas multiplication (and division) require the correction of the additional scal-
ing by 2−Nr (and 2Nr respectively):

Addition: X
′′
fx = Xfx +X

′
fx = ⌊Xfl · 2Nr⌋+ ⌊X ′

fl · 2Nr⌋ = ⌊(Xfl +X
′
fl) · 2Nr⌋

(2.3)

Multiplication: ⌊Xfl · 2Nr⌋ · ⌊X ′
fl · 2Nr⌋ = ⌊(Xfl ·X

′
fl) · (2Nr · 2Nr)⌋ (2.4)
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The advantage of fixed-point arithmetic is that they only require two integer opera-
tions plus the handling of overflows. Moreover, the correction during multiplication
and division can be implemented via shift operations making fixed-point operations
much cheaper than floating-point operations in most cases. On the other hand, fixed-
point arithmetic introduces a fixed error into the computations with a much smaller
range than floating-point: Its minimum and maximum value are given by the number
of bits before the decimal point, i.e. ±2Nr−1. The number of bits after the decimal
point determines the resolution, i.e. 1

2Nl
. Hence, a 32 bit integer with Nr = 15 (using

one sign bit) and Nl = 16 can represent numbers between [−32 768,+32 768] with
an resolution of roughly 1.52587890625 · 10−5. In contrast, the IEEE-75 floating-point
standards guarantees to represent numbers from roughly 1.18 ·10−38 to 3.4 ·1038 with
a resolution of around 10−7, hence offering a wider range of numbers while having a
better resolution. Last, the IEEE-754 guarantees that floating-point numbers in this
format can be compared using the same circuitry as integers (in addition to some
handling of special values such as NaN or infinity) [IEE19] which makes it a very
attractive data format if specialized circuitry for computations with it is available.
The choice of using fixed-point or floating-point arithmetics often comes down to the
specifics of the problem at hand and the hardware that is used. For example, sensor
values are often reported in fixed-point numbers, and applying a decision tree directly
to these values will likely not lead to any errors at all. On the other hand, the applica-
tion of deep neural networks requires the consecutive computation of matrix-vector
products that can suffer from fixed-point data types.

Instruction Set Architecture (ISA)

There are many more design choices that impact the performance of a CPU that can
be summarized as the Instruction Set Architecture (ISA) of the CPU. The instruction
set architecture of a CPU describes the instructions available to the programmer and
compiler. There are two main design principles: A Reduced Instruction Set Architec-
ture (RISC) only offers a limited set of instructions, and more complex instructions
must be built manually by combining the available instructions. The benefit of a
RISC architecture is that the pipeline is typically small, which reduces the effects of
flushing, and the circuit can be optimized more aggressively for the few available
instructions. A RISC architecture can typically be found in ARM CPUs. A Complex
Instruction Set Architecture (CISC), on the other hand, offers a very rich set of in-
structions. The advantage of this approach is that the programmer or compiler does
not need to combine instructions to form new ones but can often use what is already
given. This results in small code sizes and often faster code. The downside of this
approach is that the pipeline can become very large (e.g. up to 20 stages in Intel
X86) so flushing it can have severe effects on the performance. Moreover, the circuits
cannot be optimized as aggressively as in RISC since there are more instructions to
be covered. A CISC architecture can typically be found in Intel X86 CPUs.

2.1.2 Beyond the von Neumann Architecture

While the von Neumann processor architecture is arguably the most widespread CPU
architecture they are targeted towards the average use-case. Hardware accelerators,
on the other hand, are application-specific circuits (ASICs) designed to interact with
a CPU targeting very specific tasks. A hardware accelerator can potentially be much
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more energy efficient and much quicker in performing its tasks compared to a general
purpose CPU, but can only perform a limited set of functions.

RAM Chip

Control

External
Connection

On-Device
Connection

FIGURE 2.3: Sketch of a hardware accelerator. The chip contains the
actual ASIC, whereas the accelerator itself usually has some additional
memory. The internal on-device connections between ASIC and mem-
ory are often times much faster than the external memory connection

used to interact with the accelerator itself.

Accelerators can come as an extension card (e.g., graphics processing unit) that
uses a common communication bus such as PCIe to connect it to a CPU, or they can
be directly integrated into the CPU chip itself. Figure 2.3 shows a sketch of a PCIe ex-
tension card. The chip contains the actual ASIC, whereas the accelerator itself often
has some additional memory. The internal on-device connections between ASIC and
memory are often times much faster than the external memory connection used to
interact with the accelerator itself. In the context of machine learning applications,
the three most common hardware accelerators are:

Graphics Processing Units (GPU) and Digital Signal Processing Units (DSP)

DSP and GPUs are special circuits for processing digital signals and computer graph-
ics. They are characterized by a large number of parallel processing capabilities (e.g.,
SIMD) as well as built-in specialized features, e.g., a fast Fourier Transform (FFT).
While DSPs usually offer a manufacture-dependent and comparably low-level inter-
face, GPUs have evolved into general-purpose massively parallel accelerators that can
be programmed in high-level programming languages such as OpenCL or CUDA. Fig-
ure 2.4 shows the sketch of a general-purpose GPU. It consists of a control logic that
handles buffer allocations, data transfer as well as instructions, whereas a large fleet
of processing cores performs the actual processing. In this way, GP-GPUs share many
characteristics of SIMD instructions inside the CPU, although they are much more in-
dependent of the CPU. DSP and GPUs have long been used in the design of computing
systems. Many IoT devices and embedded CPUs come with some form of built-in DSP
instructions, whereas more powerful edge devices sometimes even have GPU support
available.

Tensor Processing Units (TPU)

TPUs are a relativity recent type of accelerator specifically targeted toward deep
learning applications. Due to the fluidity of the market, it is impossible to give a
comprehensive overview here (a more detailed and updated list of AI accelerators
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FIGURE 2.4: Sketch of a GP-GPU. It consists of a control logic that han-
dles buffer allocations, data transfer as well as instructions, whereas a
large fleet of processing cores performs the actual processing. Results
are stored in the data cache (D-Cache), whereas instructions reside in

the instruction cache (I-Cache).

can, e.g., be found at https://basicmi.github.io/AI-Chip/). Their general struc-
ture closely follows that of GP-GPUs depicted in Figure 2.4, but they offer specialized
instructions for deep learning such as batched matrix-matrix-multiplications, inbuilt
activation functions, and inbuilt loss functions. TPUs were first proposed by Google
in [JYP+17] as a custom in-house data accelerator, which then also became available
for edge devices and smartphones (see e.g.https://coral.ai/products/). NVIDIA
closely followed this trend and includes specialized TensorCore circuits into their GP-
GPU design [Nvi18]. Similarly, Intel offers a so-called Neural Compute Stick USB
accelerator to process deep learning applications over USB [Int18]. Last, start-ups
such as Sambanova, GraphCore, or Cerebras offer even more specialized solutions
that map the entire computation graph of a neural network on a specialized circuit.

Field-Programmable Gate Arrays (FPGA)

FPGAs are reconfigurable hardware, i.e., their functionality is encoded in hardware
that can be reprogrammed before and even during execution. Logic gates are com-
bined with flip-flops into configurable logic cells (cf. Figure 2.5a). Each logic cell
contains a truth table of size 2t storing a boolean function f : {0, 1}t → {0, 1}. By
programming the logic table, a logic block can image every boolean function of size
t. Alternatively, a configurable logic block (CLB) can be configured to act as memory
if necessary. In order to achieve more complex circuits, the CLBs are connected to
each other by signal routes. Signal routing between logic cells is performed by flip-
flops and transistors that statically enable or disable signal routes (see Figure 2.5b).
The functional logic of the FPGA can be fully specified by programming the look-up
tables and flip-flops for signal routing, effectively making the FPGA a reconfigurable
circuit. FPGAs are functional complete [HD08].

FPGAs are essentially free to image every architecture desired for a given problem.
This freedom, however, comes along with two major disadvantages. FPGAs only
have limited resources and must mimic logic gates with truth tables. Therefore, even
though FPGAs are functional complete in theory, they cannot express every function

https://basicmi.github.io/AI-Chip/
https://coral.ai/products/
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FIGURE 2.5: Sketch of a Field Programmable Gate Array (FPGA).

due to resource constraints. Second, FPGAs perform operations at a much lower
speed than CPUs do since they do not implement logic gates directly. In order to cope
with these limitations, several extensions for FPGAs have been introduced, including
([BRS13, Xil]):

• Block memory: Configurable logic blocks are valuable processing resources
that should not be used as memory, if possible. Therefore, FPGAs usually con-
tain an additional block memory which can be used to store intermediate val-
ues. Access speed is similar to caches in CPUs.

• DSP units: Basic arithmetic, such as addition or multiplication, must be per-
formed in most circuits. Therefore, FPGAs offer dedicated digital signal pro-
cessing units (DSP) performing these kinds of tasks to save logic blocks.

Since FPGAs can be used to build any hardware architecture, they do not operate
on fixed words. Data access and computation can be tailored specifically for the given
task at hand. Additionally, it is not required that FPGAs are clocked. However, most
practical implementations use block memory or the DSP units, which typically use a
standardized clocked interface.

2.2 Mathematical Optimization

Mathematical optimization and machine learning share a strong connection and are
often times indistinguishable from each other. Many ML methods are in their core
optimization methods that solve a very specific optimization problem, and the re-
sulting ML models are specific solutions to that problem. On the other hand, ML
itself offers one of the richest application fields for mathematical optimization that
challenge available optimization algorithms with new constraints, more data, new
objectives, and new processing hardware at the same time. This section gives a short
overview of numerical optimization in the context of machine learning and specifi-
cally focuses on gradient-based approaches. As discussed later, many ML methods
either directly utilize these types of optimization algorithms or can be expressed as
specialized instances of them.
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Consider the problem of minimizing a smooth and differentiable scalar function
f : RK → R over its input space RK :

x∗ = argmin
x∈RK

f(x) (2.5)

One possible approach to tackle this problem is to use an iterative algorithm that
moves the current solution towards a smaller value in each step. More formally, let t
be the iteration counter and xt be the current solution. Further, let αt ∈ R be the step
size and let g : RK → RK be a direction depending on the current solution. Starting
from an initial solution at t = 0 a small update is performed in each iteration:

xt+1 ← xt − αtg(xt) (2.6)

Three key questions arise here: (1) What is a good initial solution x0? (2) How
should the step size αt look like? (3) How should the direction g(xt) look like?

A good initial solution is problem-dependent, and it is difficult to give a general
recommendation here. Most approaches start with a (sensible) random solution, e.g.,
by drawing initial solutions from a Gaussian distribution, but more evolved initializa-
tion schemes can be used if there is more information about f available. The second
and third questions are often tackled simultaneously: Some directions are more costly
to compute but justify using a large step size thereby leading to a larger minimiza-
tion of the function value in each iteration, whereas other directions are simpler to
compute but require smaller steps and more iterations. Gradient-based optimization
algorithms use the gradient

∇xf(x) =

(︃
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xK

)︃
(2.7)

as a basis to compute the direction. Relevant to this thesis are two main variations of
gradient-based optimization:

(Stochastic) Gradient Descent

Gradient descent (GD) and Stochastic Gradient descent (SGD) directly implement
Eq. 2.6 into an algorithm. The main difference between both approaches is the
computation of the direction. Gradient descent utilizes the entire gradient:

g(xt) =
1

∥∇xtf(xt)∥
∇xtf(xt) (2.8)

GD is simple to implement and offers linear convergence speed. More formally, let f
be a convex function with the Lipschitz constant of L. Further, choose αt ≤ 1

L , then
GD converges in O

(︁
1
T

)︁
where T is the total number of iterations (see [BV14] for a

general introduction into the subject and [Gow19] for a more compact overview of
proofs.). Similar results for e.g. non-convex functions are also available [LSJR16].
GD offers a simple framework with fast minimization but requires the computation
of the full gradient in each iteration. As discussed later, we often face losses that are
a mean of functions f1, . . . , fN :

f(xt) =
1

N

N∑︂
i=1

fi(xt)
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Here, the computation of the full gradient is costly for large N , and hence stochastic
gradient descent (SGD) is a viable alternative. SGD utilizes an unbiased estimator of
the gradient in each iteration instead of the full gradient. Mini-batch SGD is arguably
the most widespread variant of SGD. It only considers a small batch of B ≪ N
summands for the gradient computation:

g(xt) =
1

B

∑︂
i∈B
∇xtfi(xt) (2.9)

where B is a random batch of summands. This way, SGD requires O(BK) instead
of O(NK) to estimate the direction. The updates during SGD are noisier because an
unlucky sample B can potentially increase the function value. However, the much
faster runtime justifies more iterations with smaller step sizes so that some unlucky
samples do not dominate the optimization. In the context of machine learning, SGD is
usually run for a set of epochs. Here, the training data is shuffled at the beginning of
each epoch and then split into

⌈︁
B
N

⌉︁
consecutive batches that are used for the gradient

estimation. One epoch denotes one linear scan over all batches so that the ML model
receives the entire dataset once per epoch. There are numerous extensions of SGD
available that adapt the computation of g and α, e.g., by incorporating a momentum
or averaging [Pol64, Qia99]. In the context of deep learning, even more evolved
variations have been presented, e.g., by tuning the step size for each coordinate xi
individually (see [Rud16] for an overview). Depending on the specific step-size pol-
icy the convergence speed of SGD is between O

(︁
1
T

)︁
and O

(︂
1√
T

)︂
for strongly-convex

functions [NJLS09] which makes it generally slower than GD. However, due to the
mini-batching, each iteration of SGD is much faster, requires less memory, and its
implementation can leverage certain hardware features such as parallel processing in
GPUs. Therefore, SGD and GD have similar convergence speeds in practice, and SGD
is the de-facto standard algorithm in deep learning. A more evolved discussion on
the trade-offs between GD and SGD can be found in [BCN16].

Coordinate Descent

SGD is ideally suited if the computation of the entire gradient is costly because it
essentially only considers B ≪ N parts of the loss in each iteration. However, SGD
still requires the computation of the entire gradient wrt. to all coordinates of the ob-
jective, which can become costly if the number of coordinates K is large. Coordinate
descent (CD) specifically tackles this problem by considering only a single coordinate
in each iteration while ignoring the others. More specifically, it uniformly samples a
coordinate i ∼ U(1, . . . ,K) in each iteration and then uses

g(xt) = e⃗i
∂f(xt)

∂xt,i
=

(︃
0, . . . , 0,

∂f(xt)

∂xt,i
, 0, . . . , 0

)︃
(2.10)

where e⃗i = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector with a ‘1’ at coordinate i.
CD does not perform optimally compared to ordinary gradient descent because x

is not moved in the optimal direction in each step. Thus, it requires more iterations
compared to gradient descent but may gain overall speed due to the cheaper gradi-
ent computation. To increase convergence speed, note that CD chooses coordinates
randomly without considering any information available about each coordinate. In
some cases, it is possible to cheaply calculate the direction with the largest (absolute)
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gradient value
⃓⃓⃓
∂f(xt)
∂xt,i

⃓⃓⃓
that offers the steepest minimization. This selection rule is

sometimes called Gauß-Southwell (GS) update1. Similarly, one may choose αt in ev-
ery iteration optimally, e.g., by a line search if this is cheaply available. Algorithm 1
depicts the resulting CD algorithm with GS rule (CD-GS). Note that for presentational
purposes, this algorithm does not use the negative gradient2.

Algorithm 1 Coordinate descent with Gauß-Southwell update (CD-GS).
1: function MINIMIZE_CD(f)
2: x0 ← init() ▷ Random start solution
3: for t = 1, . . . , T do ▷ Run algorithm for T iterations
4: i ← argmax

i∈{1,...,K}

⃓⃓⃓
∂f(xt)
∂xt,i

⃓⃓⃓
▷ Gauß-Southwell selection

5: αt ← argmin
α∈R

f
(︂
xt + αe⃗i

∂f(xt)
∂xt,i

)︂
▷ Linesearch

6: x(t+1) ← xt + αte⃗i
∂f(xt)
∂xt,i

▷ Apply gradient step in dimension i
return xT

In general, CD has an expected linear convergence rate O
(︁
K
T

)︁
which matches

the convergence rate of GD given that each iteration of CD is K times cheaper (see
e.g. [Wri15] for convex function and [PN15] for non-convex functions). However,
it is important to note that due to the randomness involved in every iteration, the
convergence analysis of CD is usually in expectation. Hence, it has an expected linear
convergence rate. Interestingly, CD-GS has a deterministic linear convergence rate
which is not necessarily faster than CD with a uniform sampling of the coordinates,
but ultimately a stronger statement about the algorithm. Last, we note that Nutini et
al. observed in [NSL+15] that the convergence speed of CD-GS can be substantially
improved compared to CD if strong convexity is measured in terms of L1 norm in-
stead of L2 norm.

Proximal (Stochastic) Gradient Descent

While CD and SGD are ideally suited for large-scale optimization problems, they both
assume that some gradient information is available, which implies that the loss func-
tion f is continuously differentiable. This can become difficult for constraint opti-
mization problems that frequently arise in machine learning. Constraint optimization
problems introduce further constraints into the objective, e.g., in the form of a reg-
ularizer R : RK → R that punishes undesired solutions. Formally, let λ ∈ R be the
regularization strength, let R be the (potentially non-differentiable and non-smooth)
regularize, and f be the differentiable objective, then the regularized objective is:

x∗ = argmin
x∈RK

f(x) + λR(x) (2.11)

A popular choice to enable the integration of constraints into gradient-based op-
timization is to use proximal gradient descent. Proximal gradient descent (PGD) is

1It is difficult to pinpoint the exact work which coined this term. Recent work often cites [FW60],
but[For55] already states that this method was introduced first by Gauss in [Gau23] and then (re-
)discovered by Southwell in [Sou46]. Unfortunately, we could not find any direct resemblance of the
GS update rule or coordinate descent in [Gau23] due to its informal nature.

2The minimization in line(4) choose the appropriate sign for the overall minimization of f .
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also an iterative algorithm that uses estimations of the gradient gf (xt) of the dif-
ferentiable part of the objective f to perform small updates on the current solution
xt. Contrary to SGD and CD, however, proximal gradient descent performs an addi-
tional projection step after the gradient update to account for the non-differentiable
regularizer R. More formally, PGD first performs a regular gradient step that only
considers the differentiable part of the objective and then corrects this update for the
non-differentiable part of the objective using the so-called prox-operator PR:

xt+1 ← PR (xt − αtgf (xt)) (2.12)

where αt ∈ R+ is the step-size as usual. The prox-operator is defined as follows:

PR(x) = argmin
z∈RK

R(z) +
1

2
∥z − x∥22 (2.13)

The intuition of the prox-operator is that it projects the current solution x to the
nearest solution z (in terms of L2 norm) that is the minimum of the regularizer,
thereby retaining a good solution wrt. to f while also respecting the constraints
R. The prox-operator introduces another optimization problem in itself which can
be difficult to solve. Luckily, for many practically relevant constraints, a closed-form
solution of Eq. 2.13 can be given. This makes PGD a very fast and practical algorithm.
Similar to vanilla gradient descent, the ‘regular’ proximal gradient descent algorithm
uses the entire gradient for the differentiable part of the objective as done in Eq. 2.8
and stochastic proximal gradient descent (PSGD) uses an estimation of the gradient,
e.g., on mini-batches as done in Eq. 2.9. The convergence speed of PGD is O

(︁
1
T

)︁
if

∇f is Lipschitz continuous [CP11] and the convergence speed of PSGD is O
(︁
1
T

)︁
in

expectation [RVV20]. A deeper discussion on proximal algorithms can be found in
[PB14].

2.3 Machine Learning

In computer science, one usually solves problems by the following approach: First,
the problem is formalized mathematically. Second, an algorithm is invented that
solves the abstract mathematical problem. Third, the abstract algorithm is imple-
mented on specific hardware, and finally, the implementation is applied to the specific
problem. Machine learning follows the same principle but deals with problems that a
more difficult to formalize well. For example, routing queries can be formalized easily
by representing a map via a graph and by defining some key characteristics of a ‘good’
route, such as the overall length and time traveled. On the other hand, the decision
that there might be a cat or a dog in a given image is much more difficult to capture
mathematically. However, it is fairly easy for humans to annotate images with the
label ‘cat’ or ‘dog’. The general idea of machine learning is to present such annotated
datasets to the algorithm and let it figure out the mathematical connections between
the presented data (e.g., images) and the provided labels (e.g., cats or dogs) without
explicitly describing them. In this thesis, we consider a supervised learning problem
defined in Definition 1 and specifically focus on classification problems.

Definition 1 (Supervised Learning). Let D = X × Y be a distribution over the input
space X and labels Y. Let S = {(xi, yi)|i = 1, . . . , N} be a labelled sample of i.i.d
samples from D where xi ∈ X ⊆ Rd is a d-dimensional feature-vector and yi ∈ Y is the
corresponding target vector. The goal of supervised learning is to find a model f : X → Y
that offers good predictions for any x ∈ X using the sample S. For Y = R, this is called
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a regression problem. For Y = {0, 1, . . . , C − 1} with C ∈ N this is a (multiclass)
classification problem with C classes.

Table 2.2 shows a representation of the data as a table. Depending on the context,
we either write S to denote the training data or write X ∈ RN×d to denote the data
matrix and write y ∈ YN to denote the corresponding target vector. In addition
to the label yi ∈ Y it is sometimes more convenient to use the one-hot encoding
of each label y⃗i = (0, . . . , 0, 1, 0, . . . , 0) that contains a ‘1’ at coordinate c for label
c ∈ {0, . . . , C − 1}. To keep the notation light, the vector arrow is dropped for the
rest of this thesis, and it should be clear from the context which writing is used. Last,
depending on the context, we do not consider classes directly but focus on class scores
or class probabilities. More formally, we consider the model f : X → RC and use

ˆ︁y = argmax
c=0,...,C−1

f(x)c (2.14)

for predicting the specific class. Again, it should be clear from the context if classes
are predicted by f(x) directly or if f(x) is a score vector.

TABLE 2.2: Illustration of a dataset as a table with corresponding label
vector.

S Feature 1 Feature 2 . . . Feature d Label

Example 1 x11 x12 . . . x1d y1
Example 2 x21 x22 . . . x2d y2

...
...

...
. . .

...
...

Example N xN1 xN1 . . . xNd yN

Our goal is to learn a function mapping f : X → Y (or f : X → RC) which fits the
training data well and generalizes to new, unseen data. Empirical Risk Minimization
(ERM) proposes to minimize a loss function ℓ : Y × Y → R (or ℓ : RC × Y → R
depending on f) which compares the prediction f(x) and the training label y. For
clarity, let ˆ︁L denote the empirical loss given the sample S and L denote the loss wrt.
to the unknown distribution D:

LD(f) = E(x,y)∼D [ℓ(f(x), y)] (2.15)ˆ︁L(f) = LS(f) = E(x,y)∼S [ℓ(f(x), y)] =
1

N

∑︂
(x,y)∈S

ℓ(f(x), y) (2.16)

By the law of large numbers [DKLM05], it holds that ˆ︁L approaches L for N →∞.
Hence, minimizing ˆ︁L will also likely minimize L given N is large enough. How-
ever, in practical applications, it can often be observed that there is a gap between
the empirical loss during training and the empirical loss during the deployment of the
model. There are two reasons for this: First, there might be a distributional mismatch
between the training and the testing data, e.g., due to the inherent randomness of
the application, a concept drift between the gathering of the data and the deploy-
ment of the model, or simply because not enough data was available during training
that accurately describes the true distribution. Second, and more interesting from
a model’s perspective, the model might overfit the training data. Overfitting occurs
when the model learns individual patterns in the training data which are not present
in the true distribution of the data. In this case, the model performs extremely well
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on the training data but usually generalizes poorly to unknown data. Arguably the
most extreme form of overfitting occurs when the training data is simply memorized
without extracting any meaningful patterns from the data.

To minimize the gap between L and ˆ︁L, the Empirical Risk Minimization (ERM)
principle proposes to minimize the empirical loss in combination with a regularizer
R : F → R where F = {f : X → Y} is a set of functions and λ ∈ R is the regulariza-
tion strength:

f∗ = argmin
f∈F

1

N

∑︂
(x,y)∈S

ℓ(f(x), y) + λR(f) (2.17)

Here, the regularizer can incorporate prior knowledge about the data into the learn-
ing process as well as punish models which simply memorize the training data with-
out extracting meaningful patterns. Moreover, it can also help us to choose models
which are more suitable for resource-constraint devices, e.g., by constraining the
search space to hardware-friendly functions.

Once a model has been obtained, we are naturally interested in its performance.
As ERM suggests, when S is large enough then the empirical performance will be
close to its actual performance on the distribution D. However, in most practical
applications, S is too small to confidently make this conclusion. Hence, a different
approach must be followed. Arguably the most direct way to assess the performance
of a model is to test it on some test data. This test should be different from the training
data – otherwise, we would be testing the memorization capabilities of the model
which defies our goal to extract general patterns from the data. Hence, we split the
sample S into a training and testing sample S = Strain∪Stest so that Strain∩Stest = ∅.
We use the training sample Strain to train the model and Stest to test it. Again we are
faced with the question of how large these samples should be. For model training,
having more data is usually beneficial as it gives the algorithms a better sample of the
original distribution D. So the question becomes: How many samples are required
for testing so that the empirical loss LStest is close to the true loss LD?

We use a tail-bound to quantify the distance between the empirical loss and the
true loss. Since we do not have any assumptions on the true distribution D, the
Hoeffding Bound is an ideal candidate as it only assumes independent observations
in Stest.

Theorem 1 (Hoeffding’s inequality [Hoe63]). Let X1, . . . , XN be i.i.d random vari-
ables with Xi ∈ [ai, bi]. Let µ = 1

N

∑︁N
i=1Xi be the empirical mean and let ε ∈ R+, then

the following holds for any N :

P (|µ− E[X]| ≥ ε) ≤ 2 exp

(︄
− 2Nε2∑︁N

i=1(bi − ai)2

)︄

This theorem can be useful to compute the number of data points required to
reach a certain confidence in the computation of the empirical loss. To do so, let
β ∈ [0, 1] be the desired upper bound on the error probability:

P (|µ− E[X]| ≥ ε) ≤ 2 exp

(︄
− 2Nε2∑︁N

i=1(bi − ai)2

)︄
≤ β (2.18)
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FIGURE 2.6: The number of data pointsN over the maximum absolute
deviation ε according to Hoeffdings bound for different β values.

Now solving for N yields:

2 exp

(︄
− 2Nε2∑︁N

i=1(bi − ai)2

)︄
≤ β

− 2Nε2∑︁N
i=1(bi − ai)2

≤ log

(︃
β

2

)︃
2Nε2∑︁N

i=1(bi − ai)2
≥ − log

(︃
β

2

)︃
N ≥ −1

2
log

(︃
β

2

)︃ ∑︁N
i=1(bi − ai)2

ε2

We can apply this theorem to the loss function. For simplicity assume that we attain
losses ℓ(f(x), y) ∈ [0, 1] so that bi − ai = 1. It follows that we need at least

N ≥ − 1

2ε2
log

(︃
β

2

)︃
(2.19)

samples to guarantee that the probability that the empirical loss and true loss will
deviate more than ε is bounded by β. Figure 2.6 gives an example of different β
values for this bound. As one can see, the smaller ε, the higher N must be chosen.
Similar, smaller β values also require larger N .

While the Hoeffding inequality helps us to determine how many samples we re-
quire to make an accurate assessment of the model’s quality, it is comparably loose,
and in many scenarios, there is not enough test data available to fully trust the bound.
In addition, we might not be interested in the performance of a specific model trained
on a specific dataset, but we are more concerned with the performance of the algo-
rithm and the hyperparameters that produced this model. In this case, the following
approaches are used to rate the performance of an algorithm on a specific data set:

• Test/Train split: If the entire dataset is large enough so that both the testing
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and the training data are large enough, then a single test/train split may suf-
fice to accurately gauge an algorithm’s performance. While this is the quickest
method to estimate the performance of an algorithm, a single split may lead
to over- or underestimation of the true performance due to ‘lucky’ or ‘unlucky’
splits that favor specific algorithms.

• Leave-One-Out: Instead of performing a single test/train split, leave-one-out
performs N splits. In each split, a single item is chosen for the test set, whereas
the remaining N − 1 observations are used for training. This estimation is by
far the most computationally intensive estimation because N models have to be
trained. However, it also allows using N − 1 points for training and N points
for testing, which makes it ideally suited when only limited data is available.

• Cross-Validation: A k-fold cross-validation splits the data into k similar-sized
buckets. In each validation round, a model is trained on all but one bucket
and tested on the remaining unused bucket. This process is repeated k times
so that each bucket is used for testing exactly once. Usually, k = 5 or k = 10
is used, which makes cross-validation a computationally feasible alternative to
the leave-one-out estimation without the risk of under- or overestimation of an
algorithm’s performance.

Caution has to be exercised when tuning the hyperparameters of an algorithm
before deploying it. While cross-validation and leave-one-out minimize the effects of
under- and overestimating an algorithm’s performance, there is still the chance for
overfitting, especially when hyperparameters are fine-tuned for the best performance.
Ultimately, the training and testing of an algorithm and all its hyperparameters is
based on the sample S. Hence, when optimizing for the best hyperparameters, this
process inevitably leads to overfitting on that sample. To circumvent this problem, a
third, unrelated validation set Sval can be used to estimate the performance of the fi-
nal model after the hyperparameter optimization is complete, and the final model has
been trained3. However, once this validation set has been used to estimate the per-
formance, there should not be another iteration to fine-tune hyperparameters unless
the dataset or task changed, as this would again lead to overfitting.

2.4 Discrete Classifiers

Discrete classifiers are machine learning models that can be executed without any
floating-point operations. Arguably the simplest approach to finding a discrete clas-
sifier is to train a regular model and then perform a post-training quantization that
converts all of its floating-point parameters to a fixed-point representation. This ap-
proach often leads to a loss in performance that can sometimes be bounded theoreti-
cally (see e.g. [SKS17, SPZ+17]), but a more general theory is yet to be discovered.
Fixed-point quantization in machine learning has become more popular due to deep
learning (see e.g. [Guo18, GKD+21] for an overview), but is not limited to neural
networks. For example, Papadonikolakis and Bouganis show how to implement the
SVM using fixed-point quantization in [PB08a, PB08b] and Al-Zoubi et al. repeat a
similar experiment for K-NN in [AZTK18].

The second approach to finding a discrete model that circumvents the perfor-
mance loss of post-quantization is to directly compute a discrete solution. There is a

3Depending on the literature the terms ‘validation set’ and ‘test set’ are switched. In this thesis, we
will use the terminology as presented.
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considerable amount of research in the deep learning literature available that justifies
a thesis in its own right. Therefore, we refer interested readers to the first two major
papers on the topic [GAGN15, JKC+18] and recommend the survey by Gholami et al.
for a more recent overview [GKD+21]. Going beyond deep learning there are quan-
tization efforts for many other ML algorithms. For example, Anguita et al. carefully
change the minimization problem of the SVM in [AGPR07] so that its minimum is
guaranteed to be representable via fixed-point arithmetic’s and Mariet and Sra give
fixed-point algorithms for Determinantal Point Processes in [MS15].

The third branch of discrete classifiers – and the one we will pursue in this thesis
– are classifiers that are discrete by design. For example, Mücke et al. present in
[MPM19] an SVM implementation that guarantees to find a binary solution in any
case. Similarly, Piatkowski et al. introduce integer undirected graphical models in
[PLM16] that only require integer operations for training and sampling. The advan-
tages of these models are clear: There is no need for post-training quantization and
hence there is no performance loss. Similarly, there is no need to change the train-
ing algorithm as the models are already discrete making theoretical results readily
available in practice. Moreover, most of the corresponding learning algorithms also
only make limited use of floating-point operations leading to efficient training as well.
Last and maybe most important for this thesis, they can be combined into ensembles
to achieve state-of-the-art performance. In the following, we focus on three discrete
classifiers: Decision tree, binarized neural networks, and naive Bayes.

2.4.1 Decision Trees

Decision trees (DT) structure knowledge into different hierarchical levels, which are
connected by branches much like trees in the real world. They offer a very intuitive
way of organizing knowledge that seems to transcend human history across all his-
torical ages [Lim14]. Somewhat surprisingly, DTs in machine learning is a relatively
new method that was first presented in the mid-1980s [BFSO, Qui86]. They quickly
became one of the most used base-leaner for ensembling up to the point that they are
intertwined and indistinguishable from some ensembling methods themselves.

There are many DT variations available, and hence we will now present a com-
mon framework that describes DT classifiers in a very general form and offer a for-
mat with three parameters: The class of leaf nodes that is used for predictions,
the class of split functions that is used for branching and the number of branches
K. This framework encapsulates many tree-structured classifiers, such as regular
axis-aligned decision trees [BFSO, Qui86], logistic model trees [LHF05] or Gaussian
summary trees [BLM19] that are trained in a top-down greedy fashion, but also en-
capsulates more recent DT variations that are trained via gradient-based algorithms
[KFCB15, ST15, AİA18, SGW+18, IA21] as well as racing-based online algorithms
[DH00, HSD01, HKP05, PHK07, PHK08, BG09, RPDJ13, MHM21, MWS18].

Formally, a DT partitions the observation space X into increasingly smaller regions
and uses independent predictions for each region. A tree is represented as a directed
graph with a root node where each node has up to K child nodes. Each node in the
tree belongs to a subregion I ⊆ X , and all children of each node recursively partition
the region of their parent node into K non-overlapping smaller regions. Each node
is associated with K split functions s : X → {0, 1} that are ‘1’ if x belongs to the
corresponding subregion of that node and ‘0’ if not. Per construction, subregions of
a node are non-overlapping so that exactly one split evaluates to ‘1’ at a time for a
given observation. The splitting is repeated recursively until a stop criterion, e.g. a
maximum number of nodes, is reached. Then a prediction function g : X → Y is



2.4. Discrete Classifiers 31

trained on all the data points in the specific region of the leaf node. Let L be the total
number of leaf nodes in the tree and let Li = (n1, n2, . . . ) be the nodes visited on the
path from the root node to leaf i, then the prediction of a tree is given by:

h(x) =

L∑︂
i=1

gi(x)
∏︂
l∈Li

sl(x) =

L∑︂
i=1

gi(x)πi(x) (2.20)

Top-Down DT induction

Arguably the most common way to train DTs are top-down greedy algorithms that
start with the entire dataset at the root node, select the split function by minimizing
a loss function, and then repeat this process until a stopping criterion is met. In a
sense, these algorithms are greedy because they choose the best split for the given
subset of data, not taking subsequent splits into account. The earliest works on such
algorithms for regression problems are due to Morgan and Sonquist in [MS63], which
present the basic algorithm that is still used today. The general idea is as follows: We
start at the root node and the entire dataset S. Let

Si = {(x, y) ∈ S|si(x) = 1}

be the set of training examples associated with split si. Then, to choose the optimal
split, we minimize a loss (or sometimes called impurity) so that

s, g = argmin
g1,...,gK∈G
∪K
i=1Si=S

∩K
i=1Si=∅

K∑︂
j=1

∑︂
(x,y)∈Sj

ℓ(gj(x), y) = argmin
j=1,...,K

K∑︂
j=1

e(j) (2.21)

where s = {s1, . . . , sK} are called the splits and g = {g1, . . . , gK} ⊆ G are called the
leaves that are obtained from a set of possible predictors G = {g : X → Y}. Once the
optimal splits are found, the data is divided into its subsets Si, and the splitting con-
tinues recursively on each new sub-set until a stopping criterion is reached. Algorithm
2 summarizes this approach. It has two main components: It selects the appropriate
splits alongside the predictions for the newly introduced leaves. Then it sorts the data
accordingly into K regions. This training method is recursively repeated and stops
once a stop criterion is reached.

The specific runtime of algorithm 2 depends on the stopping criteria, the time
required to select s, g, and the overall height of the tree. Consider the case in which
the data is split until there is only one example left per leaf node. Let C be the cost of
choosing the splits s and prediction functions g; let there be N training points at the
current node. In the worst case, we will assign N −K+1 points to a single node and
distribute the remaining K − 1 examples evenly. In this case, the tree degenerates
to a decision list with height O

(︁
N
K

)︁
. At each level, we train K models and sort

the entire data set into the corresponding leaf nodes leading to a total runtime of
O
(︁
K N

KC +N
)︁
= O ((N + 1)C). Similarly, if we consider the average case in which

training data is evenly distributed among the K regions, the expected tree height
is O (logK N) giving a total runtime of O (K logK(N)C +N). Last, note that the
recursive TRAIN_TREE call (line 13) can be parallelized easily without any locking.
However, such parallelization has to be implemented with caution. First, simply
spawning new threads for each recursive call leads to up to K new threads per child
node, quickly leading to an uncontrollable amount of threads competing for CPUs and
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Algorithm 2 Training of a decision tree.
1: function TRAIN_TREE(S)
2: node← init() ▷ Start a new node

3: s, g ← argmin
j=1,...,K

K∑︁
j=1

e(j) ▷ Solve Eq. 2.21

4: node.s← s
5: node.g ← g
6: if STOP then ▷ Check stopping criterion
7: node.children← null ▷ Ignore potential splits
8: node.leaf← true ▷ Make this node a leaf
9: else

10: for i = 1, . . . ,K do ▷ Split the data into sub-regions
11: Si ← {(x, y) ∈ S|si(x) = 1}
12: for i = 1, . . . ,K do ▷ Train children on the sub-regions
13: node.children[i]← TRAIN_TREE(Si)

return node

degrading performance. Second, individual branches of the tree can become quite
large, and thus recursive function calls may require a large amount of stack memory.
Hence, a thread pool with a fixed number of threads seems to be appropriate. Instead
of training a new DT node directly, we schedule its training using a job queue. The
parent node thus can finish execution immediately and free its stack memory directly
after all nodes have been submitted into this queue. Once one thread inside the pool
finishes execution, it will fetch the next job in the queue and begin its execution,
utilizing the system as much as possible without overloading it4.

Once a DT has been trained it can be applied to new data. To do so, one starts at
the root node and visits that sub-region to which the current observation x belongs
to by checking if a split si(x) equals one. This process is repeated until there are no
more splits (i.e. a leaf node is found) of which then the prediction g(x) is returned.
Algorithm 3 summarizes this approach.

Algorithm 3 Application of a decision tree.
1: function APPLY_TREE(x, root)
2: node← root ▷ Start at the root node
3: while not node.leaf do ▷ Repeat until leaf node is found
4: for i = 1, . . . ,K do ▷ Check all splits
5: if node.si(x) = 1 then
6: node← node.children[i] ▷ Visit child if split is 1
7: break

return node.g(x) ▷ Return the prediction of the leaf

Axis-Aligned Binary Decision Trees

The original work of Morgan and Sonquist in [MS63] uses a binary DT with K = 2
child nodes, and axis-aligned splits 1{xk ≤ t} where k ∈ N is a feature index and
t ∈ R is a threshold. For convenience, we denote the first child node with index 0
as the ‘left’ and the second child node with index 1 as the right child. An example
of such a tree can be found in Figure 2.7a. It shows a DT that was trained on two

4For example, OpenMP implements this behavior with the schedule(dynamic, 1) pragma.
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features, each having values from [0, 2]. The inner nodes (denoted by circles) split the
feature space into two sub-regions, left and right, whereas the leaf nodes (denoted by
rectangles) offer the predictions. The resulting split pattern in the observation space
of this tree is shown in Figure 2.7b.
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(A) An axis-aligned binary decision tree trained on
two features X1, X2 ∈ [0, 2]. Round nodes depict
the inner decision nodes for the tree, whereas rect-
angles depict the leaf nodes. Green shows a posi-
tive prediction of ‘+1’, and red indicates a negative
prediction of ‘-1’. Numbering is in breadth-first or-
der to distinguish the regions in the figure on the

right. Best viewed in color.
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(B) The axis-aligned splits induced by the binary
decision tree on the left. Each inner node splits the
observation space into two sub-regions resulting in
a rectangular ‘split pattern’. A green rectangle in-
dicates a positive prediction of ‘+1’, and red indi-
cates a negative prediction of ‘-1’. Numbering is in
breadth-first order to distinguish the leaves in the

figure on the left. Best viewed in color.

FIGURE 2.7: An example of an axis-aligned binary decision tree.

Somewhat surprisingly, the vast majority of DTs that are used are still of this
form, and often times the term ‘decision tree’ is used interchangeably to denote axis-
aligned DTs of this type. However, many improvements have been introduced into
this framework over the years that go well beyond the scope of this thesis. In the
following, we will summarize some of the most important aspects of training axis-
aligned decision trees and refer interested readers to [Kot13, Loh14, BdCF15] for
a more detailed overview of individual developments. As already mentioned, axis-
aligned DTs utilize the following split function:

s(x) = 1{xk ≤ t} =
{︄
1 if xk ≤ t
0 else

(2.22)

where k denotes a specific feature of the input vector x and t is a precomputed thresh-
old. These splits generate rectangular-shaped regions and thus offer sharp bound-
aries. For prediction, axis-aligned DTs commonly use the empirical class probabilities
in each node:

gj(x) =

⎡⎣ 1

|Sj |
∑︂

(x,y)∈Sj

yi

⎤⎦
i=0,...,C−1

= pj (2.23)

These predictions are constant wrt. the current sample x and hence we adopt the
more commonly used notation (gj(x))i = pj,i to denote the probability of class i in
node j.

For selecting the best split, the Gini-Score (e.g., used by the CART algorithm
[BFSO]) or the Entropy-Score (e.g. implemented in the ID3 algorithm [Qui86]) are
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used most commonly. The Gini-Score of the j-th child is defined as

Γ(pj) = 1−
C∑︂
i=0

p2j,i (2.24)

whereas its Entropy (or sometimes called Information Gain) is given by:

Γ(pj) = −
C∑︂
i=0

pj,i log2(pj,i) (2.25)

Last, some works use the classification error if only the majority class would be pre-
dicted:

Γ(pj) =

C∑︂
i=1

i ̸=argmax pj,k
k

pj,i (2.26)

To encourage the computation of balanced trees in which each node receives
roughly the same amount of training samples, the impurities are weighted by their re-
spective sample size |Sj |

|S| . Putting this all together leads to the following optimization
problem:

k, t = argmin
k∈{0,...,d−1},t∈R

|S0|
|S| Γ(p0) +

|S1|
|S| Γ(p1) (2.27)

where S0,S1 and Γ(p0),Γ(p1) depend on k, t as shown in Eq. 2.22 and Eq. 2.23.
Before discussing how to efficiently select s we want to discuss the choice of the
impurity measure briefly. In the light of error minimization, Eq. (2.26) offers a
natural interpretation. However, from the earlier works on DT algorithms, authors
started to argue against direct error minimization in the light of worse empirical
results compared to the Gini-Score or the Entropy-Score. For example, Breiman et
al. construct a counter-example in [BFSO] where the classification error does not
yield good splits during tree construction, but Entropy-Score does. In more general,
Breiman et al. give in [BFSO] a list of desirable attributes which Γ should fulfill.
Later, Kearns and Mansour introduced the definition of permissible splitting criterion
in [KM96] to reflect these attributes.

Definition 2 (Permissible Split criterion). A function Γ : [0, 1]→ [0, 1] is called permis-
sible, if the following properties hold

• Γ is symmetric about 1/2, that is Γ(p) = Γ(1− p)

• Γ is concave

• Γ has its maximum at Γ(1/2) with Γ(1/2) ≥ 1/2

• Γ has its minima at 0 and 1, that is Γ(0) = Γ(1) = 0

The Gini-Score, the Entropy-Score, and the classification error are permissible
split criteria as shown in Figure 2.8. Additionally, note, that every permissible func-
tion is an upper bound for the classification error. Thus, by minimizing a permissible
function we also minimize the classification error.

Figure 2.8 helps to explain a common argument in favor of the Gini- or Entropy-
Score and against direct error minimization. Small changes in the classification error
only result in small, linear changes in Γ, which makes progress difficult. On the
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FIGURE 2.8: Comparison between different impurity measures: Gini-
Score in black, Entropy in turquoise, and the classification error in red.

other hand, the Gini-Score and Entropy-Score offer steeper, quadratic curves, so that
small changes in the error result in greater changes in Γ, which helps minimization.
And indeed, Kearns and Mansour were able to prove in [KM96], that the number
of nodes required to achieve 0 training error directly depends on the choice of Γ
and is minimal if Γ is non-linear. Note, however, that to the best of our knowledge,
there does not exist rigor mathematical analysis, nor consistent practical results which
link the split criterion to the generalization abilities of a tree. It is merely the case,
that the Entropy-Score and the Gini-Score are both the de-facto standard in today’s
implementations for historical reasons and thus used by most people.

So far, we did not discuss how to find the split threshold t as well as its corre-
sponding feature index k that minimizes Eq. 2.27. Arguably, the simplest approach
is to iterate over every possible feature value, record its impurity and later pick that
feature/threshold pair that has the smallest impurity. For categorical features with
only a fixed number of categories, this approach is straightforward. For real-valued
features that can take any value from R, this is not feasible. Looking at the training
data, however, we can see that there are at most N different values per feature inside
the sample. Assuming that the data is sorted according to feature i and all duplicate
values are removed so that x1,i < x2,i < · · · < xj,i < xj+1,i < · · · < xN ′,i, then
there are in total N ′−1 intervals [xj,i, xj+1,i]. Note that all thresholds t ∈ (xj,i, xj+1,i]
from an interval result have the same score since there is no training data in-between.
Hence, all splits from the same interval are equally good and any threshold from this
interval can be chosen. In most implementations, the midpoint of the interval is used

t =
xj,i + xj+1,i

2
(2.28)

This choice seems to have a minor positive impact on the performance of the tree,
but as far as we know there is no comprehensive study on the effect of choosing this
midpoint.

Putting this all together, Figure 4 shows the resulting algorithm. It recursively
builds a tree until a STOP criterion is reached. In this case, the recursion is stopped
and the class probabilities in the leaf nodes are assigned. If the recursion is not done
yet, the algorithm iterates over all features. While doing so, it sorts the observations
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in ascending order and simulates the splitting of the training data into the two sub-
sets S0 and S1. Recall that for the computation of Γ the class frequencies are required,
which can be easily updated instead of re-computing them for every new threshold.
Last, it is checked if the current threshold is better than the previous one leading to
the selection of the best threshold in line 22. After that, the recursion continues to
build the tree.

Algorithm 4 Training of an axis-aligned binary decision tree.
1: function TRAIN_DT(S)
2: node← init()
3: if STOP then ▷ Check stopping criterion
4: node.g =

[︂
1
|S|
∑︁

(x,y)∈S yi

]︂
i=0,...,C−1

▷ Estimate class probabilities

5: node.leaf←true ▷ Make this node a leaf
6: else
7: k, t, e← 0, 0,∞ ▷ Init variables
8: for i = 1, . . . , d do
9: S ← sort_ascending(i) ▷ Sort data wrt. to feature i

10: S0 ← ∅ ▷ Left side is empty
11: S1 ← S ▷ Right side has all data points
12: c0 ← (0, . . . , 0) ▷ Class frequencies for left side
13: c1 ←

[︂∑︁
(x,y)∈S yi

]︂
i=0,...,C−1

▷ Class frequencies for right side

14: for i = 1, . . . , N − 1 do
15: S0 ← S0 ∪ {xi}, S1 ← S1 \ {xi} ▷ Update split
16: c0,yi ← c0,yi + 1, c1,yi ← c1,yi − 1 ▷ Update class frequencies
17: if xj,i = xj+1,i then continue

18: p0 ← c0∑︁C
i=1 c0,i

, p1 ← c1∑︁C
i=1 c1,i

▷ Compute probabilities

19: γ ← |S0|
|S| Γ(p0) +

|S1|
|S| Γ(p1) ▷ Compute impurity

20: if γ < e then ▷ Check for improvement
21: τ ← xj,i+xj+1,i

2 ▷ Compute midepoint
22: k, t, e← i, τ, γ ▷ Update feature / threshold
23: node.k = k ▷ Set feature index
24: node.t = t ▷ Set threshold
25: S0 = {(x, y) ∈ S|xk ≤ t} ▷ Re-compute left split
26: S1 = {(x, y) ∈ S|xk > t} ▷ Re-compute right split
27: node.children[0] = train(S0) ▷ Train left child
28: node.children[1] = train(S1) ▷ Train right child

return node

The sorting of each feature costs O(N logN), and the computation of γ can
be performed in O(1) if the class frequencies are updated. The computation of
g in line 4 also takes at most O(N) so that the cost of choosing a split function
and computing g are at most O(dN logN). Combining this with our previous dis-
cussion leads to the worst-case runtime of O(dN2 logN) and an average-case run-
time of O(log2(N)dN logN) for algorithm 4. The runtime of this approach can
be further reduced if sub-optimal splits are considered. A series of similar works
[CG16, PGV+18, KMF+17, DMD19] introduce different approaches to estimate the
optimal split, thereby improving the overall computational efficiency while also en-
abling for efficient parallelism, e.g. in the form of GPUs. Maybe the most extreme
variant of such an approach is to simply choose a set of splits randomly and then
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select the best one from this set. Such an approach often shows competitive per-
formance compared to other approaches when trees are combined in an ensemble
[GEW06] and hence is an attractive training method for trees we will re-visit at the
end of this chapter. Last, we note, that both, the application and the training of DTs
do not require any floating-point operations in some cases: The application of a DT
in algorithm 3 simply compares the input features against pre-computed thresholds
and returns the corresponding leaf-values. Hence, no floating-point operations are
required. The training of DTs requires the computation of the class probabilities and
their corresponding scores in lines 18 and 19. Depending on the specific error func-
tion, these computations can be performed with integer operations only. Note that for
choosing the optimal split, the weighting of each split by |S| is constant and thus does
not impact the choice. Therefore, we may omit |S| in the score computation and only
scale each impurity by |S0| and |S1|, respectively, which are integers. Moreover, if Γ is
the accuracy score, then we basically need to count the number of miss-classification
that is also an integer.

So far we did not discuss when to stop the induction of a DT. In general, stopping
the induction process has two main goals. First, it speeds up the tree induction
process and second it combats overfitting. Among the most popular stopping criteria
are:

1. Class homogeneity: All instances in a node have the same class, and thus
further splitting is not necessary.

2. Attribute homogeneity: All instances in a node have the same attribute values
(but not necessarily the same class) so future splitting is impossible.

3. Maximum tree depth / maximum number of nodes: A pre-defined depth or
a pre-defined maximum number of nodes is reached.

4. A minimum number of instances: Each node must contain a minimum num-
ber of instances to justify further splitting. If this is not the case, do not split
further.

5. A minimum gain for splitting: A pre-defined improvement in the split criteria
must be achieved when splitting. Otherwise, do not split.

Criteria 1) and 2) are self-explanatory and should be implemented in any case,
whereas criteria 3) - 5) require the choice of appropriate thresholds. In many ap-
plications, the choice of optimal hyperparameters is difficult and involves more fine-
tuning. Hence, the second line of research studies how to prune a trained tree after
its construction. These approaches first train the entire tree using 1) and 2) as stop-
ping criteria and then prune away (i.e. delete) sub-trees in a bottom-up fashion.
There is a vast array of different pruning strategies available (see e.g. [BdCF15] for
an overview) of which we quickly survey the three most commonly used pruning
methods

1. Reduced-Error Pruning: Reduced-Error-Pruning splits the training data into
a pruning set and a training set. Once the tree has been trained, the error of
each sub-tree is estimated on the pruning set. For each sub-tree, the following
constraint is enforced: A sub-tree cannot be pruned if any of its sub-trees yield
a lower error on the pruning set, otherwise delete the sub-tree. While this
approach is very intuitive, it requires the splitting of the training data into two
sets which can be unfavorable for small datasets.



38 Chapter 2. Background

2. Sample Complexity Pruning: Similar to Reduced-Error pruning, Sample Com-
plexity Pruning also removes sub-trees that do not yield a lower error. However,
instead of using a dedicated pruning set, it estimates the generalization error
of a sub-tree via PAC learning theory which will be discussed in more detail in
section 5. It states that the generalization error LD of a tree h that was trained
on N samples and that has n nodes in total is, with probability 1− δ [SSBD14]:

LD(h) ≤ LS(h) +

√︃
(n+ 1) log2(d ·N + 3) + log(2/δ)

2N

where LS is the empirical error of the tree. Thus, when adding a new split node
(t, k), the decrease in the error LS(f ∪ {(t, k)}) must justify adding two new
leaves n→ n+ 2. Hence, every sub-tree for which

LS(h ∪ {(t, k)}) +
√︂

(n+3) log2(d·N+3)+log(2/δ)
2N ≤ LS(h) +

√︂
(n+1) log2(d·N+3)+log(2/δ)

2N

(2.29)
does not hold is removed.

3. Minimal Cost Complexity Pruning: Minimal Cost Complexity Pruning is sim-
ilar to Sample Complexity Pruning but introduces another parameter α to con-
trol the trade-off between the empirical error of sub-tree and its complexity. Let
LS(h) be the empirical error of the tree h and let L be the number of leaves in
h. The complexity of a sub-tree h′ is defined as

C(h′) =
LS(h)− LS(h

′)

L− 1
. (2.30)

Cost complexity pruning prunes away all sub-trees h′ with C(h′) ≤ C where
C is a user-defined hyperparameter. Hence, it is similar to sample complexity
pruning but offers a more fine-grained control between the empirical error and
the complexity through the parameters α and C.

Greedy DTs and Universal Function Approximation

We close our discussion on DTs by pointing out one remarkable fact about the top-
down induction of DTs: Intuitively, we can continue splitting the tree until every leaf
node contains exactly one observation. In this case, the DT practically memorizes
the data while building an efficient retrieval structure during training. In the limit of
N →∞ when enough training data is available this implies that DTs of sufficient size
are universal function approximators that can represent any (measurable) function.

More formally, in real analysis, it is well-known that one can approximate any
measurable function with a series of so-called simple functions. Simple functions are
sums of step functions with different scaling constants. Theorem 2 shows how they
can approximate any measurable function.

Theorem 2 (The Simple Function Approximation Theorem [RF10, Kle13]). Let (Ω,A)
be a measurable space and let f be a measurable function defined on Ω. Further, let
A1, . . . , An ∈ A be measurable, pairwise disjunct sets and let α1, . . . , αn ∈ R. Then
there exists a series of simple functions with n ∈ N

ϑn(x) =

n∑︂
i=1

αi1 {x ∈ Ai}
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such that

• ϑn(x) converges pointwise to f(x) on Ω

• |ϑn(x)| ≤ |f(x)| for all n ∈ N

Consider a DT with constant predictions gi(x) = gi ∈ R in the leaf nodes, then the
prediction of a DT is given by (c.f. Eq. 2.20)

h(x) =
L∑︂
i=1

giπi(x)

Hence, DTs with constant predictions in the leaf nodes are by definition simple func-
tions meaning that for L → ∞ they can approximate any measurable function f .
Theorem 2 makes it clear, that we can represent any measurable function with a de-
cision tree, but it does not explain how we arrive at such a tree. Moreover, it is unclear
if we can consistently arrive at the correct tree given our sample S. The following
theorem formally establishes the consistency of DTs.

Theorem 3 (Consistency of DTs). Let f : X → Y be a measurable function and let
S = {(x0, y0), . . . , (xN , yN )} be a sample with yi = f(xi) + εi where εi are errors with
E[ε] = 0 and f(x) is the true function value. Let

hN (x) =
N∑︂
i=1

yiπi(x)

be the fully-grown DT that perfectly represents the sample S. Then it holds that

P

(︃
lim

N→∞

∫︂
X
(hN (x)− f(x))2 dx = 0

)︃
= 1

Proof. First, we note there can be a subset ofM points in the sample that are the same
(i.e. x1 = x2 = · · · = xM), but do not have the same label, i.e. y1 ̸= y2 ̸= · · · ̸= yM
due to the additive error. For simplicity, let there be ˜︁N unique points in X and
let Mi be the number of duplicate points for the i-th sample xi and let yi,j be the
corresponding labels with j = 1 . . . ,Mi. In this case, the prediction becomes

hN (x) =

˜︁N∑︂
i=1

Mi∑︂
j=1

1

Mi
yi,jπi(x) =

˜︁N∑︂
i=1

Mi∑︂
j=1

1

Mi
(f(xi) + εi,j)πi(x)

Now we look at the case in which N → ∞. Since ˜︁N is constant this implies that
Mi →∞ for all unique points in X . The prediction for a single point x then becomes:

lim
N→∞

hN (x) = lim
N→∞

˜︁N∑︂
i=1

Mi∑︂
j=1

frac1Miyi,jπi(x) = lim
Mi→∞

Mi∑︂
j=1

1

Mi
(f(xi) + εi,j)

= lim
Mi→∞

Mi∑︂
j=1

1

Mi
f(xi) +

Mi∑︂
j=1

1

Mi
εi,j = f(xi) + E[ε] = f(xi)
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By the definition of the Riemann-Sum, it holds:

lim
N→∞

∫︂
X
(hN (x)− f(x))2 dx = lim

N→∞
lim

K→∞

K∑︂
i=1

1

K
(hN (xi)− f(xi))2

The above discussion shows that hN (x) = f(x) under additive errors and Theorem 2
states the pointwise convergence of hN (xi)→ f(xi) for N →∞ so that

lim
N→∞

1

K
(hN (xi)− f(xi))2 = 0 ∀i = 1, . . . ,K

implying that

P

(︄
lim

K→∞

K∑︂
i=1

lim
N→∞

1

K
(hN (xi)− f(xi))2 = 0

)︄
= 1

The consistency of DTs has been established relatively early on in [BFSO] as well
as some later works in [RG11]. Both works show consistency by utilizing a general
version of the Glivenko-Cantelli theorem [VC15] that is based on the law of large
numbers [DKLM05]. Theorem 3, on the other hand, is only based on arguments from
real analysis in combination with the behavior of the top-down greedy algorithm: The
property of DTs as universal function approximator does not stem from its function
class per se, but it is only in combination with greedy top-down learning that grows
the tree when a more data is available, i.e. the tree is fully-grown, that we obtain this
property. This makes DT learning fundamentally different from other ML methods
such as neural networks which are not adaptive. A neural network trained via SGD
has a pre-determined structure that does not change during training, whereas DTs
trained via greedy top-down algorithms are adaptive to the training data. Hence,
most of the effort in training NN is to find a good architecture that fits the training
data, whereas most of the effort in training DTs is how to restrict the learning process
to not overfit the data. It is important to note, that both arguments only hold for
the combination of model class (e.g. DT) and training algorithm (e.g. top-down). It
is perfectly reasonable to train DTs using SGD as discussed in chapter 7 as a special
type of neural network for which it is much more difficult to prove consistency and
universal function approximation. Similarly, we may use more complex splits e.g. by
using neural networks in each inner node of the tree which readily ‘inherit’ universal
function approximation and consistency.

As discussed, any tree is good enough to represent a function as long as the pre-
dictions in the leaf nodes are consistent with the function values. This raises the
question if there is a DT that is only as large as necessary, but does not contain any
additional leaves or paths? In other words: Is there an optimal DT and if so, can
we find it? Early research on this topic showed that finding an optimal axis-aligned
binary DT is NP-hard [HR76] and recent research in [OS21] implies various other
hardness results of DT learning in the context of parameterized complexity. Nev-
ertheless, due to increases in computation power and a reoccurring interest in the
interpretation of ML models, there is a continuous stream of work on finding small,
interpretable DTs. Currently, there are competing methods to train optimal decision
trees using dynamic programming [ANS20, DS21], Mixed Integer Linear Program-
ming [Ben92, BB96], SAT solvers [BHO09, SS21] or combinations thereof [ZKN21].
Finding smaller DTs is also beneficial for small devices and hence it is natural to ask
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whether we may apply these methods in this context. Unfortunately, finding a (near)
optimal DT is still computationally very costly to the point that it is nearly impossible
on small devices. Second, and arguably more important, single DTs do not seem to
have enough predictive power in most practical situations and better results can be
achieved with e.g. ensembles of trees. Last, the performance gap between optimal
DTs and their heuristically computed siblings seems to be very small [MS95] so that
in practice the greedy top-down algorithms dominate due to their fast runtime and
near-optimal performance. This fast runtime enables us to train multiple DTs and
combine them into an ensemble to improve the performance even further.

2.4.2 Binarized Neural Networks

Neural networks try to mimic the function of the human brain in which a large collec-
tion of neurons exchange information through their synapses. Neural networks are
a comparably old technique that was first introduced in the early 1940s by McCul-
loch and Pits in [MP43] that models the mathematical function of a neuron. Their
method was later refined by Rosenblatt in [Ros58], but research stagnated in favor
of other methods. Later, in the 1980s, multiple researchers rediscovered and refined
the backpropagation algorithm, which enables the efficient computation of gradients
in a directed acyclic computation graph [Kel60, LC86, RHW86]. Hence, the training
of multiple neurons arranged in layers became possible by gradient descent. After
an initial burst of research, neural networks became unpopular again due to the ex-
cessive amounts of data and computation required to train these models. In the
early 2010s, the research on neural networks then spiked again [KSH12]. Due to the
availability of General Purpose Graphical Processing Units (GP-GPU) and advances in
neural network design, as well as better optimization techniques, it was now possi-
ble to train deep neural networks with millions of parameters on large collections of
data with manageable effort. Since then, the research interest in these deep neural
networks with many layers has skyrocketed, most notably in application areas where
the input data is unstructured such as image, speech, video, and text processing. Nei-
ther the history nor the current state of the art in deep learning research could be
covered adequately in this thesis. Hence, this thesis will focus on resource-friendly
variations of deep learning and, more specifically, on binarized neural networks. For
a more general overview, including more detailed historical remarks, we refer read-
ers to [GBC16]. Binarized neural networks are neural networks with parameters
constraint to {−1,+1}, which can be executed without any floating-point operations.
While these networks are still trained via (stochastic) gradient descent and backprop-
agation, their structure is more akin to discrete classifiers that count and compare the
number of input features against pre-computed thresholds. This discreteness makes
their training more difficult, and many well-known techniques from ‘regular’ neu-
ral networks do not translate to BNNs. The next chapter introduces the necessary
notation and the basics of training feed-forward multi-layer perceptrons (MLP) and
convolutional neural networks. After that, these techniques are discussed in the con-
text of binarized neural networks.

Feed-Forward Neural Networks

Feed-forward neural networks are directed acyclic computation graphs in which the
output of a layer forms the input of its subsequent layers. Each layer transforms its
inputs by a pre-defined operation usually parameterized with a parameter vector w.
Formally, let there be L layers and let f l denote the operation of the l-th layer with
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parameters Wl ∈ Rpl , then a feed-forward network computes:

fW (x) = f lWL
(fL−1

WL−1
(. . . f1W1

(x)))) = f lWL
◦ fL−1

WL−1
◦ · · · ◦ f1W1

(x) (2.31)

where W = (W1, . . . ,WL) ∈ Rp is the concatenation of all parameter vectors in the
network. Per convention, we allow a layer l to access all previously computed outputs
1, . . . , l−1 so that, e.g., certain layers can be skipped or ignored when desired. Crucial
to the performance of a neural network is its architecture (e.g., the number of layers,
their different types, etc.) as well as the specific weights in its layers. To obtain the
weights, we again minimize a loss:

W ∗ = argmin
W∈Rp

LS(fw) (2.32)

The dominant training method for neural networks is stochastic descent. Central in
SGD is the computation of the gradient. For convenience, let zl denote the evaluation
of the neural network up to layer l given some input x:

zl = f lWl
◦ f l−1

Wl−1
◦ · · · ◦ f1W1

(x) (2.33)

The jacobian of a function h : Rp → Rm with respect to a parameter vector w ∈ Rp is
given by:

Jw(h(x)) =

⎛⎜⎜⎝
∂h1(x)
∂W1

∂h1(x)
∂W2

. . . ∂h1(x)
∂Wp

...
...

. . .
...

∂hm(x)
∂W1

∂hm(x)
∂W2

. . . ∂hm(x)
∂Wp

⎞⎟⎟⎠ (2.34)

and the computation of the gradient of LS(fW ) for the parameters Wl in layer l is
given by a repeated application of the chain rule using the jacobian:

JWl

(︂
LS ◦ fL ◦ fL−1 ◦ · · · ◦ f l(zl−1)

)︂
= JzL(LS(z

L))Jwl

(︂
fL ◦ fL−1 ◦ · · · ◦ f l(zl−1)

)︂
(2.35)

= JzL(LS(z
L))JzL−1(fL(zL−1)) · · · · · JWl

(f l(zl−1))

There are a few interesting aspects to be noted in this formulation: First, recall that
the loss ℓ : Rd → R is a scalar function. Hence, the jacobian JzL(LS(z

L)) is equal to
the partial derivative of LS wrt. to its input zL:

JzL(LS(z
L)) = ∇zLLS(z

L) (2.36)

Second, the computation of JWl
(LS) depends on the output of the l−1 layer and also

requires all jacobians from the subsequent layers l to L. The backpropagation algo-
rithm is an efficient implementation of this gradient computation by using dynamic
programming. It first computes all intermediate outputs zl for all layers starting with
the first layer in the forward pass. Then it computes the individual jacobians starting
with the last layer in the backward pass. Since the error of the l-th layer depends
on the errors of the subsequent layer, they are backpropagated through the network,
which coins the name. Moreover, the jacobians do not need to be computed explicitly
(which would result in a p×p jacobian), but an efficient implementation of the vector-
jacobian product is sufficient to compute the entire backward-pass since Jzl(LS(z

l))
is a vector. Each layer and its jacobian are only evaluated once, which results in
a very fast gradient computation. The backpropagation algorithm is not limited to
layer-wise networks but can be generalized to compute gradients in any directed
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acyclic computational graph resulting in automatic differentiation systems (AD) that
can compute the gradients in any DAG. For a more comprehensive introduction to
this topic, we refer readers to [BPRS17]. AD is one of the core building blocks of
deep learning as it allows one to quickly design and prototype new neural network
architectures without manually computing gradients. This makes the design of new
architectures much quicker, less error-prone, and enables a more engineering-style
approach to neural network learning.

The architectural choices of a neural network impact the model class and can
encode assumptions about the data as well as help the overall optimization process.
Hence, the architecture has a critical impact on the performance of neural networks,
and the optimal architecture must be developed for the current tasks at hand. In the
following, we present some common layer types used in neural network design.

Linear Layers

Arguably the simplest layers are linear layers that have already been proposed in the
early works on the perceptrons [MP43, Ros58]. Neural networks that only have linear
layers are called multi-Layer perceptrons (MLP) or fully connected neural networks
(FC). Let f : Rn → Rm be a linear function and let z ∈ Rn denote the input to a linear
layer. Let w ∈ Rm×n be its weights and let b ∈ Rm be an additional learnable bias so
that W = (w, b) are the parameters of this layer. Then the jacobian is given by:

fw,b(z) = ⟨w, z⟩+ b

Jw(z) = z

Jb(z) = 1

(2.37)

Convolution Layers

A common operation used in signal processing (e.g., for audio or images) is a convo-
lution that convolutes the input signal with a filter of a given size. Neural networks
with convolutional layers are called convolutional neural networks, or sometimes
ConvNets for short. The structure of ConvNets is such that they typically repeat mul-
tiple convolutions in the first few layers and use a fully connected linear layer in the
output layer. ConvNets have first been proposed in [FM82], and its combination with
backpropagation was due to [LBD+89].

For concreteness, consider a two-dimensional filter f : Rm×n → Rm′×n′
in which

images are filtered by a K ×K kernel. Let z ∈ Rm×n denote the input image to this
layer and w ∈ RK×K the parameters of the filter kernel, then the output is given by:

fw,b(z)i,j =

K∑︂
i′=0

K∑︂
j′=0

wi,j · zi+i′,j+j′ + b = w ∗ z + b, ∀i = 1, . . . ,m, j = 1, . . . , n (2.38)

where b ∈ R is again a learnable bias. This general idea can be expanded to different
forms of inputs, e.g., one can reduce the second filter dimension to K × 1 for time-
series data and audio signals. Alternatively, one can expand the filter dimension to,
e.g., K × K × K, which also includes a third dimension (e.g., a color channel in
images). Moreover, the stride by how much the convolution is moved, as well as the
padding of values at the edge of images, can be set according to assumptions about
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the data. Formally, a discrete convolution can be expressed via a Toeplitz matrix:

T (W ) =

⎡⎢⎢⎢⎢⎢⎣
w1 0 . . . 0 0
w2 w1 . . . 0 0
...

...
. . .

...
...

0 0 . . . wK−1 wK

0 0 . . . 0 wK

⎤⎥⎥⎥⎥⎥⎦ (2.39)

With this, convolutional layers can be expressed as a linear layer that encodes a
specific structure or assumption about the data into the network via T (w) leading to
the following jacobian:

fw,b(z) = ⟨T (w), z⟩+ b

Jw(z) = ⟨T (w)T , z⟩
Jb(z) = b

(2.40)

where T (w)T denotes the transpose of T (w). This makes the computation of gra-
dients for convolutional layers particularly appealing because it means applying the
convolution a second time with a transposed weight matrix.

Pooling Layer

Pooling layers are special convolutional layers without learnable parameters. They
are usually used to reduce the size of the intermediate outputs inside the network to
make them more manageable. Again, consider for concreteness a two-dimensional
input in which images are filtered by a K ×K kernel. Let z ∈ Rm×n denote the input
image to this layer. Then average pooling is defined as:

f(z)i,j =

K∑︂
i′=0

K∑︂
j′=0

1

K2
· zi+i′,j+j′ (2.41)

which can be equivalently expressed as a convolution with w =
[︁

1
K2

]︁
i,j

. Similarly,
max-pooling is given by:

f(z)i,j = max{zi+i′,j+j′ |∀i′ = 0, . . . ,K, j ′ = 0, . . .K} (2.42)

where the jacobian now contains the appropriate non-zero values during backpropa-
gation.

Batch Normalization

Batch normalization (BN) is a crucial layer to stabilize the training process of deep
networks and improve their overall accuracy. BN layers are tightly interconnected
with the training process of deep nets and are only meaningful when a network
is trained via mini-batch gradient-descent-like algorithms. It has been discovered
relatively recently in [IS15]. The main goal of BN is to stabilize the training pro-
cess by making sure that the outputs of a layer follow the same distribution in each
batch during training. For concreteness, consider a 1-dimensional batch normaliza-
tion f : Rn → Rn with learnable parameters W = (γ, β), γ ∈ Rn, β ∈ Rn and a



2.4. Discrete Classifiers 45

parameter for numerical stability ε ∈ R. Then, BN is defined as:

fγ,β(z) =
z − EB[z]√︁
VB [z] + ε

⊙ γ + β

Jγ(z) =
z − EB[z]√︁
VB [z] + ε

Jβ(z) = 1

(2.43)

Here, EB[z] denotes the average input over the batch B, and VB [z] is its variance.
‘⊙’ is the element-wise multiplication so that the original input size does not change.
Special care must be taken when the network is applied to a single example. In this
case, the normalization becomes meaningless because VB [z] cannot be estimated.
Hence, during training, a running average for EB[z] and VB [z] is stored, which can
be used during model deployment when only one example is available. Similar to
convolutional operations, there are different variants of BN, e.g., for two or three-
dimensional inputs.

Skip Connections

Skip connections connect two different intermediate representations from two differ-
ent layers by summing over them. Hence, a representation can skip certain layers.
Skip connections have been part of neural network design for a long time, and it
is difficult to pinpoint the first publication that proposed them. In the context of
deep learning, they have been popularized by [HZRS16], that also coined the term
Residual Networks or ResNets. The intuition behind this approach is that during the
backward pass, the errors that are backpropagated can skip layers that would other-
wise diminish the numerical value of the gradient5. For concreteness, again, consider
two layers l and l′ < l with their respective outputs zl ∈ Rn and zl

′ ∈ Rm, then a skip
connection is defined as:

f(zl, zl
′
) = zl + ϕ(zl

′
)

Jzl(z
l, zl

′
) = 1

Jzl′ (z
l, zl

′
) = 1

(2.44)

where ϕ : Rm → Rn transforms the input so that a summation is possible. Similar
to convolutions, the specific dimensionality of the intermediate representations may
vary, but the general approach remains the same. Note that the gradient of zl and zl

′

is one so that the entire error of subsequent layers is directly backpropagated during
training, essentially skipping the layers in between. Similar to BN, skip connections
do not necessarily increase a network’s size, but they often help to stabilize the learn-
ing process for especially deep networks since gradients from subsequent layers are
backpropagated without any changes to them.

Activation Functions

In essence, each layer discussed so far performs a linear transformation of its input,
and a neural network with only these layers would only be able to learn a linear func-
tion6. To solve this problem, non-linearities in the form of activations are introduced
into the network. These usually do not have learnable parameters but are merely

5This phenomenon is commonly known as vanishing gradients [Hoc98].
6A linear combination of linear functions is again a linear function.
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used to transform the input between the layers. However, they can have a significant
impact on the training and on the final performance of the network. Historically, the
sigmoid function

f(z)i =
1

1 + exp−zi

J(z)i,j =

{︄
f(z)i(1− f(z)i) if i = j

0 else

(2.45)

as well as the tanh-function

f(z)i = tanh(zi)

J(z)i,j =

{︄
1− tanh2(zi) if i = j

0 else

(2.46)

have been considered due to their elegant derivatives. However, these functions slow
down the convergence in deeper networks because their gradients scale the errors of
the subsequent layers by a factor ≤ 1 during backpropagation. Hence, different acti-
vation functions, such as Rectified Linear Activation (ReLU), have become popular:

f(z)i = max(0, zi)

J(z)i,j =

{︄
1 if i = j, zi > 0

0 else

(2.47)

that do not scale the errors but essentially leave them unchanged for positive values.

Feed-Forward Neural Networks with Constrained Weights

Recall that deep nets are trained via SGD that uses small, noisy updates during train-
ing to eventually converge against a good weight configuration. Hence, each param-
eter in a network must be stored as a floating-point value that can store these values.
Depending on the system and specific implementation, that means that each parame-
ter of the network requires 4 Bytes (i.e., a float) or 8 Bytes (i.e., a double) of storage
which can quickly add up to hundreds of Megabyte for state-of-the-art networks (c.f.
[BOFG20, CZZ+20]). In addition to the parameters, the intermediate values between
layers must also be buffered, and each layer must be executed in the correct order
using the same precision as the network parameters.

One natural idea to miniaturize deep learning is to consider neural networks with
limited precision. For example, if one stores each parameter in 2 Bytes (e.g., in half
if supported by the execution platform), the overall size is also halved. Going more
extreme, one can use (fixed-point) quantization that stores each parameter with a
fixed number of bits before and after the decimal. These custom data formats can be
implemented with integer arithmetic, which also allows for a more efficient applica-
tion of the network. Quantization is a field of study in its own right, and similar, the
quantization of deep learning also contains a considerable amount of work that can-
not be covered comprehensively here (see, e.g., [CZZ+20] for a broader overview).
In this thesis, we focus on the most extreme version of quantization that only allows
for two possible values represented by a single bit and hence are often called bina-
rized neural networks (BNN), which was first7 proposed in [HCS+16]. This has not

7Technically, [MP43] already discusses networks of logical expressions which can be viewed as bina-
rized neural networks in today’s terms.
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only by far the greatest impact on the size of the network (i.e., a reduction by a factor
of approximately 32), but it also allows for a very efficient forward pass that can be
implemented in boolean logic.

The first question when using a quantization is to choose what values should be
represented. Since computers naturally work with zeros and ones, the most intuitive
choice here would be to constrain the weights of a neural network to {0, 1}. This
approach has two down-sides: Recall that, in a linear layer and in a convolutional
layer, the weight is multiplied by its input feature. Hence, a 0 ignores a certain
feature, whereas a 1 activates it. This can be advantageous, but it does not allow
the network to remove or correct intermediate computations in subsequent layers
because either only positive values are added, or entire parts of the network are
disabled. Second, and maybe more importantly, gradient-based approaches often
have difficulties in properly optimizing 0 weights because the corresponding input
feature does not have any impact on the output of the network. This makes the
optimization of the network much more difficult. In practice, the quantization {−1, 1}
or sometimes {−a, a} has been shown to be advantageous. This quantization does
not ignore entire features but expresses their importance by either using −1 or +1.
The network can correct intermediate outputs by subtracting values instead of just
adding more positive values. And last, every feature now contributes to the output of
the network so that gradient-based optimization simply works better.

The forward-pass of a BNN with weights {−1,+1} can be implemented in boolean
logic only. To do so, we conceptually map the weight −1→ 0 and the weight +1→ 1.
Moreover, we ensure that all intermediate representations computed by the network
are also binary, which can be ensured by a certain pattern of layers discussed at the
end of this section. Under these assumptions, each layer can be implemented as
follows:

Linear Layers

Recall that a linear layer computes the dot-product fw(z) = ⟨w, z⟩ + b where w ∈
Bm×n and b ∈ Bm are now binary parameters, and z ∈ Bn is a binary input. The
multiplication of two binary values can be implemented with XOR operations, i.e. 1 · 1
and 0 · 0 both equal 1, whereas 1 · 0 and 0 · 1 equal 0. The sum over the resulting
bitvector is given by the number of ones in the bitvector after the XOR operation. This
operation is also known as popcount, and CPUs usually ship specific instructions for
this operation. If such an operation is not available, it can be efficiently implemented
by using multiple look-up tables that contain the number of set-bits for specific bit-
strings [JF20]. The output type of linear layers is an integer.

Convolution Layers

Recall that a convolutional layer is a linear layer using a Toeplitz matrix T (w) for the
weights. Hence, it also computes the dot-product fw,b(z) = ⟨T (w), z⟩ + b for binary
parameters and inputs. As for linear layers, the multiplication of two binary values
can be implemented with XOR operations, whereas their sum can be implemented
using popcount. The output type of convolutional layers is an integer.

Pooling Layer

Caution must be exercised when using pooling layers in BNNs. Average pooling com-
putes the average of the input, which cannot be implemented by boolean logic, but
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requires more computations. As a resource-friendly variation, one may use sum-
pooling

f(z)i,j =
K∑︂

i′=0

K∑︂
j′=0

zi+i′,j+j′ (2.48)

that simply sums over the inputs. Last, max-pooling that computes the max value
across the inputs can also be used. Depending on the specific operation, the output
type can be float, integer, or boolean.

Batch Normalization

Recall that BN re-scales and shifts the input to follow a normal distribution. If a BN
layer precedes a step function (see below), then the scaling does not change the ac-
tivation, but only shifting of the input does. Thus, the BN layer can be merged with
subsequent step functions by adjusting the step threshold. Differently put, the com-
bination of BN+Step function results in a learnable threshold for the activation. This
is noteworthy because, in ‘regular’ NNs, the BN layer does not really impact the ca-
pacity of the network but mainly smoothens the optimization. In BNNs, on the other
hand, the BN layer adds more capacity to the network by adding a learnable param-
eter. Note that the running mean of BN is usually a floating-point value and hence
the adjusted value of the step is also a float. This is no problem because the IEEE-
754 floating-point standard guarantees that float comparison can be implemented by
comparing their binary representation directly8 as if they were integers.

Skip Connections

Skip connections compute the sum of the outputs of two layers zl and zl
′
. This sum-

mation cannot be directly expressed by boolean operations, but a more complex cir-
cuit is required. Hence, skip connections are not possible in BNNs. However, a varia-
tion of this idea can be implemented by concatenating the inputs instead of summing
them [BYBM19, LSSC20]. The concatenating connections simply concatenate the
two inputs zl and zl

′
into one input vector [zl, ϕ(zl

′
)] where ϕ(zl

′
) again makes sure

that the dimensionality is correct. As before, the jacobian preservers the gradient
information and passes it to the respective inputs. No special operation is required
here, and all data types are preserved.

Activation Functions

Besides adding non-linearity to the network, the activation function has a second
purpose in BNNs. Here it makes sure that the output of a layer is binary, i.e., it is
mapped to {0, 1}. Most activation functions like sigmoid and tanh cannot be directly
expressed in boolean logic and require floating-point computations. The commonly
used ReLU activation is simple but does not map the input to {0, 1} as it leaves the
input unchanged if it is positive. Hence, the step function

f(z)i =

{︄
1 zi ≥ 0

0 else
(2.49)

is often used. The forward pass of this activation can easily be implemented by a
simple comparison, and it makes sure that the output of a layer is binary. However,

8Some edge cases such as NaN values must be checked manually, however.
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since the step function is not continuous, it does not have a gradient everywhere, and
most of the gradients are 0, which makes the optimization difficult. To circumvent
this problem, one usually considers the straight-through estimator of f(z)i:

J(z)i,j = 1 (2.50)

that essentially pretends that f(z)i is the identity function during optimization.

As hinted at the beginning of this section, the overall architecture of the BNN is vital
to ensure that its forward pass can be implemented efficiently in boolean logic. Most
layers transform the binary input into integer values, whereas the activation function
maps non-binary inputs to binary values. Hence, these operations should always be
used in conjunction. For every linear or convolutional layer, there should be a cor-
responding activation. The combination of BN+Step is also advantageous because it
adds another learnable parameter to the network without hurting its memory con-
sumption or forward-pass efficiency. Last, concatenations can be used where desired
if the input sizes match, and pooling layers can help to control the size of intermedi-
ate representations. Summarizing, we found that a VGG-style network architecture
[SZ15] generally works well for BNNs and can serve as a starting point during the
architecture search:

Conv BN Step MaxPool FC BN Step FC

repeat k times repeat k′ times

FIGURE 2.9: Example architecture for BNNs based on the VGG archi-
tecture [SZ15].

Bibliographic Remark: Before discussing the training of BNNs, a quick bibliographic
remark is in order. The previous discussion of BNNs focuses on BNNs that can be
executed entirely with boolean logic so that all intermediate computations (e.g., the
activations) are also binary. Due to the flexibility of neural networks, it is also possible
to use mixed-precision networks, in which, e.g., only the weights are binary, but
activations are real-valued. There is a large collection of different NN architectures
available that are often described as BNNs (see, e.g., [SL19, BYBM19]), but that use
a mix of binary and non-binary data types. Clearly, these architectures allow for more
flexible modeling and often have a better predictive performance than ‘pure’ BNNs.
However, these architectures also require a much more deliberate implementation
that is usually not considered in the corresponding papers: Constraining the weights
to {−1, 1} reduces the overall memory consumption of the network but does not
necessarily improve the overall inferencing speed since floating-point operations are
still required. Similarly, type conversion between boolean/integer to float and
vice-versa can also impact the performance negatively if it involves the packing and
unpacking of bit-level values for individual variables.

Training BNNs

Training BNNs, in principle, follows the same pattern as training ‘regular’ float net-
works by applying small changes to the current weights at each iteration to better
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fit the training data. In the case of BNNs, we cannot perform gradient-based opti-
mization directly for two reasons: First, the space of weights is discrete, and thus
the parameter vector obtained by taking a small step in the opposite direction of the
gradient is almost certainly not binary. Second, the sub-gradient of the step function
is zero almost everywhere. Thus, arguably the most direct method to train BNNs is to
store weights as floating-point numbers during training but round both – activations
and weights – to {−1,+1} during forward computations. More formally, Hubara et
al. [HCS+16] propose a scheme that, during training, stores weights as floating-point
numbers constrained to values between -1 and 1 and then binarizes the network dur-
ing the forward pass. Let b : R→ {−1, 1} be a binarization function with

b(x) =

{︄
1 x ≥ 0

−1 else
(2.51)

and let B(W ) denote the element-wise application of b to a tensor W , then we simply
apply B during the forward pass to each weight tensor. Algorithm 5 summarizes the
application (i.e., the forward pass) of a BNN.

Algorithm 5 Application of a BNN.
1: function APPLY_BNN(x, f1, . . . , fL,W1, . . . ,WL)
2: z0 ← x
3: for l = 1, . . . , L do ▷ Iterate over all layers
4: bl = B(Wl) ▷ Binarize weights with Eq. 2.51
5: zl ← f lbl(z1, . . . , zl−1) ▷ Apply current layer

return zl−1

Algorithm 6 shows the training of BNNs. It starts with a random solution for
the weights in line 2 and updates the weights for a given number of epochs. Before
each epoch, the training data is shuffled and then iterated in a batch-wise fashion.
The network is applied to each batch in line 6 using Algorithm 5. Then the error
of the network on the batch is computed (line 7), and all errors are backpropagated
through the network in line 8− 9 using Eq. 2.35. Finally, the weights are updated in
line 10. The description in Algorithm 6 reflects the more engineering-style approach
in designing neural networks in which building blocks are combined systematically
to form a good training algorithm for a given network architecture. For example, it is
well-known that the initialization (i.e., line 2) can have a severe impact on the perfor-
mance of a neural network in general [SMDH13, FC19, HR18, ACB], but might even
be more important in the context of BNNs [DK21]. The choice and possible augmen-
tation of the different batches (i.e., line 5) during training is also a common approach
to enhance the performance of deep nets further and BNNs, e.g., by augmentation of
the training data [SK19] or by using a full-precision teacher network that generates
different target labels for learning [MM18, LVV+20]. Last, the error propagation, as
well as the weight updates (lines 8-10), also play a major role in the design of BNN
training algorithms. While SGD is a common baseline for many deep networks, the
Adam optimizer seems to be more favorable for BNNs[LSL+21], and more special-
ized variations such as proximal gradient descent have also been proposed [BWL19]
as well as optimizers that purely depend on the momentum but not the gradient of a
weight [HWG+19].
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Algorithm 6 Training of a BNN.
1: function TRAIN_BNN(S, f1, . . . , fL)
2: W1, . . . ,WL ← init() ▷ Generate initial solution.
3: for next epoch do ▷ Perform next epoch
4: S ← shuffle(S) ▷ Shuffle data before epoch
5: for (X, y)← next_batch(S) do ▷ Get next batch
6: ˆ︁y ← APPLY_BNN(X, f1, . . . , fL,W1, . . . ,WL) ▷

Apply Alg. 5
7: JL+1 ← ∇ˆ︁yℓ(ˆ︁y, y) ▷ Compute loss of network
8: for l = L, . . . , 1 do ▷ Iterate over all layers
9: Jl ← backprob_errors(Jl+1) ▷ Backpropagate errors

10: W1, . . . ,WL ← update(J1, . . . , JL) ▷ Update weights.
return W1, . . . ,WL

BNNs and Universal Function Approximation

In general, neural networks are universal function approximators: A neural network
with a single linear layer can split the search space into two halves since it is a linear
function. A network with two linear layers can identify convex sets, whereas a NN
with three linear layers can identify arbitrary sets. This intuitive argument has been
formally established in [Hor91], which shows that NNs with three (linear) layers
and exponentially many neurons on the hidden layer can represent any continuous
function. More recent results in [LPW+17] imply that we can trade the width of
an NN for its depth and establish a similar result for a bounded width and arbitrary
depth. Last, BNNs are universal function approximators as shown in [WZZ+19]. The
consistency of neural networks has been established formally in [FL93], although –
to the best of our knowledge – a similar result for BNNs is missing.

At this point, it is noteworthy to discuss the connection between neural networks
and decision trees: Clearly, a DT in its core is a computation tree and, as such, a
special case of a more general computation graph that is the backbone of a neural
network. In fact, we can also view DTs as a special type of neural network and train
it via gradient-based algorithms and backpropagation, as discussed more in chapter
7. Similarly, it is possible to restructure a tree ensemble as a collection of multilay-
ered neural networks with a particular weight connection [BSW16]. Hence, it does
not surprise that, for both models, we can show consistency and universal function
approximation. In fact, the general proof idea for both is the same: As discussed in
section 2.4.1 the greedy top-down induction of DTs can lead to the isolation of single
data points in the leaves. Hence, we can – given the training data is large enough
– approximate any function with it. The formal argument for NNs is similar in the
sense that if we construct a NN with enough neurons on the hidden layer, then we
can also isolate every single data point from the training sample. The difference be-
tween both models lies in the training algorithms themselves: For NNs, we choose
the architecture beforehand incorporating prior knowledge into the architecture (e.g.,
by using convolutions for image data) and then fit the parameters as well as possible.
For DTs, we do not fix the architecture beforehand, but it is data dependent.

2.4.3 Naive Bayes

For completeness, we will quickly visit the Naive Bayes classifier as a third example
of a discrete classifier. Naive Bayes (NB) is one of the oldest classifiers and a direct
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application of Bayes’ Theorem [Bay63]. The general idea of Naive Bayes is to predict
the majority class given the conditional probability distribution:

f(x) = argmax
c=0,...,C−1

P (y = c|x) (2.52)

It is difficult to estimate P (y = c|x) = P (c)
P (x) from the given data directly, because it

would involve all the different combinations of classes and possible feature values.
Hence, we use Bayes’ Theorem:

P (y = c|x) = P (y = c)P (x|y = c)

P (x)
(2.53)

Unfortunately, this again involves the term P (x|y = c) = P (x)
P (c) that also requires all

the different combinations of feature values and classes. Hence, in Naive Bayes, we
assume that the features are independent of each:

P (x|y = c) =
d∏︂

i=1

P (xi|y = c) (2.54)

Now combining Eq. 2.52 -2.54 leads to

f(x) = argmax
c=0,...,C−1

P (y = c)
∏︁d

i=1 P (xi|y = c)

P (x)
= argmax

c=0,...,C−1
P (y = c)

d∏︂
i=1

P (xi|y = c)

(2.55)
where we noticed that the maximization wrt. c is independent of P (x). In Eq. 2.55
we require an explicit model for P (xi|y = c) as well as an estimate for P (y = c). The
estimation of P (y = c) can be done by counting the occurrences of each class in the
training data:

P (y = c) =
1

N

N∑︂
i=1

1 {yi = c} = pc
N

(2.56)

Due to the independence assumption, the estimation of P (xi|y = c) can be done in-
dependently of each other. In the case of binary or categorical features, we can use
a Bernoulli distribution. For real-valued features, a Gaussian distribution is appropri-
ate:

Bernoulli Naive Bayes

Assume that a feature takes a binary value xi ∈ {0, 1} so that P (xi|y = c) follows a
Bernoulli distribution with the class probability pi,c:

P (xi|y = c) = pxi
i,c(1− pi,c)xi

which is either pi,c or (1− pi,c) depending on the value of xi. To estimate pi,c we use
the Maximum-Likelihood estimator:

pi,c = argmax
p∈[0,1]

N∏︂
j=1

1 {yj = c} pxj,i(1− p)xj,i =
1

N

N∑︂
j=1

1 {yj = c}xj,i (2.57)
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where 1 {yj = c} is ‘1’ if the corresponding class equals to c and 0 otherwise. This
process can be generalized to categorical features as well, e.g., by introducing a one-
hot encoding for each category. More formally, consider a feature xi ∈ {1, 2, . . . ,K}
that can take up to K different values. Then we may replace the i-th feature with
K binary features e = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}K that contain a ‘1’ at the corre-
sponding entry of xi, i.e. exi = 1 whereas the remaining entries are 0.

Gaussian Naive Bayes

Assume that a feature takes a real value xi ∈ R. A reasonable assumption in this case
is, that P (xi|y = c) follows a Gaussian distribution with mean µi,c and variance σi,c:

P (xi|y = c) =
1√︂

2πσ2i,c

exp

(︄
−(x− µi,c)2

2σ2i,c

)︄

Again using the Maximum-Likelihood estimator:

µi,c =
1

N

N∑︂
j=1

1 {yj = c}xj,i (2.58)

σi,c =
1

N

N∑︂
j=1

1 {yj = c} (xj,i − µi,c)2 (2.59)

To summarize, we combine both approaches into a single equation. Let Dr be
the set of real-valued features and let Db the set of binary features after a one-hot
encoding has been computed, then the prediction of Naive Bayes is:

f(x) = argmax
c=0,...,C−1

pc
N

∏︂
i∈Db

fxi,c

N

∏︂
i∈Dr

1√︂
2πσ2i,c

exp

(︄
−(x− µi,c)2

2σ2i,c

)︄
(2.60)

= argmax
c=0,...,C−1

pc
∏︂
i∈Db

fxi,c

∏︂
i∈Dr

1√︂
2πσ2i,c

exp

(︄
−(x− µi,c)2

2σ2i,c

)︄
(2.61)

where pc is the frequency of class c, fxi,c are the frequencies for feature i depending
on the value of xi and class c and µi,c, σi,c are the parameters of the Gaussians per
real-valued feature and class. The training of NB involves estimating p, f, µ, σ which
is straightforward using Eq. 2.57 and Eq. 2.58.

Algorithm 7 shows the training algorithm for Naive Bayes. First, a one-hot en-
coding of all categorical variables is generated. Then in lines 5-7, the prior class
frequencies are computed. Lines 8-13 compute the class frequencies per feature, and
line 14 - 27 computes the mean and variance of the Gaussians. In order to apply a
NB model we implement Eq. 2.61 in Algorithm 8. Again we first compute a one-hot
encoding of the variables. Then, the probabilities for binary features are computed in
lines 6-7, whereas lines 8-9 compute the probabilities for the real features.

It is worth noting, that, if there are no real-valued features in the data we only
compute the product of frequency counts and hence there are no floating-point oper-
ations involved in either computing or applying a Naive Bayes model. Unfortunately,
the multiplication of counts can quickly lead to large numbers and potentially over-
flow. A common solution to this problem is to apply the logarithm to Eq. 2.61 and
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Algorithm 7 Training of Naive Bayes.
1: function TRAIN_NB(S)
2: X ← one_hot_encoding(X) ▷ Compute one-hot encoding
3: Db ← binary_features(X) ▷ Get all binary features
4: Dr ← real_features(X) ▷ Get all real features
▷ Compute class prior

5: p← 0C,1 ▷ Start with C × 1 zero matrix
6: for i = 1, . . . , N do
7: pyi ← pyi + 1 ▷ Update frequency

▷ Compute frequencies of all binary variables
8: f ← 0|Db|,C ▷ Start with |Db| × C zero matrix
9: t← 0 ▷ Use temporary index variable

10: for i ∈ Db do
11: t← t+ 1
12: for j = 1, . . . , N do
13: ft,yj ← ft,yj +Xj,i ▷ Update frequency

▷ Compute mean and variance of all real variables
14: µ← 0|Dr|,C ▷ Start with |Dr| × C zero matrix
15: σ ← 0|Dr|,C ▷ Start with |Dr| × C zero matrix
16: t← 0 ▷ Reset temporary variable
17: for i ∈ Dr do
18: t← t+ 1
19: for j = 1, . . . , N do
20: µt,yj ← µt,yj +Xj,i ▷ Update sum

21: µ← 1
N µ ▷ Compute mean

22: t← 0 ▷ Reset temporary variable
23: for i ∈ Dr do
24: t← t+ 1
25: for j = 1, . . . , N do
26: σt,yj ← σt,yj +

(︁
Xj,i − µt,yj

)︁2
▷ Update sum of squares

27: σ ← 1
N σ ▷ Compute variance

return p, f, µ, σ ▷ Return estimates

replace the products with sums:

f(x) = argmax
c=1,...,C

log

⎛⎝pc
N

∏︂
i∈Db

fxi,c

N

∏︂
i∈Dr

1√︂
2πσ2i,c

exp

(︄
−(x− µi,c)2

2σ2i,c

)︄⎞⎠ (2.62)

= argmax
c=1,...,C

log pc +
∑︂
i∈Db

log fxi,c +
∑︂
i∈Dr

log
(︂√︂

2πσ2i,c

)︂ (x− µi,c)2
2σ2i,c

(2.63)

where we used the logarithm rules to further simplify. Again, if there are no real-
valued features, we only need to evaluate the first part of the equation. Since the
logarithm is monotone, removing it does not affect the maximization:

f(x) = argmax
c=1,...,C

log pc +
∑︂
i∈Db

log fxi,c = argmax
c=1,...,C

pc +
∑︂
i∈Db

fxi,c
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Algorithm 8 Application of Naive Bayes.
1: function APPLY_NB(x, p, f, µ, σ)
2: x← one_hot_encoding(x)
3: Db ← binary_features(Xe) ▷ Get all binary features
4: Dr ← real_features(Xe) ▷ Get all real features
5: for c = 1, . . . , C do
6: for i = 1, . . . , |Db| do
7: pc ← pc · fxi,c ▷ Probability for binary features

8: for i = 1, . . . , |Dr| do

9: pc ← pc · 1√︂
2πσ2

i,c

exp

(︃
− (x−µi,c)

2

2σ2
i,c

)︃
▷ Probability for real features

return argmaxc=1,...,C pc

It follows, that, for categorical or binary features NB is a discrete classifier. To do so,
we simply need to replace all products in Algorithm 8 with sums appropriately.

Naive Bayes and Universal Function Approximation

Naive Bayes is a simple algorithm that makes the extreme assumption that features
are not correlated with each other. Consequently, it is easy to construct counterexam-
ples that break this assumption, and hence Naive Bayes is neither a universal function
approximator nor is consistent. Nevertheless, Naive Bayes works surprisingly well in
practice, especially in the context of text data [DP96]. Other application fields such
as online learning (see e.g. [BHKP10]) or as a part of other learners, e.g. in the leaf
nodes of decision trees further show the usefulness of Naive Bayes [HKP05]. Last, for
some Naive Bayes variations, e.g. when kernel density estimation is used, consistency
can also be shown [JL95]. Due to its simplicity, Naive Bayes can also be an attractive
model in the context of small devices as discussed more in chapter 7. However, it can
be difficult to practically deploy NB without any floating-point operations because
most problems in the context of small-devices stem from sensor data that is usually
real-valued.
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Part II

Additive Ensembles
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3 | The Bias-Variance Decompo-
sition for Additive Ensembles

In this thesis, we study additive ensembles of discrete classifiers. Formally, they are
represented by the model class F = {∑︁M

i=1wihi|h ∈ H, wi ∈ R} that is the weighted
combination of a set of M discrete classifiers h ∈ H:

f(x) =

M∑︂
i=1

wihi(x) (3.1)

While it seems counterintuitive to train multiple models in the context of resource
constraint devices that might already be challenged by a single model, ensembles
offer a variety of advantages over a single model. First, the choice of appropriate base
learners allows for great flexibility and already serves as an implicit regularization.
Second, additive ensembles can easily remove certain ensemble members by setting
their corresponding weight to wi = 0 if required, further reducing the resources
required by the entire ensemble. Third, additive ensembles are among the state of
the art regarding predictive performance and are usually one of the first methods to
boost the performance of single classifiers.

The ERM principle places the model at the center of an optimization problem
to minimize a regularized training loss. In practice, we find that many optimiza-
tion algorithms are not deterministic but incorporate some form of randomness. For
example, the choice of the specific training sample S ∼ DN already introduces ran-
domness into the training process, the random initialization in BNNs is a more explicit
form of randomization, and the choice of split functions in a DT can also be affected
by randomization. The following bias-(co-)variance decomposition decomposes the
training loss into a bias and a (co-)variance term under these randomizations to gain
a better understanding of the structure of the loss and the algorithm’s behavior.

The first bias-variance decomposition was proposed by Harry Markowitz in [Mar52]
for the mean squared error (MSE) (f(x) − y)2. It states that the expected error of a
model f(x) for an observation x with the true label y from a distribution D can be
decomposed into its bias and variance:

E θ∼Θ
x,y∼D

[︁
(f(x)− y)2

]︁
= (E θ∼Θ

x,y∼D
[fθ(x)]− y)2 + Vθ∼Θ [fθ(x)] (3.2)

where Θ is a random process induced by the algorithm that generates fθ. Its first ap-
pearance in the machine learning community was due to Geman et al. in [GBD]
for the MSE, which then sparked a series of different decompositions (see, e.g.,
[UN96, Dom00, Jam03] and references therein). Most notable is the work by Domin-
gos in [Dom00]. It provides a set of consistent definitions for bias and variance
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and gives rise to a decomposition of the 0 − 1 loss that fits the previous decom-
position of the MSE. James gives in [Jam03] a set of different definitions for bias
and variance for any symmetric loss function. However, as he notes, these defini-
tions are only applicable to binary classification problems and not applicable to real-
valued predictions. A similar decomposition has also been proposed in the context
of Product Of Expert models called the ambiguity decomposition. This decomposi-
tion also first appeared for the MSE and is equal to the bias-variance decomposition
although derived from a distributional point of view [KV94, Hes97]. Later, Hansen
and Heskes give in [HH00] a generalized ambiguity decomposition for exponential
families. The authors show that any exponential family loss has a decomposition
of the form Error = Bias + Variance where ‘Bias’ and ‘Variance’ depend on the loss
function. Closely related to the following derivation is the work by Jiang et al. in
[JLFW17]. Here, the authors derive a generalized ambiguity decomposition for twice
differentiable loss functions. Similar to the following discussion, the authors also
use a second-order Taylor approximation but seem to ignore the remainder in their
construction. Their paper focuses on binary classification losses with a single output
and does not directly translate into a new learning algorithm. Our approach, on the
other hand, also encapsulates multi-class problems as well as regression problems
and therefore is a natural generalization of previous work.

Formally, the bias-variance decomposition studies which algorithm consistently
produces the best model h with the smallest loss given its randomization Θ:

h = argmin
Θ

E h∼Θ
x,y∼D

[ℓ(h(x), y)]

Theorem 4 decomposes the average error of the model into its bias, (co-)variance,
and a remainder term using a second-order Taylor approximation.

Theorem 4 (Generalized Bias-Co-Variance Decomposition). Let ℓ : RC × Y → R be
a twice-differentiable loss function and let Θ be a random distribution induced by the
random choices of an algorithm that result in model h. Further, let µ(x) = Eh∼Θ [h(x)]
be the average model and let ϕ(x) = (h(x)−µ(x)) be the difference between the average
model and some model h. Then the bias-(co-)variance decomposition is

E h∼Θ
x,y∼D

[ℓ(h(x), y)] = E h∼Θ
x,y∼D

[ℓ(µ(x), y)] +E h∼Θ
x,y∼D

[︃
1

2
ϕ(x)T

(︂
∇2

µ(x)ℓ(µ(x), y)
)︂
ϕ(x)

]︃
+ E h∼Θ

x,y∼D
[R]

(3.3)
where R ∈ R is a loss specific constant. Last, let m ∈ R be a constant such that⃓⃓⃓

∂3ℓ(µ(x),y)
∂µ(x)∂µ(x)∂µ(x)

⃓⃓⃓
≤ m for all x, y ∼ D, then it holds that

R ≤ 1

6
mmax

h(x)
∥h(x)− µ(x)∥31 ≤

1

6
mC max

i=1,...,C
(h(x)i − µ(x)i)3 (3.4)

Proof. We use a second-order Taylor approximation of ℓ around the average µ⃗(x) =
Eh∼Θ [h(x)]. For readability, we now drop the subscript h ∼ Θ, (x, y) ∼ D. Similarly,
we write h(x) = h⃗ and µ⃗(x) = µ⃗ and ℓ(h(x), y) = ℓ(h):

E [ℓ(h)] = E [ℓ(µ)] + E
[︂
(h⃗− µ⃗)T∇µ⃗ℓ(µ⃗)

]︂
+ E

[︃
1

2
(h⃗− µ⃗)T∇2

µ⃗ℓ(µ⃗)(h⃗− µ⃗)
]︃
+ E [R]
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where R denotes the remainder of the Taylor approximation containing the third and
higher derivatives.

We note, that ∇µ⃗ℓ(µ⃗) does not depend on h⃗ since µ⃗ is a constant given a fixed test
point x and therefore E

[︁
∇µ⃗ℓ(µ⃗)

]︁
= ∇µ⃗ℓ(µ⃗). Also note, that per definition E [h] = µ⃗

so that the second summand vanishes:

E
[︂
(h⃗− µ⃗)T∇µ⃗ℓ(µ⃗))

]︂
= E

[︂
(h⃗− µ⃗)T

]︂
∇µ⃗ℓ(µ⃗) =

(︂
E
[︂
h⃗
]︂
− E [µ⃗]

)︂T
∇µ⃗ℓ(µ⃗)

= (µ⃗− µ⃗)T ∇µ⃗ℓ(µ⃗) = 0

Naturally, the quality of this approximation depends on the magnitude of the re-
mainder, and it becomes exact if the loss function does not have a third derivative.
Otherwise, a classic textbook result (see e.g. [Edw73, Kön13]) bounds the magnitude
of the remainder for functions that are k + 1 times continuously differentiable. Let
M, r > 0 be constants with

||h⃗− µ⃗||1 < r

|Dαℓ(µ⃗, y)| ≤M s!

rs
for |α| = s

where we used the multi-index notation α = (α1, . . . , αn) ∈ Nn
0 with |α| = α1+· · ·+αn

and Dαf = Dα1
1 f...Dαn

n f . Then, every Taylor Series with |h⃗− µ⃗|1 ≤ ρ < r converges
with

Rs · ||h⃗− µ⃗||1 ≤M
(︂ρ
r

)︂s+1

To be more useful, we reformulate this expression. Let there be some m ∈ R so that
|Dαℓ(µ⃗, y)| ≤ m for all y, µ⃗ then

m =M
s!

rs
⇒M =

1

s!
mrs

Re-substituting

Rs · ||h⃗− µ⃗||1 ≤M
(︂ρ
r

)︂s+1
=

1

s!
mrs

(︂ρ
r

)︂s+1

=
1

s!
mrs

ρs+1

rs+1
=

1

s!
m
ρ

r
ρs

≤ 1

s!
mρs ≤ 1

s!
mmax

h⃗
||h⃗− µ⃗||s1

=
1

s!
m

C∑︂
i=1

max
hi

(hi − µi)s

≤ 1

s!
mC max

h1,...,hC

(hi − µi)s

where the last line holds due to ρ
r ≤ 1 since ρ < r = max

h⃗
||h⃗− µ⃗||1. By setting s = 3

we find the remainder for the second-order Taylor approximation:

R = R3(h⃗− µ⃗) ≤
1

6
mmax

h⃗
||h⃗− µ⃗|||31 ≤

1

6
mC max

h1,...,hC

(hi − µi)3
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Theorem 4 decomposes the loss of model wrt. to its randomization Θ and the
data distribution D using a second order Taylor approximation. For a sufficiently
small remainder R we may write:

E h∼Θ
x,y∼D

[ℓ(h(x), y)] ≈ E h∼Θ
x,y∼D

[ℓ(µ(x), y)] + E h∼Θ
x,y∼D

[︃
1

2
ϕ(x)T∇2

µ(x)ℓ(µ⃗(x), y)ϕ(x)

]︃
(3.5)

= E h∼Θ
x,y∼D

[ℓ(µ(x), y)] +
1

2
tr
(︁
∇µ(x)ℓ(µ(x), y)cov(ϕ(x), ϕ(x))

)︁
(3.6)

where the second line is the quadratic form of the expectation. We interpret this
decomposition as a generalized Bias-(Co-)Variance decomposition: While the LHS
depicts the expected error of a model h, the first term on the RHS depicts the er-
ror of the expected model - or differently coined the algorithm’s bias. Moreover, the
second term can be interpreted as the co-variance of h with respect to the expected
model µ given a loss-specific multiplicative constant ∇2

µ(x)ℓ(µ(x), y). As shown in the
examples below this decomposition is a natural extension of what was presented in
the literature already and will serve as a guiding tool in this thesis. However, we
also emphasize the fact that this decomposition is only meaningful if the remainder
is small and negligible.

Example 1: Mean-squared error

Consider the mean squared error (MSE) of a one-dimensional regression task with
Y = R and let z = h(x):

ℓ(z, y) =
1

2
(z − y)2

∂ℓ(z, y)

∂z
= (z − y)

∂2ℓ(z, y)

∂z∂z
= 1

∂3ℓ(z, y)

∂z∂z∂z
= 0

(3.7)

The third derivative of the MSE vanishes and thus the above approximation is ex-
act. The resulting decomposition matches exactly the well-known bias-co-variance
decomposition.
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Example 2: Negative-log-likelihood

As a second example, we consider multi-class classification. Let z = h(x) ∈ RC and
let ℓ be the negative-log-likelihood loss (NLL):

ℓ(z, y) = −
C∑︂
i=1

yi log(zi)

∂ℓ(z, y)

∂zi
= −yi

zi
∂2ℓ(z, y)

∂zi∂zj
= − yi

z2i
(−1)1{i = j} = yi

z2i
1{i = j}

∂3ℓ(z, y)

∂zi∂zj∂zk
= −2 yi

z3i
1{i = j = k}

(3.8)

For this loss function, the third derivative does not vanish and thus the decomposition
is not exact. Looking at the third derivative we also see, that it can get uncontrollably
large for zi → 0 if yi = 1. Thus, if a model completely fails with a wrong prediction
then the decomposition error can be unbounded. Put differently, the performance
of a model using the NLL loss cannot be completely explained in terms of ‘Bias’ and
‘Variance’ since the remainder is not neglectable.

Example 3: Cross Entropy Loss

Consider the common combination of the NLL loss with the softmax function, also
called the cross entropy loss. Again, let z = h(x) ∈ RC and let

qi =
ezi∑︁C
i=1 e

zj
(3.9)

be the softmax function, then the cross-entropy loss is:

ℓ(z, y) = −
C∑︂
i=1

yi log(qi) = −
C∑︂
i=1

yi log

(︄
ezi∑︁C
i=1 e

zj

)︄
∂ℓ(z, y)

∂zi
= qi − 1{yi = 1}

∂2ℓ(z, y)

∂zi∂zj
= qi (1{i = j} − qj) =

{︄
qi((1− qj)) i == j

−qiqj else

∂3ℓ(z, y)

∂zi∂zj∂zk
= 1{i = j}qi (1{i = k} − qk)⏞ ⏟⏟ ⏞

∈[−1,1]

− qiqj (1{i = k} − qk)⏞ ⏟⏟ ⏞
∈[−1,1]

− qiqj (1{j = k} − qk)⏞ ⏟⏟ ⏞
∈[−1,1]

(3.10)
Due to the softmax function we have

∑︁C
c=1 qc = 1, qc > 0 ∀c = 1, . . . , C. The maxi-

mum of the third derivative is obtained for pairwise unequal i, j, k (i ̸= j, j ̸= k, i ̸= k)
and qi = qj = qk = 1

3 :

2 · qiqjqk ≤
1

27
< 0.038 (3.11)

Thus, the decomposition error for the cross entropy loss is bounded, and we can ex-
plain a model’s performance in terms of its bias and variance (up to the bounded



64 Chapter 3. The Bias-Variance Decomposition for Additive Ensembles

remainder).

Example 4: Exponential loss

The exponential loss can also be used for (binary) classification problems with Y =
{−1,+1} and C = 1 and is often used in ensembling algorithms such as AdaBoost.
Let z = h(x) be the prediction, then:

ℓ(z, y) = exp(−zy)
∂ℓ(z, y)

∂z
= −y exp(−zy)

∂2ℓ(z, y)

∂z∂z
= y2 exp(−zy) = exp(−zy)

∂3ℓ

∂z∂z∂z
= −y exp(−zy)

(3.12)

For this loss function, the third derivative does not vanish, and thus the decomposition
is not exact. We may estimate the remainder. Let z ∈ [−1,+1], then

∂3ℓ

∂z∂z∂z
≤ exp(1) (3.13)

and therefore
R = R3(h⃗− µ⃗) ≤

1

6
exp(1) ≤ 0.454 (3.14)

Note, that, if we predict one example wrong we already suffer a loss of exp(1) ≈ 2.7
which easily dominates the remainder. Therefore, the bias-variance decomposition
for the exponential loss can be meaningful if the model has correct predictions most
of the time.

Example 5: Gaussian Hinge Loss

Last, we present a variant of the popular hinge loss function. Since the normal hinge
function is not differentiable and variants like smooth hinge and squared hinge do not
have smooth second derivatives, we consider a continuously differentiable variant
based on the Gaussian error function for a binary classification problem with Y =
{−1,+1}, C = 1 and z = h(x):

ℓ(z, y) =
e−z2

√
π
− yz[1 + erf(−yz)]

∂ℓ(z, y)

∂z
= −y exp(−zy)

∂2ℓ(z, y)

∂z∂z
= y2 exp(−zy) = exp(−zy)

∂3ℓ(z, y)

∂z∂z∂z
= −y exp(−zy)

(3.15)

Similar to the exponential loss function, the third derivative does not vanish,
and thus the decomposition is not exact. We may estimate the remainder. Let
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z ∈ [−1,+1], then
∂3ℓ

∂z∂z∂z
= −y exp(−zy) ≤ exp(1) (3.16)

and therefore
R = R3(h⃗− µ⃗) ≤

1

6
exp(1) ≤ 0.454 (3.17)

similar to the exponential loss.
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4 | Training Additive Ensembles

Additive ensembles are arguably one of the most-used machine learning methods
available and frequently place among the best performing models in data science
competitions1. Recall that an additive ensemble F = {∑︁M

i=1wihi|h ∈ H, wi ∈ R} is
the weighted combination of a set of M (discrete) classifiers h ∈ H:

f(x) =

M∑︂
i=1

wihi(x) (4.1)

In order to train an additive ensemble at least three choices must be made:

• Model class: The model class H of the base models must be chosen and an
appropriate learning algorithm for the base learners must be given.

• Weights: Each expert in the ensemble receives a weight that must be computed.

• Number of experts: The number of experts must be chosen.

Due to their wide success, there are many ensembling algorithms available in the lit-
erature. Given their long history in machine learning and the rapid advancements in
ML research in the last years it is impossible to give a comprehensive overview of all
the different ensemble methods available. Hence, this section is an attempt to cate-
gorize different ensembling algorithms into different classes. Our main guiding tool
for this purpose is the generalized bias-co-variance decomposition that can explain
many ensembling algorithms as methods to minimize bias and increase co-variance
(sometimes also called diversity) in the ensemble.

4.1 Generalized Negative Correlation Learning

The previous chapter discussed the bias-variance decomposition mainly as a theo-
retical tool to understand the relationship of ensembles trained with different loss
functions. In this section, we want to turn it into a practical framework and show
how existing algorithms can be recovered with this framework. So far we implicitly
assumed that we can evaluate E h∼Θ

(x,y)∼D
[ℓ(h(x), y)], but this is impossible in practice

since we do not know the exact distribution D and in fact, this is part of the prob-
lem we would like to solve. Moreover, it is difficult to compute µ(x) = Eh∼Θ [h(x)]
exactly since the algorithm we use for computing h (e.g. SGD or CART) only implic-
itly induces a distribution over h and the exact nature of Θ for various model classes
is ongoing research [BS, SMDH13, AGCH19, KKB17]. Hence, we first present an

1https://wandb.ai/site/articles/ama-with-anthony-goldbloom-ceo-of-kaggle

https://wandb.ai/site/articles/ama-with-anthony-goldbloom-ceo-of-kaggle
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empirical version of Eq. 3.5 assuming that the remainder is sufficiently small, i.e.:

E h∼Θ
(x,y)∼D

[ℓ(h(x), y)] = E h∼Θ
(x,y)∼D

[ℓ(µ(x), y)] + E h∼Θ
(x,y)∼D

[︃
1

2
ϕ(x)T∇2

µ(x)ℓ(µ⃗(x), y)ϕ(x)

]︃
(4.2)

and use it to derive a combined loss function that encapsulates many existing works
in literature. As usual, we use the given labeled training set S to approximate the
expected loss:

E(x,y)∼D [ℓ(h(x), y)] ≈ 1

N

∑︂
(x,y)∈S

ℓ(h(x), y) (4.3)

Similarly, we may approximate the expected prediction µ with M models:

µ(x) = EΘ [h(x)] ≈ f(x) = 1

M

M∑︂
i=1

hi(x)

EΘ

[︃
1

2
ϕT∇2

µ⃗ℓ(µ⃗)ϕ

]︃
≈ 1

2M

M∑︂
i=1

di
TDdi

(4.4)

where D = ∇2
f(x)ℓ(f(x), y) and di = (hi(x) − f(x)). We stress the fact, that we

assume that these are good approximations. For large M and large N , this is certainly
a justified approximation as guaranteed by the law of large numbers. For smaller
N and smaller M this is not necessarily the case. However, additive ensembles of
this form are arguably the most common type of ensembles and undeniably work
well in practice. We define the empirical bias-variance decomposition for any twice-
differentiable loss function on x, y ∈ S as:

ℓ(f(x), y) =
1

M

M∑︂
i=1

ℓ(hi(x), y)−
1

2M

M∑︂
i=1

di
TDdi (4.5)

We use Eq. 4.5 as a basis for a learning algorithm: We can either directly minimize its
LHS and optimize the entire ensemble in an end-to-end fashion. Alternatively, we use
its RHS to derive a regularized objective that trains each model independently with a
coupling term enforcing diversity. To do so, let λ ∈ R be a regularization parameter,
then we may minimize:

1

M

M∑︂
i=1

ℓ(hi(x), y)−
λ

2M

M∑︂
i=1

di
TDdi (4.6)

Having such a regularized objective available naturally leads to the question of
what the exact choice of λ should be. Clearly, λ < 0 actively discourages diversity. For
λ = 0, we arrive at independent objectives. Similarly, a positive λ actively encourages
diversity. The specific value of λ must be chosen accordingly for the specific problem
at hand and can sometimes have a large impact on the optimization problem (see
e.g. the experiments in the chapter 5). For some loss functions, e.g. the MSE, a range
for different λ values can be given [BWT05], but a more general analysis is yet to be
found.

Note that Eq. 4.5 implies two different objectives: Either we minimize ℓ(f(x), y)
directly without considering the diversity at all or we minimize Eq. 4.6 and control
the diversity manually. Having those two objectives available begs the question of
which of both may lead to better results. Frankly, since both objectives are equal,
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minimizing both will lead to similar, if not equal results. Thus, using either approach
comes down to the more practical specifics of the problem at hand: Direct mini-
mization of the loss seems favorable because it automatically finds a good trade-off
between bias and variance and no hyperparameter tuning is necessary. Yet, using
Eq. 4.6, on the other hand, enables us to train each model independently and only
requires some synchronization between models (see e.g. [WRI+19] for a discussion
on distributed training in this context). Moreover, this approach allows practition-
ers to fine-tune the trade-off between bias and variance which might be favorable
for specific problems and base models. For example, in deep learning, it is common
practice to train networks to achieve zero loss on the training data and sometimes
train it even longer [ZBH+17, ZBH+21]. Recall that for a convex loss it holds that
di

TDdi ≥ 0 and therefore Eq. 4.5 implies that an ensemble with powerful base
learners having zero training loss should not have any variance on the training data.
Therefore, as soon as the base learners achieve zero training loss there is no need
to invest in variance because the best model (from the training data’s perspective)
has already been found. Clearly, this is neither the intuition behind the bias-variance
decomposition nor is it what we want to achieve. And indeed, in most practical ap-
plications we can be sure that even though we have zero training loss, that we will
suffer some loss when applying our model to new, unseen data. In this case, it might
still be favorable to enforce some diversity between base models during training to
achieve a better generalization error.

Interestingly, there is an upper bound of the empirical bias-variance decomposi-
tion that combines both approaches into a single objective. This upper bound re-
scales the individual contributions of the base learners and thus results in the same
solution as minimizing ℓ(f(x), y) or Eq. 4.6 for appropriate choices of λ. As a bonus,
this formulation does not depend on the costly computation of D and can also be
used when the remainder is not neglectable2:

ℓ(f(x), y) ≤ ℓ(f(x), y) + 1

M

M∑︂
i=1

ℓ(hi(x), y)

=
1

M

M∑︂
i=1

ℓ(hi(x), y)−
1

2M

M∑︂
i=1

di
TDdi +

1

M

M∑︂
i=1

ℓ(hi(x), y)

=
2

M

M∑︂
i=1

ℓ(hi(x), y)−
1

2M

M∑︂
i=1

di
TDdi

This leads us to the following Generalized Negative Correlation Learning (GNCL)
objective for λ ∈ [0, 1]:

1

N

N∑︂
j=1

(︄
λℓ(f(xj), yj) +

1− λ
M

M∑︂
i=1

ℓ(hi(xj), yj)

)︄
(4.7)

For λ = 0 this trains M models independently and we will refer to this extreme case
as independent training (Ind.). For λ = 1 all models are trained jointly in an end-
to-end fashion and consequently, we call this approach E2E. For values between zero
and one, we can smoothly interpolate between these to extremes making the entire

2For presentational purposes the remainder R has not been considered here, but this re-formulation
also holds when the (empirical) remainder is part of Eq. 4.5.
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spectrum available. At first glance, it seems superfluous that we first defined an em-
pirical version of the bias-variance decomposition in Eq. 4.5 and then argued that
for training the simpler version in Eq. 4.7 is sufficient. The main reason for this ap-
proach is, because Eq. 4.5 allows us to estimate the exact values of bias and variance
for a trained model, whereas Eq. 4.7 allows for an indirect, yet simpler optimization
of both quantities. This way Eq. 4.5 offers a theoretical tool for understanding the
trade-off between bias and variance in existing algorithms and models, where Eq. 4.7
gives us an efficient algorithm. Generalized Negative Correlation learning works well
for algorithms that allow us to directly minimize an object, e.g. via gradient-based
learning. However, even for non-gradient-based algorithms the objectives Eq. 4.6
and Eq. 4.7 form the basis of many existing ensembling algorithms in the literature.

Negative Correlation Learning (NCL)

The earliest works [LY99, BWT05] on NCL-Learning propose to minimize the MSE
with a coupling term including the ensembles’ diversity (c.f. Eq. (17) in [BWT05]):

1

M

M∑︂
i=1

1

2
(hi(x)− y)2 − λ

1

M

M∑︂
i=1

1

2
(hi(x)− f(x))2 (4.8)

Substituting the second derivative of the MSE loss in Eq. 4.6 directly leads to this
formulation. NCL is a specialized version of GNCL for the MSE loss.

Modular loss

Webb et al. propose to minimize both, the ensemble loss and the loss of each individ-
ual expert in a modular loss function (c.f. Eq (4) in [WRI+19]):

λKL(f(x)∥y) + (1− λ) 1

M

M∑︂
i=1

KL(hi(x)∥y) (4.9)

where KL denotes the KL-Divergence and λ ∈ [0, 1] is the regularization strength.
Substituting the cross-entropy loss into Eq. 4.7 yields the same formulation. The
modular loss is a specialized version of GNCL with the cross-entropy loss.

DivLoss

Opitz et al. use NCL as inspiration to enforce diversity among neural networks by
employing the cross-entropy loss between the individual experts’ outputs while mini-
mizing the individual and the ensemble loss. They propose to minimize (c.f. Eq. (15)
in [OPB16]) the DivLoss:

ℓ(f(x), y) +
λ1
M

M∑︂
i=1

ℓ(hi(x), y)−
λ2

M(M − 1)

M∑︂
i=1

∑︂
j ̸=i

ℓ(hi(x), hj(x)) (4.10)

where ℓ is the cross-entropy loss and λ1, λ2 ∈ R are regularization parameters. It is
easy to see that GNCL recovers this objective for λ1 = 1 − λ and λ2 = 0. A more
advanced analysis reveals a closer connection between both algorithms:
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ℓ(f(x), y) +
λ1
M

M∑︂
i=1

ℓ(hi(x), y)−
λ2

M(M − 1)

M∑︂
i=1

∑︂
j ̸=i

ℓ(hi(x), hj(x))

≥ ℓ(f(x), y)− λ2
M2

M∑︂
i=1

M∑︂
j=1

ℓ(hi(x), hj(x))

Since ℓ(hi(x), hj(x)) is convex in its first argument we use Jensen’s inequality:

1

M

M∑︂
i=1

ℓ

⎛⎝ 1

M

M∑︂
j=1

hj(x), hi(x)

⎞⎠ ≤ λ2
M2

M∑︂
i=1

M∑︂
j=1

ℓ(hi(x), hj(x))

1

M

M∑︂
i=1

ℓ (f(x), hi(x)) ≤
λ2
M2

M∑︂
i=1

M∑︂
j=1

ℓ(hi(x), hj(x))

− 1

M

M∑︂
i=1

ℓ (f(x), hi(x)) ≥ −
λ2
M2

M∑︂
i=1

M∑︂
j=1

ℓ(hi(x), hj(x))

−κ 1

M

M∑︂
i=1

ℓ (f(x), hi(x)) ≤ −
λ2
M2

M∑︂
i=1

M∑︂
j=1

ℓ(hi(x), hj(x))

for some κ ≤ 1 and therefore

ℓ(f(x), y)− λ2
M2

M∑︂
i=1

M∑︂
j=1

ℓ(hi(x), hj(x)) ≤ ℓ(f(x), y)− λ2κ

M

M∑︂
j=1

ℓ(f(x), hj(x))

= ℓ(f(x), y)− λ

M

M∑︂
j=1

ℓ(f(x), hj(x))

(4.11)

with λ = κλ2. Interestingly, Webb et al. show in [WRI+19] that this formula is an
alternative formulation of their modular loss when setting λ1 = 1 and λ2 = λ ∈ [0, 1].
It follows, the objective proposed in [OPB16] is an upper bound of the modular loss
proposed in [WRI+19], which in turn is a specialized version of GNCL learning for
the cross entropy loss.

Diversity with Cooperation

Dvornik et al. propose in [DMS19] an ensemble approach that focuses on diversity
and cooperation at the same time. More formally, they propose to use the following
objective

M∑︂
i=1

ℓ(hi(x), y) +
λ

(M − 1)

M∑︂
i=1

∑︂
j ̸=i

ψ(hi(x), h
j(x)) (4.12)

where ψ is a penalty function to enforce diversity in the ensemble. By using the cross-
entropy loss and setting ψ = −ℓ we arrive at the DivLoss function for λ1 = M and
λ2 = 1. Thus, the Diversity with Cooperation approach by Dvornik et al. is closely
related to GNCL. However, we note that the authors combine arbitrary loss func-
tions ℓ and penalties ψ. In particular, they propose to use either the cosine-similarly
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ψ(hi(x), hj(x)) = cos(ˆ︁hi(x),ˆ︁hj(x)) or the symmetric KL-divergence ψ(hi(x), hj(x)) =
1
2

(︂
D(ˆ︁hi(x)∥ˆ︁hj(x)) +D(ˆ︁hj(x)∥ˆ︁hi(x)))︂where ˆ︁hi(x) are the normalized classifier’s pre-

dictions without the true label (the corresponding vector entry is set to 0). As the au-
thors note, each penalty term seems to work for different ensemble sizes, and overall
their paper shows mixed experimental results.

Independent Learning (Ind.)

Some articles argue, that the random initialization of deep nets combined with stochas-
tic gradient descent promotes enough diversity. These approaches simply train M
models independently thereby optimizing

1

M

M∑︂
i=1

ℓ(hi(x), y). (4.13)

This training method sometimes occurs as a special case for certain hyperparame-
ter settings [BWT05, WRI+19, WRC+20], but is also used as a standalone method
[LPC+15, LPB17, SOF+19, DCLT19]. It is easy to see that for λ = 0 GNCL recovers
this objective and thus allows for independent learning.

End-to-End Learning (E2E)

Joint training of the entire ensemble in an End-to-End fashion has also been proposed.
This approach ignores the bias and variance of the individual experts but focuses on
the ensemble’s joint loss by minimizing

ℓ(f(x), y) (4.14)

directly. Here, the literature is slightly more fragmented. End-To-End training occurs
in [BWT05, OPB16, WRI+19, WRC+20] as a special case for certain hyperparameter
settings. Dutt et al. call this approach a coupled ensemble [DPQ17], whereas Lee et
al. call this approach training under an ensemble-aware loss [LPC+15]. It is easy to
see that for λ = 1 GNCL recovers this objective and thus allows for E2E learning.

As mentioned previously, GNCL is a new training objective that is often combined with
gradient-based learning, especially in the context of neural networks. Here, the entire
ensemble can be viewed as a specific neural network architecture that is trained with
gradient descent algorithms minimizing the GNCL objective. As discussed in section
2.4.2, neural networks with enough hidden units and/or enough layers are consistent
and universal function approximators. It follows that ensembles of neural networks
trained via GNCL are also consistent and universal function approximators given they
are large enough.

4.2 Bagging and Related Algorithms

Bagging is an ensemble technique that introduces randomness into the training to
promote diversity. In its general form, each base learner receives a random seed that
randomizes the individual training processes. Then each model is weighted equally
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with wi =
1
M . A formal algorithm is given in algorithm 9. Bagging works with any

type of base learner h ∈ H and the training process can easily be parallelized. Hence,
it is one of the fastest ensembling techniques available.

Algorithm 9 Bagging.
1: function TRAIN_BAGGING(Θ,H,S,M)
2: for i = 1, . . . ,M do
3: Obtain random seed θ ∼ Θ
4: Train hypothesis hi,θ ∈ H to minimise ˆ︁LS(hi,θ)
5: wi =

1
M

return f =
∑︁M

i=1wihi(x)

There are two natural questions arising for bagging-like ensembles. First, what
type of randomization should be used for training individual models, and then, how
many classifiers M are required? To answer the second question we note, that we
may view the prediction of a bagging model as the approximation of the expected
model under the randomization Θ:

f(x) =
1

M

M∑︂
i=1

hi(x) ≈ Eθ∼Θ [hθ(x)] (4.15)

Hence the question becomes how quickly this approximation converges against its
mean. We can use the empirical Bernstein inequality [AMS07] to bound the distance
between f(x) and Eθ∼Θ [hθ(x)]:

|f(x)− Eθ∼Θ [hθ(x)]| ≤ Cσ
√︃

2 log(1/δ)

M
+

3R log(1/δ)

M
(4.16)

where C is the number of classes, R is the range for each entry in the probability
vector and σ is the empirical variance between the prediction of each ensemble mem-
ber. It follows that a bagging-like ensemble will converge against its mean prediction
with a rate of O

(︂
1√
M

)︂
. The optimal choice for randomization is much more difficult

to answer and multiple algorithms exist. The vanilla bagging algorithm in [Bre96]
uses bootstrap samples that sample N observations with replacement from S and
fit each model on its respective sample. If random subsets are considered then this
algorithm is known as pasting [Bre99]. Random subspaces [Ho98] sample random
features instead of sampling observations. The random forest algorithm [Bre01] is a
combination of both ideas for DTs models. It uses a bootstrap sample for each tree
and samples features for each split. Extremely randomized trees [GEW06] take this
approach one step further by randomly sampling a set of splits that are scored on
bootstrap samples for each tree. Arguably the most extreme version of this approach
is perfect random trees [CZ01] that randomly select splits until the tree perfectly fits
their respective bootstrap sample.

Bagging can be expressed in the previously discussed GNCL framework. As men-
tioned already the independent training (Ind.) of models uses the (random) initial-
ization of neural networks to include diversity into the model training and hence
naturally fits the GNCL framework. Bauer and Kohavi propose an extension to bag-
ging called wagging in [BK99] that samples different weights instead of sampling
examples or features directly. Oza and Russel show in [OR01] that wagging with
weights sampled from a discrete Poisson distribution w ∼ Poisson(1) is the same as
bagging. Similarly, Webb proposes in [Web00] to use continuous Poisson weights for
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wagging, which improves the performance of certain base learners. We can add the
wagging weights to the loss

1

N

N∑︂
j=1

1

M

M∑︂
i=1

wj,i
˜︁ℓ(hi(xj), yj) (4.17)

where wj,i ∈ R+ is a precomputed Poisson weight for each base learner hi, sam-
ple (xj , yj) and ˜︁ℓ : Y × RC → R+ is another loss function. Setting ℓ(hi(xj), yj) =

wi,j
˜︁ℓ(hi(xj), yj) and λ = 0 in Eq. 4.7 yields the same formulation. Hence, we can

simulate wagging and bagging with appropriate loss functions inside the GNCL frame-
work. It is difficult to give a general statement on the consistency and universal func-
tion approximation of bagging-like ensembles as this is highly dependent on the base
learners and the specific randomization. When using neural networks as base learn-
ers the previous discussion applies and bagging-like ensembles of such are universal
function approximators. As shown later in Theorem 6 there is an equivalence be-
tween DTs and DT ensembles and hence, tree ensembles are also universal function
approximators. The consistency of bagging-like ensembles, however, is much more
difficult to show. The discussion above implies that for M → ∞ the prediction f(x)
will converge against its mean if the output of base learners h(x) is bounded. How-
ever, it does not guarantee that this mean is biased or not due to the randomization
involved in training the individual base learners. And indeed, Biau et al. give in
[BDL08] a series of theorems establishing the consistency of averaging classifiers in
various scenarios that imply that many popular algorithms such as random forests are
not universally consistent. A later study by the same authors in [SBV15] then turns
this argument around to show that under mild assumptions a random forest classifier
is consistent.

4.3 Boosting and Related Algorithms

Boosting is an iterative algorithm that trains new classifiers to correct the errors of
the previous ones and thereby constructs a ‘strong’ classifier from ‘weak’ models. The
first boosting algorithm was introduced by Freund and Schapire in [FS95], which
then sparked a series of different algorithmic variations and studies on the behavior
of boosting. There currently exist two views of boosting, namely that boosting can
be seen as gradient-descent in function space and a more statistical view in which
the errors of a model give rise to an error distribution on which subsequent models
are fitted. In this thesis, we will adapt the gradient-descent viewpoint as it allows
us to formulate boosting as a general algorithmic framework that encapsulates many
different methods. A more detailed overview of boosting, its properties, and related
methods are given in [SF12].

Consider a finite or countably infinite set H = {h : X → Y} of |H| = K models.
Recall the general minimization problem of the ERM principle is

f∗ = argmin
w∈RK

1

N

∑︂
(x,y)∈S

ℓ

(︄
K∑︂
i=1

hi(x)wi, y

)︄
(4.18)

Hence, in order to find f∗ we must compute the appropriate weight vector w for the
ensemble fw(x) =

∑︁K
i=1wihi(x). Since K will presumably be very large, coordinate

descent is a favorable choice for this problem. We adapt algorithm 1 (coordinate
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descent with Gauß-Southwell update rule) for this problem. To obtain the coordinate-
wise derivative we use the chain rule for coordinate i:

∂

∂wi

⎛⎝ 1

N

∑︂
(x,y)∈S

ℓ(fw(x), y)

⎞⎠ =
1

N

∑︂
(x,y)∈S

∂ℓ(fw(x), y)

∂fw(x)
hi(x) =

1

N
⟨∇⃗, h⃗i⟩ (4.19)

where ∇⃗ =
(︂
∂ℓ(fw(x1),y1)

∂fw(x1)
, ∂ℓ(fw(x2),y2)

∂fw(x2)
, . . .

)︂
and h⃗i = (hi(x1), hi(x2), . . . ). The Gauß-

Southwell selection is given by:

i = argmax
i∈{1,...,K}

⃓⃓⃓⃓
∂ℓ(fw(x), y)

∂wi

⃓⃓⃓⃓
= argmax

i∈{1,...,K}

⃓⃓⃓⃓
1

N
⟨∇⃗, h⃗i⟩

⃓⃓⃓⃓
= argmin

i∈{1,...,K}
−
⃓⃓⃓⃓
1

N
⟨∇⃗, h⃗i⟩

⃓⃓⃓⃓
(4.20)

Since we choose w optimally with respect to the minimization we may ignore the
absolute value here3 which leads to

i = argmin
i∈{1,...,K}

⟨−∇⃗, h⃗i⟩ (4.21)

It follows that the selection of the coordinate i is in fact the training of the model h
on the residuals ∇⃗ of the ensemble. Hence, in each iteration, we select that model
from H that aligns best with the current gradient. To choose the optimal step size αt

we perform a line search:

α = argmin
α∈R

1

N

∑︂
(x,y)∈S

ℓ (fw(x) + h(x)α, y) = argmin
α∈R

1

N
ℓS

(︂
⟨f⃗w, αh⃗⟩

)︂
(4.22)

where, with some abuse of notation, f⃗w = (fw(x1), fw(x2), . . . ) and h⃗ = (h(x1), h(x2), . . . ).
Algorithm 10 offers a very general framework to fit an ensemble. We start with the
zero vector that does not select any model from H. Then we compute the optimal
step size via a line search and finally update the ensemble. Thus, by construction,
the solution f(x) =

∑︁M
t=1 ht(x)wt is sparse in that sense, that we only select up to M

hypothesis from H in M rounds. We do not need to store h⃗ explicitly, since most of
its weights are 0 by initialization.

Algorithm 10 Boosting as Coordinate Descent with Gauß-Southwell rule.
1: function TRAIN_BOOSTING(H,S,M)
2: w0 ← 0⃗ ▷ Start with zero solution
3: for t = 1, . . . ,M do ▷ Repeat until convergence
4: ∇⃗ ←

(︂
∂ℓ(ft−1(x1),y1)

∂ft−1(x1)
, . . .

)︂
▷ Compute residuals on S

5: ht ← argminh∈H⟨−∇⃗, h⃗t⟩ ▷ Train model ht on residuals
6: wt ← argminw∈R

1
N ℓS

(︂
⟨f⃗wt

, λh⃗t⟩
)︂
▷ Linesearch

7: f(t+1) ← f(t) + wtht ▷ Apply gradient step in dimension j
return fM

An interesting case occurs when we re-sample a coordinate i meaning that we
train the same model twice. In this case, the gradient ∇⃗ also occurred in a previous
round and the ensemble now has the same errors as before. Hence, fitting the same
model twice is a good indicator that the ensemble is converged given that no other
randomization is involved in the algorithm. Last note that if a coordinate is never

3We can choose −w or w depending on the direction necessary for minimization.
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re-sampled then its weight wi is determined by its initial step size αt used when
the model was trained. Hence, the line search in line 4 can also be viewed as the
computation of the weights for the respective model.
Technical note: We require H to be finite, which seems overly restrictive in practice.
First, we note, that in practice every class of base learners can be viewed as finite
for numerical reasons. Consider, without loss of generality, the case that h is defined
by some parameter vector θ with m entries. Every practical implementation of h
must represent θ with some numerical error, e.g. choose θ ∈ Fm

32 from the set of
m dimensional vectors of 32-bit floating-point numbers. There are 232 floating-point
numbers and thus F32 is certainly finite. Since the cartesian product of finite sets is
also finite, we note that Fm

32 is finite. Second, we see, that it is enough to uniquely
enumerate all items in H (or equivalent in Θ), which means that H can be infinite,
but must be countable. Last, we can lighten these restrictions even more by only
demanding that parameter vectors in Θ are measurable: If Θ is not countable, but the
identity function I(θ) = θ ∀θ ∈ Θ is measurable we can still sufficiently approximate
it with a countable number of intervals. More formally (c.f Theorem 2), there exists
a sequence (In)n∈N of simple functions In ∈ {g =

∑︁n
j=1 ak1{Sk}|g : θ → R} with

ak ∈ R and Sk = [lk, uk] ⊆ R such that ∀θ ∈ θ : limn→∞ In(θ) = I(θ). In this view, we
can think of g as a stepwise approximation of I using a countable number of intervals
Sk. Then again, we can assign a unique index to each element in Θ based on those
intervals. Those requirements are rather technical and do not impact the algorithm in
practical implementations. However, we wanted to point them out anyway to make
not only the practical but also the theoretical boundaries of this representation clear.

AdaBoost

AdaBoost (short for Adaptive Boosting) was developed by Freund and Schapire in
[FS95] and is the first boosting algorithm that adapts to the performance of the base
classifiers4. We now show how to recover the original AdaBoost algorithm in algo-
rithm 10. AdaBoost uses the exponential loss

ℓ(f(x), y) = exp(−f(x) · y) (4.23)

which has the following derivative

∂ℓ(f(xi), yi)

∂f(xi)
= −yi exp(yi · f(xi)) = −yi ·Di (4.24)

where Di is called the weight of example i. For brevity, we omit all iterations indices
in the following, i.e. h⃗t becomes h⃗, etc. To better fit the view of the original AdaBoost
algorithm, we also normalize the weights Di:

⟨h⃗,−∇⟩∑︁N
i=1Di

= −
∑︁N

i=1Diyih(xi)∑︁N
i=1Di

= −
N∑︂
i=1

Di∑︁N
i=1Di

yih(xi) = −
N∑︂
i=1

Di
˜ yih(xi) (4.25)

Note that
∑︁N

i=1Di
˜ = 1 and that Di

˜ has a positive sign if h(xi) = yi and a negative
sign otherwise. Thus:

N∑︂
i=1

Di
˜ yih(xi) =

∑︂
h(xi)=yi

D̃i −
∑︂

h(xi)̸=yi

D̃i = 1 (4.26)

4Prior algorithms required the performance of the learner to be known before execution.
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Re-substituting the normalization term and some rearranging leads to

⟨h⃗,−∇⟩ = −
N∑︂
i=1

Di
˜ yih(xi) = −

⎛⎝1−
∑︂

h(xi)̸=yi

Di
˜

⎞⎠ =

∑︁
h(xi)̸=yi

Di∑︁N
i=1Di

(4.27)

where we omitted the constant in the last transformation because it does not affect
the minimization. In order to compute the appropriate step size α we have to solve
the following optimization problem

α = argmin
α∈R

1

N

∑︂
(x,y)∈D

L(f + αh, x, y) = argmin
α∈R

N∑︂
i=1

exp(−yi(f + αh))

= argmin
α∈R

N∑︂
i=1

exp(−yif) exp(−yiαh)

= argmin
α∈R

∑︂
h(xi)̸=yi

Di exp(α) +
∑︂

h(xi)=yi

Di exp(−α)

(4.28)

We take the first derivative:

∂

∂α

⎛⎝ ∑︂
h(xi)̸=yi

Di exp(α) +
∑︂

h(xi)=yi

Di exp(−α)

⎞⎠ =
∑︂

h(xi)̸=yi

Di exp(α)−
∑︂

h(xi)=yi

Di exp(−α)

(4.29)
Setting the first derivative to 0 and solving for α leads to

α =
1

2
ln

(︄∑︁
h(xi)=yDi∑︁
h(xi)̸=yi

Di

)︄
(4.30)

Now combining algorithm 10 with equation 4.30 and equation 4.27 reproduces the
well-known AdaBoost algorithm. This same framework can be followed to recover
other boosting algorithms such as ConfidenceBoost or LogitBoost [MBBF99].

The two different views of boosting lead to two different convergences results.
The convergence analysis of the CD algorithm as discussed in chapter 2.2 can be
readily applied to Algorithm 10 showing that boosting will converge to a solution in
O
(︁
K
M

)︁
. From the statistical viewpoint of boosting the convergence analysis may also

make use of the fact that we train a classifier in each round. Here the so-called weak-
learnability assumption plays a central role. It assumes, that for every distribution
there is a model h ∈ H in the hypothesis class so that its classification error is below
1/2:

P(x,y)∼D(h(x) ̸= y) ≤ 1

2
− γ (4.31)

for some γ > 0. We call γ the edge of model h. For the convergence analysis, we are
only interested in the training error, and hence we may replace D with S and arrive
at the empirical weak-learnability assumption. It is possible to show exponential
minimization of the error for AdaBoost when the weak-learnability assumption holds
[SF12]. Both views guarantee the convergence of boosting against a stationary point.
The coordinate descent view offers more freedom in the choice of the loss function
and the statistical view places more emphasis on the base models in the ensemble.
Intuitively, the weak-learnability assumption guarantees a constant change in the loss
during minimization. Mukherjee et al. were able to integrate this intuition into a
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formal proof for the convergence of AdaBoost in [MRS13]. They show, that AdaBoost
requires at least Ω(1ε ) rounds to achieve a loss within ε of the optimal loss without the
weak-learning assumption thereby connecting both views.

The convergence analysis of boosting gives us the safety that the algorithm will
converge which is a necessary condition for its consistency. Moreover, it also implies
that its training error will reach 0 if the weak-learning assumption holds meaning that
we can perfectly fit the training sample S. Combining this result with the law of large
numbers implies that every boosting algorithm can transform a weak learner that is
better than random guessing (i.e.g it has a positive edge) into an arbitrary strong
learner, i.e. into a universal function approximator. This argument has been first
presented for AdaBoost in [FS95], and it was later shown that AdaBoost and some
of its variations are also consistent [LV04, ZY05, BT06]. For a more comprehensive
overview of this topic, we refer interested readers to [SF12].

Boosting is a very general framework to minimize the loss ℓ(f(x), y) via approxi-
mating the gradients in each iteration. Thus, it is closely related to GNCL with λ = 1,
but behaves fundamentally different from GNCL because it is designed to greedily ap-
proximate gradients for non-differential base learners. Theoretically, both approaches
could be combined: The proposed GNCL objective can e.g. be minimized via stochas-
tic gradient descent (as usually done) or for example by boosting weak learners on
the GNCL objective.

4.4 Dropout and Pseudo-Ensembles

Dropout [SHK+14] is a regularization method for deep nets, that randomly sets
weights to zero during the forward pass. It is anecdotally sometimes referred to
as ‘the ensemble of possible subnetworks’ [BS13, GG16]. Bachman et al. studied
this connection more closely and proposed in [BAP14] the term pseudo-ensembles.
Pseudo-ensembles are ensembles that are derived from a single large network by
perturbing it with a noise process. Although not explicitly mentioned, snapshot en-
sembles [QZR+14, HLP+17] that store multiple versions of the same network (e.g.
by storing the model every few epochs during training) can also be seen in this frame-
work. Pseudo-ensembles minimize the following objective

1

N

N∑︂
j=1

Eθ [ℓθ(µ(xi), yi)] + λEθ [Z (µ(xi), µθ(xi))] (4.32)

where µ denotes the ‘mother’ net, µθ is a ‘child net’ under the noise process θ, ℓ is a
loss function and Z is a regularizer with regularization strength λ. The bias-variance
decomposition discussed earlier implies the same objective with Z = ϕT∇2

µ⃗ℓ(µ⃗)ϕ and
by introducing λ as presented earlier. Unfortunately, the authors of [BAP14] do not
discuss how to directly minimize this objective under the noise process θ. Interest-
ingly, for their experiments they use the same GNCL objective in Eq. 4.7 with the
cross entropy loss5. Hence, GNCL can be viewed as an empirical version of pseudo-
ensembles. It is noteworthy however that both approaches have two different view-
points: Pseudo-Ensembles train a single network and spawn a diverse set of offspring
from this large network, whereas GNCL tries to combine a set of smaller models into
a large one. In a sense, GNCL starts with many small learners and combines them into

5This is not explicitly stated in the paper, but can be observed in the original implementation https:
//github.com/Philip-Bachman/Pseudo-Ensembles.

https://github.com/Philip-Bachman/Pseudo-Ensembles
https://github.com/Philip-Bachman/Pseudo-Ensembles
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one big model, whereas Pseudo-Ensembles start from a big model to extract multiple
sub-models from it.

4.5 Stochastic Multiple Choice Learning

Lee et al. train in [LPC+15, LPC+16] a diverse ensemble of classifiers by using
stochastic multiple choice learning (SMCL). Instead of training all ensemble mem-
bers on all the available data, they only update that member with the smallest loss.
This way, the diversity that naturally occurs e.g. due to the random initialization,
is further promoted. We could not find a direct mathematical relationship between
SMCL and GNCL.
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5 | On the Double-Descent Phe-
nomenon in Random Forests

Before we discuss ensembles in the context of small devices we will visit one addi-
tional theoretical explanation for the performance of (decision tree) ensembles that
has emerged recently as a by-product of deep learning research. Chapter 2.3 in-
troduces the ERM principle as one of the core theoretical foundations of machine
learning. A central part of ERM is to use a regularizer that punishes overly complex
models so that learning focuses on small, concise models. The bias-variance trade-off
(not to be confused with the bias-variance decomposition) is an arguably extremer
version of this idea and forms another core theoretical foundation of ML. It states
that a smaller, less complex model will generalize better than a large, very complex
model if both have comparable empirical error [SSBD14]. Hence, one should always
strive for a good balance between model complexity and empirical error. The last
years of deep neural network research challenged this widely accepted notion by us-
ing larger and larger models with more and more parameters that seemingly do not
overfit. One particular remarkable observation is that DNNs seem to exhibit a double
u-shaped curve sometimes dubbed ‘double descent‘ (see Figure 5.1): With increas-
ing model complexity, the training error approaches 0 quickly and the test-error also
shrinks up to a point where overfitting starts and the test-error rises again. However,
further increasing the model complexity, e.g. beyond what is reasonable given the
available training data suddenly leads to a drop in test error again.

The reasons for this behavior are not entirely discovered yet and the question is,
whether SGD-like learning algorithms or the model architecture of deep nets are the
decisive factors for this phenomenon [ZBH+21]. Similarly, a line of research asks if
such a phenomenon exists for other, non-deep learning models and other learning
algorithms such as random forests (RF). Belkin et al. showed in [BHMM19] that
there seems to be a universal double-descent across different types of models. In
particular, the authors show that RFs also exhibit a double-descent which could ex-
plain the miraculous performance of RFs in practice. We found that the discussion
of the double-descent phenomenon is not properly placed in the context of existing
research. In particular, the authors suggest using the total number of decision nodes
in the random forests as their complexity measure, whereas learning theory implies
that the average number of decision nodes in the forest would be a more appropriate
measure. Similarly, training over-parameterized decision trees is virtually impossible
because we cannot train larger trees than what we have data available. Last, the
diversity among the trees inside the ensemble has long been cited as one of the cor-
nerstones of a RF’s good performance and hence cannot be ignored in this discussion.
We revisit these explanations in the context of the recently emerged double-descent
phenomenon and ask: Is there a double descent in RF? We emphasize that we couple
existing theoretical knowledge with empirical evidence and leave a more thorough
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FIGURE 5.1: Bias-Variance trade-off: A single descent occurs if the
error decreases while the model complexity increases. A U-Shaped
curve can be seen when overfitting occurs and the error increases
again after a certain model complexity is reached, either with or with-
out a plateau. A double-descent can be seen where the loss suddenly
again decreases if the model complexity is further increased beyond

the point of overfitting.

theoretical analysis of this subject for future research. The list of datasets used for
these experiments is depicted in Table 5.1.

TABLE 5.1: Datasets used for the experiments. We per-
formed minimal pre-processing on each dataset removing in-
stances that contain NaN values and computed a one-hot encod-
ing for categorical features. Each dataset is available under

https://archive.ics.uci.edu/ml/datasets.

Dataset N C d

Adult 32 562 2 108
Bank 45 211 2 51
EEG 14 980 2 14
Magic 19 019 2 10
Nomao 34 465 2 174

5.1 The Complexity of Tree Ensembles

For clarity, we refer to overfitting as the u-shaped curve depicted in Figure 5.1 in
which the test error increases again after a certain complexity is reached, but not the
fact that in many practical applications there is a gap between the test and training
error. Recall that a random forest is a convex combination of M axis-aligned decision
trees hi ∈ H each scaled by the same weight wi =

1
M :

f(x) =
M∑︂
i=1

wihi(x) =
1

M

M∑︂
i=1

hi(x) (5.1)
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Here H is the model class of axis-aligned decision trees and f is a random forest.
For completeness, Figure 11 depicts the random forest algorithm, but note that the
following experiments can be repeated for all the bagging ensembles mentioned in
section 4.2 with decision trees as base learners.

Algorithm 11 Training of a random forest.
1: function TRAIN_RF(S,M, nl, d)
2: for i = 1, . . . ,M do ▷ Train M models
3: Si ← bootstrap_sample(X) ▷ Draw bootstrap sample
4: hi ← new_root_node() ▷ Init. new tree
5: nodes← [(hi,Si)] ▷ List of remaining nodes and data
6: l← 0 ▷ Number of leafs
7: while len(nodes) > 0 do ▷ Over all remaining nodes
8: n,Sn ← nodes.pop() ▷ Get current node and data
9: di ← sample_features(d) ▷ Draw features

10: split← best_split(Sn, di) ▷ Get best split
11: n.set_split(Sn, split) ▷ Store split
12: Sl,Sr ← split_data(Sn, split) ▷ Split into left/right
13: cl, cr ← new_children(n) ▷ Init new children
14: if valid(Sr,Sl) and l < nl then ▷ Check if split is valid
15: nodes.append(cl,Sl) ▷ Add left child
16: nodes.append(cr,Sr) ▷ Add right child
17: else
18: n.is_leaf← true ▷ Set leaf node
19: n.set_classes(Si) ▷ Estimate class frequencies
20: l← l + 1 ▷ Set leaf node
21: trees.append(hi) ▷ Add hypothesis
22: weights.append(1/M) ▷ Add weight

return h1, . . . , hM

In statistical learning theory the generalization error of a model f is bounded
in terms of its empirical error 1

N

∑︁N
i=1 ℓ(f(xi), yi) given some loss function ℓ and a

complexity measure R for the trained model. For concreteness consider a binary
classification problem with Y = {−1,+1} and let f : X → [−1,+1] be a prediction
model and ρ > 0 be the classification margin. We denote the binary classification
error of f on D with respect to ρ with Lρ(f) and the empirical classification error of
f wrt. ρ on S with ˆ︁Lρ,S(f):

Lρ(f) = E
(x,y)∼D

[1{yf(x) ≤ ρ}] (5.2)

ˆ︁Lρ,S(f) = E
(x,y)∼S

[1{yf(x) ≤ ρ}] = 1

N

N∑︂
i=1

1{yif(xi) ≤ ρ} (5.3)

The following theorem bounds the generalization error of a convex combination
of classifiers in terms of their individual Rademacher complexities.

Theorem 5 (Convex combination of classifiers [CMS14]). Let H =
⋃︁k

j=1Hj denote a
set of base classifiers and let f =

∑︁M
i=1wihi with wi ∈ [0, 1],

∑︁M
i=1wi = 1 be the convex

combination of classifiers hi ∈ H. Furthermore, letR(hi) be the Rademacher complexity
of the i-th classifier. Then, for a fixed margin ρ > 0 and for any δ > 0, with probability
at least 1 − δ over the choice of sample S of size N drawn i.i.d. according to D, the
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following inequality holds:

L0(f) ≤ ˆ︁LS,ρ(f) +
4

ρ

M∑︂
i=1

wiR(hi) + C(N, k, ρ)

where C(N, k, ρ) is a constant depending on N, k, ρ which tends to 0 for N → ∞ and
for any k, ρ.

Theorem 5 offers two interesting insights: First, the Rademacher complexity of a
convex combination of classifiers does not increase, but it is the weighted average of
individual complexities R(hi):

R(f) =
M∑︂
i=1

wiR(hi) (5.4)

Hence, an ensemble is not more likely to overfit than each of its individual base
learners. Second, the individual Rademacher complexities of each base learner are
scaled by their respective weights, and therefore a very complex tree with little weight
wi → 0 does not hurt the generalization performance of the forest. The key question
now becomes how to compute the Rademacher complexity of the trees inside the
forest. It is well-known that the Rademacher complexity R(hi) is related to the VC-
dimension D(hi) of each tree via (see e.g. [SSBD14])

R(hi) ≤
√︃

2D(hi)

N
. (5.5)

Interestingly, the exact VC-Dimension of decision trees is unknown. Asian et al. per-
formed an exhaustive search to compute the VC dimension of trees with depth up to
4 in [AYA], but so far no general formula has been discovered. However, there exist
some useful bounds. A decision tree hi with ni nodes trained on di binary features
has a VC-dimension of at most [Man97]:

D(hi) ≤ (2ni + 1) log2(di + 1) (5.6)

Leboeuf et al. extend this bound for continuous features in [LLM20] by introducing
the concept of partition functions into the VC framework. They are able to show
that the VC-dimension of a decision tree trained on di continuous features is of order
O (ni log(ni + di)). Unfortunately, the expression discovered by the authors is com-
putationally expensive so that experiments with larger trees are impractical1. For our
analysis in this chapter, we are interested in the asymptotic behavior of DTs and RFs.
Hence, we use the following asymptotic Rademacher complexity:

ˆ︁R(hi) =√︃2ni log(ni + di)

N
(5.7)

5.2 There is no Double-Descent in RF

Belkin et al. empirically showed in [BHMM19] that RF exhibits a double-descent
curve. Similar to our discussion here, the authors introduce the number of nodes as a

1The authors provide a simplified version of their expression which works well for trees with less
than 100 leaf nodes on our test system, but anything beyond that would take too long.
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measure of complexity for single trees but then use the total number of nodes in the
forest throughout their discussion. While we acknowledge that this is a very intuitive
definition of complexity it is not consistent with the results in learning theory. Hence,
we propose to use the average (asymptotic) Rademacher complexity as a capacity
measure. We argue, that with this adapted definition, there is no double-descent
occurring in RFs but rather a single descent in which we fit the training data better
and better or there is a slight overfitting depending on the data.

We validate our hypothesis experimentally. To do so we train various RF models
with different complexities and compare their overfitting behavior. We will focus on
the five datasets depicted in 5.1. We specifically choose binary classification prob-
lems with a variable number of features 10 − 174 on medium-sized datasets. We
performed minimal pre-processing on each dataset removing instances that contain
NaN values and computed a one-hot encoding for categorical features. By today’s
standards, these datasets are small to medium size which allows us to quickly train
and evaluate different configurations, but large enough to train large trees. The
code for these experiments is available under https://github.com/sbuschjaeger/
rf-double-descent.

In our experimental evaluation, we want to study the overfitting behavior of DTs
and RFs by training models with different Rademacher complexities. To do so we
need to control the empirical error 1

N

∑︁N
i=1 ℓ(f(xi), yi) as well as the Rademacher

complexity of the model. Our experimental protocol is as follows: As implied by The-
orem 5 the Rademacher complexity of a forest does not change when adding more
trees, and it is bounded by the most complex tree, i.e. R(f) ≤ max{R(h1), . . . ,R(hM )}.
Second, Oshiro et al. showed in [OPB12] empirically that the predictions of a RF
stabilizes between 128 and 256 trees, and adding more trees to the ensemble does
not yield significantly better results. Hence, we train ensembles with M = 256 trees,
and we do not expect the loss of the forests to change significantly when adding more
trees. In order to control the Rademacher complexity of the individual trees we found
that changing the maximum number of leaf nodes nl ∈ {2, 4, 8, 16, 32, 64, . . . , 16384}
gives the most direct control over the Rademacher complexity. In all our experiments
we perform a 5-fold cross-validation and report the average error across these runs.

Figure 5.2a shows the results of this experiment. Solid lines show the test error
and dashed lines are the training error. Note the logarithmic scale on the x-axis. It can
be clearly seen that for both, RF and DT, the training error decreases towards 0 for
larger nl values. On all but the EEG dataset, we see the classic u-shaped overfitting
curve for a DT in which the error first improves and then suddenly increases again
until it reaches a plateau in which no more overfitting occurs. Looking at the RF we
see a single-descent curve on most datasets and some small signs of overfitting on the
adult dataset.

When there is no double-descent in random forests, then why are they perform-
ing better than single trees? Interestingly, the Rademacher complexity may already
offer a reasonable explanation of this behavior. First, a RF uses both, feature sam-
pling and bootstrapping for training new trees. When done with care2, then feature
sampling can reduce the number of features to di ≪ d so that log2(di + 1) also
becomes smaller and thereby also reduces R. Second, bootstrap sampling samples
data points with replacement. Given a dataset with N observations, there are only
1 − limN→∞

(︁
1− 1

N

)︁N
= 1 − e−1 ≈ 0.632 unique data points per individual boot-

strap sample. Thus, the effective size of each bootstrap sample reduces to roughly
Ni = 0.632 · N which can lead to smaller trees because the entire training set is

2E.g. scikit-learn [PVG+11] may evaluate more than di features if no sufficient split has been found.

https://github.com/sbuschjaeger/rf-double-descent
https://github.com/sbuschjaeger/rf-double-descent
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smaller and easier to learn due to duplicate observations. Last and maybe most im-
portant, tree induction algorithms such as CART are adaptive in the sense, that the
tree structure is data-dependent. In the worst case, a complete tree is built in which
single observations are isolated in the leaf nodes so that every leaf node contains
exactly one example. However, it is impossible to grow a tree beyond isolating sin-
gle observations because there simply is not any data left to split. Subsequently, the
Rademacher complexity cannot grow beyond this point and is limited by an inherent,
data-dependent limit. We summarize these arguments into the following hypothesis.
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FIGURE 5.2: Test error (solid lines) and training error (dashed lines),
the average Rademacher complexity and the average height of the
trees over the maximum number of leaf nodes nl. Each row depicts
one dataset. Results are averaged over a 5-fold cross-validation. Best

viewed in color.



5.3. The Complexity of RF is bounded by the Data 87

5.3 The Complexity of RF is bounded by the Data

Figure 5.2b shows the Rademacher complexity of the DT and RF for the previous
experiment. As one can see the Rademacher complexity steeply increases until it con-
verges against a maximum from which it then plateaus. So indeed, a DT and a RF
have both an inherent maximum Rademacher complexity given by the data as ex-
pected. Contrary to the above discussion, however, the RF has a larger Rademacher
complexity than a DT on all but the magic datasets. For a better understanding, we
look at the average height of trees in Figure 5.2c. Here we can see that RF – on av-
erage – has larger trees than the DT given the same number of maximum leaf nodes.
We hypothesize that due to the feature sampling and bootstrapping that suboptimal
features are chosen during the splits. Hence, a RF requires more splits in total to
achieve a small loss leading to larger trees with larger Rademacher complexities.

Combining both experiments leads to a mixed explanation of why RF seems to
be so resilient to overfitting: For trees trained via greedy algorithms such as CART
one cannot (freely) over-parameterize the model because its complexity is inherently
bounded by the data. Even if one allows for more leaf nodes, the algorithm simply
cannot make use of more parameters. A similar argument holds for a random for-
est: Adding more trees does not increase the Rademacher complexity as implied by
Theorem 5. Thus, one can add more and more trees without the risk of overfitting.
Again increasing nl only increases the Rademacher complexity up to the inherent
limit given by the data. Hence – even if one allows for more parameters – a RF can-
not make use of them. Its Rademacher complexity is inherently bounded by the data.
However, as shown in Fig. 5.2 there does not seem to be a direct, data-independent
connection between the maximum number of leaf nodes and this inherent maximum
Rademacher complexity.

5.4 Complexity does not predict a RF’s Error

The above discussion already shows that the Rademacher complexity of a forest does
not seem to be an accurate predictor for the generalization error of the ensemble.
In this section, we further challenge the notion that complexity is a predictor of the
performance of a tree ensemble and construct ensembles with large complexities that
do not overfit and trees with small complexities that do overfit. To do so, we first show
that the decision boundary of a RF can be represented by a single DT and vice-versa.
The idea is as follows: The decision boundary of a single DT is a set of d-dimensional
hypercubes and similarly, the decision boundary of a RF is the average of a set of
these hypercubes. While the decision boundary of a RF becomes smoother due to the
averaging it can still be represented by a (larger) set of d-dimensional hypercubes.
To represent this larger set of hypercubes we can simply append copies of a tree to
the leaf nodes of the other trees and recursively repeat the process until all trees are
merged into a single one. Theorem 6 formalizes this idea.

Theorem 6 (Equivalence of RF and DT). Let h : X → Y be an axis-aligned decision
tree and let f : X → Y be a random forest, then there exist

1) a forest f ′ so that ∀x ∈ X : h(x) = f ′(x)

2) a tree h′ so that ∀x ∈ X : h′(x) = f(x)
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Proof. The proof of 1) is straightforward. We simply copy the tree M times to form
the forest:

f ′(x) =
1

M

M∑︂
i=1

h(x) = h(x)

which concludes the proof for 1).
For 2) we show how to construct h′ from the forest. To do so recall that each path from
the root node to a leaf node in an axis-aligned DTs represents a d-dimensional hyper-
cube and each hypercube is then associated with a (constant) prediction. While a RF
offers a much smoother overall decision boundary due to the averaging its basic build-
ing block still remains hypercubes. The overlap of two hypercubes in d-dimensions
can be represented with 3d smaller hypercubes which in turn can be represented with
a regular DT. More formally, let there be two trees h1 and h2. Intuitively we now
remove all leaf nodes in h1 and replace them with copies of the second tree h2. Then
we replace all leaf nodes in the new tree with the average of the original predictions
from h1 as well as the predictions of the corresponding leaf nodes in h2. More for-
mally, consider a fixed x ∈ X and let i be that path for h1 so that s1,i(x) = 1 and let j
be that path for h2 with s2,j(x) = 1. Further, let s1,i,l(x) be the split of the l-th node
on the i-th path in h1 and let s2,j,l(x) be the split of the l-th node on the j-th path in
h2 respectively. Then:

h(x) =
1

2
(g1,is1,i(x) + g2,js2,j(x))

=
1

2

⎛⎝g1,i ∏︂
l∈L1,i

s1,i,l(x) + g2,j
∏︂

l∈L2,j

s2,j,l(x)

⎞⎠
=

1

2
(g1,i + g2,j)

∏︂
l∈L1,i

s1,i,l(x) ·
∏︂

l∈L2,j

s2,j,l(x)

=

L1∑︂
i=1

L2∑︂
i=2

1

2
(g1,i + g2,j) s1,i(x) · s2,j(x)

= h′(x)

Recursively repeating then yields the Theorem with

n′i =

{︄
ni−1 + Li−1ni i = 2

n′i−1 + Li−1ni i > 2

number of nodes. Let n = maxi{ni} and L = maxi{Li}, then the resulting tree has
at most n′ ≤MLn nodes.

When approximating a RF with a DT the new tree uses copies of each tree in
the forest and appends them to its leaf nodes. The new tree, therefore, is larger –
or to follow deep learning nomenclature it is deeper – which may explain the better
performance of RF compared to DT. However, as discussed earlier, this new tree also
has a huge Rademacher complexity which should lead to severe overfitting from a
theoretical perspective.

While Theorem 6 offers an interesting theoretical insight it does not allow for
direct control over different levels of complexity of the resulting decision tree. For the
following experiments, we, therefore, use a slight variation of this idea: We randomly
sample points along the decision boundary of the RF and then train a decision tree
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on these points using the predictions of the original forest. This idea is sometimes
referred to as born-again trees [BS96]. Clearly, when sampling enough data points
we can perfectly represent the decision boundary of the forest with a DT as implied
by Theorem 6. However, we could also choose to sample fewer points and/or train
a smaller tree with smaller complexity. It is conceivable that this DT ‘inherits’ the
positive properties of the RF and hence it should not overfit. Likewise, we could
reverse this approach and sample points from the decision boundary of a DT and train
a RF on these points. Again we might hypothesize that such a RF has all the negative
properties of the original DT. We call this approach training with data augmentation
because we augment the original training data to sample the points along the decision
boundary. Algorithm 12 summarizes our approach. We first train a reference model
e.g. a regular RF given the original data S in line 2. Then, we sample N · T points
along the decision boundary of the model by using augmented copies of the training
data. Specifically, we copy the training data T times and add Gaussian noise to the
observations in these copies as shown in line 5. Then we apply the reference model
to this augmented data in line 6 and use its predictions as the new label for fitting the
actual model in line 8.

Algorithm 12 Training with Data Augmentation.
1: function TRAIN_WITH_AUGMENTATION(S, T, ε)
2: S ← X, y
3: g ← train_reference_model(S) ▷ Train a DT or RF
4: for i = 1, . . . , T do
5: Xi ← X +N (0, ε) ▷ Augment data
6: yi ← g(Xi) ▷ Apply original model
7: S = S ∪ (Xi, yi)

8: f ← train_model(S) ▷ Train a RF or DT
return f

We repeat the previous experiment with data augmentation training. Again we
limit the maximum number of leaf nodes nl ∈ {2, 4, 8, . . . , 16384}. We train a RF with
M = 256 trees and approximate it with a DT using T = 10 and ε = 0.01. We call
this algorithm DT with data augmentation (DA-DT). Similarly, we train a single DT
and approximate it with a RF with M = 256 trees, T = 10 and ε = 0.01 denoted
as RF with data augmentation (DA-RF). Figure 5.3a shows the error curves for this
experiment. Again, note the logarithmic scale on the x-axis. First, we see that the
training error approaches zero for larger nl for both models as expected. Second, we
see that the decision tree DA-DT despite fitting the decision boundary of a RF shows
clear signs of overfitting. Third, and maybe even more remarkable, the forest DA-RF
trained via data augmentation on the bad, overfitted labels from the DT still does not
overfit but also has a single descent. To gain a better picture we can again look at
the Rademacher complexities of these two models in Figure 5.3b. Similar to before
there is a steep increase for both models. However, DA-DT now converges against
a smaller Rademacher complexity compared to DA-RF which now has a much larger
Rademacher complexity despite having a better test error. The forest does not overfit
in an u-shaped curve as expected but also shows a single descent whereas the DT still
does overfit in an u-shaped curve similar to before.

For a better comparison between the individual methods, we combine them in a
single plot. Figure 5.3c shows the asymptotic Rademacher complexity over the test
and train error of all methods. The dashed lines depict the training error, whereas the
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FIGURE 5.3: Test error (solid lines) and training error (dashed lines),
the average Rademacher complexity and the average height of the
trees over the maximum number of leaf nodes nl. Each row depicts
one dataset. Results are averaged over a 5-fold cross-validation. Best

viewed in color.

solid lines are the test error. Note that some curves stop early because their respective
Rademacher complexities are not large enough to fill the entire plot. As one can see,
DT and RF have a comparably small maximum Rademacher complexity. RF seems
to minimize the training error more aggressively and reaches a smaller error with
smaller complexities, whereas DT starts to overfit comparably early. DA-DT seems to
have the smallest Rademacher complexity but also overfits the most. DA-RF has the
largest complexity but does not seem to overfit at all. It slowly converges against the
original RF’s performance. Both, DT and DA-DT show an u-shaped curve whereas RF
and DA-RF both show a single descent in most cases.

Technical note: Before continuing to the next section a quick note is in order. To
the best of our knowledge, there does not exist a tight upper bound for the complexity
of trees although the authors of [LLM20] conjecture that their formulation is indeed
tight. Moreover, apart from an exhaustive search (such as performed in [AYA] for
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small trees), we do not know of a way to compute the exact Rademacher complexity
of trees. Hence, a better estimation of the Rademacher complexity could redeem
its usefulness for tree ensembles, but we find this unlikely given the current state of
knowledge.

5.5 Negative Correlation Forests

Clearly, the Rademacher complexity fails to explain the performance of the data-
augmented trees and forests. In this section, we argue that the trade-off between
bias and diversity also plays a crucial role as implied by the bias-variance decompo-
sition. This decomposition does not directly relate the training error of a model to its
generalization capabilities, but it shows how the individual training and testing losses
are structured. Although suspected for some time and exploited in numerous ensem-
bling algorithms, the exact connection between the diversity of an ensemble and its
generalization error was only established relatively recently as shown in Theorem 7.

Theorem 7 (PAC-Style C-Bound [GLL+15]). Let H =
⋃︁k

j=1Hj denote a set of base
classifiers and let f = 1

M

∑︁M
i=1 hi be the ensemble. Then, for any δ > 0, with probability

at least 1 − δ over the choice of sample S of size N drawn i.i.d. according to D, the
following inequality holds:

L0(f) ≤ 1−

(︃
max

(︃
0, 1

M

M∑︁
i=1

L0,S(hi)− τ1(N, δ)
)︃)︃2

min (1,Vi,S [hi] + τ2(N, δ))

where τ1(N, δ), τ2(N, δ) → 0 for N → ∞ and any δ and where Vi,S [hi] is the (co-
)variance of the ensemble evaluated on the sample S.

Intuitively, this result shows that an ensemble of powerful learners with a small
bias that sometimes disagree will be better than an ensemble with a comparable bias
in which all models agree. Hence, we may hypothesize that a RF seems to find a good
balance between bias and diversity explaining its excellent performance.

The original RF algorithm produces accurate ensembles, but it does not allow pre-
cise control of its diversity. To study this hypothesis we now present a RF variation
that allows for explicit control over the diversity called Negative Correlation Forest.
Theorem 7 is stated for the 0-1 loss which makes the direct minimization of the bound
difficult as noted in [GLL+15]. Luckily, the minimization over the bias-variance de-
composition of the MSE is much more approachable as discussed earlier. Recall the
empirical bias-variance decomposition from Eq. 4.6:

ℓλ(f(x), y) =
1

M

M∑︂
i=1

(hi(x)− y)2 −
λ

2M

M∑︂
i=1

di
TDdi

where di = (hi(x)− f(x)), D = 2 · IC is the C ×C identity matrix with 2 on the main
diagonal and λ ∈ R is the regularization strength. We adapt this approach to RF by
first training an initial RF which is then refined by optimizing the GNCL objective.
Recall that DTs use a series of axis-aligned splits of the form 1{xk ≤ t} and 1{xk > t}
where k is a feature index, t is a threshold to determine the leaf nodes and each
leaf node has a (constant) prediction g ∈ RC associated with it. Unfortunately, the
axis-aligned splits of a DT are not differentiable and thus it is difficult to refine them
further with gradient-based approaches. However, the leaf predictions g are simple
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constants that can easily be updated via SGD. Formally, we perform SGD to minimize
Eq. 4.6 wrt. to β = (β1, . . . , βM ) where βi = (gi,1, gi,2, . . . ) are the parameters for
tree hi. The gradient for a mini-batch B in this case is:

gB(βi) =
1

|B|

⎛⎝ ∑︂
(x,y)∈B

∂ℓλ(fβ(x), y)

∂fβ(x)
wisi,l(x)

⎞⎠
l=1,2,...,Li

(5.8)

Algorithm 13 summarizes the NCForest algorithm. First, an initial RF is trained
with M trees using at most nl leaf nodes and di features. Then, the leaf predictions
are extracted from the forest in line 5 and SGD is performed in line 6 to 10. Finally,
the updated leaf values are copied back into the original trees in line 11.

Algorithm 13 Training of a Negative Correlation Forest (NCForest).
1: function TRAIN_NCFOREST(S,M, nl, d)
2: h← train_rf(M,nl, d) ▷ Algorithm 11
3: w ← (1/M, . . . , 1/M) ▷ Use constant weights
4: for i = 1, . . . ,M do ▷ Init. leaf predictions
5: βi ← (gi,1, gi,2, . . . )

6: for next epoch do ▷ Perform SGD
7: S ← shuffle(S) ▷ Shuffle data before epoch
8: for B ← next_batch do
9: for i = 1, . . . ,M do

10: βi ← βi − αgB(βi) ▷ Using Eq. 4.6 + Eq. 5.8
11: for i = 1, . . . ,M do
12: hi.update_leafs(βi) ▷ Copy new leafs into original trees

return h

Again we validate our hypothesis experimentally. We train an initial RF with
M = 256 trees with a maximum number of nl = 4096 leaf nodes. Due to the
bootstrap sampling and due to feature sampling, this initial RF already has some
diversity. Hence, we use negative λ values to de-emphasize diversity and positive
λ values to emphasize diversity. We noticed that between λ = 1.0 and λ = 1.005
there is a steep increase in the diversity because it starts to dominate the opti-
mization ([BWT05] reports a similar effect for neural networks). Hence, we vary
λ ∈ {−20,−19.9,−19.8, . . . , 1.0, 1.001, 1.002, . . . , 1.005} and minimize the NCL objec-
tive over 50 epochs using the Adam optimizer with a step size of 0.001 and a batch
size of 64 implemented in PyTorch[PGM+19]. We also experimented with more leaf
nodes, different λ values, and more epochs but the test error would not improve
further with different parameters.

As seen in Figure 5.4a and Figure 5.4b our NCForest method indeed allows for
fine control over the diversity in the ensemble. Increasing λ from −20 to 1.0 leads
to a larger bias and more diversity in the ensemble while the overall ensemble loss
nearly remains constant as expected. Increasing λ > 1.0 leads to a steep increase in
both where the ensemble loss also increases because the diversity starts to dominate
the optimization. Looking at Figure 5.4c we can see the average training and testing
error of the trees in the ensemble as well as the test and train error of the entire en-
semble. Again, dashed lines depict the training error and solid lines are the test error.
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Moreover, we marked the performance of a DT and a RF for better comparability3.
We can see two effects here: First, there seems to be a large region in which the diver-
sity does not affect the ensemble error, but only the individual errors of the trees. In
this region the performance of each individual tree changes, but the overall ensemble
error remains nearly constant. The corresponding plots are akin to a bathtub: If the
diversity is too small or too large, then performance suffers. Only in the middle of
both extremes, do we find a good trade-off between both. Second, we find that a RF
seems to achieve a good balance between both quantities with its default parameters,
although minor improvements are possible on the adult and EEG datasets. We con-
clude that a good balance between the bias and the diversity of the forest must be
achieved. However, there seems to be a large region of similar performances where
the exact trade-off does not matter.
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(C) Test error.

FIGURE 5.4: Mean-Squared error (first column, second column) over
different λ values and the test and train error (third column) over dif-
ferent diversities. Results are averaged over a 5-fold cross-validation.

Best viewed in color.

3A single DT does not have any diversity. For presentational purposes, we assigned a near, but
non-zero diversity to it.





95

Part III

Additive Ensembles and Small
Devices
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6 | Training Ensembles for Small
Devices

So far, we discussed the theoretical properties of ensembles and how to train ensem-
bles of discrete classifiers, but not how to deploy them to small devices. Recall that
the main limitation of small devices are memory and computational resources. While
discrete classifiers already reduce the computational burden for inferencing, they still
require a lot of memory, as we will see later in this chapter (see, e.g., Table 6.3 or Ta-
ble 6.4). There are two main research directions in literature for reducing the memory
consumption of tree ensembles. The first research direction aims to find smaller mod-
els, such as Bonsai [KGV17], Decision Jungles [SSK+13] or X-CLEaVER [LNO+18]
during training. Adaptions of model compression techniques to train smaller models
are also available [CMGS20]. Last, leaf-refinement is a technique that jointly refines
the probability estimates in a given tree ensemble (c.f. chapter 5 and [RCWS15]) to
improve its performance which can sometimes lead to smaller and better ensembles
[RCWS15]. The second approach aims to reduce the memory consumption of a given
tree ensemble by post-processing it. ‘Classic’ decision tree pruning algorithms, as pre-
sented in section 2.4.1, as well as more recent adaptions such as cost-complexity
forest pruning [KS17], already follow this approach. Ensemble pruning is another
post-processing technique that removes unnecessary classifiers from the ensemble
[TPV09, ZBS06]. Remarkably, this removal can sometimes result in a better predic-
tive performance [MD97, MS06, LYZ12] leading to smaller and better ensembles at
the same time. In this chapter, we present a method that combines both approaches
into a unified objective and present a novel algorithm for solving it. To do so, we
incorporate L1 regularization into the leaf-refinement objective and adopt proximal
gradient descent to solve this objective.

For the remainder of this chapter, we assume that we have given an already trained
additive tree ensemble {h1, . . . , hM} of M axis-aligned decision trees (DT) with

f(x) =

M∑︂
i=1

wihi(x) (6.1)

Recall that a DT partitions the input space X into d-dimensional hypercubes called
leaves and uses independent predictions for each leaf in the tree. To do so, it uses
a series of axis-aligned splits of the form 1{xk ≤ t} and 1{xk > t} where k is a
pre-computed feature index, and t is a pre-computed threshold to determine the leaf
nodes. Each leaf node l contains a probability estimate gl ∈ RC using the class
frequencies of the observations from the training points occurring in that leaf node,
i.e.

h(x) =
L∑︂
l=1

glsl(x) (6.2)
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where sl is the indicator function that is 1 if x belongs to leaf l and 0 if not. We
do not assume that a specific training algorithm was used to train the ensemble, but
any additive tree ensemble can be used. For example, the tree ensemble can be a
random forest or a forest of boosted decision trees, etc. For simplicity, we assume
that each tree in the ensemble is equally weighted. If the forest is weighted (e.g.,
as in AdaBoost) so that each classifier hi has a corresponding weight wi, then we
re-scale the individual classifier’s predictions to include the weight

f(x) =
M∑︂
i=1

wih
′
i(x) =

1

M

M∑︂
i=1

Mwih
′
i(x) =

1

M

M∑︂
i=1

hi(x) (6.3)

In addition to the trained ensemble, we are given a labeled pruning sample T =
{(xi, yi) | i = 1, . . . , N}. This sample can either be the original training data used to
train f or another pruning data set not related to the training or test data. In this
chapter, we will focus on classification problems, but note that our approach is also
directly applicable to regression tasks. Moreover, we will focus on random forests
(RF), but note that most of our discussion directly translates to other tree ensembles
such as Bagging, ExtraTrees, Random Subspaces, or Random Patches.

6.1 Ensemble Pruning

The goal of ensemble pruning is to select a subset of K classifier from {h1, . . . , hM}
that forms a small and accurate sub-ensemble. Formally, each classifier hi receives a
corresponding pruning weight wi ∈ {0, 1} so that the ensemble’s prediction can be
expressed as

f(x) =
1

∥w∥0

M∑︂
i=1

wihi(x) (6.4)

where ∥w∥0 =
∑︁M

i=1 1{wi > 0} is the L0 norm that counts the number of nonzero
entries in the weight vector w = (w1, . . . , wM ). Many effective ensemble pruning
methods have been proposed in the literature. These methods usually differ in the
specific loss function used to measure the performance of a sub-ensemble and the
way this loss is minimized. Tsoumakas et al. give in [TPV09] a detailed taxonomy of
pruning methods that was later expanded in [Zho12], which we follow here.

Ranking-based pruning

Early works on ensemble pruning focus on ranking-based approaches that assign a
rank to each classifier depending on their individual performance and then select
the top K classifier from that ranking. Formally, ranking-based approaches use the
following optimization problem

argmin
w∈{0,1}M

1

N

∑︂
(x,y)∈T

M∑︂
i=1

wiℓ(hi(x), y) st. ∥w∥0 = K (6.5)

where ℓ : RC × Y → R is a loss function. To solve this objective, the following ap-
proach can be used: First, all individual losses ℓ(hi(x), y) are computed and sorted
in decreasing order. Then, the K models with the smallest losses are selected, and
their corresponding weights are set to 1. The remaining weights are set to 0. This
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makes ranking-based pruning methods appealing since they are very fast, easy to
implement, and the optimum is easily obtained. One of the earliest ranking-based
pruning method was due to Margineantu and Dietterich, which employ the Cohen-
Kappa statistic to rate the effectiveness of each classifier [MD97]. Later, Martinez-
Munoz and Suarez propose the use of the cosine similarity to measure how close the
ensemble prediction is to the sub-ensemble [MS06]. More recent approaches also in-
corporate the ensemble’s diversity into the selection. Lu et al. propose to measure the
individual contribution of each classifier to form a diverse and effective sub-ensemble
[LWZB10], and Guo et al. propose to directly maximize the classification margin as
well as the diversity of the sub-ensemble [GLL+18].

Mixed Quadratic Integer Programming (MQIP)

MQIP-based pruning methods enhance ranking-based methods by also adding a pair-
wise loss function that measures the relationship between two classifiers hi and hj .
Formally, they use the following objective:

argmin
w∈{0,1}M

1

N

∑︂
(x,y)∈T

⎛⎝α M∑︂
i=1

wiℓ1(hi(x), y) + (1− α)
M∑︂
i=1

M∑︂
j=1

wiwjℓ2(hi(x), hj(x), y)

⎞⎠
(6.6)

st. ∥w∥0 = K

where α ∈ [0, 1] models the trade-off between the two losses ℓ1 : RC × Y → R and
ℓ2 : RC × RC × Y → R. Here, ℓ1 is again a loss function that relates the predictions
of each classifier to the true label, and ℓ2 is a loss that relates the predictions of
two classifiers hi(x) and hj(x) to each other and potentially also to the true label y.
Note that MQIP encapsulates ranking-based methods and recovers them for α = 1.
However, also note that solving MQIP problems can be difficult and often takes much
more time compared to, e.g., ranking-based approaches. Originally this approach
was proposed by Zhang et al. in [ZBS06], which uses the pairwise errors of each
classifier and α = 0 (ℓ1 is not used). Cavalcanti et al. expand this idea in [COMC16]
and combine 5 different measures into ℓ1 and ℓ2 including the diversity, correlation,
kappa-statistic, disagreement, and double-fault measure.

Clustering-based pruning

Another approach for pruning is first to cluster the different models into groups and
then select one representative from each group. To do so, let

Hi = (hi(x1)1, . . . , hi(x1)C , hi(x2)1, . . . , hi(x2)C , . . . , hi(xN )1, . . . , hi(xN )C)

denote the (stacked) vector of all predictions of classifier hi on the sample T with
N · C entries. Further, let

c(i) = argmin
j=1,...,K

{d(µj , Hi)}

be the index of the closest cluster center {µ1, . . . , µK} ⊆ RNC to Hi given a distance
function d : RNC × RNC → R+. Then, clustering-based pruning formally solves the
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following optimization problem:

argmin
w∈{0,1}M

µ1,...,µK∈RNC

1

N

∑︂
(x,y)∈T

ℓ

(︄
1

∥w∥0

M∑︂
i=1

wihi(x), y

)︄
+

M∑︂
i=1

d(µc(i), Hi) (6.7)

st. ∥w∥0 = K and ∀wi = 1, wj = 1, i ̸= j : c(i) ̸= c(j)

Eq. 6.7 has three parts: The first part 1
N

∑︁
(x,y)∈T ℓ

(︂∑︁M
i=1wihi(x), y

)︂
measures the

error of the selected sub-ensemble whereas
∑︁M

i=1 d(µc(i), Hi) computes the appro-
priate cluster centers. Last, the constraints combine both parts to select one repre-
sentative from each cluster. This optimization problem can be solved with existing
clustering algorithms in two steps: First, a clustering is obtained, and then represen-
tatives are selected from each cluster based on the loss ℓ. For example, Giacinto et al.
propose in [GRF00] to use hierarchical agglomerative clustering using the pairwise
error probability as the distance. Then, once the clusters have been obtained, they
select the most distant representatives from each cluster to form a diverse ensem-
ble. Lazarevic et al. propose to use K-means clustering with the Euclidean distance
in [LO01]. In contrast to Giacinto et al., they iteratively remove the least accurate
classifier from a cluster until only one classifier is left, which is then included in the
sub-ensemble. More recent works on cluster-based pruning also directly include the
diversity into the distance measure [ZW19, ZW20].

Ordering-based pruning

Ordering-based pruning orders all ensemble members according to their individual
performances as well as their overall contribution to the ensemble and then picks the
top K classifier from this list. In this sense, ordering-based approaches are the most
general method for ensemble pruning as they allow to minimize the ensemble error
directly:

argmin
w∈{0,1}M

1

N

∑︂
(x,y)∈T

ℓ

(︄
1

∥w∥0

M∑︂
i=1

wihi(x), y

)︄
st. ∥w∥0 ≤ K (6.8)

where ℓ : RC × Y → R is again a loss function. To do so, ordering-based approaches
sort individual classifiers according to their performance and greedily select the tree
that minimizes the overall ensemble error the most.
Algorithm 14 depicts the ordering-based optimization approach. First, the classifier
with the best individual loss is selected in line 2. Then, line 4− 6 selects the classifier
which minimizes ℓ the most given the already selected ensemble

∑︁M
j=1wjhj(x). In

a way, ordering-based approaches are greedy because they select the model which im-
proves the ensemble the most without considering all different combinations. Ordering-
based pruning was also first presented by Margineantu and Dietterich in [MD97],
which proposed to greedily minimize the overall ensemble error. A series of works
by Martínez-Muñoz, Suárez and others [MMS04, MS06, MHS09] add upon this work
proposing different error measures. More recently, theoretical insights from PAC the-
ory and the bias-variance decomposition were also transformed into greedy pruning
approaches [LYZ12, JLFW17].
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Algorithm 14 Ordering-based pruning.
1: function PRUNE_ORDER(T , h1, . . . , hM)
2: w ← (0, . . . , 0)

3: i← argmin
i=1,...,M

{︄
1
N

∑︁
(x,y)∈T

ℓ (hi(x), y)

}︄
4: wi ← 1
5: for k = 1, . . . ,K − 1 do

6: i← argmin
i=1,...,M

{︄ ∑︁
(x,y)∈T

ℓ
(︂

1
∥w∥0+1

∑︁M
j=1wjhj(x) + hi(x)

)︂
|wi ̸= 1

}︄
7: wi ← 1

return {hi|wi ̸= 0, i = 1, . . . ,M}

6.2 Leaf-Refinement

In chapter 5 we already discussed the refinement of leaf nodes in a tree ensemble to
study the impact of diversity on the ensemble. A similar approach has been proposed
in [RCWS15] to obtain smaller and more accurate tree ensembles. Since we can
incorporate the ensemble weights into the leaf nodes as described above, this leaf-
refinement is a generalization of the re-weighting of ensembles in [AKA+19, SHP19,
SH21] making it a very general framework for improving tree ensembles. Before
discussing how to combine Leaf-Refinement and ensemble pruning, we will recap the
gradient-based refinement used by the NCForest algorithm from chapter 5.

Let βi = (gi,1, . . . , gi,Li) be the probability estimates of all leaf nodes in tree hi
and let hi,βi

(x) denote the prediction of tree i using the probability estimates βi.
Further, let β = [β1, . . . , βM ] be the matrix of all probability estimates of all trees in
the ensemble and let fβ(x) denote the prediction of the ensemble with estimates β.
Then, refinement proposes to minimize a global loss function

β = argmin
β1,...,βM

1

N

∑︂
(xi,yi)∈T

ℓ

⎛⎝ 1

M

∑︂
j=1

hj,βj
(xi), yi

⎞⎠ (6.9)

This global loss takes all the interactions between individual trees into account to
refine the probability estimates in the leaves, but it does not change the structure
of individual trees. Hence, it can be easily minimized via stochastic gradient descent
(SGD). SGD is an iterative algorithm that takes a small step into the negative direction
of the gradient in each iteration by using an estimation of the true gradient

β ← β − αgB(β) (6.10)

where gB(β) is the gradient of ℓ wrt. to β computed on a mini-batch B and α ∈ R+ is
the step-size. The gradient for the individual entries βi is given by the chain rule:

gB(βi) =
1

|B|

⎛⎝ ∑︂
(x,y)∈B

∂ℓ(fβ(x), y)

∂fβ(x)

1

M
si,l(x)

⎞⎠
l=1,2,...,Li

(6.11)

Algorithm 15 summarizes the Leaf-Refinement (LR) algorithm. First, the original
probability estimates from the tree in the leaf nodes are used as an initialization for
the parameter vectors βi in line 2. Then, SGD is performed using Eq. 6.10 and Eq.
6.11 in lines 4-10. The loss function can be chosen for the specific task at hand.
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Algorithm 15 Leaf-Refinement (LR)

1: function TRAIN_LR(T , h1, . . . , hM)
2: for i = 1, . . . ,M do ▷ Init. leaf predictions
3: βi ← (gi,1, gi,2, . . . )

4: for next epoch do ▷ Perform SGD
5: for B ← next_batch do
6: for i = 1, . . . ,M do
7: βi ← βi − αgB(βi) ▷ Perform update using Eq. 6.11
8: for i = 1, . . . ,M do
9: hi.update_leafs(βi) ▷ Copy new leafs into original trees

return h1, . . . , hM

Ren et al. propose in [RCWS15] to use the hinge-loss in combination with a L2

regularization term similar to the SVM. Let λ ∈ R+ be a regularization strength, then
they propose to minimize

ℓλ(fβ(x), y) = λ ·max(0, 1− fβ(x) · y) +
1

2
∥β∥22 (6.12)

where the ∥·∥22 is the L2 norm introduced to combat overfitting. In chapter 5 we
already discussed how to adapt the negative correlation learning algorithm for leaf-
refinement to enforce different levels of diversity:

ℓλ(fβ(x), y) =
1

M

M∑︂
i=1

(hi,βi
(x)− y)2 − λ

2M

M∑︂
i=1

di
TDdi (6.13)

where di = (hi,βi
(x) − f(x)), D = 2 · IC is the C × C identity matrix with 2 on

the main diagonal and λ ∈ R+ is the regularization strength. For λ = 0, this trains
M classifier independently and no further diversity among the ensemble members is
enforced, for λ > 0 more diversity is enforced during training, and for λ < 0 diversity
is discouraged. Last, following our previous discussion, we can also use the MSE (or
any other classification loss) directly on the ensemble output without considering its
diversity:

ℓ(fβ(x), y) = (fβ(x)− y)2 (6.14)

6.3 Combining Leaf-Refinement and Ensemble Pruning

Leaf-Refinement as well as ensemble pruning enable better and smaller tree ensem-
bles. However, both approaches tackle this challenge from a different point of view.
Ensemble pruning removes entire trees from the ensemble to reduce its memory con-
sumption and, as a byproduct, improve its predictive performance. Leaf-Refinement,
on the other hand, refines the probability estimates in the trees to improve the per-
formance and, as a byproduct, enables the use of smaller forests with similar perfor-
mance.

This leads to two questions: First, which of the two methods is better suited
to deploy tree ensembles to small devices? Second, can we combine both methods
to further improve the predictive performance of the forest while having a smaller
memory consumption at the same time? Arguably the simplest method to combine



6.3. Combining Leaf-Refinement and Ensemble Pruning 103

both approaches is to first prune the ensemble and then refine it afterward. How-
ever, this method does not consider the interactions between the pruning algorithm
and leaf-refinement. It is conceivable that pruning would select different trees if the
probability estimates had been refined before the pruning process. Similarly, it is con-
ceivable that refinement would compute different leaf values if it had been performed
on the unpruned ensemble. We advocate that the selection of trees, as well as the
refinement of the corresponding leaf values, should be performed simultaneously to
find the overall smallest and best ensemble. The key challenge in this scenario is to
incorporate the selection of trees into the gradient-based approach of leaf-refinement.
In ensemble pruning, each tree either receives weight 0 (not selected) or 1 (selected).
Unfortunately, it is difficult to optimize over discrete values {0, 1}M with gradient-
based approaches because we apply small, non-binary changes to the weights during
optimization. One possible approach to solve this dilemma is to relax the constraints
and optimize over real-valued weights w ∈ RM in combination with a L1 regulariza-
tion penalty that enforces sparsity:

β,w = argmin
β,w∈RM

1

N

∑︂
(xi,yi)∈T

ℓ

⎛⎝ M∑︂
j=1

wjhj,βj
(xi), yi

⎞⎠+ λ∥w∥1 (6.15)

Enforcing sparsity via a L1 regularization has a long history in data mining and ma-
chine learning. Arguably the largest application of it can be found in feature selection
via the LASSO and related methods (see e.g. [Tib96, LCW+18]), but also other appli-
cation areas such as matrix factorization [KS15], neural network pruning [LKD+17],
or dictionary learning [JNH15] have been explored.

Objective 6.15 is non-smooth due to the L1 norm and hence cannot be minimized
via SGD directly. We adopt proximal (stochastic) gradient descent to minimize it.
Recall, that PSGD is an adaption of SGD that incorporates a projection operation into
the updates so that it can cope with non-smooth objectives [PB14]: First, a gradient
descent update of the objective function is performed without considering its non-
smooth part (e.g. ignoring the L1 regularizer). Then, a projection operator prox is
applied to project the updated parameters onto the correct solution considering the
non-smooth part of the objective. Let w be the current weight vector and let gB(w)i
be the gradient of the i-th entry in w without considering the L1 term. Further, let Pα
be the prox operator of λ∥w∥1 with step size α, then PSGD performs the following
updates

w ← Pα (w − αgB(w)) (6.16)

using the gradient

gB(w) =
1

|B|

⎛⎝ ∑︂
(x,y)∈B

∂ℓ(fw,β(x), y)

∂fw,β(x)
hi,βi

(x)

⎞⎠
i=1,...,M

(6.17)

and the prox Pα : RM → RM [PB14]:

Pα (w) = (sign(wi)max(|w| − λα, 0))i=1,...,M . (6.18)

Since there is no regularizer for the leaf nodes we can directly minimize the objective
wrt. to β without using the prox. In this case the gradient for hi now also contains
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its weights:

gB(βi) =
1

|B|

⎛⎝ ∑︂
(x,y)∈B

∂ℓ(fβ(x), y)

∂fβ(x)
wisi,l(x)

⎞⎠
l=1,2,...,Li

. (6.19)

Algorithm 16 summarizes this approach. Similar to before, the probability esti-
mates in the leaf nodes are used as an initialization for the parameter vectors βi in
line 2. Then, PSGD is performed for multiple epochs using Eq. 6.17, Eq. 6.19, and
Eq. 6.18. To do so, the gradient for each weight gB(w)i is computed, and a regular
weight update is performed in line 7. Similarly, the gradient for the leaf nodes of each
tree gB(βi) is computed in line 8, and a regular gradient descent update is performed.
After the leaf nodes of each tree as well as its weights have been updated the prox
operator is applied in line 10. For λ > 0, we call this algorithm Leaf-Refinement with
L1 regularization (L1+LR). Setting λ = 0 and ignoring any weight updates (line 7)
recovers the original Leaf-Refinement (LR) algorithm. Similarly, ignoring any updates
for the leaf nodes in line 8 yields a new pruning algorithm that selects trees purely
based on the L1 norm which we call L1 pruning.

Algorithm 16 Leaf-Refinement with L1 regularization (L1+LR)

1: function PRUNE_AND_REFINE(T , h1, . . . , hM)
2: for i = 1, . . . ,M do ▷ Init. leaf predictions
3: βi ← (gi,1, gi,2, . . . )

4: for epoch 1, . . . , E do ▷ Perform PSGD for E epochs
5: for next batch B in epoch do
6: for i = 1, . . . ,M do
7: wi ← wi − αtgB(w)i ▷ Perform update using Eq. 6.17
8: βi ← βi − αgB(βi) ▷ Perform update using Eq. 6.19
9: w ← Pα (w) ▷ Apply the prox using Eq. 6.18

10: H ← ∅,W ← ∅
11: for i = 1, . . . ,M do
12: if wi ̸= 0 then
13: hi.update_leafs(βi) ▷ Copy new leafs into original trees
14: H ← H ∪ {hi}
15: W ←W ∪ {wi}

return H,W

6.4 Experiments

In this section, we experimentally evaluate the combination of Leaf-Refinement and
Pruning (L1+LR) and compare its performance with vanilla random forests, pruned
RFs, and vanilla Leaf-Refinement in the context of IoT. As argued before, our main
concern is the final model size as it determines the resource consumption, run-
time, and energy of the model application during deployment. Hence, we adopt a
hardware-agnostic view and ask the following two questions:

• Question 1: What method has the best predictive performance?

• Question 2: What method has the best predictive performance under memory
constraints?
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An overview of all hyperparameters for our experiments is given in Table 6.1. We
use the following experimental protocol: The basic idea of ensemble pruning is to
overtrain the ensemble first and then prune away unnecessary classifiers from this
overtrained pool. Oshiro et al. studied the impact of the number of trees on the per-
formance of a regular RF and showed on a variety of datasets that there is no signifi-
cant performance improvement when using more than 128 trees [OPB12]. Therefore,
we ‘overtrain’ our base random forests with M = 256 trees to increase the classifier
pool for pruning without increasing the training time significantly. To control the indi-
vidual errors of trees we set the maximum number of leaf nodes nl to values between
nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}. For pruning, we use COMP, DREP, IC, IE,
LMD, RE and task each pruning method to select K ∈ {2, 4, 8, 16, 32, 64, 128} trees
from the base forest. For DREP we additionally vary ρ ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}.
Finally, for leaf-refinement, we randomly selectK ∈ {2, 4, 8, 16, 32, 64, 128} trees from
the random forests (which is similar to training a smaller forest directly) and mini-
mize the MSE loss for 50 epochs with a batch size of 1024 using the Adam optimizer
[KB15] implemented in PyTorch [PGM+19]. Recall that our L1+LR method indi-
rectly controls the number of trees in the forest through the regularization strength
λ ∈ {1, 0.5, 0.1, 0.05, 0.01}. As discussed previously, we study two variations of our
algorithm. In the first version, we do not perform any leaf-refinement, but only select
trees using the L1 norm and call this algorithm L1. In the second version, we com-
bine leaf-refinement with the L1 regularization as outlined in algorithm 16 and call
this algorithm L1+LR. For our experiments, we use 15 publicly available classification
datasets with 7 195 to 70 000 examples depicted in Table 6.2. Here, N denotes the to-
tal number of data points, d is the dimensionality and C is the number of classes rang-
ing from 2 to 11. The class distribution is also given for each dataset and each class.
A dash "-" indicates that the corresponding dataset has fewer classes, e.g. adult has
only two classes and hence entries for C2−C11 are marked with a dash. In all exper-
iments, we perform a 5-fold cross-validation except when the dataset has a dedicated
train/test split. We use the training set for both, training the initial forest and pruning
it. For a fair comparison, we made sure that each method receives the same forest in
each cross-validation run. In all experiments, we use minimal pre-processing and en-
code categorical features as one-hot encoding. The random forests have been trained
with scikit-Learn [PVG+11]. We implemented all pruning algorithms in a Python
package for other researchers called PyPruning which is available under https://
github.com/sbuschjaeger/PyPruning. The code for these experiments is available
under https://github.com/sbuschjaeger/leaf-refinement-experiments. In to-
tal, we evaluated 920 hyperparameter configurations per dataset leading to a total of
13 800 experiments.

6.4.1 (Q1) What Method has the Best Predictive Performance?

In the first experiment, we study the predictive performance of pruning and leaf-
refinement without considering any memory constraints. To do so, we pick the best
hyperparameter configuration of each method that has the best predictive perfor-
mance. To account for imbalanced datasets (e.g., ida2016) we study the predictive
performance in terms of accuracy and the F1 score.

Table 6.3 shows the accuracy of each method on each dataset with the corre-
sponding model size. The highest accuracy is marked in bold. It can be clearly
seen that the combination of Leaf-refinement and L1 regularization (LR + L1) offers
the best accuracy on 10 datasets (adult, avila, connect, eeg, elec, fashion, gas-drift,

https://github.com/sbuschjaeger/PyPruning
https://github.com/sbuschjaeger/PyPruning
https://github.com/sbuschjaeger/leaf-refinement-experiments


106 Chapter 6. Training Ensembles for Small Devices

TABLE 6.1: Configurations used during the experiments. Here,
nl denotes the maximum number of leaf nodes in the random
forest and K is the number of estimators in the forest. Each
method receives a RF trained with M = 256 trees and nl ∈
{16, 32, 64, 128, 256, 512, 1024, 2048} leaf nodes. Each pruning method
is tasked to select K ∈ {2, 4, 8, 16, 32, 64, 128} trees from this forest. ρ
denotes the hyperparameter of DREP as outlined in [LYZ12]. λ is the

regularization strength as outlined in section 6.3.

Method Abbreviation Hyperparameter

Random forest [Bre01] RF
nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}
M ∈ {2, 4, 8, 16, 32, 64, 128, 256}

Reduced error pruning [MD97] RE
K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

Individual contribution pruning [LWZB10] IC
K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

Individual error pruning [JLFW17] IE
K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

Complementariness pruning [MMS04] comp
K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

Largest mean distance pruning [GRF00] LMD
K ∈ {2, 4, 8, 16, 32, 64, 128}
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

DREP [LYZ12] DREP
ρ ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5},K ∈ {2, 4, 8, 16, 32, 64, 128, 256}
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

leaf-refinement [RCWS15] LR
K ∈ {2, 4, 8, 16, 32, 64, 128}, MSE loss
Adam optimizer, α = 0.001, E = 50, |B| = 1024
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

L1 L1
λ ∈ {1, 0.5, 0.1, 0.05, 0.01}, MSE loss
Adam optimizer, α = 0.001, E = 50, |B| = 1024
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

leaf-refinement + L1 LR + L1
λ ∈ {1, 0.5, 0.1, 0.05, 0.01}, MSE loss
Adam optimizer, α = 0.001, E = 50, |B| = 1024
RF with M = 256, nl ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}

TABLE 6.2: Datasets used for the experiments (available in the UCI
repository [DG17]). N denotes the total number of data points, d is
the dimensionality and C is the number of classes ranging from 2 to
11. The class distribution is also given for each dataset and each class.
A dash "-" indicates that the corresponding dataset has fewer classes,
e.g. adult has only two classes and hence entries for C2 − C11 are

marked with a dash.

Dataset N d C
Class distribution

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

adult 32 561 108 2 0.76 0.24 - - - - - - - - - -
anuran 7 195 22 10 0.09 0.48 0.08 0.04 0.07 0.16 0.04 0.02 0.01 0.02 - -
avila 20 867 10 12 0.41 0.01 0.01 0.03 0.10 0.18 0.04 0.05 0.08 0.00 0.05 0.03
bank 45 211 51 2 0.88 0.12 - - - - - - - - - -
connect 67 557 42 3 0.10 0.25 0.66 - - - - - - - - -
eeg 14 980 14 2 0.55 0.45 - - - - - - - - - -
elec 45 312 14 2 0.58 0.42 - - - - - - - - - -
fashion 70 000 784 10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 - -
gas-drift 13 910 128 6 0.18 0.21 0.12 0.14 0.22 0.13 - - - - - -
ida2016 76 000 170 2 0.98 0.02 - - - - - - - - - -
japanese-vowels 9 961 14 9 0.11 0.10 0.16 0.15 0.08 0.10 0.12 0.10 0.09 - - -
magic 19 019 10 2 0.65 0.35 - - - - - - - - - -
mnist 70 000 784 10 0.10 0.11 0.10 0.10 0.10 0.09 0.10 0.10 0.10 0.10 - -
mozilla 15 545 5 2 0.33 0.67 - - - - - - - - - -
postures 78 095 9 5 0.21 0.19 0.21 0.19 0.20 - - - - - - -
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japanese-vowels, magic, postures) and is tied for the first place on 3 datasets (anu-
ran, ida2016, mozilla). Only on the magic as well as the bank dataset it seems to
underperform. Leaf-refinement (LR) is tied for a first place twice and LMD pruning
ranks first on 2 datasets. Somewhat expectantly, random forest seems to underper-
form and improvements are possible due to leaf-refinement or pruning. However,
it is also noteworthy that large improvements seem only to be possible with refine-
ment and not with pruning. For example, RF only achieves 77.32% accuracy on the
connect dataset and L1+LR achieves up to 83.95% whereas the best pruning method
(here L1) achieve 79.32% accuracy. Table 6.4 shows the F1 score of each method in
each dataset. Again, the best method is marked in bold. Similar to before, L1+LR
ranks first on 11 datasets (adult, avila, bank, connect, eeg, elec, fashion, gas-drift,
ida2016,mnist, mozilla) and is tied for first place on two datasets (anuran,japanese-
vowels,postures). Interestingly, L1+LR now also ranks first on the bank dataset using
the F1 score, which might be explained due to its more imbalanced class distribution.
Only on the magic dataset, do we see that L1+LR still underperforms. Expectantly,
the model size greatly varies between data sets in both tables, but there is also a siz-
able difference between the individual methods. RF has arguably the largest models,
followed by the various pruning methods whereas LR, as well as L1+LR, seem to
have the smallest models, although it is difficult to give a general recommendation
here. We will examine the model size in more detail in the next section.

TABLE 6.3: The accuracy and model size of each method on each
dataset computed over a five-fold cross-validation or the train/test
split of the dataset (if any). Each entry is rounded to the second digit
after to decimal point. Each row represents one dataset, and each col-
umn is one method. Larger is better. The best accuracy is marked in

bold.

dataset COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult
86.99 % 86.79 % 86.95 % 86.87 % 86.91 % 87.25 % 86.78 % 87.01 % 86.98 % 86.78 %
3.12 MB 3.12 MB 3.12 MB 3.12 MB 3.24 MB 0.06 MB 12.49 MB 0.09 MB 6.25 MB 24.99 MB

anuran
98.89 % 98.75 % 98.89 % 98.82 % 98.8 % 99.24 % 98.75 % 99.24 % 98.89 % 98.79 %
1.57 MB 6.23 MB 1.56 MB 1.52 MB 6.23 MB 6.23 MB 6.23 MB 6.23 MB 1.56 MB 3.13 MB

avila
99.48 % 98.66 % 99.56 % 99.55 % 99.32 % 99.87 % 98.58 % 99.77 % 99.31 % 98.58 %
3.36 MB 16.37 MB 3.04 MB 3.03 MB 16.23 MB 3.52 MB 32.85 MB 4.05 MB 7.22 MB 32.85 MB

bank
90.44 % 90.44 % 90.46 % 90.54 % 90.42 % 90.5 % 90.58 % 90.42 % 90.48 % 90.39 %
3.12 MB 3.12 MB 6.25 MB 6.25 MB 4.16 MB 0.07 MB 3.12 MB 0.09 MB 12.5 MB 24.99 MB

connect
78.64 % 77.52 % 78.92 % 78.77 % 79.32 % 83.95 % 77.4 % 82.88 % 78.26 % 77.32 %
1.81 MB 1.81 MB 1.81 MB 1.81 MB 28.92 MB 1.88 MB 3.62 MB 0.9 MB 1.81 MB 3.62 MB

eeg
93.42 % 93.42 % 93.42 % 93.42 % 93.53 % 95.55 % 93.42 % 95.35 % 93.42 % 93.42 %

14.95 MB 14.95 MB 14.95 MB 14.95 MB 14.95 MB 5.88 MB 14.95 MB 6.24 MB 14.95 MB 14.95 MB

elec
89.12 % 88.98 % 89.27 % 89.34 % 89.72 % 92.49 % 88.98 % 92.21 % 89.14 % 88.98 %
12.5 MB 24.99 MB 3.12 MB 6.25 MB 24.86 MB 14.37 MB 24.99 MB 12.49 MB 6.25 MB 24.99 MB

fashion
87.3 % 87.1 % 87.22 % 87.17 % 87.25 % 89.4 % 87.21 % 89.37 % 87.09 % 87.13 %

28.49 MB 28.49 MB 28.49 MB 28.49 MB 49.2 MB 56.99 MB 28.49 MB 56.99 MB 28.49 MB 28.49 MB

gas-drift
99.53 % 99.42 % 99.5 % 99.46 % 99.39 % 99.59 % 99.46 % 99.55 % 99.46 % 99.43 %
0.32 MB 0.7 MB 0.63 MB 0.63 MB 5.64 MB 0.59 MB 0.74 MB 0.63 MB 0.36 MB 0.7 MB

ida2016
99.28 % 99.23 % 99.26 % 99.22 % 99.23 % 99.32 % 99.25 % 99.32 % 99.28 % 99.25 %
0.39 MB 1.56 MB 0.78 MB 2.07 MB 4.15 MB 3.12 MB 0.78 MB 3.12 MB 0.19 MB 2.07 MB

japanese-vowels
97.44 % 97.14 % 97.19 % 97.19 % 97.14 % 98.32 % 97.29 % 98.31 % 97.14 % 97.14 %
4.85 MB 9.66 MB 9.67 MB 9.5 MB 19.35 MB 3.3 MB 4.96 MB 3.3 MB 19.35 MB 19.35 MB

magic
87.67 % 87.67 % 87.67 % 87.69 % 87.84 % 87.58 % 87.69 % 87.35 % 87.67 % 87.67 %

16.68 MB 16.68 MB 12.49 MB 8.32 MB 12.48 MB 16.44 MB 8.38 MB 16.68 MB 12.49 MB 12.49 MB

mnist
96.53 % 96.53 % 96.56 % 96.53 % 96.53 % 98.05 % 96.53 % 98.03 % 96.53 % 96.53 %

56.99 MB 56.99 MB 28.49 MB 56.99 MB 55.21 MB 28.49 MB 56.99 MB 28.49 MB 56.99 MB 56.99 MB

mozilla
95.3 % 95.27 % 95.3 % 95.53 % 95.24 % 95.53 % 95.27 % 95.32 % 95.37 % 95.27 %

3.95 MB 7.86 MB 0.99 MB 0.47 MB 7.86 MB 0.67 MB 7.86 MB 3.12 MB 0.78 MB 7.86 MB

postures
97.11 % 97.03 % 97.2 % 97.11 % 97.23 % 98.64 % 96.96 % 98.63 % 97.02 % 96.97 %
4.62 MB 18.5 MB 18.5 MB 18.5 MB 36.85 MB 29.74 MB 36.99 MB 36.99 MB 9.25 MB 18.5 MB
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TABLE 6.4: The F1 score and model size score of each method on each
dataset computed over a five-fold cross-validation or the train/test
split of the dataset (if any). Each entry is rounded to the fourth digit
after to decimal point. Each row represents one dataset, and each col-
umn is one method. Larger is better. The best F1 score is marked in

bold.

dataset COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult
0.8094 0.8066 0.8085 0.8066 0.8062 0.8137 0.8066 0.811 0.8081 0.8066

3.12 MB 24.99 MB 3.12 MB 24.99 MB 10.87 MB 0.29 MB 24.99 MB 0.09 MB 6.25 MB 24.99 MB

anuran
0.9766 0.9706 0.974 0.9745 0.972 0.9844 0.9706 0.9844 0.9753 0.9715

3.14 MB 6.23 MB 1.56 MB 1.52 MB 6.23 MB 6.23 MB 6.23 MB 6.23 MB 3.14 MB 3.13 MB

avila
0.9937 0.9872 0.9936 0.9933 0.9921 0.9979 0.9867 0.9967 0.9931 0.9867

6.93 MB 16.37 MB 6.54 MB 3.03 MB 16.23 MB 3.52 MB 32.85 MB 4.05 MB 7.22 MB 32.85 MB

bank
0.7246 0.715 0.7249 0.7263 0.7216 0.7502 0.7188 0.7434 0.7283 0.7138

3.12 MB 6.25 MB 6.25 MB 6.25 MB 24.76 MB 0.34 MB 0.0 MB 0.38 MB 6.25 MB 3.12 MB

connect
0.5472 0.5526 0.5571 0.5541 0.5545 0.6784 0.5162 0.6706 0.5436 0.5234

0.45 MB 0.23 MB 0.91 MB 0.45 MB 28.92 MB 1.88 MB 0.45 MB 28.99 MB 0.45 MB 0.23 MB

eeg
0.9333 0.9333 0.9333 0.9333 0.9344 0.9549 0.9333 0.9529 0.9333 0.9333

14.95 MB 14.95 MB 14.95 MB 14.95 MB 14.95 MB 5.88 MB 14.95 MB 6.24 MB 14.95 MB 14.95 MB

elec
0.888 0.8865 0.8897 0.8903 0.8944 0.923 0.8865 0.9201 0.8882 0.8865

12.5 MB 24.99 MB 3.12 MB 6.25 MB 24.86 MB 14.37 MB 24.99 MB 12.49 MB 6.25 MB 24.99 MB

fashion
0.8714 0.8695 0.8707 0.8703 0.8709 0.8932 0.8704 0.8929 0.8693 0.8698

28.49 MB 28.49 MB 28.49 MB 28.49 MB 49.2 MB 56.99 MB 28.49 MB 56.99 MB 56.99 MB 28.49 MB

gas-drift
0.9949 0.9937 0.9946 0.994 0.9932 0.9956 0.9939 0.995 0.994 0.9938

0.32 MB 0.64 MB 0.63 MB 0.63 MB 5.64 MB 0.59 MB 0.74 MB 0.63 MB 0.36 MB 0.7 MB

ida2016
0.913 0.9053 0.9095 0.9041 0.9058 0.9189 0.9075 0.9179 0.9118 0.908

0.39 MB 1.56 MB 0.78 MB 2.07 MB 4.15 MB 3.12 MB 0.78 MB 0.78 MB 0.19 MB 2.07 MB

japanese-vowels
0.9725 0.9692 0.9696 0.9696 0.9692 0.9819 0.9709 0.9819 0.9692 0.9692

4.85 MB 19.35 MB 9.67 MB 4.7 MB 19.35 MB 6.61 MB 4.96 MB 3.3 MB 19.35 MB 9.69 MB

magic
0.8619 0.8619 0.8619 0.8622 0.8639 0.8613 0.862 0.8587 0.8619 0.8619

16.68 MB 16.68 MB 16.68 MB 8.32 MB 12.48 MB 16.44 MB 8.38 MB 16.68 MB 16.68 MB 16.68 MB

mnist
0.965 0.965 0.9654 0.965 0.9651 0.9804 0.965 0.9802 0.965 0.965

56.99 MB 56.99 MB 28.49 MB 56.99 MB 55.21 MB 28.49 MB 56.99 MB 28.49 MB 56.99 MB 56.99 MB

mozilla
0.9453 0.9449 0.9455 0.9482 0.9445 0.9485 0.9449 0.9459 0.946 0.9449

3.95 MB 7.86 MB 0.99 MB 0.47 MB 7.86 MB 0.67 MB 7.86 MB 3.12 MB 0.78 MB 7.86 MB

postures
0.9709 0.9701 0.9718 0.9708 0.9721 0.9863 0.9694 0.9863 0.9699 0.9695

4.62 MB 18.5 MB 18.5 MB 18.5 MB 36.85 MB 29.74 MB 36.99 MB 36.99 MB 9.25 MB 18.5 MB

To give a statistically meaningful comparison, we present the results in Table 6.3
and Table 6.4 as a CD diagram [Dem06]. In a CD diagram, each method is ranked
according to its performance and a Friedman-Test is used to determine if there is a sta-
tistical difference between the average rank of each method. If this is the case, then a
pairwise Wilcoxon-Test between all methods checks whether there is a statistical dif-
ference between the two classifiers. CD diagrams visualize this evaluation by plotting
the average rank of each method on the x-axis and connecting all classifiers whose
performances are statistically similar via a horizontal bar. Figure 6.1 shows the cor-
responding CD diagram for the accuracy (left side) and F1 score (right side), where
p = 0.95 was used for all statistical tests. In both cases, we see that L1+LR ranks first
place in a single clique meaning that it is the statistically significant best method. On
rank 2 we find leaf-refinement in both cases followed by IC, COMP, IE, L1, RE, and
LMD. Random forest and DREP switch places in both plots: RF ranks last in terms of
accuracy, whereas second to last in terms of F1 score. Similarly, DREP is second to
last place in terms of accuracy but ranks last place in terms of F1 score. We conclude
that pruning and leaf-refinement improve the accuracy over the base random forest
in almost all cases confirming the results in the literature. However, leaf-refinement
seems to perform better than pruning and larger improvements in terms of accuracy
and F1 are possible when leaf values are refined. Last, the joint selection and re-
finement of trees via the L1+LR algorithm seem to generally perform best ranking
first in both cases thereby supporting our initial hypothesis that both, pruning and
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refinement, should be integrated into each other for the best performance.
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FIGURE 6.1: Critical Difference Diagram for the accuracy (left side)
and F1 score (right side) of the different methods over multiple
datasets. For all statistical tests, p = 0.95 was used. More to the right
(lower rank) is better. Methods in connected cliques are statistically

similar.

6.4.2 (Q2) What Method has the Best Predictive Performance under
Memory Constraints?

In the second experiment, we study the predictive performance of pruning and leaf-
refinement under memory constraints. Recall that small IoT devices are often severely
limited in terms of memory (c.f. Table 2.1) and we can only deploy models that fit
the available memory. Note that many of the ensembles in Table 6.3 and Table 6.4
already exceed the small memory resources of many IoT devices, thereby making de-
ployment impossible. For the following analysis, we adopt a hardware-agnostic view
which assumes that we are given a fixed memory budget for our model, which should,
naturally, maintain a state-of-the-art performance. To do so we pick the best hyperpa-
rameter configuration of each method that has the best predictive performance while
having a model size smaller than {128, 256, 512, 1024, 2048} KB. The model size is
computed as follows: A baseline implementation (discussed in more detail in chapter
8) of DTs stores each node in an array and iterates over it. Each node inside the array
requires a pointer to the left / right child (8 bytes in total assuming int is used), a
boolean flag if it is a leaf node (1 byte), the feature index as well as the threshold to
compare the feature against (8 bytes assuming int and float is used). Last, entries
for the class probabilities are required for the leaf nodes (4 bytes per class assuming
float is used). Thus, in total, a single node requires 17 + 4 ·C Bytes per node which
we sum over all nodes in the entire ensemble.

We could not find meaningful differences between the F1 score and the accuracy
here and hence we will focus on the accuracy for now and revisit the F1 score later
on. Moreover, we will focus on {128, 512, 2048} KB constraints. Additional tables with
additional memory constraints as well as the F1 score are given in the appendix B.
Table 6.5 shows the accuracy for model sizes below 128 KB. Contrary to the accuracies
without any memory constraints, this table is now more fragmented. L1+LR is the
best method on 5 datasets (adult, bank, elec, mnist, mozilla), whereas vanilla LR
ranks first on 6 datasets (anuran, connect, eeg, fashion, japanese-vowels, postures).
RE pruning is the best option on two datasets (gas-drift, ida2016) and IC is the best
option on the magic dataset. Somewhat surprisingly, pruning via L1 did not lead
to valid models on many datasets, whereas L1+LR always produces valid models1.
Going from 128 KB constraints to 512 KB constraints in Table 6.6 L1+LR seems to
improve. It now ranks first on 8 datasets (adult, avila, bank, coonnect, eeg, elec,
ida2016, japanese-voeels), followed by LR which ranks first on 4 datasets (anuran,

1We suspect that L1 and L1+LR require different values for λ to select a similar amount of trees.
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fashion, mnist, postures), and IE that ranks first on two datasets (magic, mozilla).
COMP ranks first on one dataset and IC shares its first place with IE the magic dataset.
This trend continues for larger memory sizes. Table 6.7 shows the accuracy for a
constraint of 2048 KB. Here, L1+LR now ranks first on 13 datasets with a performance
close to the unconstrained ones in Table 6.3. LR, LMD, and IE each rank first on one
dataset.

TABLE 6.5: The accuracy of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 128 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the second digit after to decimal point. Each
row represents one dataset, and each column is one method. Larger is

better. The best method is marked in bold.

dataset COMP DREP IC IE L1 L1+LR LMD RE RF LR

adult 86.56 86.30 86.59 86.86 85.49 87.25 86.18 86.70 85.85 87.01
anuran 97.43 97.29 97.36 97.78 - 97.86 97.01 97.64 97.33 98.05
avila 92.29 89.82 91.68 91.77 - 78.76 83.39 91.88 87.75 88.80
bank 90.37 90.04 90.16 90.29 89.71 90.50 90.10 90.17 89.90 90.42
connect 75.51 75.49 76.15 75.81 69.50 78.11 73.84 75.38 73.67 78.72
eeg 87.15 86.68 86.48 87.05 77.45 88.22 85.61 87.52 85.57 88.50
elec 85.51 84.46 85.20 85.27 80.55 86.54 83.91 85.22 84.34 86.25
fashion 83.20 82.60 83.02 82.73 - 83.67 82.65 83.21 83.01 84.22
gas-drift 98.96 98.74 98.81 98.99 - 99.05 98.63 99.07 98.68 98.98
ida2016 99.13 99.12 99.13 99.17 98.91 99.08 99.12 99.18 99.11 99.16
japanese-vowels 91.11 90.11 91.16 89.41 - 91.46 90.46 91.16 90.40 92.65
magic 87.06 86.67 87.35 86.88 84.67 87.00 86.77 86.88 86.46 86.57
mnist 90.24 89.64 90.52 89.12 83.57 92.54 89.17 90.30 88.74 92.31
mozilla 94.85 94.66 94.79 94.85 - 94.96 94.85 94.76 94.60 94.60
postures 85.75 85.70 85.38 85.56 - 77.34 83.91 85.88 84.68 86.63

TABLE 6.6: The accuracy of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 512 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the second digit after to decimal point. Each
row represents one dataset, and each column is one method. Larger is

better. The best method is marked in bold.

dataset COMP DREP IC IE L1 L1+LR LMD RE RF LR

adult 86.95 86.35 86.76 86.86 86.21 87.25 86.55 86.84 86.31 87.01
anuran 98.33 98.26 98.12 98.33 94.37 98.64 98.54 98.54 98.29 98.75
avila 98.20 94.62 98.06 98.33 66.70 98.57 89.33 98.06 95.59 97.53
bank 90.37 90.04 90.19 90.29 90.06 90.50 90.25 90.21 90.15 90.42
connect 77.35 77.31 77.57 77.58 73.62 82.03 75.58 77.19 75.61 81.67
eeg 90.79 89.52 90.49 90.25 83.26 92.70 89.59 89.79 89.67 91.01
elec 86.78 86.59 87.46 87.08 82.76 89.01 85.75 86.99 86.32 88.45
fashion 85.10 84.57 84.90 84.54 79.60 85.91 84.61 84.94 84.65 86.28
gas-drift 99.53 99.35 99.32 99.32 96.23 99.48 99.35 99.46 99.38 99.42
ida2016 99.28 99.22 99.24 99.21 99.03 99.30 99.19 99.28 99.22 99.25
japanese-vowels 94.93 93.67 94.28 94.43 82.78 96.27 93.67 94.63 93.54 95.82
magic 87.19 86.83 87.35 87.35 85.83 87.27 87.12 87.04 86.93 86.57
mnist 93.53 92.75 93.44 93.10 87.54 95.58 93.07 93.21 92.68 95.79
mozilla 95.27 95.18 95.21 95.53 94.27 95.21 94.92 95.34 95.13 95.08
postures 92.67 92.39 92.26 92.55 72.20 92.74 90.95 92.29 91.89 93.50
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TABLE 6.7: The accuracy of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 2048 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the second digit after to decimal point. Each
row represents one dataset, and each column is one method. Larger is

better. The best method is marked in bold.

dataset COMP DREP IC IE L1 L1+LR LMD RE RF LR

adult 86.95 86.67 86.92 86.86 86.82 87.25 86.55 86.92 86.55 87.01
anuran 98.89 98.54 98.89 98.82 97.50 99.15 98.54 98.89 98.67 99.17
avila 99.21 98.24 99.35 99.40 83.65 99.84 92.48 99.20 97.68 99.61
bank 90.42 90.36 90.36 90.46 90.33 90.50 90.38 90.38 90.29 90.42
connect 78.64 77.52 78.92 78.77 75.34 83.95 77.17 78.26 77.03 82.88
eeg 92.19 91.92 92.46 92.09 86.30 94.86 91.72 92.22 92.13 93.77
elec 88.90 88.05 89.12 89.24 85.13 91.84 87.75 88.87 87.97 89.77
fashion 85.86 86.06 85.91 86.07 83.45 87.28 85.97 86.16 85.81 87.24
gas-drift 99.53 99.42 99.50 99.46 98.31 99.59 99.46 99.46 99.43 99.55
ida2016 99.28 99.23 99.26 99.22 99.14 99.33 99.25 99.28 99.24 99.31
japanese-vowels 96.34 95.78 96.08 96.03 91.32 98.09 96.18 96.34 96.04 97.85
magic 87.40 87.06 87.40 87.54 87.05 87.27 87.61 87.56 87.21 86.57
mnist 95.12 94.87 95.21 94.99 90.86 97.35 94.88 95.00 94.67 97.31
mozilla 95.27 95.24 95.30 95.53 94.63 95.53 95.14 95.37 95.19 95.25
postures 95.79 95.66 95.92 95.76 84.30 97.23 95.06 95.94 95.37 96.93

We conclude that for small model sizes below 128 KB, pruning as well as re-
finement offer better predictive performance than a vanilla random forest, but it is
difficult to give clear recommendations on what method works best in this scenario.
We hypothesize that due to the small model size, each method can only pick a few
comparably small trees, all with similar performance, and hence, we find similar per-
formances across the methods. Moreover, LR seems to perform slightly better than
L1+LR. Once more memory is available, each method can pick more and larger trees,
thereby leaving more room for picking ‘good’ and ‘bad’ trees. Hence, we see more
differences between the individual methods and a clear trend toward refinement.
Finally, for larger models with 2048 KB constraints, there is a clear trend towards
L1+LR for the best performance.

The difference between vanilla LR and L1+LR for smaller model sizes can be
explained by the choice of hyperparameters in this experiment. LR considers K ∈
{2, 4, 8, 16, 32, 64, 128} trees for refinement, whereas L1+LR indirectly chooses the
number of trees via λ. We suspect that a more fine-grained hyperparameter selection
of λ would have led to a more fine-grained distribution of different model sizes with
potentially better performance. Figure 6.2 shows the average number of estimators
across all datasets and all configurations selected for different λ values in L1+LR.
The error band shows the standard deviation of selected trees across the datasets. As
expected, increasing λ leads to a reduction in the number of trees. Between λ = 0.1
and λ = 0.5, there is a large drop in the number of estimators from more than 200
to below 100. Similar, but less steep, there is also a significant drop in the average
number of estimators from λ = 0.5 to λ = 1.0. Hence, choosing additional values
for λ ∈ [0.01, 0.5] and λ ∈ [0.5, 1.0] could give a more fair comparison here, and it is
conceivable that L1+LR would perform better for smaller model sizes below 128 KB.

Similar to the previous section, we want to give a more statistical overview of
our findings using CD diagrams. To do so, we expand them into two-dimensional
CD diagrams where we apply memory constraints for each level on the y-axis. In the
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FIGURE 6.2: Average number of estimators across all datasets and
configuration of L1+LR for different λ values. The error band shows

the standard deviation.

first level, we apply very restrictive constraints, only allowing for models below 128
KB, and plot the average rank of each method. This will likely result in small en-
sembles of small trees. On the next level, we double the amount of memory allowed
to 256 KB and again plot the average rank similar to a ‘regular’ CD diagram. We re-
peat this process for all constraints and plot 5 levels with {128, 256, 512, 1024, 2048}
KB constraints. Figure 6.3 shows the CD diagram for the accuracy. As indicated by
the previous discussion, all methods are relatively close to each other if only limited
memory is available. LR is the best method, followed by L1+LR, RE, COMP, IE, IC,
DREP, LMD, RF, and L1 for 128 KB. As discussed previously, L1 on its own is the worst
method for all memory constraints. Going to 256 KB constraints, we see that LR and
L1+LR have equal performance while all the other methods seem to differentiate
more. This general trend continues, and for 512 and 1025 KB, L1 and L1+LR form
a single clique with statistically the best performance, and for 2048 KB constraint
L1+LR is the best method on its own. Figure 6.4 shows the CD diagram for the F1

score. The overall plot is similar to Figure 6.3: If limited memory is available, then
it becomes more difficult to distinguish the performance of single methods, whereas,
with more memory available, the average ranks seem to differentiate more. More-
over, L1 is the worst method, whereas LR is the best method for 128 KB constraints,
and L1+LR is the best method for 512 - 2048 KB constraints. For 256 KB constraints,
there is no clear winner, although LR seems to rank slightly better than L1+LR.
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FIGURE 6.3: Two-dimensional critical difference diagram for the ac-
curacy and {128, 256, 512, 1024, 2048} KB memory constraints. For all
statistical tests, p = 0.95 was used. More to the right (lower rank) is

better. Methods in connected cliques are statistically similar.
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FIGURE 6.4: Two-dimensional critical difference diagram for the F1

score and {128, 256, 512, 1024, 2048} KB memory constraints. For all
statistical tests, p = 0.95 was used. More to the right (lower rank) is

better. Methods in connected cliques are statistically similar.
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7 | Training Ensembles on Small
Devices

The last chapter discussed how to train ensembles for small devices, but with the
increasing processing capabilities of small devices, the training of machine learning
models directly on small devices also becomes more and more attractive. The advan-
tages are clear: The training happens directly at the edge so no further communi-
cation between the edge and a (central) server is required. This not only enhances
privacy but also minimizes latency and energy consumption by mitigating communi-
cation costs. On the other hand, training on the edge introduces new challenges. For
model application, we can focus all available resources on the inference of a model.
For model training, however, we additionally have to manage the resources of the
training algorithm (e.g., additional buffers or data structures that do not belong to
the model itself) as well as the training data itself.

The most natural idea to train ensembles in this context is to adapt the exist-
ing batch algorithms to small devices and / or specialized hardware architectures.
The benefit of this approach is that training becomes much more efficient while
we can often expect the same predictive performance as existing algorithms. For
example, there are numerous works in literature that detail how to leverage par-
allelism in CPUs and GPUs to improve the split computations during DT construc-
tion [CG16, PGV+18, KMF+17] without hurting the predictive performance. Similar
works also exist in the context of the map-reduce programming model and in dis-
tributed environments (see e.g. [LO02, PHBB09, YCCZ09, PR12, dLBH14]). Even
more specialized approaches such as [DMD19] discuss how to use bit-level data struc-
tures during boosting. Similarly, [GI18] details how to compute large random forests
with little resources by pre-partitioning the training data.

Discrete classifiers have the great advantage that they do not require floating-
point resources for inference. Similarly, decision tree induction and the ensembling,
e.g., via Bagging, can also be implemented with few to no floating-point operations.
Hence, a carefully chosen ensemble of discrete classifiers can be trained without any
floating-point operations. This makes the available memory of the small device the
major limitation. Unfortunately, batch algorithms – by design – expect that the entire
dataset is available on the computation device, which further challenges the avail-
able memory of the small device. Hence, we will now focus on online learning that
consumes one data item after another for the training of ensembles on small devices.

7.1 Online Learning of Tree Ensembles

In online learning, the device consumes one data item at a time, never having access
to the entire dataset at once. This has the benefit that we do not need to store the
entire dataset on a small device. Additionally, online learning provides a model at
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any point during training so that the performance of the model usually improves
over time. The disadvantage of this approach is that it often requires entirely new
training algorithms with their own theoretical properties that differ from their batch
counterparts.

We start by adapting our notation to the online scenario. Let S = {(xi, yi)|i ∈
{0, . . . }} be an open-ended sequence of d-dimensional feature vectors xi ∈ Rd and la-
bels yi ∈ Y ⊆ RC . As before, for classification problems with C ≥ 2 classes we encode
each label as a one-hot vector y = (0, . . . , 0, 1, 0, . . . , 0), having yc = 1 for the assigned
label c ∈ {0, . . . , C − 1}; for regression problems we have C = 1 and Y = R. In this
chapter, we focus on classification problems, even though the presented approach is
directly applicable to regression, as well. Let S[t : t+T ] = {(xt, yt), . . . , (xt+T , yt+T )}
denote the sub-sequence of length T starting at element t. Our goal is to maintain a
suitable model f : Rd → Y, which integrates the knowledge of previously observed
examples S[0 : t − 1], while also offering a good prediction f(xt) for the next data
point xt before the true label yt is known. There are three crucial challenges in this
setting:

• Computational efficiency: The algorithm must process examples at least as
fast as new examples arrive.

• Memory efficiency: The algorithm has only a limited budget of memory and
fails if more memory is required.

• Evolving data streams: The underlying distribution of the data might change
over time, e.g., in the form of concept drift, and the algorithm must adapt to
new data trends to preserve its performance.

7.1.1 Online DT Learning

In general, there are three different approaches for online DT induction:

Racing-based DT learning

Racing-based algorithms propose multiple hypotheses and let them race each other
for the best performance [MM93, MM97, LN13]. Figure 17 shows this general idea
for DT induction: The algorithm starts with initializing the root node. Then it con-
sumes one example after another and accesses the corresponding leaf nodes for each
example. Each leaf node contains a list of the possible split hypotheses that monitor
their respective performances on the previous samples. Once a selection criterion
deems one split significantly better than the other splits, that split is incorporated
into the tree, and two new child splits are added. Domingos and Hulten proposed
the first online DT induction algorithm called HoeffdingTree (HT) in [DH00]. Before
discussing the algorithm, we will present a different variant of Hoeffding’s inequality
in Theorem 8 that is more useful in this context.

Theorem 8 (Hoeffding’s inequality (Variant)). Let X1, . . . , XN be i.i.d random vari-
ables with Xi ∈ [0, 1] ∀i = 1, . . . , N . Let µ = 1

N

∑︁N
i=1Xi be the empirical mean, then

with probability 1− β it holds that:

|µ− E[X]| ≤
√︄

1

2N
log

(︃
2

β

)︃



7.1. Online Learning of Tree Ensembles 117

Algorithm 17 Online Training of a decision tree via racing.
1: function UPDATE_TREE(x,y)
2: if init then
3: node← new_node() ▷ Init. new node
4: init← false
5: else
6: node← apply (x) ▷ Find the leaf node for x
7: for h ∈ node.H do
8: h.update_statistics(y) ▷ Update statistics for leaf hypothesis
9: if node.is_converged then ▷ Check if best hypothesis is converged

10: node.h← argmin
h∈node.H

{e(h)} ▷ Node becomes inner node

11: node.left← new_node() ▷ Add left child
12: node.right← new_node() ▷ Add right child

Proof. We start with the original Hoeffding’s inequality in Theorem 1 and use a =
0, b = 1:

P (|µ− E[X]| ≥ ε) ≤ 2 exp
(︁
−2Nε2

)︁
⇔ P (|µ− E[X]| ≤ ε) ≥ 1− 2 exp

(︁
−2Nε2

)︁
⇔ |µ− E[X]| ≤ ε with prob. at-least 1− 2 exp

(︁
−2Nε2

)︁
Now define

ε =

√︄
1

2N
log

(︃
2

β

)︃
leading to

|µ− E[X]| ≤ ε with prob. at-least 1− 2 exp

⎛⎝−2N (︄√︄ 1

2N
log

(︃
2

β

)︃)︄2
⎞⎠

|µ− E[X]| ≤ ε with prob. at-least 1− 2 exp

(︃
− log

(︃
2

β

)︃)︃
|µ− E[X]| ≤ ε with prob. at-least 1− β

which concludes the proof.

The original algorithm by Domingos and Hulten only processes categorical fea-
tures and uses Hoeffdings bound to rate the performance of each split. To do so, they
introduce a split hypothesis for each categorical value of each feature in all current
leaf nodes. The author notes that we are only interested in the best split during the
race. Hence, it is enough to decide if the (current) best split is reliably better than the
second-best split. To do so, they propose to use the Hoeffding Bound. More formally,
let s1 = (k1, t1) denote the best and let s2 = (k2, t2) denote the second-best split. Let
Γ̄(p1) (Γ̄(p2)) be the average score Γ(p1)i (Γ(p2)i) of the class probabilities p1 (p2) of
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split s1 (s2) for the individual observations i = 1, 2, . . . , T :

Γ̄(p1) =
1

T

T∑︂
i=1

Γ(p1)i

Γ̄(p2) =
1

T

T∑︂
i=1

Γ(p2)i

(7.1)

Then, according to Theorem 8 it holds with probability 1− β:

|(Γ̄(p2)− Γ̄(p1))− E[Γ(p2)− Γ(p1)]| ≤
√︃

log(2/β)

2T
(7.2)

and consequently, if

(Γ̄(p2)− Γ̄(p1)) >

√︃
log(2/β)

2T
(7.3)

then with probability 1 − β the split s1 is surely better (in expectation) than s2. The
authors then continue to show that such a tree will converge against its batch coun-
terpart if trained on the same data.

It is important to recognize that this formulation requires Γ̄(p2)−Γ̄(h1) to be sum-
decomposable, which implies that Γ̄(p1) and Γ̄(p2) should be decomposable meaning
that they can be estimated via the sum of individual scores. As discussed previously,
top-down DTs often use the Gini-Score or Entropy Score. Unfortunately, we can-
not apply Hoeffding’s-Bound in these cases because both scoring functions are not
decomposable. The authors carefully circuit this issue in their motivating introduc-
tion of Hoeffding Trees and focus on the classification error instead. Unfortunately,
this mathematical rigor did not carry over to either the experiments nor to recent
implementations that feature both the Gini-Score and Entropy Score1 as a splitting
criterion. On a bibliographic note, it is interesting to add that the erroneous usage of
the Hoffeding Bound was – to the best of our knowledge – first reported by Rutkowski
et al. in [RPDJ13]. Rutkowski et al. propose to use McDiarmid’s Bound, which does
not require decomposability and thus also works with the Gini- and Entropy-score.
Unfortunately, Rutkowski et al. do not offer an empirical comparison of their method
to Hoeffding Trees. A reason for this might be that Hoeffding Trees simply work well
in practice, and thus experiments did not yield significant differences. As discussed
in section 2.4.1, a DT does not require optimal, or even ‘good’ splits to fit the sample
S well as long as there are enough splits with consistent predictions in the leaf nodes.
Hence, any split is sufficient if training continues, which is usually done in online
learning.

The vanilla HT algorithm is only able to handle categorical inputs, and thus multi-
ple extensions have been proposed to generalize it [HSD01, HKP05, PHK07, PHK08,
BG09, RPDJ13, MHM21]. Most notably, the overall approach of HTs have been im-
proved by Hoeffding Anytime Trees (HTT) [MWS18]. HTTs greedily select the best
split nodes after a few examples before Hoeffding’s bound deems it significantly bet-
ter than the other splits but keeps evaluating all split candidates in all nodes. Then,
it re-orders the entire tree if the initial greedy choice becomes sub-optimal due to
Hoeffding’s Bound.

1See, e.g., https://www.cs.waikato.ac.nz/~abifet/MOA/API/annotated.html or https://
github.com/online-ml/river

https://www.cs.waikato.ac.nz/~abifet/MOA/API/annotated.html
https://github.com/online-ml/river
https://github.com/online-ml/river
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Gradient-based DT learning

The second line of research studies the training of DTs using gradient-based algo-
rithms such as stochastic gradient descent (SGD) [KFCB15, ST15, AİA18, SGW+18,
IA21]. Here, the structure of the DT is pre-defined (e.g., its height and the number
of leaf nodes) and the objective

argmin
s,g

T∑︂
t=1

ℓ

⎛⎝ L∑︂
i=1

gi(xt)
∏︂
l∈Li

sl(xt), yt

⎞⎠ (7.4)

is directly minimized over the prediction functions g and splits s. The commonly used
axis-aligned splits 1{xk ≤ t} are not smooth, which makes the optimization via gra-
dient descent difficult. Thus, a soft DT with split-functions σ(z(x)) (for the children
on the right side) and 1− σ(z(x)) (for the children on the left side) is used. Here σ is
the sigmoid function, and z : Rd → R is another split function, e.g., a linear function
z(x) = ⟨x,w⟩. The weight vector w is thereby a part of the optimization objective and
determines the features which are relevant in the corresponding split by its nonzero
entries. Some approaches introduce sparsity regularization terms for w in order to
enforce using fewer features in z [YA14]. Other approaches apply dropout to the tree
edges during training [IA21], add the possibility to resize the tree during learning
[TAA+19], or map examples into a lower dimensional embedding space for smaller
trees [KGV17]. Lastly, these soft decision trees can also be viewed as a specialized
deep learning architecture as discussed previously [FH17, BSW16]. Gradient-based
approaches naturally enable online learning and benefit from advances in optimiza-
tion and tooling. However, there are two distinct drawbacks: First, the structure
of a DT must be given beforehand, and hence the DT loses its adaptiveness to the
data. Second, they require the costly computation of gradients through backpropa-
gation over the entire (i.e., due to the soft splits, all paths in the tree must be con-
sidered during backpropagation) tree, which again requires floating-point operations.
Last, gradient-based DTs suffer from the vanishing gradient problem that additionally
slows down convergence [Hoc98].

Sliding Window

Sliding window approaches store a fixed-sized window of observations and then
continuously train a new DT on the current window using a regular batch algo-
rithm. Training a single DT on a sliding window has already been proposed in
the 1980s in [Kub89]. The FLORA method constructs logical formulas of the form
A1 ∧ A2 ∧ · · · ∧ An =⇒ B using so-called rough-sets [Paw82]. Clearly, the above
formula also represents a decision tree, even though the training of such a tree does
not follow the more established CART or ID3 algorithm. Street and Kim extend this
approach by introducing a heuristic that re-trains individual trees of an ensemble
on small batches of the data whenever the performance of a classifier deteriorates
[SK01]. Unfortunately, we could not find any evidence that this simple baseline has
been considered much beyond its original publication or the related variants FLORA2
- FLORA4 [WK96]. More ‘recent’ papers often train (batched) Naive Bayes, SVM, or
KNN over a fixed-sized window [SK05, BG07] but not decision trees, while current
work such as [GBR+17, GRB19] does not compare against fixed-sized windows at-all.
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7.1.2 Online BNNs

The main training algorithm for BNNs is SGD. As mentioned above, SGD can easily
be turned into an online algorithm, e.g., by using the current observation for a gra-
dient step (i.e., batch size 1) or by buffering a batch of examples that is continuously
replaced by new observations (e.g., a sliding window). Hence, the training of BNNs
naturally fits into an online scenario. However, in contrast to DTs, the gradient com-
putation of BNNs requires floating-point operations, which makes training BNNs on
small devices less attractive. To the best of our knowledge, [WDM+21] is the only
work that specifically optimizes BNN training for the edge by carefully designing a
data structure for the activations of the network.

7.1.3 Online Naive Bayes

Naive Bayes can be directly translated into an online algorithm. Recall that for cate-
gorical variables, Bernoulli Naive Bayes treats every category as a one-hot encoding
of binary features and computes the counts fi,c of feature i occurring together with
class c to estimate the class probabilities pi,c. Hence, we can simply update the counts
during online learning.

Numerical features are modeled with a Gaussian distribution so that Naive Bayes
uses a mean µi,c and a variance σi,c for each numerical feature i and class c. Comput-
ing the mean is straightforward in an online scenario as it only requires the sum of as
well as the total number of instances seen so far. Computing the variance is slightly
more complex as it depends on the current mean. Let xi,1, xi,2, . . . , ...xi,T−1 be the
values of the i-th feature that have been processed so far in the stream and let Xi,T

be the i-th feature of the current example with the corresponding label yT . Note that
we only need to update the mean and variance estimates for the current label yT , and
all other estimates remain the same. Let µi,y,T−1 be the mean of feature i and class
yT using the first N − 1 data points and let σi,y,T−1 be the corresponding variance.
Then, we can compute the current mean µi,y,T and the current variance σi,y,T−1 by
using Welford’s algorithm (c.f. [Knu97], p.232):

µi,y,T =
(T − 1)µi,y,T−1 +Xi,T

T
= µi,y,N−1 +

xi,T − µT−1

T
MT =MT−1 + (xi,T − µi,y,T−1)(xi,N − µi,y,T )

σ2i,y,T =
MT

T

(7.5)

7.1.4 Online Ensembling

Online GNCL-like algorithms

As mentioned before, GNCL-like algorithms are most often used in combination with
neural networks. Hence, they naturally fit into an online learning scenario by lever-
aging SGD, as discussed above. However, they do not seem to be widely adopted in
this scenario beyond the joint training of soft decision tree ensembles in [KFCB15,
ST15, SGW+18] or as a general framework for online bagging.

Online Bagging

Bagging can be extended to online scenarios through their connection with GNCL-like
algorithms discussed previously. Oza and Russel show in [OR01] that wagging with
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weights sampled from a discrete Poisson distribution w ∼ Poisson(1) is the same as
bagging and use this insight to formulate an online bagging algorithm. This algorithm
requires an online learner such as Hoeffding Trees and then simulates bagging by
presenting the training example w ∼ Poisson(1) times or weighting the loss of the
learner with w. This general idea can be extended to various algorithms [Oza05] and
more specialized approaches, e.g., specifically designed for concept drift [ASM08,
BHP10, HCP11, GBR+17, GRB19]. For an overview, see [GBEB17, KMG+17] and
references therein.

Online Boosting

Boosting has also been extended to the online scenario. Similar to online bagging,
the basic idea is to use online base learners that can be updated with each new
observation. The boosting weights (or losses) are computed on the fly by applying
the models one after another, and the individual base learners are updated using their
corresponding weights [OR01, RHS04, Oza05, PJVR09]. More specialized variations
of this approach, e.g., for concept drift, are also available [KM05]. Again, for a
more comprehensive overview, see [GBEB17, KMG+17] and references therein. It is
worth mentioning that the theoretical performance of online boosting has remained
somewhat elusive because a consistent definition of weak learnability in an online
setting is not easy to come by. Chen et al. made the first effort to find a theoretically
justified online boosting algorithm in [CLL12] that was later extended in [BHKL15,
HSV+17, dCSdB20]. While multiple convergence rates for various online boosting
variations now exist, there is – to the best of our knowledge – a general framework
for online boosting still missing.

7.2 Shrub Ensembles

Tree ensembles are one of the most popular choices for online learning due to their
ability to cope with drift. As mentioned above, the two main strategies to train on-
line tree ensembles are to use incremental base learners such as Hoeffding Trees or
gradient-based learning of DTs. The drawback of incremental learners such as HT
is that they always keep adding new nodes to the tree without removing old ones.
Thus, the size of the trees grows over time which is not suitable for applications on
small devices. The drawback of gradient-based learning is that it requires the costly
computation of gradients by backpropagation through the entire tree. In order to
have a small and efficient learning algorithm, we are now re-visiting the training of
individual trees over a sliding window.

We propose to maintain a bounded but dynamic ensemble of so-called decision
shrubs. Just as in botany, decision shrubs are small- to medium-sized trees which
compete against each other. Our algorithm trains shrubs on small windows and uses
stochastic proximal gradient descent to learn the weights of individual shrubs in the
ensemble. Shrubs with sub-optimal performance are aggressively pruned from the
ensemble, while new shrubs are regularly introduced. This makes our algorithm fast
and memory-efficient while it retains a high degree of adaptability to evolving data
streams. In contrast to incremental learners, our trees never exceed a fixed size. In
contrast to gradient-based approaches, we replace costly gradient computations with
a continuous re-training of trees on small batches.

As usual, we assume an additive ensemble f of K = |H| base learners from some
model class H = {h : Rd → RC}, where K is potentially very large or even infinite.
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Each of the K learners hi ∈ H is associated with a weight wi ≥ 0 and the ensemble is
given by:

f(x) =
K∑︂
i=1

wihi(x) (7.6)

Now, assume that the set of models H is fixed to a finite set beforehand (we
will discuss how to adapt H during optimization later). Then our goal is to learn
the optimal weights wi for each base learner. Since we require a memory-efficient
and adaptable algorithm, only M ≪ K trees should receive a nonzero weight, and
the remaining K −M hypotheses should have a zero weight wi = 0. In this way,
the computation of f(x) becomes very efficient since only M instead of K models
must be executed for prediction. Additionally, we are free to select another set of
M hypotheses if there is a drift in the data, thus retaining the adaptability of the
algorithm. Formally, we propose the following optimization objective

argmin
w∈RK

T∑︂
t=1

ℓ
(︁
fS[0:t−1](xt), yt

)︁
s.t. ∥w∥0 ≤M,wi ≥ 0,

K∑︂
i=1

wi = 1 (7.7)

where M ≥ 1 is the maximum number of ensemble members, ℓ : RC × Y → R+ is
a loss function, ∥w∥0 =

∑︁K
i=1 1{wi ̸= 0} is the 0−norm which counts the number of

nonzero entries in w and fS[0:t−1] : R
d → RC is the model at time t. This objective

shares some overlap with the ensemble pruning objective in Eq. 6.8, but we now
added additional constraints to it. More specifically, the L1+LR algorithm uses the
L1 norm during minimization whereas the objective here contains the L0 norm. While
the L1 norm worked very well for ensemble pruning it cannot guarantee a maximum
ensemble size, but it finds a good trade-off between the ensemble’s error and the
number of classifiers in it. If this trade-off is unfavorable, e.g., when the ensemble is
too large, we can increase λ to force smaller ensembles and run the pruning algorithm
again. In the case of on-device training, however, this is not possible. Here, we must
ensure that the ensemble does not grow beyond a maximum size at all times during
training and deal with the fact that there is no chance of re-running the algorithm.
Hence, we use the L0 norm instead of the L1 norm to enforce an upper limit of at
most M classifiers in the ensemble. For concreteness, we now focus on the (multi-
class) MSE loss but note that our implementation also supports other loss functions
such as the cross-entropy loss:

ℓ(fS[0:t−1](xt), yt) =
1

C
∥fS[0:t−1](xt)− yt∥2 (7.8)

7.2.1 Optimizing the Weights when H is known

The direct minimization of L(w, h) =
∑︁T

t=1 ℓ(fS[0:t−1](xt), yt) is infeasible, since S
is open-ended and unknown beforehand. However, we can store small batches B =
S[t−B : t] of the incoming data (e.g. a sliding window) and use them to approximate
our objective via the sample mean

LB(w, h) =
1

BC

∑︂
(x,y)∈B

∥f(x)− y∥2. (7.9)
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The function L is convex and smooth, and its global optimum can be easily derived
via its stationary points. However, the feasible set of our constraints

∆ =

{︄
w ∈ RK

+

⃓⃓⃓⃓
⃓
K∑︂
i=1

wi = 1, ∥w∥0 =M

}︄
(7.10)

is not convex, which makes the convex optimization problem to minimize L(w, h)
over w ∈ Rd a nonconvex problem, minimizing L(w, h) over the feasible set w ∈ ∆.

As mentioned in chapter 6, proximal stochastic gradient descent (PSGD) is a pop-
ular choice to integrate constraints into gradient-based optimization methods. Recall,
that PSGD is an iterative algorithm, where every iteration consists of two steps: First,
a gradient descent update of the objective function LB(w, h) is performed without
considering any constraint. Then, the prox-operator is applied to project its argu-
ment onto the feasible set ∆. The proximal gradient update for every iteration is
then given as

w ← P (w − α∇wLB(w)) , (7.11)

where α ∈ R+ is the step-size and P : RK → ∆ is the corresponding prox-operator.
Let us consider an unbiased estimator of the true gradient by using a mini-batch B of
a few examples. By the chain rule we have:

∇wL(w, h) ≈ ∇wLB(w) =
1

|B|
∑︂

(x,y)∈B

(︃
∂ℓ(fS[0:t−1](x), y)

∂fS[0:t−1](x)
hi(x)

)︃
i=1,...,K

(7.12)

For ∇wL(w, h) = ∇wLB(w) (e.g. if B = S), we obtain the ‘regular’ proximal gradi-
ent descent algorithm. [KBCK13] study the computation of the prox-operator for the
combination of sparsity requirements and simplex constraints, which define our feasi-
ble set. Assuming that the vector w is decreasingly ordered, such that w1 ≥ . . . ≥ wK ,
they present an operator that sets theK−M smallest entries in w to zero and projects
the M largest values onto the probability simplex:

P (w)i =

{︄
0 if i > M

[wi − τ ]+ otherwise

where τ =
1

β

(︄
β∑︂

i=1

wi − 1

)︄
, β = max

{︄
j

⃓⃓⃓⃓
⃓wj >

1

j

j∑︂
i=1

(wi − 1) , j ≤M
}︄ (7.13)

7.2.2 Optimizing H simultaneously with the Weights

If the set of classifiers H is large, then the computation of the weight-gradient can be
costly, even when the prox-operator ensures that only M models receive a nonzero
weight. In turn, a small candidate set H restricts the possibilities to adapt to the
environment such that the model can not adequately react to concept drift. A natural
solution to this problem is to drop the assumption that all models in H are known
beforehand and to instead dynamically change H with new incoming data.

To do so, we maintain at most M trees in the ensemble whose corresponding
entries in w are nonzero. In every iteration, we add a new tree to the ensemble and
then update the M + 1 weights of w. The update ensures that at least one of the
M + 1 trees obtains a weight of zero, which will be replaced in the subsequent step
with a newly trained tree. The new tree will be a part of the ensemble as long as its
weight is in subsequent updates not set to zero. Our method Shrub Ensembles (SE) is
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outlined in Algorithm 18. We start with an empty buffer B and an empty set of trees
H during the initialization phase. For every new data item, we update the sliding
window buffer (lines 4-5), train a new classifier (e.g., via CART), and initialize its
weight with zero (lines 6-9). Then, we perform the gradient step followed by the
prox-operator (lines 10-12). Finally, we remove classifiers with a weight of 0 (line
13). The intuition of our approach is that a newly trained shrub that (significantly)
improves the ensemble’s prediction will likely receive a large enough weight after the
gradient update to survive the subsequent prox-operator. If, however, the tree does
not improve the ensemble’s prediction much it might only receive little gradient mass,
such that the tree is removed from the ensemble immediately.

Algorithm 18 Training of a Shrub Ensemble.
1: function UPDATE_SE(x, y)
2: if init then
3: w ← (0); B ← [ ];H ← [ ] ▷ Init.
4: if |B| = B then ▷ Update batch
5: B.pop_first()
6: B.append((x, y))
7: hnew ← train(B) ▷ Add new classifier
8: H.append(hnew)
9: w ← (w1, . . . , wM , 0) ▷ Initialize weight

10: w ← w − α∇wLB(w) ▷ Gradient step using Eq. 7.12
11: w,H ← sorted(w,H) ▷ Sort decreasing order
12: w ← P(w) ▷ Project on feasible set using Eq.

7.13
13: w,H ← prune(w,H) ▷ Remove zero weights

7.2.3 Theoretical Performance of Shrub Ensembles

Theorem 9 formalizes the theoretical behavior of Shrub Ensembles. It shows that,
whenever a new, previously unknown relationship (or concept) between observations
and labels is discovered, then SE will include the newly trained tree in the ensemble,
given an appropriate choice for the step size. In particular, this means two things:
First, when M = 1 then SE resembles the continuous re-training of trees over a
sliding window of fixed size, similar to the previously discussed FLORA algorithm.
Second, SE will always incorporate a new concept into the ensemble while keeping
track of past concepts, only replacing that tree with the smallest contribution to the
entire ensemble. For large step sizes our approach is very aggressive as we introduce
a new tree immediately in the ensemble when a single new concept arrives. For
very fast-changing data, this can be beneficial, but in some settings, this can hurt the
performance, e.g., if the data is very noisy.

Theorem 9 (Adaptability of Shrub Ensembles). Let M ≥ 1 be the maximum ensemble
size in the shrub ensembles (SE) algorithm and let B be the buffer size. Consider a
classification problem with C classes. Further, let m ≤M be the number of models in the
ensemble. Now assume that a new observation (xB, yB) arrives, which was previously
unknown to the ensemble so that ∀i = 1, . . . ,m : hi(xB) ̸= yB. Let SE train fully-grown
trees with hj(x) ∈ {0, 1}C and let h be the new tree, trained on the current window,
such that ∀i = 1, . . . , B − 1: h(xi) = yi. Then we have for α > BC

4m the following cases:

• (1) If m < M , then h is added to the ensemble
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• (2) If m =M , then h replaces the tree with the smallest weight from the ensemble.

Proof. We start by computing the gradient for weight w with its tree h:

∂ℓ(f(x), y)

∂w
=

2

BC

(︄
B∑︂
i=1

C∑︂
c=1

(f(xi)c − yi,c)h(xi)c
)︄

Now consider the first case m < M . We show, that h receives a non-negative weight
w > 0 and thus is kept after applying the prox-operator. To do so, we check the
weight of h after the gradient step. Recall, that new trees receive an initial weight of
w = 0 and thus:

w = 0− 2α

BC

(︄
B∑︂
i=1

C∑︂
c=1

(f(xi)c − yi,c)h(xi)c
)︄

?
> 0

simplifying and reordering lead to

B∑︂
i=1

C∑︂
c=1

(f(xi)c − yi,c)h(xi)c
?
< 0

B∑︂
i=1

C∑︂
c=1

f(xi)ch(xi)c
?
<

B∑︂
i=1

C∑︂
c=1

h(xi)cyi,c

Note that h is a fully grown tree on the current batch so that h(xi)c and yi,c are
either both 0 or both 1. Thus, it follows that since only one entry in yi is nonzero that
the right side equals B. Now consider the left side. Recall that h(xB)c is 1 for the
new class j and f(xB)j = 0 per assumption. Thus, in the ‘best’ case the ensemble’s
prediction f and the prediction of h is the same on all but the last example. More
formally,

∑︁C
c=1 f(xi)ch(xi)c = 1 for each, but the last item in B. It follows that:

B∑︂
i=1

C∑︂
c=1

f(xi)ch(xi)c = B − 1 < B

which concludes the proof for the first case.
Now we consider the second case in which m =M . Here we must show that after

the gradient step the weight w is larger than the smallest weight in the ensemble to
replace the corresponding tree. Let wk be the smallest weight in the ensemble. As
noted, h replaces that tree hk with the smallest weight wk in the ensemble if wk < w
after the gradient step. Let

Gk =
2

BC

B−1∑︂
i=1

C∑︂
c=1

(f(xi)c − yi,c)hk(xi)c

be the gradient on the first B−1 examples in the window for the k−th member. Now
consider the extreme case in which hk is always correct but f is always wrong. Then
Gk is at-least

Gk =
2

BC

B−1∑︂
i=1

C∑︂
c=1

f(xi)chk(xi)c − yi,chk(xi)c ≥ −
2(B − 1)

BC
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A similar argument holds for h since we know per assumption that h is correct on
the entire batch of the training data. Since

∑︁m
i=1wi = 1 we can further estimate that

wk ≤ 1
m . Thus:

wk−αGk −
α

BC

C∑︂
c=1

2(f(xB)c − yB,c)hk(x)c

< wk +
2(B − 1)

BC
− α

BC

C∑︂
c=1

2(f(xB)c − yB,c)hk(x)c

<
1

m
+

2(B − 1)

BC
− α

BC

C∑︂
c=1

2(f(xB)c − yB,c)hk(x)c

?
< w = 0 +

2(B − 1)

BC
− α

BC

C∑︂
c=1

2(f(xB)c − yB,c)h(y)c

Subtracting 2(B−1)
BC on both sides leads to:

1

m
− 2α

BC

C∑︂
c=1

(f(xB)c − yB,c)hk(x)c
?
< − 2α

BC

C∑︂
c=1

(f(xB)c − yB,c)h(x)c

Looking at the left side we note that f(xB)j and hk(x)j are 0 for the class of yB and
hk(x)c = 1 for exactly one other class c. Since f(xB)c ≤ 1 we upper bound:

1

m
− 2α

BC

∑︂
c̸=j

f(xB)chk(xB)c <
1

m
− 2α

BC

Looking at the right side we note that h(x)j = 1 whereas the remaining entries are 0.
Moreover, f(xB)j = 0 and yB,c = 1 leads to

− α

BC

C∑︂
c=1

2(f(xB)c − yB,c)h(x)c = −
2α

BC
(−1)

Combining both results:

1

m
− 2α

BC
<

2α

BC
⇔ α >

BC

4m

which concludes the proof.

Theorem 9 has two crucial assumptions. First, shrubs are assumed to be fully
grown so that they perfectly isolate the points in the current window. Second, the
step size must be large enough. Turning this statement around, SE might decide
not to include a new tree into the ensemble if the step size is smaller than BC

4m or if
trees are not perfectly fitting the current batch. In this case, a new concept might
be ignored if it only appears a few times in the current window. If, however, the
new concept appears multiple times in the window a newly trained tree will likely
‘overfit’ this new concept and therefore receive a big enough weight to replace one
of the other trees. It follows that for large step sizes α > BC

4m and fully-grown trees
SE will follow changes in the distribution very quickly, whereas for smaller step sizes
and ‘smaller’ trees it will be more resilient to noise in the data.
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7.2.4 Runtime and Memory Consumption of Shrub Ensembles

The continuous training of new models in SE might seem costly, but for reasonable
choices of base learners and window sizes, the training is comparably quick. First,
the CART and ID3 algorithms require O(dN2 logN) runtime where N is the number
of data points. In our case we have N = B, that is, the runtime of tree induction
is limited by the window size. Second, there are many efficient heuristics and im-
plementations available for decision tree induction that improve the theoretical and
practical runtime of tree learning, e.g. by only considering a well-chosen subset of
splits [CG16, KMF+17, PGV+18, GEW06]. The computation of the prox-operator in
Algorithm 18 is in O(M logM) [WC13]. The complexity is dominated by the sorting
of w. To further decrease the runtime we can maintain a sorted list of w and H in-
stead of sorting them from scratch (line 11). This can efficiently be done via a binary
search tree which only requires O(logM) runtime for the insertion and deletion (line
13) of items. Hence, the total complexity of SE is O

(︁
dB2 logB + logM

)︁
.

Regarding memory consumption, we note that the size of the trained trees is
inherently limited by the window size – regardless of the specific training algorithm.
A fully-grown tree that perfectly separates the observations in B requires at most B
leaf nodes. Therefore, the total number of nodes used by a tree is upper-bounded by
the window size with 2log2 B+1 − 1 = 2 ·B − 1. It follows that Algorithm 18 stores at
most B examples and M +1 models, each having at most 2 ·B−1 nodes. This makes
our shrub ensembles an overall fast and memory-efficient algorithm.

7.3 Experiments

In our experimental evaluation, we are interested in the performance of our shrub
ensembles in comparison to recent state-of-the-art methods. We are specifically inter-
ested in the accuracy-memory trade-off of these methods. For our analysis, we adopt
a hardware-agnostic view which assumes that we are given a fixed memory budget
for our model, which should, naturally, maintain a state-of-the-art performance. For
racing-based algorithms, we use Online Naive Bayes (NB), Hoeffding Trees (HT), Ho-
effding Anytime Trees (HTT), Streaming Random Patches (SRP), Adaptive Random
Forest (ARF), Online Bagging (Bag) and Smooth Boost (SB) implemented in MOA
[BHKP10]. For gradient-based approaches, we implemented soft decision tree en-
sembles (SDT) using PyTorch [PGM+19]. For Shrub Ensembles (SE) we used our
own C++ implementation. We compare the performance of each algorithm using the
average test-then-train accuracy and the average model size (in kilobyte) on 12 dif-
ferent datasets depicted in Table 7.1.

We measure the model size as the entire model, including any stored variables
(e.g., including the sliding window). A careful reader might view this comparison as
slightly biased against MOA since it is implemented in Java, whereas the other algo-
rithms are implemented in C++ (with a Python interface). Unfortunately, there is cur-
rently no alternative, efficient MOA implementation available. Preliminary projects
to implement MOA in C++2 or Python3 have not been finalized, yet. Thus, we put
effort into making this comparison fair by computing the reference size of each MOA
model first (before it received any data points), which is then subtracted from the

2https://github.com/huawei-noah/streamDM-Cpp
3The authors of https://riverml.xyz/ confirmed that they currently strive for functional and ‘fea-

ture complete’ code and perform optimizations later on during development.

https://github.com/huawei-noah/streamDM-Cpp
https://riverml.xyz/
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TABLE 7.1: Characteristics of employed datasets. The left group
shows real-world datasets with unknown concept drift (available
in the UCI repository [DG17]) and the right group shows artificial

datasets with synthetic drift (available as part of MOA [BHKP10]).

Dataset N d C

gas-sensor 13 910 128 5
weather 18 159 8 2
nomao 34 465 174 2

elec 45 312 14 2
airlines 539 383 614 2

covertype 581 012 98 7

Dataset N d C

agrawal_a 1 000 000 40 2
agrawal_g 1 000 000 40 2

led_a 1 000 000 48 10
led_g 1 000 000 48 10
rbf_f 1 000 000 10 5
rbf_m 1 000 000 10 5

measurements. This way, we only account for changes in the model due to new items
and do not include the ‘static’ overhead of Java.

To ensure a fair comparison between the hyperparameter choices of each individ-
ual algorithm, we follow the methodology presented in [BB12]. In a series of pre-
liminary experiments, we identify reasonable ranges for each hyperparameter and
method (e.g., number of trees in an ensemble, window size, step sizes, etc.). Then,
for each method and dataset, we sample at most 50 random hyperparameter config-
urations from these ranges and evaluate their performance. If fewer configurations
were available (e.g. Online Naive Bayes has no hyperparameters), then we sam-
ple all available configurations. Figure 7.1 gives an example of the hyperparameter
optimization. For each method, a dictionary of hyperparameters has been defined.
The Var keyword marks a variation of the corresponding hyperparameter which ran-
domly selects one of the values from the list. For example, the depicted configuration
might generate a SE model with M = 128 trees, trained on a window size of 210

data points with a step size of 0.1 where each tree has a max depth of 12 which is
randomly trained on d features. The detailed list of hyperparameters can be found in
the source code. To ensure timely and realistic results, we remove each configuration
that took longer than two hours. In summary, we test 312 different configurations per
dataset totaling 3 744 experiments. For the experiments, we used a cluster node with
256 AMD EPYC 7742 CPUs and 1TB ram in total. The code for these experiments is
available under https://github.com/sbuschjaeger/se-online.

"M": Var([4,8,16,32,64,128,256]),
"window_size": Var([2**i for i in range(4, 14)]),
"step_size": Var([1e-4,1e-3,1e-2,1e-1,2e-1,5e-1]),
"additional_tree_options" : {

"max_depth": Var([2,4,8,12,15]),
"splitter": Var(["train","random"]),
"max_features": Var([d, np.sqrt(d)])

}

FIGURE 7.1: Example of a hyperparameter configuration for Shrub En-
sembles (SE). The Var keyword marks a variation of the correspond-
ing hyperparameter which randomly selects one of the values from the
list. All trees receive the same hyperparameter configuration. Please
consult the source code for the exact parameter choices for all meth-

ods.

https://github.com/sbuschjaeger/se-online
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7.3.1 Quantitative Analysis

As mentioned before, we are interested in the most accurate models with the smallest
memory consumption. Clearly, these two metrics can contradict each other. In our
first experiment, we assume that there are no memory restrictions at all. Table 7.2
displays the test-then-train accuracy, the average model size (in KB), and the total
runtime (in seconds). The highest accuracies are highlighted and the fastest runtime
and smallest memory consumption are marked in italic. We notice, that we obtain in
comparison to [GRB19] which uses similar methods and the same datasets, slightly
better results for all algorithms, which can be attributed to our more expensive hyper-
parameter optimization. SE, SRP, ARF, and Bagging generally offer the best accuracy.
SRP offers the highest accuracy in 5 cases, followed by SE and ARF, performing best
on 3 datasets. Bagging attains the highest accuracy on the airlines dataset. Looking
at the size, however, we see a different picture. Most of the well-performing methods
in terms of accuracy (SRP, ARF, and Bagging) generally consume the most memory,
ranging in the order of megabytes, up to the hundreds. SDT, HT, and HTT place
themselves in the middle, consuming a few hundred kilobytes to a few megabytes,
whereas SE and NB generally consume the least memory (≤ 1 MB). Likewise, look-
ing at the running time, we observe that SRP, ARF, SB, and Bagging require the most
time, although SDT shows here some notable outliers. HT, HTT, and NB seem to be
the quickest methods whereas SE sometimes is very fast and sometimes it is slower
than HT or HTT. We conclude that SE is among the state-of-the-art algorithms for
online learning while having a similar resource consumption as Online Naive Bayes,
making it an ideal choice for small devices.

In the second experiment, we assume that we are given a limited memory budget,
and we exclude every method which exceeds this limit. Table 7.3 shows the results
when a maximum of 10 MB per model is allowed and Table 7.4 shows the results
if only 1 MB is available. The best method is again highlighted for each dataset. A
dash ‘-’ indicates that an algorithm did not produce a model with a size in the given
bounds for any hyperparameter configuration. For space reasons, we exclude the
specific model size and runtime from the tables.

Looking at Table 7.3, we first notice that SE now also offers the best performance
on the agrawal_a and agrwal_g dataset because neither ARF nor SRP managed to
produce models which use less than 10 MB. Interestingly, HTT suddenly becomes the
best method on the airlines dataset, and ARF manages to become the best method on
the led_a and led_g datasets.

We see that this effect amplifies if only 1 MB is available in Table 7.4. Now, SE
is the best method on all datasets except the weather dataset because ARF, SRP, SB,
and Bagging do not produce valid models on most datasets. Only SDT, NB, and SE
manage to consistently stay below 1 MB. We also performed experiments with more
aggressive constraints, such as 128 KB but noticed that most algorithms except NB and
SE would fail in this setting while SE generally outperformed NB. We conclude that
SE or NB are well-prepared for resource-constraint devices, consistently producing
small models. Looking at the accuracy of both approaches, we see that SE is the
clear winner on all but one dataset. SE is able to produce excellent models while
meeting even more aggressive resource constraints making it ideally suited for small,
resource-constraint systems.

To summarize the algorithm’s performance, we now compute the area under the
Pareto front (APF) that contains those parameter configurations that are not domi-
nated across one or more dimensions. For better comparability, we normalize the APF
by the biggest model for the given dataset. We are specifically interested in the APF
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TABLE 7.2: Best test-then-train accuracy for each method on the given
datasets without any memory constraints.

dataset ARF Bag HT HTT NB SB SDT SE SRP

gas-sensor accuracy 92.674 91.608 84.798 92.535 72.898 76.023 17.164 96.787 95.715
size [kb] 1796 5040 355 1041 67 6090 103 1 23650
time [s] 34 30 14 17 14 112 1968 8 134

nomao accuracy 98.566 97.760 94.733 96.871 92.792 96.889 88.628 98.660 98.558
size [kb] 9292 90717 1091 411 42 12159 7 10 15997
time [s] 148 637 26 28 28 147 97 21 204

elec accuracy 91.057 89.774 86.452 87.748 76.165 88.372 42.514 94.012 91.415
size [kb] 5727 10640 254 234 3 2113 4 1 18882
time [s] 117 72 17 21 25 56 119 12 258

weather accuracy 78.328 78.380 75.112 76.592 69.584 76.954 32.870 75.860 79.192
size [kb] 22868 6034 96 95 2 794 106 333 4012
time [s] 95 36 8 9 10 23 910 379 27

covtype accuracy 93.647 92.256 86.460 88.688 64.591 85.236 3.742 92.844 94.297
size [kb] 34204 1058285 11876 10432 45 51600 10 23 59589
time [s] 2805 19558 502 611 589 2150 4583 1043 4527

airlines accuracy 69.450 69.501 67.004 68.756 66.969 69.867 38.771 68.176 69.067
size [kb] 203557 314285 49390 16826 113 348796 60 91 96996
time [s] 5899 6801 801 1038 780 5202 3041 1413 3818

agrawal_a accuracy 94.413 93.592 92.439 91.716 74.288 93.455 9.771 93.551 94.316
size [kb] 102889 216892 5909 1537 8 45545 5 73 121708
time [s] 2066 2430 426 495 567 1767 2782 803 2741

agrawal_g accuracy 92.277 90.192 87.589 87.707 74.276 91.189 45.478 91.567 91.894
size [kb] 132295 370692 10809 2807 8 61971 5 79 194785
time [s] 2382 3176 454 497 563 1876 2601 827 3313

led_a accuracy 73.789 72.277 68.849 71.480 64.417 72.754 10.112 72.329 73.855
size [kb] 99900 49406 1154 1936 29 18363 5 320 45368
time [s] 4528 3452 1061 1201 1192 4361 4567 1628 3256

led_g accuracy 73.036 72.114 68.634 71.406 64.401 72.495 0 71.440 73.109
size [kb] 115453 83044 1146 2407 29 18429 5 324 184343
time [s] 5401 5128 1089 1220 1231 3727 4716 1602 6713

rbf_f accuracy 75.788 56.659 38.186 40.326 29.747 42.529 7.246 73.028 77.928
size [kb] 11285 629872 1644 4599 5 15575 4 241 35487
time [s] 3109 9081 542 585 708 1469 4519 1271 7079

rbf_m accuracy 86.376 81.335 62.963 69.513 32.948 65.467 16.672 79.632 86.134
size [kb] 28217 589415 2726 5013 5 18409 2 916 73123
time [s] 3251 5754 547 609 710 1537 2653 6468 7754

TABLE 7.3: Best test-then-train accuracy for each method on the given
datasets with model size below 10 MB. The best method is depicted in
bold for each dataset. A dash ‘-’ indicates that a method did not have
a model with a smaller size than the constraint in any hyperparameter

configuration.

dataset ARF Bag HT HTT NB SB SDT SE SRP

agrawal_a - 93.029 92.439 91.716 74.288 92.879 9.771 93.551 -
agrawal_g - 87.399 87.356 87.707 74.276 88.817 45.478 91.567 -
airlines - - - 68.491 66.969 - 38.771 68.176 -
covtype 93.194 - 86.408 88.505 64.591 82.922 3.742 92.844 92.958
elec 91.057 89.122 86.452 87.748 76.165 88.372 42.514 94.012 91.020
gas-sensor 92.674 91.608 84.798 92.535 72.898 76.023 17.164 96.787 95.617
led_a 73.501 70.518 68.849 71.480 64.417 72.331 10.112 72.329 73.042
led_g 72.680 70.266 68.634 71.406 64.401 72.090 - 71.440 71.764
nomao 98.566 97.315 94.733 96.871 92.792 96.451 88.628 98.660 98.515
rbf_f 75.744 45.391 38.186 40.326 29.747 41.210 7.246 73.028 77.444
rbf_m 85.030 69.880 62.963 69.513 32.948 63.004 16.672 79.632 84.908
weather 78.244 78.380 75.112 76.592 69.584 76.954 32.870 75.860 79.192
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TABLE 7.4: Best test-then-train accuracy for each method on the given
datasets with model size below 1 MB. The best method is depicted in
bold for each dataset. A dash ‘-’ indicates that a method did not have
a model with a smaller size than the constraint in any hyperparameter

configuration.

dataset ARF Bag HT HTT NB SB SDT SE SRP

agrawal_a - - - 90.539 74.288 - 9.771 93.551 -
agrawal_g - - - 85.846 74.276 - 45.478 91.567 -
airlines - - - - 66.969 - 38.771 68.176 -
covtype - - - - 64.591 - 3.742 92.844 -
elec 90.453 87.839 86.452 87.748 76.165 85.965 42.514 94.012 -
gas-sensor 92.336 81.173 84.798 92.177 72.898 73.471 17.164 96.787 93.815
led_a - - - - 64.417 - 10.112 72.329 -
led_g - - - - 64.401 - - 71.440 -
nomao - - 94.564 96.871 92.792 - 88.628 98.660 -
rbf_f 69.554 - 36.207 35.618 29.747 - 7.246 73.028 -
rbf_m - - 55.465 - 32.948 - 16.672 79.632 -
weather - 77.771 75.112 76.592 69.584 76.954 32.870 75.860 77.806

TABLE 7.5: Normalized area under the Pareto front (APF) for each
method and each dataset with models smaller than 100 MB. Rounded
to the fourth decimal digit. Larger is better. The best method is de-

picted in bold.

ARF Bag HT HTT NB SB SDT SE SRP

agrawal_a 0.8259 0.8939 0.9145 0.9136 0.7429 0.9124 0.0977 0.9355 0.8877
agrawal_g 0.7738 0.8535 0.8601 0.8732 0.7427 0.8759 0.4548 0.9157 0.8571
airlines 0.5679 0.3461 0.5654 0.6588 0.6693 0.5048 0.3877 0.6818 0.5369
covtype 0.9274 0.8157 0.8487 0.8712 0.6458 0.8196 0.0374 0.9284 0.9285
elec 0.9081 0.8946 0.8641 0.8771 0.7616 0.8821 0.4251 0.9401 0.9091
gas-sensor 0.9238 0.9120 0.8474 0.9217 0.7287 0.7580 0.1716 0.9679 0.9537
led_a 0.7149 0.7050 0.6846 0.7095 0.6441 0.7199 0.1011 0.7233 0.7240
led_g 0.7085 0.7034 0.6825 0.7089 0.6439 0.7174 - 0.7144 0.7124
nomao 0.9793 0.9613 0.9443 0.9668 0.9277 0.9606 0.8863 0.9866 0.9752
rbf_f 0.7550 0.5171 0.3807 0.4014 0.2975 0.4217 0.0725 0.7302 0.7739
rbf_m 0.8541 0.7566 0.6262 0.6803 0.3295 0.6478 0.1667 0.7962 0.8479
weather 0.7788 0.7827 0.7510 0.7658 0.6958 0.7688 0.3287 0.7586 0.7895

in the context of small devices. From Table 2.1, it can be seen that the largest small
devices offer around 256 MB - 1 GB of RAM. A standard Linux environment (e.g.,
Raspbian) requires around 50 - 150 MB4 which leaves roughly 100− 200 MB for the
model on a Raspberry Pi A+. Hence, we will now focus on models with less than 100
MB. Table 7.5 shows the normalized area under the Pareto front. It can be seen that
SE and SRP generally perform best, followed by ARF. Our SE method ranks first on
seven datasets offering the best accuracy-memory trade-off, followed by SRP, which
ranks first on four datasets. In the third place, we find ARF, which ranks first on the
rbf_m dataset. SDT does not perform well. We hypothesize that this is due to the
random initialization combined with the vanishing gradient problem. On the led_g
dataset, it did not finish the computation in under two hours and thus was removed
for our evaluation.

To give a statistically meaningful comparison, we again present the results in Ta-
ble 7.5 as a CD diagram [Dem06]. Recall that in a CD diagram, each method is

4https://www.arrow.com/en/research-and-events/articles/raspberry-pi-4-ram-options

https://www.arrow.com/en/research-and-events/articles/raspberry-pi-4-ram-options
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ranked according to its performance, and a Friedman-Test is used to determine if
there is a statistical difference between the average rank of each method. If this is
the case, then a pairwise Wilcoxon-Test between all methods checks whether there is
a statistical difference between the two classifiers. CD diagrams visualize this evalu-
ation by plotting the average rank of each method on the x-axis and connecting all
classifiers whose performances are statistically similar via a horizontal bar. Figure
7.2 shows the corresponding CD diagram, where p = 0.95 was used for all statistical
tests. It can be seen that SE ranks first with an average rank between 1− 2 with some
distance to SRP, which – on average – ranks between 3 − 4th place closely followed
by ARF. Next, there is {SRP,ARF,HTT, SB,Bag,HT,NB} which forms a second
clique, and {Bag,HT,NB, SDT} which forms the last clique. While all three meth-
ods {SE, SRP,ARF} are in the same clique and hence offer similar performance,
SE has some distance. It is only present in this clique, meaning that it is statistically
better than {HTT, SB,Bag,HT,NB, SDT}.

123456789

SE
SRP
ARF
HTT

SB
Bag
HT
NB
SDT

FIGURE 7.2: Critical Difference Diagram for the normalized area un-
der the Pareto Front for different methods over multiple datasets. For
all statistical tests, p = 0.95 was used. More to the right (lower rank)

is better. Methods in connected cliques are statistically similar.

7.3.2 Qualitative Analysis

To gain a more complete picture, we now inspect the iterative development of the
test-then-train accuracy and the model size over the learning process for the best-
performing configuration of each algorithm without any memory constraints. Figures
7.3 and 7.4 plot the number of seen data points against the accuracy and memory
requirement for the gas-sensor and led_a dataset. The gas-sensor dataset is inter-
esting because it contains real-world data with a known time of drift (see Table 2 in
[VVA+12]) whereas the led_a dataset contains artificial drift. More qualitative results
on the other dataset can be found in appendix C. Looking at the accuracy in Figure
7.3 (top row), we notice a rather chaotic behavior in the beginning, which can be at-
tributed to the fact that in the first ten months of measurements, new classes appear
for the first time. Once each class was presented at least once to the algorithms, the
accuracy approaches one, where SE has the highest accuracy, followed by SRP. After
roughly 4 000 data points, we see a drop in the accuracy of ARF and NB, which can be
attributed to sudden changes in the distribution after roughly 20 months of measure-
ments. Here, the number of measurements, as well as the class distribution, heavily
changes. We also observe that HTT seems to cope better with the dynamic changes
in this dataset, compared to HT, which can be expected from the more greedy nature
of the algorithm.
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FIGURE 7.3: Accuracy and memory consumption over the number of
items on the gas-sensor dataset. Best viewed in color.

Looking at the memory consumption in Figure 7.3 (bottom row), we notice an
interesting behavior (note the logarithmic scale). We see that SE uses by far the
fewest, strictly bounded resources, whereas the other algorithms require at least a
magnitude more memory. As expected, the memory consumption of HT and HTT
monotonously rises over time as these algorithms never remove any internal node
from the tree. Moreover, HTT must maintain the list of all possible splits at all times,
thereby requiring more memory than HT. Likewise, the use of multiple HT(T)s as
base learners in ARF, SRP, Bagging, and SB is reflected in the plot. In addition, ARF
and SRP utilize the ADWIN drift detector [BG07], which uses a variable-sized sliding
window. The window size is computed by Hoeffding’s Bound, which is ideally suited
if no specific distribution can be assumed. On the downside, the window size con-
vergences comparably slow. As a result, the algorithms store additional information
for large windows to detect a possible drift, further increasing memory consumption.
Naive Bayes (NB) is a strong competitor to SE but also requires roughly a magnitude
more memory. Last, we notice that the memory consumption of SDT increases over
time due to a large sliding window in the hyperparameter settings. We conclude that
our SE method offers the best predictive performance on the gas-sensor dataset while
using the fewest resources, making it an ideal algorithm for resource-constrained
environments.

Figure 7.4 shows the test-then-train accuracy (top row) and average model size
(bottom row) for the led_a dataset. While the accuracy is relatively stable in the
beginning, we can see a clear drop around the 250 000 item mark and a smaller drop
later at around 500 000 items. NB and HT seem to suffer the most from this concept
drift, but also the other algorithms lose some predictive power. Again, SDT does
not seem to learn anything at all. Looking at the memory consumption, we see a
similar picture as before: HT(T) and ensembles of HT(T) learners steadily increase
their memory consumption over time, requiring up to 100 MB. NB and SDT have
the smallest memory consumption, whereas SE ranks third in memory consumption
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FIGURE 7.4: Accuracy and memory consumption over the number of
items on the led_a dataset. Best viewed in color.

in this setting. Again, we find that SE offers excellent performance while ranking
among the most resource-friendly methods.
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8 | Implementing Ensembles on
Small Devices

Model deployment is the last step after training and preparing a model. It deter-
mines many of the constraints for the overall pipeline and model. As argued before,
discrete classifiers are ideally suited for deployment since they do not require any
floating-point operations. Looking at the execution of these models, we find that
binarized neural networks or Naive Bayes seem much more favorable than decision
trees. BNNs and NB have a deterministic execution time that does not depend on the
data but is the same regardless of its input. DTs, on the other hand, have a proba-
bilistic inference time in which each observation in a tree may take a different path
of different lengths. This unpredictability makes DTs less attractive for real-time sys-
tems with hard deadlines1 or ultra-low power systems where a predictable amount
of energy should be consumed by each operation. Yet, DT and ensembles, there-
fore, are one of the most powerful ML classifiers that practically do not require any
computations during deployment but only comparisons. This brings three questions:
First, what is the best way to implement DT ensembles on small devices? Second, is
there a theoretical model for the execution of DTs so that we can make the execu-
tion time more predictable? Third, what would be the best hardware platform and
the best implementation of a DT? In this section, we will tackle the three challenges
by first introducing a probabilistic view of DT execution. Then, we use this view to
derive an efficient memory layout of DT ensembles that maximizes caching. After
that, we study the execution of DTs from a more theoretical perspective and tackle
the question if there is an optimal hardware platform to execute DTs.

8.1 Implementing Decision Trees

Random forests and decision trees have been studied in the context of inferencing.
Van Essen et al. present in [EMGP12] a comprehensive study of different architec-
tures for implementing random forests on CPUs, FPGAs, and GPUs. Their approach
is based on the CATE algorithm that trains DTs of a fixed height [PCMM13]. By uti-
lizing these fixed-size trees, the authors show an effective pipelining approach for
tree application on CPUs, FPGAs, and GPUs. The traversal of tree ensembles that are
not trained via CATE can be categorized by the properties of the executing hardware
platform.

1“A time-constraint is called hard if not meeting that constraint could result in a catastrophe”
[Mar11].



136 Chapter 8. Implementing Ensembles on Small Devices

CPUs

In [ALdV14], Asadi et al. introduce different implementation schemes for pre-trained
tree ensemble in the context of learning-to-rank tasks: The first approach they present
uses a while-loop to iterate over individual nodes of the tree, whereas the second
approach decomposes each tree into its individual if-else structure. For the first im-
plementation, the authors also consider a continuous data layout (i.e., an array of
structs) to increase data locality but do not directly optimize each implementation.
Again in the context of ranking models, Lucchese et al. present the QuickScorer al-
gorithm for gradient boosted trees [LNO+15]. In this approach, the authors discard
the tree structure but view each tree traversal as a series of bit operations on a 2L

dimensional bitvector, where L is the number of leaf nodes. Their approach offers
significant speed-up but is limited to the word size of the CPU, i.e., to trees with at
most 64 leaf nodes. Additionally, this approach evaluates all splits in all trees in the
forest in the worst case.

Vectorization

Looking at vectorization more closely, Kim et al. present in [KCS+10] an implemen-
tation for binary search trees using SIMD vectorization on Intel CPUs and compare
their implementation against a GPU implementation. The authors provide insight into
how to tailor an implementation to Intel CPUs by taking into account register sizes,
cache sizes as well as page sizes. Similarly, Lucchese et al. extend their QuickScorer
algorithm to use vectorization in [LNO+16], offering a speed-up factor of around
3.2 against the vanilla QuickScorer algorithm. Ye et al. further extended the vec-
torized QuickScorer (vQS) algorithm by introducing a data structure called epitome
in [YZZ+18]. Using this data structure, they are able to encode the tree traversal
more efficiently so that it is also possible to traverse trees with more than L > 64 leaf
nodes. However, the decoding of these epitomes requires additional computations so
that the overall performance over vQS is in the range of 1.3 − 3.5, depending on the
forest and dataset.

GPUs

GPUs have also been investigated for the traversal of DT ensemble. The first work in
this direction was due to Sharp in [Sha08], which showed how to encode DTs as 2D
textures that are then processed by the GPU. A more recent re-implementation of this
approach can be found in [NSY+20]. Here, the authors discuss multiple strategies
that map the execution of a DT into tensor operations. The key insight is that map-
ping DT traversal to tensor operations usually leads to an increase in computation,
but this increase is justified due to the availability of more efficient tensor libraries
and tensor processing hardware. For example, the GEMM approach discussed in
[NSY+20] has a runtime of O(n2) where n is the number of nodes in the tree, which
is much slower compared to the ‘regular’ node-by-node traversal (discussed below)
that requires O(log n). Yet, during the experiments, the authors report speed-up fac-
tors of around 60 when using their approach compared to the vanilla node-by-node
traversal. Last, Lettich et al. propose a multicore and GPU version of the QuickScorer
algorithm in [LLN+19] with speed-ups up to a factor of 102.6 against the original
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version.

FPGAs

Going from fixed computing architectures to FPGAs, there are also multiple works
available. In [SDP+15], Saqib et al. present a hardware-software co-design approach
in which a software implementation of decision trees is improved by an FPGA deci-
sion tree hardware accelerator. The authors show a speed improvement in classifi-
cation of around 3.5 compared to a software-only solution. Even though the authors
propose a theoretical analysis of their FPGA implementation, they lack a thorough
comparison with CPUs. More specifically, the authors compare their implementation
against a comparably slow Microblaze CPU without vectorization units. Barbareschi
et al. present in [BDPG+15] an implementation scheme for random forests on FP-
GAs focusing on the majority vote of a random forest. The authors present a fast
and energy-efficient way of computing a majority vote on FPGAs. Additionally, they
estimate the number of logic cells required for a decision tree during tree induction
to stop the training of trees that are too large. The authors do not compare their
findings against a software implementation.

Small devices often do not offer a GPU (c.f. Table 2.1), making GPU inferencing
unattractive for these devices. Similarly, vectorization is not always available in small
devices, making these approaches less attractive as well. In the following, we will
therefore focus on implementations of DT ensembles on CPUs and – to some degree
– also study FPGAs as means to implement the traversal of DTs. Programming a
decision tree is a simple task in most programming languages. Take a binary decision
tree in Figure 8.1 as an example. When we execute a node of the DT, we either
report the associated prediction if the node is a leaf or just need to perform a simple
comparison and decide whether the next node is the left child or the right child. In
any modern programming language, there are at least two ways to implement such a
decision tree:

• native: A simple implementation, named the native tree, uses a loop to iterate
over each node of a tree within a continuous data structure, e.g., arranged by a
one-dimensional array. An example code can be found in Figure 8.2.

• if-else: An alternative implementation, named the if-else tree, statically gener-
ates if-else blocks. Here, the split values of a tree are all hard-coded as constant
values into the instructions. An example code can be found in Figure 8.3.

Bibliographic remark: For historical reasons, the following sections ignore the QuickScorer
algorithm and its siblings. The QuickScorer algorithms are currently undergoing
a patenting process, and hence they are not publicly available, making experimen-
tal comparisons difficult. Moreover, the original implementation only supports Intel
CPUs2 which are rare in embedded systems. During this thesis, I supervised a bache-
lor thesis implementing the QuickScorer algorithm on ARM [Kos21], and the results
are very promising. At the time of writing this thesis, we submitted a research pa-
per to publish our findings, but this remains a work in progress and is therefore not
further discussed here.

2The author was kind enough to show us the source code under an NDA.
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FIGURE 8.1: Binary DT with depth 4. Inner nodes are depicted with
circles and leaf nodes are displayed as rectangles. Green nodes indi-
cate a positive, and red nodes indicate a negative class. Each node has
a unique id, and every path is associated with a probability. For exam-
ple, the probability of going from the root node 0 to its right child 2 is

p(0→ 2) = 0.7.

8.2 A probabilistic View of DT Execution

To analyze the expected runtime of axis-aligned binary decision tree implementa-
tions, we want to use the following notation: Each node receives a unique identifier
(e.g., in breath-first order) i. We denote the left child of i with l(i) and the right
child with r(i). Let L denote the number of leaves in a decision tree, then there are
L different paths from the root node to a leaf.

Recall that to classify a sample x, we begin to traverse the tree starting with its
root node and follow the children according to the comparisons at each node until
we find a leaf node. Then, we return the associated prediction value of the leaf node.
Every observation takes exactly one path π(x) from the root node to one leaf. Note
that all comparisons performed on a path depend on each other: at each node, we
decide which child node to visit next. To lighten the notation, we drop the argument
x if we are not interested in the path of a specific observation.

The number of comparisons performed during a path effectively indicates the
classification speed: The fewer comparisons we need to perform, the faster we can
classify the given observation. By assuming a certain distribution of observations, we
can calculate the expected number of comparisons needed for a given tree. More
formally, we model each comparison at node i as a Bernoulli experiment in which we
will take the path towards the left child with probability p(i → l(i)) and respectively
for the right child with p(i → r(i)). It holds that p(i → l(i)) = 1 − p(i → r(i)) by
the construction of the tree. An example can be found in Figure 8.1. Note that the
probabilities p(i→ l(i)) and p(i→ r(i)) can be estimated during training by counting
the number of samples at each node taking the left and right path. Assume a path of
length Λk that ends in node ik with πk = (i1, i2, . . . , iΛk

), where ij+1 is either the left
or the right child of the j-th node on the path. Then, following this path consists of a
series of Bernoulli experiments, each with probability p(ij → ij+1). Let P denote the
set of all paths in the tree. Then the probability to take path πk ∈ P is given by

p(πk) = p(i0 → i1) · . . . · p(iL−1 → iΛk
) =

Λk∏︂
j=0

p(ij → ij+1) (8.1)

For short, we call p(πk) the probability of node ik. We make an important observation:
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struct Node {
bool isLeaf;
bool prediction; // Predicted Label
unsigned int feature; // Targeted feature
float split; // Threshold
unsigned int leftChild;
unsigned int rightChild;

};
Node tree[] = {{0,0,0,3.14,1,2},{0,0,1,1.337,3,4},/* .. */ ]}
bool predict(float const x[3]){

unsigned int i = 0;
while(!tree[i].isLeaf) {

if (x[tree[i].feature] <= tree[i].split) {
i = tree[i].leftChild;

} else {
i = tree[i].rightChild;

}
}
return tree[i].prediction;

}

FIGURE 8.2: Example implementation of a decision tree using the
native implementation in C++.

The probability of a node is always greater or equal to the probability of its children.
More formally, consider node k with children l(k) and r(k), then it holds that:

p(πk) ≥ p(πl(k)) =
Λl(k)∏︂
j=1

p(ij → ij+1) = p(πk) · p(ik → il(k))

p(πk) ≥ p(πr(k)) =
Λr(k)∏︂
j=1

p(ij → ij+1) = p(πk) · p(ik → ir(k))

(8.2)

since p(ik → il(k)) ≤ 1 and p(ik → ir(k)) ≤ 1. By recursion, it follows that the
probability of a node is always greater or equal to the probability of any node in
its sub-tree. Last, the expected number of comparisons of a tree with L different
paths (π1, π2, . . . , πL) from the root node to one of the leaf nodes, each with length
(Λ1,Λ2, . . . ,ΛL) is given by

E[Λ] =
L∑︂
i=1

p(πi) · Λi (8.3)

8.3 Optimizing the Memory Layout of Trees

Recall that due to the significant performance gap between the main memory (DRAM)
and the processor, modern computer architectures have introduced a memory hierar-
chy. The key assumption of the memory hierarchy is the locality:

• Temporal locality: Recently accessed items will be accessed in the near future,
e.g., small program loops.
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bool predict(float const x[3]){
if(x[0] <= 3.14){

if(x[1] <= 1.337){
return true;

} else {
return false;

}
} else {

if(x[2] <= -3.69){
return true;

} else {
return false;

}
}

}

FIGURE 8.3: Example implementation of a decision tree using the if-
else implementation in C++.

• Spatial locality: Items at addresses close to the addresses of recently accessed
items will be accessed in the near future, e.g., sequential accesses to elements
of an array.

Unfortunately, naive implementations of DTs do not exploit such locality when
they classify a set of input data. The benefit of the native tree implementation is
the temporal locality of the program, i.e., executing a tree is a simple loop with a
few lines of code. However, the accesses to the nodes of the tree do not have any
spatial locality. The execution of a DT follows a unique path from the root to a leaf,
which is stored in memory addresses that are unfortunately arranged discontinuously
if no attention is made. As a result, the cached data will not be further used if the
distance between each node of the path is greater than the number of nodes that
can be loaded into a cache set at once. As for the if-else tree implementation, since
the thresholds and the values required for a split node of a tree are all hard-coded
into the instructions, this avoids indirect memory accesses and has a clear advantage
of reducing the latency. Therefore, the if-else tree implementation does not suffer
from missing data locality. However, without awareness of instruction-cache design,
the hard-coded instructions may just be loaded into the data cache once and only
used once so that the advantage of the temporal locality in the instruction cache is
completely abandoned.

Implementing a tree should take the layout of the data (for the native tree), the
instructions of the branches (for the if-else trees), and the size of caches of the partic-
ular platform of execution into consideration. To do so, we first discuss the downsides
of each implementation regarding their caching behavior. Then, we present optimiza-
tions to improve caching.

8.3.1 Optimization of If-Else Trees

As already mentioned, we can unroll the comparisons of a DT into conditional state-
ments forming an if-else structure. Since the entire tree is transformed into if-else
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blocks without indirect memory accesses, we can expect this implementation to per-
form better than the native tree structure. However, cache misses may still occur.

Reducing compulsory cache misses

When an instruction cache miss occurs, several instructions are sequentially fetched
into the instruction cache. When a branch is executed, these prefetched instructions
may not be utilized. If we can increase the chance of actually using prefetched in-
structions, we can reduce the number of compulsory cache misses. However, DTs are
naturally composed of many branches. To reduce the possibility of branch executions
for a tree, we can traverse all its paths and swap the children of every node i when
p(i → l(i)) ≥ p(i → r(i)). In this way, we can decrease the possibility of branching
out of the current block, which in turn increases the utilization of prefetched code
blocks.

Reducing capacity and conflict cache misses

The best case for exploiting the instruction cache fully is having all the instructions
of the if-else tree loaded into the instruction cache. However, if the size of the in-
structions from the overall tree structure is greater than the size of the instruction
cache, the cached instructions may be evicted by loading other instructions due to
the capacity and conflict cache misses. Considering the usage of DTs, we can no-
tice that keeping the instructions of those nodes utilized frequently in the instruction
cache can improve the utilization of the cached instructions, resulting in better per-
formance. With this idea, we can define a computation kernel that contains those
nodes which are used most of the time. For example, note that the root node of a
tree is used in every case, and thus it should be kept inside the cache all the time. Let
K denote the kernel and let s(i) be a function estimating the instruction size of node
i. Let β be a given budget related to the size of the instruction cache on the target
architecture. Then we want to solve the following optimization problem:

K = argmax
{︁
p(T )

⃓⃓⃓
T ⊆ T s.t.

∑︂
i∈T

s(i) ≤ β
}︁

(8.4)

Given K, we can ensure that these nodes are likely to remain in the cache, whereas
the remaining nodes L = P \ K may be evicted.

In order to solve Eq. 8.4 we need to iterate over all possible subsets of all the nodes
T , which might be difficult for large trees. Thus, we propose a greedy approach in
which we look at a complete path from the root to the leaf node: First, we swap the
children depending on their probabilities, as already explained in the former section.
Then, we sort all paths in the tree by their probability. After that, we greedily add
a node one by one into K until the accumulated size of the added nodes is greater
than the given budget β. The remaining nodes are placed into another set L that
represents the nodes that might be evicted more often. Algorithm 19 summarizes the
presented approach.

Recall that the probability of a node is always greater-or-equal to the probability
of its sub-tree. Hence, as soon as a node is sorted into L, its entire sub-tree is also
added to L. We exploit this insight by using goto statements to break the sequential
generation of if-else blocks: First, we generate if-else blocks for all nodes in K. Once
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Algorithm 19 Optimization of the if-else tree.

1: function OPTIMIZE_IF-ELSE(P)
2: P ← swap(P) ▷ Swap nodes based on probabilities
3: P ← sorted(P) ▷ Sort decreasing using probabilities
4: b← 0,L ← ∅,K ← ∅
5: for π ∈ P do ▷ Over all path in tree
6: for i ∈ π do ▷ Over all nodes on path
7: if b+ s(i) > β then
8: Add i to L ▷ Node does not fit into kernel
9: else

10: Add i to K ▷ Node fits into kernel
11: b← b+ s(i)

return K,L

the left/right child of one of those nodes is in L, a goto statement is generated at
the same position to replace the original if-else statement. Then, the corresponding
if-else statements of this node and its children are all generated into a label block at
the end. Figure 8.4 shows an example based on Figure 8.3 by applying Algorithm 19.

bool predict(short const x[3]){
if(x[0] > 3.14){

if(x[2] <= -3.69){
return true;

} else {
return false;

}
} else {

goto Label0;
}

Label0:
{

if(x[1] <= 1.337){
return true;

} else {
return false;

}
}

}

FIGURE 8.4: Example implementation of a decision tree using the goto
implementation in C++.

The question remains, how to estimate the instruction size s(·) of each node? The
instruction set size generally differs for the two different types of nodes:

• Split nodes require three types of instructions. First, the values of the target
feature and the corresponding threshold are loaded into registers. Second, the
values inside the registers are compared against constant values, and last, a
jump out of the current block is performed based on the comparison.
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• Leaf nodes need two types of instructions. First, the return values of the pre-
diction are stored in a register, and second, a jump back to the caller of the
if-else tree is performed.

Based on the above analysis, we can estimate s(·) by counting the number of gen-
erated instructions on the targeted architecture in an isolated example. However,
note that in a real application, the actual number of instructions may differ based on
the compiler, compiler options, and specific tree used. Thus, this mapping function
helps to choose appropriate parameters but should be viewed as the expected size of
a node. Table 8.1 summarizes the expected size of instructions for ARM, X86 (Intel)
and PPC.3

TABLE 8.1: The expected size of instructions for a split node and a leaf
node in a decision tree on ARM (Raspberry PI 2), PPC (NXP T4240

processors) and Intel (Intel Core i7-6700) processors.

ARM [Bytes] PPC [Bytes] Intel [Bytes]

Type Int Float Int Float Int Float
Split 20 32 20 48 28 17
Leaf 8 8 8 8 10 10

8.3.2 Optimization of Native Tree

As shown in Figure 8.2 we can implement a DT by placing the nodes sequentially in
an array and by traversing this array using a simple while loop. We observe that half
of the nodes in a tree are leaf nodes, which only store a prediction value. The native
implementation however assumes the same data type for each node, leading to un-
necessary overhead. Second, considering the usage of DTs for predicting classes, we
notice that the data access pattern in the array is mostly non-sequential. The distance
between each accessed element becomes bigger when the depth of targeted nodes in
the DT becomes greater. This phenomenon violates the spatial locality of the array
and abandons the advantage of the cache design, which may result in high cache
misses.

Reducing compulsory cache misses

Nodes are prefetched into the instruction cache sequentially. If we can reduce the
amount of memory each node requires, we can fit more nodes into the cache and
thus reduce compulsory cache misses. For the native implementation, we recognize
that a leaf node only stores a prediction value but does not use the pointer to its
children, nor does it use the feature index or the split value. A simple way to reduce
memory consumption is to remove all leaf nodes from this array and move them to
a separate array with a specialized data type. However, then we have to lay out two
arrays in the memory, which might be difficult. Thus, we propose to abandon the
isLeaf and prediction fields of the native solution but store the prediction of the
left (right) child directly in the respective fields left (right) if it is a leaf node. This
method only requires us to lay out one array but offers the same size reduction as

3We adopt GNU g++ compiler version 4.8.3 for ARM, version 4.9.2 for PPC, and version 5.4.0 for
Intel with -O0 option.
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using two arrays.

Reducing capacity and conflict cache misses

As mentioned previously, if no attention is paid, the nodes stored in memory are
arranged discontinuously. Thus, when a node is loaded into the cache, the nearby
nodes should be on the same path to reduce capacity and conflict cache misses. A
sensible way to exploit the data locality is to allocate as many nodes as possible on
the same path into the same cache set. To do so, we propose the following approach,
where τ denotes the cache set size: Let A be the array in which we place all nodes of
the tree. Furthermore, let C be the candidate list of nodes that have not been placed
in A yet and let S denote the nodes which should be placed in the same cache set. For
each node, we greedily choose that child with the largest probability on the current
path and try to place it in S. Once S contains τ − 1 elements and hence is full, we
append all nodes from S to the array A, reset S and continue with the next cache set.
Algorithm 20 summarizes this method.

Algorithm 20 Optimization of the native tree.

1: function OPTIMIZE_NATIVE(P, τ)
2: A = [ ] ▷ Init. array
3: C ← {0, 1, . . . , n} ▷ Init. remaining indices
4: while C ̸= ∅ do ▷ Repeat as long as there are nodes
5: i← argmaxj∈C{p(π(j))} ▷ Get most probable node
6: C ← C \ {i} ▷ Repeat as long as there are nodes
7: S ← {i} ▷ Add node to S
8: while |S| ̸= τ do ▷ Follow path until cache-line is full
9: if i is leaf node and C ̸= ∅ then

10: i← argmaxj∈C{p(π(j))} ▷ Start new path if cache-line is not full
11: C ← C \ {i}
12: else
13: ▷ Follow left or right path depending on the probability
14: C ← C ∪ argmin{p(i→ l(i)), p(i→ r(i))}
15: i← argmax{p(i→ l(i)), p(i→ r(i))}
16: if |S| = τ − 1 then ▷ Update C if cache-line is now full
17: C ← C ∪ {l(i), r(i)}
18: S ← S ∪ {i} ▷ Extend path
19: A.append(S) ▷ Append path to array

return A

When adding a new node to S, attention has to be paid because there are two
types of nodes (lines 9-18):

• The current node is a split node. Then we pick the next node based on the
children’s probabilities and put the more probable child into S and the other
child into the candidate list C.

• The current node is a leaf node, i.e., it is the end of the path. Then we pick up
a sub-root with the highest probability from the candidate list C as long as it is
not empty. The traverse starts again until S is full.



8.3. Optimizing the Memory Layout of Trees 145

If the current set is full before finishing a traverse of a path (line 16), two children are
put back into the candidate list C (line 17). A sub-root that has the highest probability
is then picked up from C for the next new set S. Once a set is finished, the nodes
in it will be allocated into the data array sequentially. To the end, the output of the
algorithm is the data array with a path-oriented layout, in which path-oriented sets
are sequentially allocated into the array.

We want to give a quick example to illustrate Algorithm 20. Consider the DT
in Figure 8.1 and set the size τ to three. The first path starts from the root node
0, which is a split node. Accordingly, node 2 with a higher probability is chosen,
and node 1 is put into C. From the children of node 2, the leaf node 6 is chosen
(node 5 is put into C). As now, S is full with three nodes, the algorithm adds the
current S into the output array, prepares a new set S, and picks up a sub-root with
the highest probability from C. In the list C, there are currently nodes 1 and 5. Since
the probability of node 1 is higher than the probability of node 5, node 1 is the next
chosen sub-root. To the end, the delivered sets are: {0, 2, 6} and {1, 3, 5}.

8.3.3 Experiments

In this section, we experimentally evaluate the proposed optimizations. We have
performed 1800 different experiments by training decision trees (DT), random forests
(RF), and extremely randomized trees (ET) on 12 different data sets with varying tree
depths to generate the aforementioned implementations for different architectures,
i.e., X86, PPC and ARM CPUs.

Table 8.2 shows the data sets we used during the experiments. All data sets are
available in the UCI Machine Learning Repository [DG17] except for MNIST (http://
yann.lecun.com/exdb/mnist/), IMDB [MDP+11] and FACT [ABB+13]. In addition
to the number of features and the number of examples during test time, we also
report the range of accuracy for the three different models DT, RF, and ET. In all
experiments, we used the CART algorithm with the Gini-Score criterion for node-
splitting, and trained models using the sklearn package [PVG+11]. For RF and ET,
we used 25 trees. If the respective data set comes with a pre-computed train/test
split, we use this. Otherwise, we use 75% of the data for training and 25% of the data
for testing. Expectantly, DTs often do not achieve high accuracy, whereas RF and ET
perform best with large trees. We want to emphasize that we did not perform any
hyperparameter optimization with respect to the classification accuracy but report
the accuracy here to validate our toolchain.

After training, we export the models into a JSON format which is used by a code-
generator that generates the optimized implementations for each individual forest.
During code generation, we make sure that optimized trees retain their accuracy.
Note that sklearn always produces floating-point split values. For data sets with inte-
ger features (e.g., letter or MNIST), this was rounded down toward the next integer to
circumvent the use of floats. This does not change the accuracy. The original code for
these experiments is publicly available at https://bitbucket.org/sbuschjaeger/
arch-forest, but a recent re-implementation of our tool-chain can be found un-
der https://github.com/sbuschjaeger/fastinference. After the implementations
have been generated, we use the GNU toolchain to compile the code with the most
aggressive optimizations (-O3) enabled. Each implementation is tested individually
by using the following protocol: For minimizing unfairness due to caching, we first
iterate twice over the test data and perform predictions (burn-in phase). Then, we
measure the runtime required to classify all examples in the test set and repeat this
50 times.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://bitbucket.org/sbuschjaeger/arch-forest
https://bitbucket.org/sbuschjaeger/arch-forest
https://github.com/sbuschjaeger/fastinference
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TABLE 8.2: Datasets used for our experiments. We performed minimal
pre-processing on each dataset, removing instances that contain NaN

values and computed a one-hot encoding for categorical features

Dataset # Examples # Features Accuracy

adult 8141 64 0.76 - 0.86
bank 10297 59 0.86 - 0.90
covertype 145253 54 0.51 - 0.88
fact 369450 16 0.81 - 0.87
imdb 25000 10000 0.54 - 0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10000 784 0.17 - 0.96
satlog 2000 36 0.40 - 0.90
sensorless 14628 48 0.10 - 0.99
wearable 41409 17 0.57 - 0.99
wine-quality 1625 11 0.49 - 0.68

We find that the performance of our implementation compared to sklearn might
be of interest since sklearn is arguably one of the most-used machine learning library
and thus well-known to many practitioners. We found that our implementation is, on
average, 500−1500 times faster than sklearn. However, we admit that this comparison
is biased because large parts of sklearn are written in Python and optimized for batch
execution. Therefore, we will focus the remaining evaluation on our implementation
and RF models in the remaining parts of this section. We notice that DT and ET result
in similar behaviors across all systems and thus do not add much more value to the
discussion here. We use a naive native implementation that does not perform any
optimizations as a baseline for all experiments and measure the average speed-up for
each data set of each optimization against this implementation.

In the following, we denote ‘native’ as the native implementation with reduced
memory consumption but without cache optimizations and ‘optimized native’ as the
native solution with reduced memory consumption and cache optimizations. We
denote ‘if-else’ as the regular if-else implementation and ‘optimized if-else’ as the
cache-optimized if-else variant, including node swapping. For native optimizations,
we choose τ = 25 on X86, τ = 8 on ARM, and τ = 8 for the PPC CPU. For if-else
optimizations, we use an instruction-cache size β = 128000 Bytes on X86, β = 32000
Bytes on ARM, and β = 32000 Bytes on the PPC CPU. For X86, we performed the ex-
periments on a Intel Core i7-6700 desktop machine with 16 GB RAM. For PPC, we
use a NXP Reference Design Board with T4240 processors and 6 GB RAM. Last,
for ARM, we use a Raspberry PI 2 with a ARMv7 CPU and 1 GB RAM.

Experiments on the X86 CPU architecture

Figure 8.5 depicts the average speed-up of the four different implementations on
Intel for different tree depths. The error band shows the standard deviation across
the different datasets. First, we note that the if-else tree versions are the fastest
on Intel and offer a speed-up of around 3 across all tree depths. For smaller tree
depths from 1 − 10, we see that optimizing if-else trees only offers marginal speed-
up. However, for larger tree depths around 15 and 20, we can see that optimized
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if-else trees can retain their speed-up and outperform un-optimized if-else trees with
a speed-up factor larger than 3. Native trees do not perform as well as if-else trees
on Intel CPUs. Overall, the speed-up compared to naive native trees is only marginal
for smaller trees below a depth of 15. Here, both versions, i.e., the native tree and
the optimized native tree, offer a speed-up of 1.5 at most. Interestingly, for larger
trees around depth 15 and more, we again notice that our optimizations improve
performance.
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FIGURE 8.5: Average speed-up for real-time execution compared to
the naive native implementation on Intel averaged across the different

datasets. The error band depicts the standard deviation.

Experiments on the PPC CPU architecture

Figure 8.6 depicts the average speed-up of the four different implementations on PPC
for different tree depths. Again the error band shows the standard deviation across
the different datasets. We can observe that the results here are similar to Figure 8.5,
in which if-else trees always outperform native trees with a speed-up in the range of
2−5. Along with the increment of tree depth, the speed-up from both if-else versions
drops, but especially un-optimized if-else trees suffer from degraded performance,
dropping to almost 2, whereas the optimized version can retain a speed-up of around
3.5. Similar to X86 CPU, the native implementation does not seem to be the best
choice here by providing a speed-up under 2 in all cases. However, we also notice
that with increasing tree depths, optimizations are more important. It is worth noting
that we can observe some cases where the native trees outperform if-else trees when
tree depth is bigger than 15.
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FIGURE 8.6: Average speed-up for real-time execution compared to
the naive native implementation on PPC averaged across the different

datasets. The error band depicts the standard deviation.

Experiments on the ARM CPU architecture

Figure 8.7 depicts the average speed-up of the four different implementations on
ARM for different tree depths. As before, the error band shows the standard devi-
ation across the different datasets. We observe that the situation on ARM is more
fragmented compared to X86 and PPC. In general, we are able to achieve a speed-up
of around 4 for small trees, which drops to around 2 − 3 for larger trees. Both im-
plementations roughly start with the same speed-up factor for small trees but then
quickly diverge for tree depth around 5−15. In this range of tree depth, we see that if-
else trees are the fastest choice on ARM. Additionally, we notice that with increasing
tree depth, cache optimizations become more important and consistently outperform
their un-optimized counterpart. Once trees are sufficiently large, we see that the na-
tive trees match the performance of if-else trees again and even outperform them for
tree depth of 15 and 20 in some cases. In this sense, the results are similar to what
we have seen on the PPC architecture.
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FIGURE 8.7: Average speed-up for real-time execution compared to
the naive native implementation on Intel averaged across the different

datasets. The error band depicts the standard deviation.

Discussion of the Experiments

The experiments show overall different behaviors across the three different architec-
tures but also depict some similarities. Here, we want to discuss these phenomena
in terms of the properties of the specific architectures, as well as the concrete CPU
models used for experiments. We note that one of the main architectural differences
between X86, ARM, and PPC are the available instructions. Since native trees only use
a small amount of hot code, the differences between CPU architectures will likely not
matter much here. However, looking at if-else trees, we can expect a larger differ-
ence. To further investigate the interplay between CPU architectures and code size,
we consider Table 8.3 in the following. Table 8.3 depicts the number of instructions
of a single tree for varying tree depths for the fact data set (containing floating-point
features) and the covertype data set (containing integer features) of the regular if-else
implementation.

TABLE 8.3: Number of instructions for an unoptimized if-else deci-
sion tree implementation on different architectures compiled with O3
option. The left side shows a tree for the covertype dataset with inte-
ger features, and the right side shows a tree for the fact dataset with

floating-point features.

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 224 575 8185 51005 167644
PPC 232 604 7732 51840 170772
ARM 204 604 9040 55012 180628

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 96 415 17023 127330 404722
PPC 96 556 20996 169696 577952
ARM 88 428 18436 154992 542020

Clearly, the if-else trees are the best choice for Intel CPUs, but why is that so? We
find two reasons for that, one of which is related to the architectural specifics of X86
architecture and one which is related to the specific CPU we used: First, X86 CPUs
are Complex Instruction Set Computers (CISC) offering a very rich set of instructions
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which include all sorts of specialized operations. Since if-else trees unroll the com-
plete tree structure into code, they allow the compiler to utilize this multitude of
instructions to the fullest by encoding larger parts of the tree in single instructions.
And indeed, looking at Table 8.3 we see that the Intel CPU almost always requires the
fewest instructions per decision tree. Second, the Intel Core i7-6700 CPU used for
experiments has a comparably large instruction cache of 256 KB combined with two
larger shared caches of 1 MB (L2 Cache) and of 8 MB (L3 Cache). Thus, by encoding a
single tree in only a few instructions, it is likely to fit into the larger instruction cache.
In contrast, native trees do not utilize the CISC architecture and “waste” additional
data cache by encoding the tree as data and not as instructions.

Similar to the X86 architecture, we have seen that if-else trees perform very well
on the PPC architecture, but to a lesser extent. Again, we can try to explain this behav-
ior in terms of the PPC instruction set architecture and the specific CPU model used
for experiments. The PPC CPU architecture is a Reduced Instruction Set Computer
(RISC) with performance enhancement for high-performance computing. RISC does
not offer instructions for specialized operations as CISC does. Thus, the compiler
must largely rely on the combination of (comparably) simple instructions to imple-
ment if-else trees. This, in turn, results in more code which is less likely to fit into
the instruction cache. Comparing the instruction size of PPC to X86 in Table 8.3 we
see that the PPC architecture indeed requires more instructions compared to X86. In-
terestingly, this case is less severe for integer features, which can be attributed to the
high-performance enhancements in this instruction set architecture. Looking at the
cache sizes of the T4240 processors, we see that it only has 32 KB instruction cache
but also comes with a 2 MB shared L2 cache, which is even larger than the Intel
Core i7-6700 CPU. For smaller trees, around 5− 10, the cache sizes are still enough
to hold all trees, and thus if-else trees are still the fastest choice. If trees become large
(depth 10 and more), the instruction cache is not enough to hold all trees anymore,
and we must rely on the larger L2 cache. However, this cache is slower, and thus
we suffer some performance penalty, which in combination with the larger code size,
explains the performance drop for larger trees.

Last, we want to discuss the fragmented behavior of the ARM architecture. Again
we try to answer this question in terms of ARM’s instruction set architecture and
the specific CPU used for experiments. Much like its PPC counterpart, ARM also uses
a reduced instruction set architecture (RISC). However, ARM’s RISC does not come
with specialized instructions for high-performance computing, and thus, the compiler
has to rely to a larger extent on the combination of simple instructions for if-else
implementation. This, in turn, results in even more code for integer features, which
is less likely to fit into the instruction cache, as shown in Table 8.3. Interestingly, for
floating-point features, we see that the ARM CPU uses fewer instructions than the PPC
CPU, which can be attributed to the specific CPU models used during experiments.
The T4240 processors are optimized towards high-performance computing in a low-
power, embedded computing setting, such as networking applications, and thus are
optimized towards integer operations. In contrast, the ARMv7 CPU of the Raspberry
PI 2 is a general-purpose CPU aimed at the needs of the average user, and thus it lays
a larger emphasis on floating-point operations compared to the T4240 processors. It
has a 32 KB instruction cache in combination with a significantly smaller 512 KB L2
shared cache. Compared to the other CPUs, this means that the ARM CPU has 2 − 16
times less L2/L3 cache available. For smaller trees around depth 5−10, the cache sizes
are still enough to hold all trees, and thus if-else trees are still the fastest choice. For
larger tree depths, however, the instruction cache is not enough anymore, and native
structures using the data cache become faster. However, since the data cache is also
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small, we quickly fill both caches to their maximum. Interestingly, if we optimize both
if-else and native trees, we end up with roughly the same performance.

8.4 A Theoretical Execution Model of DT ensembles

As discussed previously, the optimal implementation of a DT ensemble depends on
the trained trees as well as the target architecture. To make matters more compli-
cated, the previous experiments indicate that it is not even possible to give a general
guideline on which implementation should be favored. This raises the question if the
von Neumann architecture is best suited to execute DTs in general or if there might
be a better circuit for this task. In this section, we will tackle this question from a
theoretical point of view. To do so, we first derive a theoretical von Neumann model
and implement decision trees in it. Then, we repeat the same process without the
restrictions of the von Neumann architecture using the building blocks of an FPGA to
compare the theoretical runtime of both circuits.

8.4.1 A Theoretical von Neumann Architecture

As already discussed in section 2.1, there is a vast landscape of different processes
available that are all based on the von Neumann architecture. Hence, to make a
theoretically more grounded evaluation of existing processors, we now formalize the
instructions of a theoretical von Neumann CPU together with the number of clocks
required to execute the instructions. We tried to keep this theoretical instruction set
architecture close to existing real-world hardware but do not restrict ourselves to
instructions that are available in every CPU. A comparison between this theoretical
model and real-world hardware is given at the end of this section.

Our theoretical CPU is connected via a common communication bus to the main
memory as well as peripheral devices. The CPU operates on words of size sw and
has registers of the same size. A cache with size Mc is used, which is organized in
cache lines with size sc that is a multiple of sw. It has a vectorization unit that op-
erates on vectorization registers with size sv = v · sw, where v denotes the degree
of vectorization. load and store instructions can be used to load and store values
from the cache. In the case of vectorization units, the load operation can only load
continuous memory from the cache into the vector register. If we want to load values
from different, non-continuous memory locations, we first need to store the corre-
sponding memory addresses into one register using the load instruction. Once the
addresses are present in one register, we can use a gather instruction to load the
values placed at the different memory addresses into one register. In order to extract
scalar values from the vector registers, we can load specific lanes from the register
unit. The results of vector comparisons are saved into the vector register. Since the
outcome of a single comparison can be saved using one bit, we only need v bits to
save the vector comparison. In order to access these v comparison bits, we use an
extract instruction, loading the v comparison bits into a scalar register. For arrays,
we assume that they are stored in continuous memory. Memory access on arbitrary
indices can also be performed with a single load operation if the specified index is
saved in a register. Our theoretical CPU is clocked. We denote the clock frequency
with CCPU . To further simplify our analysis, we assume that the complete forest will
fit into the cache, and we will operate only on elements saved in the registers as well
as in the cache. Additionally, we use the following cost model:
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• load: Accessing a specific word of size sw already present in the cache takes
one clock cycle. Loading continuous memory into a vector register also takes
one clock cycle. Loading Words smaller than sw requires one load instruction
and an additional lane access to extract smaller words.

• gather: The gather instruction takes one clock cycle.

• store: Saving one data item of size sw or smaller inside the cache takes one
clock cycle. Saving a vector register into continuous memory also takes one
clock cycle.

• compare: The comparison consists of two operations. First, the comparison
is performed by taking one clock cycle. Then, a conditional jump to the next
instruction based on the outcome of the comparison is executed, taking another
cycle.

• arithmetic and logic operations: Boolean operations, as well as accessing
specific parts of vectorization registers, take one clock cycle.

Our model largely follows the X86 architecture with some differences for SIMD
operations. Recent X86 implementations have registers with 64 bit and vectorization
registers ranging from 128 bit up to 512 bit. Loading values into scalar register is
achieved using the MOV instruction, which supports address resolution for memory
access in one clock cycle. Similarly, vectorization registers are loaded using one of
the many SIMD counterparts of the MOV instruction, e.g., MOVDQA in the SSE extension.
Performing scalar comparison is achieved by first performing a comparison using the
CMP instruction and then by performing the corresponding jump to the next code seg-
ment, e.g., using the je (jump-if-equal) instruction. Performing SIMD comparisons
can be implemented by using the corresponding vector instructions, e.g., PCMPGTB for
the SSE. The resulting bitmask can be extracted using the MOVMSKPS instruction in
SSE. The support for gather instructions is available with the Advanced Vector Exten-
sions 2 (AVX 2), which is, for example, implemented in Intel Haswell CPUs. Looking
at ARM’s RISC instruction set architecture, we find more similarities for scalar in-
structions but larger differences for SIMD instructions. Until 2011, the ARM ISA
supported 32 bit but switched then towards 64 bit registers. A vectorization extension
called NEON with 128 bit registers is also available. Similar to the X86 architecture,
MOV instructions are used to load memory content into registers. The MOV instruction
may perform address resolution and thus can also load memory content in one clock
cycle. In order to load content into the vectorization registers, the VLD instruction
can be used. Comparisons work the same as in X86 CPUs: First, the comparison is
performed using the CMP instruction, and then a conditional jump is performed, e.g.,
using the BLT instruction. In the case of vector comparison, the NEON extension pro-
vides a VCMP instruction. Unfortunately, there is no dedicated instruction to extract
the comparisons bitmask. This instruction must be emulated with individual lane
accesses on the registers. Also, there is no gather instruction in NEON.

8.4.2 A Theoretical Model of FPGAs

While the von Neumann architecture is arguably the most common computing archi-
tecture to date, it is somewhat restrictive as it has a fixed execution pipeline. What
would happen if we break this established pipeline for the execution of DTs and im-
plement a decision tree specific integrated circuit?
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Since FPGAs are essentially free to image every possible circuit, they offer the
perfect platform to implement this approach. FPGAs can be used to build any hard-
ware architecture, and hence they do not operate on fixed words. Data access and
computation can be tailored specifically for the given task at hand. Additionally, it is
not required that FPGAs are clocked. Note, however, that block memory, as well as
DSP units, are implemented in fixed hardware and thus use a standardized clocked
interface. For a fair comparison, we take into account that the CLBs are a scarce re-
source. We model the accesses to block ram also with load instructions, which – in
the case of a CPU – are already given by the instruction set architecture of the CPU.
In the case of FPGAs, these instructions need to be implemented. Assuming we want
to access a specific entry i inside an array arr[i], we need to compute the address
of that element first in order to issue the corresponding load instruction. Given the
array is stored continuously in the block ram starting at address arr, and it contains
data items of size s, the address of arr[i] is given by arr + i · s. Thus, we need to
implement summation and multiplication for address resolution. Integer summation
and multiplication is a well-studied problem in literature, and many solutions such
as carry-look-ahead adder, Ladner-fisher adder, or Wallace trees exist (see, e.g., Ap-
pendix I in [HP11] or chapter 12 in [WH10]). Additionally, the FPGA’s DSP elements
may already offer a corresponding multiply-accumulate operation in fixed hardware.
Therefore, we assume that we can implement the address resolution mechanism with
a constant delay of one clock cycle using at most raddr CLB resources. If we want
to compare a single bit against a constant value 0 or 1, we can utilize the fact that
FPGAs can address arbitrary bit length. More formally, we need to realize a function
eq : {0, 1}2 → {0, 1}, which can be implemented using req = 1 CLBs given that the
CLB tables are larger or equal to two, i.e., t ≥ 2. In order to compute the inequality
a ≤ b of two unsigned integers a = (a1a2 . . . asw) and b = (b1b2 . . . bsw) we need to
implement a boolean function le : {0, 1}2sw → {0, 1}. To do so, we can observe that
the comparison between ai and bi is independent of any other comparison of aj and
bj in a and b, given i ̸= j. Therefore, we can build a tree structure in which packs of
t/2 bits of a and t/2 bits of b are fed into the same CLB. Then, we can merge the out-
put of the t CLBs and feed its output into the next layer. We repeat the process until
the remaining inputs fit into one CLB. More precisely, we build a tree with nl = ⌈2·swt ⌉
leafs and t children per node. The number of inner nodes ni can be obtained by using
the well known fact that nl = (t− 1)ni + 1 for t-ary trees:

nl = (t− 1)ni + 1⌈︃
2 · sw
t

⌉︃
= (t− 1)ni + 1

⌈2·swt ⌉ − 1

t− 1
= ni

(8.5)

Let t > 4, then this leads to a total of

rle = ni+nl =
⌈2·swt ⌉ − 1

t− 1
+

⌈︃
2 · sw
t

⌉︃
=

⌈︃
2 · sw
t

⌉︃(︃
1 +

1

t− 1

)︃
− 1

t− 1
≤ 1.25

⌈︃
2 · sw
t

⌉︃
(8.6)

CLBs are required to implement the comparison of two sw-bit unsigned integers. In
CPUs, we need to perform conditional jumps based on the outcome of the compar-
isons. In the case of FPGAs, we can use the 1-bit output of the comparison to control
the functional units directly. Thus, the comparison combined with branching only
needs one clock cycle in FPGAs. Realizing a register of size sw takes sw CLBs, as each
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CLB can store up to one bit. Realizing a constant of sw bit can be achieved using
⌈︁
sw
t

⌉︁
truth tables. In summary, we assume that the FPGA is running with a clock frequency
CFPGA and the following operations are available:

• load: Loading a specific word of size sw from the block memory takes two clock
cycles (address resolution and actual memory access) and uses raddr resources.

• load: Loading arbitrary words from registers realized with CLBs take one clock.

• load: Loading constant words takes zero clocks.

• store: Storing a specific word of size sw in the block memory takes two clock
cycles and uses raddr resources.

• store: Storing arbitrary words in register realized with CLBs take one clock
cycle.

• store: Storing a sw-bit constant value in a register is performed in zero clock
cycles and requires sw CLBs (on CLB saves one bit).

• compare: Comparisons are performed using one clock cycle. Comparison
against a constant single-bit value needs req CLBs, whereas comparison of two
sw-bit integers requires rle CLBs.

The reader might wonder why loading a constant word inside the FPGA takes zero
clock cycles. In order to execute a specific operation, the corresponding functional
unit must load the desired operands first. If, however, one operand is a constant
value, we can directly hard-wire this constant value into the functional unit. There-
fore, loading of constant operands is not required leading to a clock delay of zero
clocks. Because FPGAs do not offer the possibility to perform address resolution com-
bined with loading in one instruction, the access to block memory is slower compared
to CPUs. In contrast, FPGAs offer the possibility to perform multiple instructions in
parallel. To encourage this property, we will allow up to two concurrent accesses to
block memory in one clock.

Xilinx is one of the largest FPGA manufacturers with a variety of different FPGA
models [Xil]. Xilinx combines 4 look-up tables with 6 inputs and 1 output into one
CLB and offers models with 2000 to 33 650 CLBs. Additionally, between 720 KB to
13 140 KB block memory is available. Block memory is implemented in 36 KB dual-
port memory cells, meaning two separate 18 KB address spaces can be accessed simul-
taneously. Adding to this, 40 to 740 DSP elements, including a pre-adder, a multiplier,
an adder as well as an accumulator, are available.

8.4.3 Implementing DT ensembles on von Neumann Architectures

As discussed in section 8.1 there are at least two ways to implement DTs, namely as
native trees and as if-else trees. In addition, we can leverage SIMD instructions that
give us two additional implementation schemes for DTs.

Native Implementation: The native implementation stores the nodes of a tree in-
side an array and then iterates over that array following the decisions at each node.
Typically, the nodes of a tree are represented as a single entity containing the split
value, a pointer to the children, and the prediction. An example of this entity
can be found in Figure 8.8. We explicitly denote the corresponding data types to
model the size of the node. boolean_t denotes a boolean data type, and all other
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types represent an unsigned integer of necessary size except split_t, which might
also be a float depending on the input features. Since loading words smaller than
sw requires an extra lane access, we align the size of each data type towards sw.
Thus, if values below 2sw need to be represented, they are stored inside a vari-
able of size sw. If values above 2sw need to be represented, we can store them in
the next smallest multiple of sw. The complete size of a node is given by sn =
2 · sizeof(boolean_t) + sizeof(feature_t) + sizeof(split_t) + 2 · sizeof(node_t).
For the following, we assume that data types fit into scalar registers of size sw, and
thus only one load instruction is necessary to access each field of a node. A tree is
represented by all its nodes, which can be stored in a simple array structure. The
variables leftChild and rightChild point to the next index in that array.

1: entity Node:
2: boolean_t prediction ▷ true or false
3: boolean_t isLeaf ▷ true or false
4: feature_t feature ▷ feature index
5: split_t split ▷ split value
6: node_t leftChild ▷ index of left child
7: node_t rightChild ▷ index of right child

FIGURE 8.8: Implementation of single decision tree node for the native
implementation in the theoretical von Neumann architecture.

1: function PREDICT(x, tree)
2: i← load(0) ▷ 1 clock cycles
3: r1← load(tree[0].isLeaf) ▷ 1 clock cycles
4: while cmp_eq_false(r1) do ▷ 2 clock cycles
5: r1← load(tree[i].feature) ▷ 1 clock cycles
6: r1← load(x[r1]) ▷ 1 clock cycles
7: r2← load(tree[i].split) ▷ 1 clock cycles
8: if cmp_le(r1, r2) then ▷ 2 clock cycles
9: i← load(tree[i].leftChild) ▷ 1 clock cycles

10: else
11: i← load(tree[i].rightChild) ▷ 1 clock cycles
12: r1← load(tree[i].isLeaf) ▷ 1 clock cycles

return tree[i].prediction ▷ 1 clock cycles

FIGURE 8.9: Implementation of a decision tree using the native ap-
proach in the theoretical von Neumann architecture.

For prediction, one can traverse the tree starting from index zero until a leaf is
reached. Let tree[i] denote node i in the array tree, then we may access a field of
node i by writing tree[i].field. If i is already present inside a register, we allow
load instructions directly on tree[i].field with one clock cycle. A native approach
implementation can be found in Figure 8.9. First, we initialize the intermediate reg-
ister i to zero and load the field tree[0].isLeaf into another intermediate register
r1 (line 2 and 3). Then we compare the contents of register r1 against false (line
4). If we have not reached a leaf yet, we start to execute the while-loop. In essence,
we need to compare the current split point tree[i].split with the corresponding
feature value x[tree[i].feature]. In order to access x[tree[i].feature], we first
need to load tree[i].feature into register r1 and then load x[r1] into the same
register (line 5 − 6). Additionally, we load tree[i].split into register r2. Once r1
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and r2 contain the desired values, we can compute the comparison and branch ac-
cordingly (line 8− 11). Depending on the outcome of the branch, we update i either
with tree[i].leftChild or tree[i].rightChild. At the end of each loop iteration,
we need to update the content of register r1 with tree[i].isLeaf (line 13). Once a
leaf node is reached, the corresponding prediction is returned. The number of clock
cycles needed for each instruction is depicted at the end of each line. Notice that
we either need to update register i with the left or right child taking the same time.
Thus, one pass through the loop uses a total of 9 clock cycles. Given the expected
number of comparisons E[Λ], we see that one prediction for a tree takes

cnativeCPU = 9 · E[Λ] + 3 (8.7)

clock cycles in total.

If-else-trees

In the native implementation, the CPU indirectly accesses the field tree[i].feature
to load the corresponding feature value from x. This increases the number of clocks
required, reducing the overall throughput. We exploit the observation that
tree[i].feature and tree[i].threshold are already known at compile time, which
enables us to unroll the tree in its if-else structure replacing tree[i].feature and
tree[i].threshold respectively by their constant values ki and ti. This way, the CPU
does not need to access tree[i].feature, but can directly load the necessary feature
x[ki]. Figure 8.10 shows a scheme of this approach in the theoretical von Neumann
model. This approach does not require intermediate values to be stored, but only two
registers are required for every comparison (see line 2, 3 or line 5, 6). Since ki is a
constant, there is no need to compute the address for accessing x, but the CPU can
directly load the array entry x[ki] needed. Once the corresponding split value si is
also loaded into an intermediate register, the comparison can be performed (line 4
and line 7). After this, both registers are free to be used by the next if−branch. Once
a leaf node is reached, the prediction is given by a constant true or false, which is
loaded into a register for the function’s caller to use. For every if -branch taken, there
are 4 operations, and thus 4 clocks are needed. Taking the expected height of the tree
into account, we see that if-else trees are expected to need

cif−else
CPU = 4 · E[Λ] + 1 (8.8)

clock cycles.

SIMD Implementation

If-else reduces memory accesses but still needs to perform E[Λ] comparisons to tra-
verse the tree. The vectorization unit of the CPU can perform up to v comparisons
in one clock cycle and thus offers the possibility to traverse a tree in only ⌈E[Λ]

v ⌉.
As already mentioned, Kim et al. presented a SIMD implementation in [KCS+10],
which we will use as a basis here. In order to utilize vector instructions, we store up
to v feature indices, v split values, and v children in one node, as shown in Figure
8.11. We prepare these structures during compile-time and hence can place them in
continuous memory. Thus, loading them into the vectorization register requires just
one cycle. Figure 8.12 shows how the prediction can be performed. First, one loads
the v split values as well as the indices for the features into vector register v1 and v2.
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1: function PREDICT(x, tree)
2: r1← load(x[k0]) ▷ 1 clock cycles
3: r2← load(t0) ▷ 1 clock cycles
4: if cmp_le(r1, r2) then ▷ 2 clock cycles
5: r1← load(x[k1]) ▷ 1 clock cycles
6: r2← load(t1) ▷ 1 clock cycles
7: if cmp_le(r1, r2) then ▷ 2 clock cycles
8: . . .
9: else

10: . . .

11: elsereturn tree[i].prediction ▷ 1 clock cycles

FIGURE 8.10: Implementation of a decision tree using the if-else ap-
proach in the theoretical von Neumann architecture.

Second, we need to load all the corresponding feature values from x into another reg-
ister v2. Since we cannot guarantee that we require a continuous part of x, we need
to gather different parts of x using the gather instruction. Third, we can perform
the actual comparison, which is saved into a vector register of size sv. Since we are
only interested in the v bits corresponding to the comparison, we can use the extract
instruction to extract a bitmask of size v. Last, we can reinterpret this bitmask as an
index and use it to access the next child node in the tree. Unfortunately, we cannot
access tree[i].children[mask] directly since we would need to perform two array
look-ups in one instruction. Thus, we split this indirect access and first load the base
address tree[i].children into register r1 and then perform the actual lookup de-
pending on r1. One pass through the while-loop takes 10 cycles. Initialization takes
again 2 cycles, and returning the prediction takes another clock cycle. The question
remains, how many loop iterations are expected to be performed for a tree?

1: entity Node:
2: boolean_t prediction ▷ true or false
3: boolean_t isLeaf ▷ true or false
4: feature_t features[v] ▷ v feature indices
5: split_t splits[v] ▷ v split values
6: node_t children[v] ▷ v indices of children

FIGURE 8.11: Implementation of single decision tree node for the
SIMD implementation in the theoretical von Neumann architecture.

Depth-first SIMD

Given we have a skewed distribution of positive and negative labels inside the deci-
sion tree, there might be a path l from the root node to a leaf node which is taken
the majority of the time. In other words, the probability of using a path πi may be
much higher than any other path, thus p(πi) ≫ p(πj) ∀i ̸= j. We can utilize this fact
by performing v comparisons on the most probable path. Then, in the best case, we
can skip up to v comparisons if the first v nodes of πi match the first v nodes in v1
and v2. However, in sub-optimal cases where only the first u < v nodes of both paths
match, we can only skip the first u nodes. In the worst case, only the first node in
both paths matches, and thus we effectively perform only one comparison. There-
fore, we call this type of comparison strategy a depth-first comparison in which we



158 Chapter 8. Implementing Ensembles on Small Devices

1: function PREDICT(x, tree)
2: i← load(0) ▷ 1 clock cycles
3: r1← load(tree[0].isLeaf) ▷ 1 clock cycles
4: while cmp_eq_false(r1) do ▷ 2 clock cycles
5: v1← load(tree[i].splits) ▷ 1 clock cycles
6: v2← load(tree[i].features) ▷ 1 clock cycles
7: v2← gather(x[r2]) ▷ 1 clock cycles
8: v2← compare(v1, v2) ▷ 1 clock cycles
9: mask ← extract(v2) ▷ 1 clock cycles

10: r1← tree[i].children ▷ 1 clock cycles
11: i← load(r1[mask]) ▷ 1 clock cycles
12: r1← load(tree[i].isLeaf) ▷ 1 clock cycles

return tree[i].prediction ▷ 1 clock cycles

FIGURE 8.12: Implementation of a decision tree using the SIMD ap-
proach in the theoretical von Neumann architecture.

always perform v comparisons on the most probable path of the tree. The number
of loop iterations we expect to perform can be expressed as the number of successful
Bernoulli experiments in a row. Let k be the most probable path in the tree and let
πk[0 : i] denote the sub-path of it, which is given by the first i comparisons, then the
number of expected loop iterations is given by the sum of every sub-path in πk:

ESIMD[Λ] =

Lk∑︂
i=1

pπk[0:i] · i (8.9)

This leads us to an expected number of clock cycles needed:

cdepth−first
CPU = 10 · E[Λ]

min(v,ESIMD[Λ])
(8.10)

Breadth-first SIMD

In a depth-first comparison, we try to skip up to v comparisons in one clock cycle.
This approach works well if there are only a few paths in the tree which are taken
the majority of the time. If the decision tree is more balanced, we are more likely
to take different paths with each observation x and thus will effectively only perform
one comparison per clock. In order to utilize SIMD instructions in a more controlled
way, we can perform multiple comparisons on different paths in the same instruction.
We can do this because each node in the tree has only 2 children. Regardless of the
outcome of the comparison at a parent node, we will have to perform one of the
two comparisons given by the children. Thus, if we perform the comparison at the
current node, as well as both children with one vectorization instruction, we make
sure that two of the comparisons are useful. More formally, we are guaranteed to
skip at-least ⌊log2(v + 1)⌋ comparisons with one instruction. In case v is not an
exponential of 2, we still have some comparison entries left in the vectors. We can
use the remaining m = v − (2⌊log2(v+1)⌋ − 1) slots in the vectorization units and use
them to perform the most probable comparisons on the next layer. Given the highest
probabilities p1, . . . , pm of that layer, we will match one of the comparisons needed
with expectation

∑︁m
i=1 pi. This leads us in total to an expected number of clock cycles
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needed for a breadth-first approach of

cbreadth−first
CPU = 10 · E[Λ]

⌊log2(v + 1)⌋+∑︁m
i=1 pi

(8.11)

(Soft) Majority Vote Implementation

So far, we have discussed the implementation of decision trees. We can use these im-
plementations as building blocks to implement a tree ensemble by applying one tree
after another and by keeping track of the sum of votes4. Figure 8.13 shows the imple-
mentation of a majority vote. First, we create an array in which we store the sum of
class probabilities from the trees. Then, we perform the prediction using the first tree
and save the result in an intermediate register r1 (lines 5 and 6). The prediction is
then added to the predictions array, and the overall procedure is repeated for every
tree in the tree ensemble. In the end, we compute the average by multiplying the
probabilities with 1

M . Let cmCPU denote the number of cycles needed for method m
and tree i and assume that we do not use SIMD operations for the averaging5, then
we need a total number of cycles for the majority vote of:

Ctotal
CPU = 2C +

M∑︂
i=1

(cmi + C) = C (M + 2) +
M∑︂
i=1

cmCPU (8.12)

1: function MAJORITYVOTE(x, tree_1, . . . , tree_M)
2: predictions← load(0, . . . , 0) ▷ 1 or C clock cycles
3: r1← predict(x, tree1) ▷ cmCPU clock cycles
4: predictions← predictions+ r1 ▷ C or ⌈Cv ⌉ clock cycles
5: . . .
6: r1← predict(x, treeM ) ▷ cmCPU clock cycles
7: predictions← predictions+ r1 ▷ C or ⌈Cv ⌉ clock cycles
8: predictions← 1

M · predictions ▷ C or ⌈Cv ⌉ clock cycles
return predictions

FIGURE 8.13: Implementation of a majority vote in the theoretical von
Neumann architecture.

8.4.4 Implementing DT Ensembles on FPGAs

Field programmable gate arrays offer reconfigurable hardware and thus do not offer
any computing architecture but are free to mimic every architecture required. In a
naive approach, we can simply reuse the implementations presented so far and find
the same theoretical conclusions as discussed. This, however, would not take the very
flexible nature of FPGAs into account. First, it has to be noted that register accesses
do not need to be aligned towards given word sizes sw or vector sizes sv, but they
can exactly be tailored to the problem at hand. Thus, we can use the same node
entity depicted in Figure 8.8, but can also tailor the corresponding data sizes exactly
to the specific tree at hand. Similar to the CPU implementation, we assume that the
complete forest fits into the block ram of the FPGA, and thus, we only operate on

4If individual trees are weighted, we can include the weights into the leaf predictions as discussed
earlier.

5If SIMD is used then we replace C by C
v

.
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block memory or the logic blocks of the FPGA.

Native Implementation

First, we analyze the native implementation shown in Figure 8.9 for FPGAs. The ini-
tialization before the while-loop can be executed during power-on of the FPGA and
thus takes no time (line 2−3). Unlike for the CPU, we can issue two load instructions
at the same time on the FPGA, but each load takes two clock cycles because of address
resolution. Thus, we can perform the first load operations on r1 and r2 in parallel
(line 5 and 6). However, the remaining load instructions depend on each other and
thus need to be executed in sequence, leading to a sequence of 4 load instructions
inside the while-loop. Additionally, two comparisons are performed (line 4 and 8),
which take 1 clock cycle each, leading to:

CNative
FPGA = (0 + 2 · 4 + 2) · E[Λ] + 1 = 10 · E[Λ] + 1 (8.13)

In order to estimate the resources used by this implementation, we observe that
two functional units for comparisons and two functional units for address resolution
are required. Additionally, 3 registers are needed giving a total of

rNative = 2 · raddr + 3 · sw + req + rle (8.14)

resources used by this implementation.

If-Else Implementation

In the native implementation, we observe that memory access is a costly operation
since we have to perform address resolution first. Similar to the CPU implementation,
we can bypass this problem if we unroll the tree in its if-else structure as depicted in
Figure 8.10. As before, we need to access a constant ti, which is known at compile
time. Similarly, we see, that we need to access x[ki], where ki is also a constant. Thus,
the memory address of x[ki] is known at compile time, and no address resolution unit
is required. So far, we implicitly assumed that the observation x has already been
copied into the FPGA’s block memory. It is reasonable to assume, that we could
instead copy it directly into the FPGA CLBs cells because we need to communicate
with the FPGAs in any case6. Then, we can hard-wire the entries in x and their split
thresholds ti directly into the corresponding comparators. This way, the operands
for comparison do not need to be loaded, but only the comparison itself needs to be
performed, taking 1 clock cycle in total:

cif−else
FPGA = E[Λ] + 1 (8.15)

Since we hard-wire constants into the comparison blocks, we cannot reuse any com-
parison unit and thus have to implement the comparison of every node of the com-
plete tree. Additionally, we need to store all split thresholds ti as well as the entire
observation x inside the CLBs of the FPGA. Given we implement a tree with n nodes,
we need

rif−else
FPGA = n · rle + n ·

⌈︂sw
t

⌉︂
+ d · sw (8.16)

6Assuming x is always copied into the block ram due to hardware constraints, we can load it into the
FPGAs CLBs in ⌈ d

2
⌉ clock cycles.
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resources.

SIMD Implementation

FPGAs are well suited for vector operations and thus, the SIMD implementation of
the CPU can directly be mapped onto the FPGA as presented in Figure 8.12. In order
to access v features at once, we again store the complete tree using the FPGAs CLBs.
However, unlike if-else trees, we need to keep track of the current node i and issue
load instructions towards the memory using CLBs. Thus, memory access still has a
delay of two clock cycles. Again, the number of expected loop iterations depends
on the comparison strategy. However, the number of clock cycles per iteration is dif-
ferent. The two load operations before entering the while-loop can be performed
during power-on and thus require no clock cycles (line 2, 3). Loading values into reg-
ister v1 and v2 can be performed in parallel (line 5, 6), taking two cycles. Additionally,
we need to gather the entries in x, taking another two cycles. The comparisons in
lines 4 and 8 can be performed in one clock cycle each. Generating the corresponding
bitmask from the comparison is free on the FPGA since we can hard-wire the compar-
ison bits directly it into the next functional unit. After that, three loading operations
are performed in sequence, leading to a total of 12 clock cycles. Looking at the re-
source consumption of this implementation, we observe that we need a total of v
functional units for address lookup since the gather instruction performs v lookups in
parallel. Also, we need to perform v comparisons using v comparators. Additionally,
another comparator, which compares r1 against a fixed value, is required. Last, we
need to materialize all nodes, as well as the vector registers and r1 and i with the
FPGAs logic cells leading to a total of:

rSIMD
FPGA = v · raddr + v · rle + v · req + n · nodet + 2 · v · sw + 2 · sw + d · sw (8.17)

DNF Implementation

So far, we mapped CPU implementations to FPGAs, not taking the FPGA’s flexible
nature into account. To do so, we can formulate an extreme case of the SIMD trees, in
which we perform all comparisons in one clock cycle. This can be done, by observing
two things: First, the comparisons in a tree do not depend on each other. Only once
we perform the actual prediction, we need to traverse the tree. Thus, we can perform
all comparisons of all nodes in the tree given x first and then traverse the tree given
the pre-computed comparisons. Second, a tree can be represented by a disjunctive
normal form (DNF). In a disjunctive normal form, a boolean function is represented
as a series of conjunctions connected by disjunctions. We can view the comparison
performed at node i as a boolean variable, which is either true or false. Then, a
particular path from the root node to a leaf is represented as a conjunction of all –
possibly inverted – comparisons on that path. Let ci denote the comparison for node i,
then the DNF of the tree depicted in Figure 8.1 is for example cx2∨(¬cx2∧¬cx3∧cx1).
The DNF for a given tree is independent of the specific observation x but only depends
on the structure of the tree. Figure 8.14 shows an implementation of this approach.

Similar to the if-else trees, we can store the observation x inside the FPGAs CLBs
and hard-wire the split values and features directly into the comparators. Thus, given
n nodes in the tree, we have to perform n comparisons in parallel taking only 1
clock cycles. The DNF computation of a tree thus consists of three operations. First,
necessary variables need to be inverted, then conjunctions are computed, and finally,
the disjunction can be evaluated. In a naive approach, this takes 3 clock cycles, but
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1: function PREDICT(x, tree)
2: r1← cmple(r1, x[k1], t1) ▷ 1 clock cycles
3: r2← cmple(r2, x[k2], t2) ▷ 1 clock cycles
4: . . .
5: r1← computeDNF (r1, r2, . . . ) ▷ 1 clock cycles

return predictions[r1] ▷ 1 clock cycles

FIGURE 8.14: Implementation of a decision tree using the DNF ap-
proach in the theoretical FPGA.

since the tree structure is known, we can directly encode this into the look-up tables
of the FPGA similarly to the if-else trees. Thus, computing the DNF takes only one
clock cycle. Adding another clock cycle for getting the prediction value and returning
the prediction values, we see, that DNF-Trees only require

cDNF
FPGA = 3

clock cycles. In order to traverse the complete tree in only one clock cycle, we trade
run-time for space. In short, we need n comparators performing comparisons in
parallel. Additionally, we need n times sw bits to materialize all split thresholds using
the FPGAs CLBs and d · sw bits to store the observation x. Computing the DNF for
the tree can be viewed as computing a boolean function with 2max{L1,...,Lk} input
variables DNF : {0, 1}n → {0, 1}. We can distribute this across multiple logic blocks
so that in total, this implementation needs

rDNF
SIMD = n · rle + n · sw + d · sw +

⌈︃
6 · n
t

⌉︃
+ 1 (8.18)

resources.

(Soft) Majority Vote Implementation

For FPGAs, we will follow the same general procedure as for von Neumann CPUs
shown in Figure 8.13 to implement the majority vote. However, unlike CPUs, FPGAs
do not need to execute trees in sequence but can execute the trees in parallel leading
to

Ctotal
FPGA = 2C +max{cm1 , . . . , cmM} (8.19)

with a resource consumption of

rFPGA
total =M · rm + rmac (8.20)

where rmac denotes the resource consumption of a multiply-accumulate circuit. Here,
the special case of hard voting schemes for two classes in which each tree either
predicts true or false is interesting. In order to compute the majority vote in this case
we need to count the number of 1-bits inside the bit vector of all predictions where 1
corresponds to true and 0 corresponds to false. This is known as the hamming weight
of a bit vector and has been studied in literature [SS13]. Similar to comparing two
integers, the hamming weight of a bit vector with M bits can be implemented using
rham = ⌈log2(M + 1)⌉ CLBs, taking one clock cycle to complete its operation. After
that, we can compare the value against

⌊︁
M
2

⌋︁
, also taking one clock cycle requiring rle
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resources. Thus, the total clock delay of a tree ensemble given method m is given by:

CFPGA
total = Cm

FPGA + 2 (8.21)

The amount of resources used is given by:

rFPGA
total =M · rm + rham + rle (8.22)
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9 | Software and Libraries

The last section already highlighted the impact of different implementations on the
performance of ML models. Naturally, the software ecosystem surrounding all parts
of the ML model from data processing, model training, and deployment plays an
equally, if not more important role when applying ML methods. The next section
quickly surveys existing libraries and software frameworks to train (discrete) classi-
fier ensembles that have been used throughout this thesis, whereas section 9.2 and
section 9.3 discuss two software frameworks that have been created as a part of this
thesis.

9.1 Overview of existing Software

In order to deploy machine learning models they must be trained first. In the fol-
lowing, we will give a compact overview of existing software that has been used
during this thesis. For a more comprehensive overview of ML frameworks, we refer
interested readers to [NDB+19].

Weka (https://www.cs.waikato.ac.nz/ml/weka/) is arguably the oldest soft-
ware framework that offers a multitude of different data processing techniques as
well as ML algorithms, whereas RapidMiner (https://rapidminer.com/) is younger,
but with a comparable feature set. Last, scitkit-learn (https://scikit-learn.org/
stable/) is the youngest, but arguably also the most widely used general-purpose
machine learning framework. These frameworks offer a similar set of features and
are still actively in development. It is interesting to note, that both, older and more
recent methods are actively added to these frameworks. For example, minimal cost
complexity decision tree pruning was originally proposed in the 1980s [BFSO], but
only added to scikit-learn 0.22 in 2020, whereas the other frameworks do not support
it at all1.

All these general-purpose frameworks also support discrete classifier ensembles
such as gradient boosted trees or random forests, but there are three additional
libraries dedicated to training gradient boosted decision trees. XGBoost (https:
//xgboost.ai/) started as a GPU implementation for gradient boosted decision trees
and has since become the de-facto standard boosting library. The original paper pro-
posed a novel column layout for distributing features on the GPU in combination with
a regularization term during boosting. In addition, splits are computed heuristically
instead of iterating all possible splits leading to a very efficient and competitive sys-
tem [CG16]. Similar libraries such as LightGBM (https://github.com/microsoft/
LightGBM, [KMF+17]) and CatBoost (https://catboost.ai/, [PGV+18]) have been
proposed that implement similar ideas for DT boosting. The performance of the
three frameworks is comparable, although there are subtle differences in their models

1However, they support other post-pruning methods for DTs.

https://www.cs.waikato.ac.nz/ml/weka/
https://rapidminer.com/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://xgboost.ai/
https://xgboost.ai/
https://github.com/microsoft/LightGBM
https://github.com/microsoft/LightGBM
https://catboost.ai/
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[APP+18]. For example, CatBoost uses balanced trees whereas XGBoost and Light-
GBM utilize unbalanced trees.

Looking at deep learning libraries there are two main frameworks namely Tensor-
Flow (https://www.tensorflow.org/) and PyTorch (https://pytorch.org/) avail-
able. Both frameworks offer automatic differentiation of arbitrary computation graphs
constructed from a set of basic operations such as convolution, matrix multiplication,
etc. Both frameworks support the execution via CPUs and GP-GPUs (e.g. CUDA)
as well as more specialized hardware such as TPUs. The main difference between
both frameworks is that PyTorch uses a dynamic graph structure whereas Tensor-
Flow uses a static graph meaning that the computation graph remains the same dur-
ing execution. While this difference is neglectable on a surface level for most feed-
forward networks it can lead to subtle differences in the user experience as well as
to differences when implementing recurrent neural networks (RNN). In TensorFlow,
the maximum number of recurrent steps must be set beforehand, whereas in Py-
Torch it can be changed during execution. Both frameworks are actively maintained
and improved. In addition, there are multiple extensions available such as Keras
(https://keras.io/) or PyTorch Lightning (https://www.pytorchlightning.ai/)
that try to reduce the complexity of using these frameworks by providing a common
interface implementing a set of best practices. Most interesting for this thesis is the
larq (https://larq.dev/) framework that adds native support for binarized neural
networks to TensorFlow for training and deploying models. Unfortunately, the offi-
cial beta release of this framework was in May 2019 (https://github.com/larq/
larq/releases/tag/v0.1.0) and hence not available during parts of this research.
Last, we note, that researchers seem to gravitate more towards PyTorch whereas in
industry TensorFlow is more widely used (https://tinyurl.com/2mdb7n59).

Last, looking at online learning there are two main frameworks available. Massive
Online Analysis (MOA, https://moa.cms.waikato.ac.nz/) is arguably the most-
used online learning framework to date and is still under active development. It
contains many of the most recent advances in online learning and many papers
and advancements are nearly indistinguishable from the software contribution to
this framework. Unfortunately, MOA does not integrate well into the current ma-
chine learning ecosystem that gravitates more toward Python. Hence, River (https:
//riverml.xyz/) attempts to re-implement moa in Python. However, River is cur-
rently in its early development stage and is not comparable to MOA in terms of per-
formance and features.

9.2 PyPruning

Large parts of this thesis encapsulate theoretical and algorithmic results that are usu-
ally backed by experiments. Hence, it is inevitable that related methods, as well as
novel ideas for model pruning discussed in section 6, had to be implemented for the
corresponding experiments. Contrary to the very active field of deep learning infer-
encing and optimization (discussed in the next section), research in ensemble pruning
moves at a much slower pace. Somewhat surprisingly, however, there does not seem
to be any common library for ensemble pruning. Hence, the ensemble pruning li-
brary PyPruning was implemented as part of this thesis. PyPruning is – to the best
of our knowledge – the only available implementation of common ensemble pruning
algorithms. It follows the taxonomy of pruning algorithm presented in section 6 and
currently offers six types of pruning algorithms:

https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://www.pytorchlightning.ai/
https://larq.dev/
https://github.com/larq/larq/releases/tag/v0.1.0
https://github.com/larq/larq/releases/tag/v0.1.0
https://tinyurl.com/2mdb7n59
https://moa.cms.waikato.ac.nz/
https://riverml.xyz/
https://riverml.xyz/
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• RandomPruningClassifier: Selects a random subset of classifiers. This is mainly
used as a baseline.

• RankPruningClassifier: Rank each classifier according to a given metric and
then select the best K classifier.

• ClusterPruningClassifier: Cluster the classifiers according to a clustering method
and then select a representative from each cluster to form the sub-ensemble.

• GreedyPruningClassifier: Selects one classifier per round in a total ofK rounds.
In each round, the best classifier for the current sub-ensemble is selected.

• MIQPPruningClassifier: Constructs a mixed-integer quadratic problem and op-
timizes this to compute the best sub-ensemble.

• ProxPruningClassifier: Minimize a (regularized) loss function via (stochastic)
proximal gradient descent over the ensemble’s weights.

PyPruning is designed to be flexible while implementing the most common prun-
ing methods. To do so, there is a common interface for each class of pruning al-
gorithm that implements the general pruning approach as discussed previously but
receives specific functions that reproduce the specific pruning method from the liter-
ature. For example, individual error (IE pruning [JLFW17]) pruning can be imple-
mented by passing the corresponding error function (c.f. Figure 9.1) to the GreedyPruningClassifier
object. Similarly, cluster pruning via K-Means can be implemented by passing scitkit-
learns sklearn.cluster.KMeans object to the ClusterPruningClassifier object whereas
cluster pruning with agglomerative clustering is implemented by passing
sklearn.cluster.AgglomerativeClustering to the same object.

def individual_error(i, ensemble_proba, target):
iproba = ensemble_proba[i,:,:]
return (iproba.argmax(axis=1) != target).mean()

FIGURE 9.1: Example of a custom metric for pruning in PyPruning.

In total, PyPruning offers 16 different pruning algorithms that have been pro-
posed in literature [GLL+18, LWZB10, JLFW17, MD97, MMS04, LYZ12, COMC16,
ZBS06, MS06, GRF00, LO01, BH03], although more combinations are possible. If a
new pruning method does not fit the established taxonomy (e.g. L1 pruning) then
a custom pruner can be implemented as well. In this case, the PruningClassifier
class has to be implemented which requires a prune_ method. This function re-
ceives a list of all predictions of all classifiers as well as the corresponding data
and targets and is supposed to return a list of indices corresponding to the cho-
sen estimators as well as the corresponding weights. An example can be found
in Figure 9.2. PyPruning is implemented in Python and available under https:
//github.com/sbuschjaeger/pypruning. A more thorough documentation can be
found under https://buschjaeger.it/PyPruning/html/index.html.

https://github.com/sbuschjaeger/pypruning
https://github.com/sbuschjaeger/pypruning
https://buschjaeger.it/PyPruning/html/index.html
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class PruningClassifier(ABC):
def __init__(self):

# omitted for space reasons

@abstractmethod
def prune_(self, proba, target, data = None):

# to be implemented

def prune(self, X, y, estimators, classes = None, n_classes = None):
""" Main entry point for pruning """
# omitted for space reasons

# ...
# Additional function are omitted for space reasons
# ...
def _individual_proba(self, X):

""" Helper function """

class RandomPruningClassifier(PruningClassifier):

def __init__(self):
super().__init__()

def prune_(self, proba, target, data = None):
n_received = len(proba)
n_est = self.n_estimators
if n_est >= n_received:

idx = range(0, n_received)
weights = [1.0 / n_received for _ in range(n_received)]

else:
idx = np.random.choice(range(0, n_received),size=n_est)
weights = [1.0 / n_est for _ in range(n_est)]

return (idx, weights)

FIGURE 9.2: Example of a custom pruner in PyPruning.

9.3 Fastinference

As argued before, the deployment and application of trained models are one of the
most important aspects of the ML pipeline when solving real-world problems with
machine learning. Hence, it is not surprising that the exchange of pre-trained models,
as well as their deployment, has been considered by almost all the major companies.
The following contains a survey of existing tools and libraries at the time of writing
this thesis. I do not attempt to make a complete survey here, nor do I think that the
following list will be accurate in the future due to the volatility of the current market.
Nevertheless, such an overview not only gives valuable pointers to existing tools, but
it also places the software that originated as part of this thesis properly in the context
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of currently existing software.

Exchange Formats for ML models

The goal of an inference engine is to execute a pre-trained ML model as resource-
efficient and / or as fast as possible. Hence, loading the model is the first step which,
in turn, requires a common model exchange format. During this thesis, the Open
Neural Network Exchange Format ONNX (https://onnx.ai/) emerged as one of the
standard formats to exchange trained neural networks between different frameworks.
ONNX offers a common language to express computation graphs in which each node
represents a computation and tensors are passed between the nodes to exchange
information. ONNX is – from an industry point of view – in a relatively early stan-
dardization state, and it is still actively changing. However, most basic operations
such as Generalized Matrix Multiplication (GEMM) or convolutions over multiple di-
mensions are firmly standardized by now. One of the major drawbacks of ONNX is
that it does not standardize the structure of a computation graph, but only offers the
basic operation which can be used inside of it. This freedom also has the unfortunate
side effect that the same neural network can be expressed in a variety of different
ways, and often times tools output very different ONNX files for the same neural net-
work architecture. Hence, the same network can have different runtimes using the
same inferencing tool because the ONNX files were exported by two different training
frameworks. Looking beyond neural networks, there is the Predictive Model Markup
Language PMML. PMML is an XML dialect for ML model exchange that is much older
than ONNX and has a broader focus. It aims to encapsulate the entire inferencing
pipeline, including the actual model, any data transformation and pre-processing, as
well as additional operations such as outlier detection or missing data imputation.
In this sense, PMML offers a much more complete approach to model inferencing.
At the same time, it is also more restrictive than ONNX, because it does not allow
for general computation graphs but defines a classifier as a single operation instead
of decomposing it into a set of common operations. Last, it is noteworthy that each
training framework usually also comes with its own set of exporting options, e.g.
through the use of custom JSON formats (see e.g. https://tinyurl.com/5fdset26)
or as custom binary objects (see e.g. https://tinyurl.com/ymwfzx3k). However,
importing these custom formats into another framework is usually impossible unless
a custom loader is implemented for this specific use case.

Deploying on Standard Hardware

Looking at deep learning, it seems that every major tech company nowadays main-
tains its own inferencing system for neural models: Googles Tensorflow Lite (https:
//www.tensorflow.org/), Facebooks’s PyTorch Glow (https://github.com/pytorch/
glow), Microsoft’s ONNX Runtime (https://onnxruntime.ai/), Nvidia’s Tensor RT
(https://developer.nvidia.com/tensorrt), Huawei’s Bolt (https://github.com/
huawei-noah/bolt), Intel’s OpenVino (https://tinyurl.com/36f3evcr), Xiaomi’s
MACE (https://github.com/XiaoMi/mace) just to list a few. While all these tools
support a different subset of tensor operations standardized by ONNX they are also
somewhat similar in the sense that they usually target smartphone-like platforms and
are often benchmarked in image recognition tasks using common architectures such
as MobileNet or EfficientNet. These tools oftentimes lack behind training frameworks

https://onnx.ai/
https://tinyurl.com/5fdset26
https://tinyurl.com/ymwfzx3k
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/pytorch/glow
https://github.com/pytorch/glow
https://onnxruntime.ai/
https://developer.nvidia.com/tensorrt
https://github.com/huawei-noah/bolt
https://github.com/huawei-noah/bolt
https://tinyurl.com/36f3evcr
https://github.com/XiaoMi/mace


172 Chapter 9. Software and Libraries

in terms of features because the optimization process for different neural network
architectures as well as computational architectures is more time-consuming.

Looking beyond deep learning, the situation changes a bit. Here inferencing tools
are much more scarce. Scikit-learn is one of the most-used frameworks for training
“classical” ML models, but they do not offer a dedicated inferencing tool outside the
framework. However, there is an adaptor for ONNX available that supports many of
the classifiers in scikit-learn (http://onnx.ai/sklearn-onnx/) which are expressed
as a series of tensor operations to form the computation graph. Similarly, there is
an adaptor for PMML available (https://github.com/jpmml/sklearn2pmml). One
interesting exception in this area is Treelite (https://treelite.readthedocs.io/
en/latest/) which supports scikit-learn and other frameworks through their Python
objects or a custom JSON format. It unrolls a given tree into its if-else structure
and then automatically compiles the resulting C code to an inferencing binary that
can be used by other programs as well. It is noteworthy that WEKA has a similar
built-in mechanism that exports trees as their Java source code (see, e.g., to_source
in https://tinyurl.com/mrksfct8). Last, cloud providers built upon these tools
to offer ML model applications as-a-service in a scalable manner, e.g. over Amazon’s
AWS (https://aws.amazon.com/sagemaker/) or Microsoft’s Azure (https://azure.
microsoft.com/en-us/services/machine-learning/).

Deploying on Non-Standard Hardware

All the above tools are targeted towards existing computer architectures (e.g. ARM,
X86, or CUDA), and depending on a given architecture, a different selection of tools is
available. Moving towards non-standard hardware the situation becomes increasingly
convoluted. A well-maintained list of available and/or announced AI chips can be
found under https://github.com/basicmi/AI-Chip that currently contains over 60
startups, 17 IC vendors, 16 HPC firms, and 7 IP vendors. Usually, all of these AI chips
come with their own tooling that is integrated into one of the existing frameworks.
For example, Google’s Tensor Processing Units are tightly integrated into TensorFlow
and cannot be used directly with other frameworks such as PyTorch2. Similarly, firms
such as Sambanova offer an intermediate compilation layer that translates PyTorch
calls onto their custom AI chip (see e.g. https://tinyurl.com/2p9b6s58). FPGAs
offer a middle-ground between GP-GPUs and these custom inferencing chips. Here,
the two major FPGA manufacturers also offer solutions for neural network infer-
ence: Xilinx offers the Vitis Toolkit that offers a set of tools to compile ONNX models
down to hardware code (https://tinyurl.com/2svfssjk) and similar Intel inte-
grated FPGA support into their OpenVino toolkit (https://tinyurl.com/mt4u7nn5).
Here, we again see a similar lack of features as mentioned above. Many of these
tools only support a subset of the features offered by training frameworks in ex-
change for more optimized inferencing solutions for certain neural architecture and
hardware combinations. In the context of this thesis, it is worth mentioning that
Xilinx offers a dedicated toolkit to compile binarized neural networks for FPGAs
(https://github.com/Xilinx/finn), but to the best of my knowledge, there does
not exist a similar tool for e.g. tree ensembles.

Naturally, the question arises if the discrepancy between features offered by high-
level training tools and optimized inferencing is desired or if there might be a way

2PyTorch and other frameworks increasingly add improved support for TPUs however.

http://onnx.ai/sklearn-onnx/
https://github.com/jpmml/sklearn2pmml
https://treelite.readthedocs.io/en/latest/
https://treelite.readthedocs.io/en/latest/
https://tinyurl.com/mrksfct8
https://aws.amazon.com/sagemaker/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://github.com/basicmi/AI-Chip
https://tinyurl.com/2p9b6s58
https://tinyurl.com/2svfssjk
https://tinyurl.com/mt4u7nn5
https://github.com/Xilinx/finn
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to integrate both into a single tool. And indeed, there are efforts to develop a com-
mon machine-learning language. This way the high-level frameworks can imple-
ment their operations against this common language while inferencing engines can
offer optimized implementations for a subset of operations on a target platform. The
Multi Level IR (MLIR) Compiler Framework (https://mlir.llvm.org/), which is
part of the LLVM infrastructure (https://llvm.org/) offers a standard way to ex-
press language dialects in the context of LLVM. A language developed using MLIR
hence benefits from the existing tooling in the LLVM project and can therefore be de-
veloped much quicker. Tensorflow-lite offers a MLIR dialect that standardizes the op-
erations offered by TensorFlow lite (https://www.tensorflow.org/mlir/tfl_ops)
and an open-source version called tosa (https://mlir.llvm.org/docs/Dialects/
TOSA/) for tensor operations is also available. Hence, a computation graph of neu-
ral networks can be expressed as a series of e.g. tosa instructions and any infer-
encing framework that supports this dialect can then execute this network. The
inference engine does not need to know specifics about the neural network, but
merely offers optimized implementations of the operations defined by the dialect,
whereas a high-level framework can e.g. optimize the computation graph itself. The
iree framework (https://github.com/google/iree) gives a reference on this ap-
proach that can read TensorFlow lite models, emit the corresponding dialect code,
and then executes it using a CPU or GPU. Using these dialects it is also easy to
integrate new operations by extending the dialect. For example, the larq (https:
//github.com/larq/compute-engine) framework extends the existing TensorFlow
lite dialect by adding binarization operations to it. This way, the runtime engine of
larq simply re-uses existing inference engines for regular TensorFlow lite operations
and inserts optimized implementations for the binarization in the appropriate places.

Unfortunately, to the best of our knowledge all inferencing engines treat the
model as a “second-class” citizen. They break the model into its computation graph,
possibly perform optimizations on it and then use optimized implementations for
specific computations in that graph. However, they do not utilize additional available
knowledge about the model, such as the distribution of visited nodes in a decision
tree or the fact that BNNs can be executed via XNOR and popcount instructions. Ad-
ditionally, researchers are often pushing the limits of these tools by inventing new
models or by deploying models to entirely new devices. Hence – even though the
landscape is maturing – we do not find these tools to adequately address the issues of
inferencing from a researchers’ perspective but are focused on the “average” industry
use case.

Hence, to offer a tool that allows researchers to quickly test new inferencing
strategies, FastInference has been developed as part of this thesis. FastInference is
a machine learning model optimizer and model compiler that generates the optimal
implementation for a given ML model and hardware architecture. It contains all the
optimizations and implementations discussed in Section 8 for decision trees, but also
supports additional models such as (binarized) neural networks. The goal of this tool
is to ease the development of new optimization techniques as well as implementa-
tions for ML models. A general overview is depicted in Figure 9.3. FastInference
works a three-step process: First, the pre-trained model is loaded from a JSON or
ONNX file into an internal representation. This un-optimized model is then opti-
mized by a number of possible optimizers. The resulting optimized model is further
passed to the backend that generates the code for specific target architectures. The
backend utilizes template-based code generation to generate optimized code for the
entire model, e.g. outputting a single source file that represents the entire model.

FastInference focuses on three main concerns:

https://mlir.llvm.org/
https://llvm.org/
https://www.tensorflow.org/mlir/tfl_ops
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://github.com/google/iree
https://github.com/larq/compute-engine
https://github.com/larq/compute-engine
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FIGURE 9.3: Workflow of FastInference. A pe-trained model is loaded
from a JSON or ONNX file. Then a series of model optimizations are
performed. The optimized model is passed to the backend, which then

emits the optimized code using template-based programming.

• Rapid prototyping is key: New implementations for new target architectures
as well as new optimizations should be easily added to the existing framework.

• The model is central for inferencing: Model optimizations should be available
regardless of the target execution platform and implementations for a specific
platform should be independent of specific optimizations. The ML model con-
nects both.

• The user comes first: The user knows best what implementation and what
type of optimizations should be performed. Hence, the generated code should
be readable and users should be able to manually adapt the implementation if
necessary.

The model plays a central role in this workflow as it connects the individual stages
with each other. The base class of each model can be seen in Figure 9.4. Each
model must implement from_dict and to_dict methods for loading / storing the
model. Additionally, predict_proba must be provided that applies the model to the
given data. The model itself offers an optimize function that applies all the given
optimizations to it whereas implementation actually implements it.

Optimizations are decoupled from FastInference in the sense that they only re-
quire the model and any optimization-specific parameters. As an example, Figure
9.5 shows the entire code for the swap-optimization discussed in Section 8. Once the
corresponding python file is placed in the search path of FastInference, it will be au-
tomatically loaded and the corresponding optimize function is executed. This way,
optimizations can be developed independently of each other without interfering with
multiple locations in the code.

Models and hardware architectures are generally too different to benefit from
sharing parts of their implementation. For example, a decision tree is simply too
different from a linear regression to share meaningful parts of their respective imple-
mentation. Similarly, a CPU implementation of BNNs is different from an FPGA imple-
mentation even though both might be done in a C-like language. Hence, there is also
no coupling of the implementations themselves, and they can function completely
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class Model(ABC):
def __init__(self, classes, n_features,

category, accuracy = None, name = "Model"):
# omitted for space reasons

def optimize(self, optimizers, args):
""" Applies a list of optimizers to this model """
# omitted for space reasons

def predict(self, X):
""" Obtains predictions of this model to the given data """
# omitted for space reasons

def implement(self, out_path, out_name, impl_type, **kwargs):
""" Implements this model using the impl_type"""
# omitted for space reasons

@abstractmethod
def from_dict(self):

# to be implemented

@abstractmethod
def to_dict(self):

# to be implemented

@abstractmethod
def predict_proba(self,X):

# to be implemented

FIGURE 9.4: Base class for every model in FastInference.

independently of each other. However, to ease the development of new backends for
e.g. new programming languages, most of the implementations in FastInference uti-
lize the jinja template engine (https://jinja.palletsprojects.com/en/3.0.x/).
The jinja template engine is a template engine originally used for web development,
that also offers more advanced features such as macro expansion. Most backends in
FastInference utilize jinja templates to generate common interfaces and manage com-
mon data types e.g. by using feature_type as a placeholder for the actual data type
whenever a feature is used. Figure 9.6 shows the shortened template that generates
the if-else implementation discussed in Section 8 in C++. By using the macro key-
word jinja is essentially expanding the tree by itself so that only minimal processing
is required by Fastinference as depicted in Figure 9.7.

Fastinference is available under https://github.com/sbuschjaeger/fastinference
and a more thorough documentation can be found under https://buschjaeger.it/
fastinference/html/index.html. It is still under active development. Table 9.1
shows the currently supported backends that can be combined with the following
optimizations:

• Decision Trees: swap, quantization

https://jinja.palletsprojects.com/en/3.0.x/
https://github.com/sbuschjaeger/fastinference
https://buschjaeger.it/fastinference/html/index.html
https://buschjaeger.it/fastinference/html/index.html
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def optimize(model, **kwargs):
"""
Main entry point for every optimization.
"""
remaining_nodes = [model.head]

# Implement breadth-first traversal of the given DT
while(len(remaining_nodes) > 0):

cur_node = remaining_nodes.pop(0)

# Swap the nodes depending on the probability
if cur_node.probLeft < cur_node.probRight:

left = cur_node.leftChild
right = cur_node.rightChild
cur_node.leftChild = right
cur_node.rightChild = left

if cur_node.prediction is not None:
remaining_nodes.append(cur_node.leftChild)
remaining_nodes.append(cur_node.rightChild)

return model

FIGURE 9.5: Example of the swap optimization discussed in Section 8
implemented in FastInference.

• Ensemble: leaf-refinement, weight-refinement, pruning, weight-refinement,
linear-merging

• MLP + CNN: merge and remove nodes
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{% macro ifelse(nodes, node, tree_weight) %}
{% if node.prediction is not none %}
{% for pred in node.prediction %}
pred[{{ loop.index-1}} ] += {{ pred*tree_weight}} ;
{% endfor %}
return;
{% else %}
if (x[{{ node.feature}} ] <= {{ node.split}} ) {

{{ ifelse(nodes,node.leftChild, tree_weight)|indent}}
} else {

{{ ifelse(nodes,node.rightChild, tree_weight)|indent}}
}
{% endif %}

{% endmacro %}

void predict_{{ model.name}} (
{{ feature_type }} const * const x,
{{ label_type }} * pred

) {
{{ ifelse(model.nodes,model.head,weight)|indent}}

}

FIGURE 9.6: Template code for the if-else implementation of DTs dis-
cussed in Section 8 in FastInference for the C++ backend (simplified

version).

TABLE 9.1: Supported languages in FastInference. CPP denotes
the C++ programming languages whereas FPGAs denotes C++
code adapted for Xilinx High-Level Synthesis tool (https://tinyurl.
com/ynrw4hmk). Haxe (https://haxe.org/) is a strictly-typed lan-
guage for cross-compiling to e.g. Java, Javascript, PHP, Lua, etc.
Tosa denotes the LLVM tosa dialect (https://mlir.llvm.org/docs/
Dialects/TOSA/) that can e.g. be executed via iree (https://

github.com/google/iree).

Method cpp FPGA Haxe Tosa

Decision Trees ifelse, native
Linear native, unroll native
Discriminant native
MLP native, binarized binarized native
CNN native, binarized binarized native
Ensemble native

https://tinyurl.com/ynrw4hmk
https://tinyurl.com/ynrw4hmk
https://haxe.org/)
https://mlir.llvm.org/docs/Dialects/TOSA/
https://mlir.llvm.org/docs/Dialects/TOSA/
https://github.com/google/iree
https://github.com/google/iree
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def to_implementation(model,out_path,out_name,weight = 1.0,**kwargs):
"""
Main entry point for every implementation.
"""

# ...
# Perform pre-processing
# ...

# Load the Jinja2 enviroment to find all templates
env = Environment(

loader=FileSystemLoader(
os.path.join(os.path.dirname(os.path.abspath(__file__)))

)
)

# Load the base.j2 that contains the actual implementation
implementation = env.get_template('base.j2').render(

model = model,
model_name = model.name,
weight = weight,
# ...

)

# Load the header.j2 that contains the the C++ header
header = env.get_template('header.j2').render(

model = model,
model_name = model.name,
model_weight = weight
# ...

)

# Store the implementation on disk.
cpp_file = os.path.join(out_path, "{}.{}".format(out_name,"cpp")
with open(cpp_file ), 'w') as out_file:

out_file.write(implementation)

header_file = os.path.join(out_path, "{}.{}".format(out_name,"h")
with open(header_file), 'w') as out_file:

out_file.write(header)

FIGURE 9.7: Realization of the if-else implementation of DTs dis-
cussed in Section 8 in FastInference for the C++ backend (simplified

version).
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10 | Case Studies with Discrete
Classifiers

So far, this thesis discussed the theoretical and algorithmic properties of discrete
classifier ensembles as well as the deployment of such models from an application-
agnostic point of view. In this chapter, we will discuss the usage of discrete classifiers
in more specific application contexts and show how the software that has been pre-
sented in the previous chapter can be used in real-world use cases.

10.1 Discrete Classifiers and the PhyNetLab

We start by showcasing the effectiveness of ensemble pruning in the context of the
PhyNetLab warehouse [MRVT+18]. The PhyNetLab is a hardware test platform for
the evaluation and analysis of IoT-based warehouses that has been developed as a
part of the Collaborative Research Center SFB 876 (http://phynetlab.com/). It
consists of small, ultra-low power, energy-neutral devices called PhyNodes that are
placed on storage boxes inside the warehouse. The nodes are connected with various
access points and form a wireless sensor network. Each node measures the current
light intensity, the current temperature, and its acceleration as well as the Wifi signal
strength to the access points in the warehouse. The goal is to estimate the current
position of each node and thereby allow for efficient routing and detection of the
storage boxes in the warehouse. While machine learning is ideally suited for such a
task, the challenge lies in the deployment of the models. The PhyNode has a MSP430
MCU with a total of 64 KB of Ferroelectric Random Access Memory (FRAM) avail-
able, of which 48 KB are accessible by the instruction set. Roughly one-third of this
memory is used for the operating system and drivers, leaving about 30 KB of memory
for the top-level application, including the model. Subtracting additional top-level
application code of around 10 KB leaves roughly 20 KB for the localization model
[MRVT+18]. Hence, our goal is to find the best localization model that still fits into
the remaining 20 KB of memory.

During 42 experiments conducted at various light and temperature levels, a to-
tal of 41 431 measurements at 31 different locations inside the warehouse have been
taken. Each measurement consists of the acceleration (X,Y,Z) of the box, the current
temperature, the current light intensity, as well as the Wifi signal strength to 3 differ-
ent access points and a unique identifier for each box. During earlier experiments,
we noted that the acceleration can have a huge impact on the performance because,
in some experiments, the boxes would not be leveled, introducing biases into the ac-
celeration. Hence, the model would overfit on this feature, although – by design –
the acceleration of a (standing) box should not impact the performance of the classi-
fication. Hence, we ignore the acceleration for these experiments. To further reduce
overfitting against specific environmental properties (e.g., a particular shiny or warm

http://phynetlab.com/
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day), we train the models on the data from the first 41 experiments and test them
on the last experiment. The resulting training data has Ntrain = 40 444 samples with
d = 6 features, C = 31 classes, and the test set contains Ntest = 987 test samples.

Recall that the localization model must fit into 20 KB of memory. The size of the
implemented model is highly dependent on the specific implementation and can vary
across models, MCUs and implementations. Hence, we perform a two-step process
to find good models that fit into 20 KB of RAM: First, we train small models that
approximately fit into the memory of the PhyNode. For these experiments, we focus
on random forests and pruned tree ensembles discussed in chapter 6. A study of
the performance of other classifiers, such as the SVM or Naive Bayes, is given in
[MRVT+18], although the results are not entirely comparable due to slightly different
training data.

Our experimental setup is as follows: We first train a base random forest via
scikit-learn and then prune it with PyPruning. We estimate the size of the model
by counting the total number of nodes ntotal in all trees inside the forest and then
by computing the size via (17 + 4 · C) · ntotal as described in section 6.4. In the
second step, we use FastInference to generate the implementation of these models,
automatically compile them and remove all models that result in an overflow during
the cross-compilation, thereby leaving only models that can actually be deployed to
the PhyNode. Unfortunately, if-else trees result in very large code sizes and hence
would use too much memory, not fitting the MCU. Thus, we opted for native trees in
this experiment. Some additional pre-processing was required to make the models
fit into 20 KB: Recall that there are C = 31 classes, and hence a tree with 16 leaf
nodes requires 2 KB to store the class probabilities in leaf nodes if a float variable
is used. To reduce the memory consumption, we, therefore, employed a fixed-point
quantization that scales each probability by a factor of 10 000 and rounds it down
towards the next integer. This way, the probabilities in each leaf node can be stored
inside a 2 Byte (i.e., a short variable), effectively halving the size. This operation
is also implemented in FastInference, and we could not detect any change in the
accuracy with this quantization in this experiment.

In a series of pre-experiments, we determined reasonable ranges for the hyperpa-
rameters of each algorithm so that the estimated model size is below 24 KB. Similar
to the experiments in section 6.4, we train a base random forest with M = 256
trees and nl ∈ {4, 8, 12} leaf-nodes and then prune away trees from the ensemble.
Each pruning method is tasked to select K ∈ {2, 4, 8} trees. For DREP we used ρ ∈
{0.25, 0.3, . . . , 0.5}. For L1 and L1+LR we minimized the MSE over 20 epochs with
the Adam optimizer using α = 0.01, |B| = 1024 and λ ∈ {1.0465, 1.0466, . . . , 1.047}.
The code for this experiment is available under https://github.com/sbuschjaeger/
leaf-refinement-experiments.

Table 10.1 shows the accuracy and F1 score for the best models that still could
fit on the PhyNode. As one can see, L1+LR offers the best predictive accuracy as
well as the best F1 score highlighting the usefulness of our approach. Moreover, we
found that the accuracies seem to vary a lot between the different methods. For
example, DREP is the worst method with 51.32% accuracy, whereas L1+LR is nearly
20 percentage points better with an accuracy of 71.04%. Given that all models are
derived from the RF, these large differences seem surprising to us, but we could
not find any errors in our evaluation pipeline. In particular, we made sure that all
methods receive the same base forest so that no re-training of the forest would occur.

https://github.com/sbuschjaeger/leaf-refinement-experiments
https://github.com/sbuschjaeger/leaf-refinement-experiments
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TABLE 10.1: Accuracy (rounded to the second decimal digit) and
F1 score (rounded to the fourth decimal digit) of the best model per
method that can still fit into the memory of the PhyNode. The best

model is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

Accuracy [%] 68.39 51.32 56.50 56.80 62.50 71.04 61.28 68.09 63.21 56.40
F1 0.5757 0.5180 0.4266 0.4383 0.5234 0.5758 0.5300 0.5627 0.5163 0.4220

10.2 Discrete Classifiers and the FACT Telescope

As a second example, we discuss the usage of discrete classifiers in the context of
an astrophysics experiment. Basic research in physics remains one of the main driv-
ing forces in many research fields outside of physics itself, including computer sci-
ence and machine learning. From a computer science perspective, astrophysics is a
particularly interesting subject because it involves large amounts of automatic data
gathering through a radio telescope while, at the same time, it enables us to justify
the research by one of the oldest questions to humankind: Where does the universe
come from? While – this rather flamboyant – question may be asked by physics and
philosophers, we try to avoid astrophysics itself as much as possible and leave it to the
physicists. Our focus in this chapter is how discrete classifiers can be deployed to the
telescope itself so that parts of the enormous processing pipeline (c.f. [Boc15]) can
be executed on the device in real time. Discrete classifiers are a natural fit for radio
astronomy since a telescope is continuously gathering data at a high data rate and a
telescope is usually deployed to remote mountains for the best view, thereby limiting
processing and communication resources as well as memory and physical space. The
next section will give a brief overview of the FACT telescope, which inspired many
ideas in this thesis. Section 10.2.2 shows how additive ensembles can be used to
filter background noise from the telescope’s data, and section 10.2.3 shows how the
calibrated raw signals of the telescope can be analyzed in an end-to-end fashion by
using BNNs.

Technical Note: The experiments in this section involve code from different projects
written by different people at different points in time. Hence, they require some man-
ual preparation of the data and computing environment. Unfortunately, there is no
comprehensive and publicly available code repository that exactly reproduces these
results. Parts of the code used for these experiments can be found under https://
bitbucket.org/sbuschjaeger/arch-forest/src, https://github.com/sbuschjaeger/
Pysembles/,
https://github.com/sbuschjaeger/fastinference and
https://sfb876.tu-dortmund.de/FACT/.

10.2.1 The FACT Telescope

Celestial objects several hundred million light-years away from the earth are recog-
nized by observing the energy beams emitted by these sources. The energy beams
have an effect on a detector medium. For example, particles interact with the earth’s
atmosphere, producing cascading air showers. These showers emit Cherenkov light,
which, in turn, can be measured by telescopes such as the First G-APD Cherenkov
Telescope (FACT). Figure 10.1 shows an air shower triggered by some cosmic ray
beam, emitting Cherenkov light that is captured by the FACT telescope (left side).

https://bitbucket.org/sbuschjaeger/arch-forest/src
https://bitbucket.org/sbuschjaeger/arch-forest/src
https://github.com/sbuschjaeger/Pysembles/
https://github.com/sbuschjaeger/Pysembles/
https://github.com/sbuschjaeger/fastinference
https://sfb876.tu-dortmund.de/FACT/
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The telescope can be viewed as a camera with 1440 pixels arranged in hexagonal
form. Each pixel consists of a small light sensor that samples light pulses at a 2 GHz
frequency. The right side of Figure 10.1 shows the resulting images taken by the
telescope. Green indicates the telescope’s surface, whereas blue indicates the amount
of light hitting the sensors (the shower). Red indicates padding pixels that are used
to form quadratic images from the telescope (discussed in more detail later). The
camera continuously samples all the pixels into a ring buffer and a hardware trig-
ger initiates a write-out to disk storage if some pixels exceed a specified threshold
indicating that a shower is hitting the telescope. Upon trigger activation, a series of
camera samples which amount to a time period of 150 nanoseconds called the region
of interest (ROI), are written to disk. This time series of sensor voltages represents
an event and corresponds to the light cone induced by the airshower. The FACT tele-
scope records roughly 60 events per second, where each event amounts to up to 3 MB
of raw data, resulting in a rate of about 180 MB/s.

γ

Atmosphere
Air Shower

Cherenkov Light

Telescope

Camera Samples (2000 MHz)

FIGURE 10.1: An air shower produced by a particle beam hitting the
atmosphere (left) and the corresponding measurements (right side).

The figure was taken and modified from [BBB+15].

A central problem in radio astronomy is the distinction between gamma rays
which indicate a celestial object and background noise which is mostly produced
by cosmic rays from hadrons that do not allow for conclusion on a particular source
– the gamma-hadron separation problem. Data analysis has been established as an
effective tool for analyzing modern high-energy particle experiments and solving the
gamma-hadron separation problem [BBB+15]. The processing pipeline that is used
to analyze the data performs multiple steps as depicted in Figure 10.2. First, the
data are calibrated in order to account for environmental changes such as, e.g., the
day-night cycle. Second, the resulting raw data are cleaned, i.e., values from bro-
ken sensors are corrected and artifacts are removed. Third, the pipeline extracts
high-level features based on hand-crafted rules from domain experts. Finally, the
ML model for the gamma-hadron separation is applied. For a detailed explanation
of the over 80 individual steps involving this pipeline and its very fast execution on
commodity hardware, we refer interested readers to [BBB+15].

10.2.2 Optimal Implementations of Random Forests

As depicted in Figure 10.2 the last processing step involves the execution of the
learned machine learning model to classify the air showers into gamma or hadron
particles. The standard classifier used to perform this separation is a random forest
[BBB+15] and hence it is ideally suited for the implementations discussed previously.
We start by giving a theoretical recommendation for FACT based on the theoretical
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FIGURE 10.2: Data processing steps from raw data acquisition to
signal separation. The workflow of using a simple trigger with data
calibration / cleaning as well as feature extraction. The figure was

taken and modified from [BBB+15].

von Neumann architecture and the theoretical FPGA developed in Section 8. Then,
we conclude this analysis with an experimental evaluation of the best implemen-
tations for the fact data. Note that the fact data has already been used in multiple
experiments in part 3 of this thesis. Here we extend these experiments to also include
FPGAs. Since FPGAs do not have a memory hierarchy and to facilitate a fair compari-
son we will not perform any tree optimizations, but use the different implementations
as-is on both ARM CPUs and FPGAs1.

For filtering-out unwanted events, we train a random forest classifier withM = 50
decision trees on N = 60 000 training instances. To improve the quality of the trees,
we prepare the training data to contain 50% of background noise and 50% gamma-ray
events. Each tree contains an average of 1 349 nodes and roughly 675 different paths
from the root node to a leaf node. A 10-fold cross-validation shows, that the trained
ensemble offers a prediction accuracy close to 80% for gamma-hadron separation.

Which hardware and which implementation would be the best fit for this ensem-
ble? First, we will compare the implementations based on the theoretical analysis:
Judging by the number of clock cycles, the FPGA clearly seems to be at an advan-
tage, if we either implement if-else trees or one of the SIMD derivatives. Assuming a
sw = 32 bit float, we require n·rle+n·

⌈︁
sw
t

⌉︁
+d·sw = 1349·(1.25

⌈︁
2·32
6

⌉︁
)+1349·32+1440·

32 = 107 797 CLBs per tree for if-else trees. Therefore, we identify that if-else simply
will not fit into smaller FPGAs. In the case of SIMD derivatives, we see that DNF trees
will also not fit since they use more CLBs than if-else trees. The amount of resources
required by a SIMD implementation depends on v. Using v = 8, we see that a tree
needs 8·raddr+8·(1.25

⌈︁
2·32
6

⌉︁
)+8·1+1348·sizeof(node_t)+2·2·32+2·32+1440·32 =

8 · raddr + 1348 · sizeof(node_t) + 46 390 logic blocks. Since we have 1 348 nodes in
a tree, we need at least 11 bits to index each node. In order to index 1 440 features,
we also need 11 bits. Thus, we can assume, that sizeof(node_t) ≈ 67. Therefore, a
SIMD implementation on FPGAs needs at least 1 348 · 67 + 46 390 = 136 706 CLBs,
which is also unlikely to fit on smaller FPGAs.

We conclude, that for the particular problem at hand, FPGAs cannot be employed.
In the case of a CPU, we find that if-else trees offer a fast and reliable clock delay. For
the presented trees, we see that we need 4 · 13 + 1 = 53 clock cycles on average,
leading to a total of 2 650 clocks required to compute the complete forest. At peak
performance, up to 300 measurements must be classified per second, and hence a
processor with at least 795 000Hz = 0.795 Mhz. Thus, a small, embedded system
with ≈ 1Mhz clock speed will do the job.

Last we compare three different implementations for FACT using a Xilinx Zed-
board (http://zedboard.org/). The Zedboard contains an ARM Cortex-A9 with 666

1The main reason here is of historical nature. The experiments presented here are part of [BM18],
whereas techniques for optimal memory layouting have been developed later in its successor [BCCM18].
While FastInference now supports all optimizations as well as different backends such as ARM or FPGAs
I decided against re-doing these experiments to preserve the original analysis.

http://zedboard.org/
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Mhz, 512 Mb DDR RAM, and 512 KB cache. Additionally, this board contains a Xil-
inx Artix-7 Z-7020 FPGA with 53 200 lookup tables, 106 400 flip-flops (FF) in total
combined with 4.9 MB block ram, and 220 DSP units. The Zedboard contains four
Advanced eXtensibel Interface (AXI) ports, each running at 142 Mhz with 32 bit word
sizes leading to an aggregated bandwidth of up to 3.8 GB/s. We used SDSoC in version
2016.2 to run and compile the experiments. Power consumption was estimated using
Vivado in version 2016.2. All experiments were performed in the standalone mode
of this board so that no operating system is involved during measurements. We acti-
vated the most aggressive optimization level O3. FPGA implementations are clocked
with 100 Mhz giving an actual bandwidth of up to 1.6 GB/s. Table 10.2 depicts the av-
erage classification throughput in measurements per millisecond for a random forest
and for a single decision tree. All tests were repeated 20 times.

TABLE 10.2: Throughput comparison for different implementations of
random forests and decision trees on the FACT data. Larger is better.
A dash “-” indicates that the corresponding model did not fit on the

device.

FPGA
[︂

elem
ms

]︂
ARM

[︂
elem
ms

]︂
If-Else (Tree) 1480± 2.7 · 10−9 29000± 0.0027
If-Else (Forest) - 780± 2.7 · 10−9

Native (Tree) 1170± 0.00034 14500± 0.00054
Native (Forest) - 460± 4.9 · 10−9

DNF (Tree) 1100± 4.7 · 10−10 1900± 4.9 · 10−9

DNF (Forest) - 30± 1.4 · 10−13

One can observe that the if-else trees offer the highest throughput for single trees,
as well as for random forests. Native tree implementations also do fairly well on
the CPU, whereas DNF trees offer the smallest throughput. Looking at the FPGA, we
first see that the random forest implementations did not fit onto the FPGA. Thus, the
corresponding entries in Table 10.2 are missing. The decision tree implementations
all fit on the FPGA with a throughput ranging from 1100 to 1480 elements per second,
where if-else trees are the fastest and DNF trees are the slowest implementation.

Table 10.3 depicts the resource usage of all implementations. For the FPGA we
depict the resource usage reported by the synthesis tool. For the CPU, we present the
binary size, which is loaded by the first-stage bootloader directly after the power-on
of the board. Please note, that since the board is used in standalone mode, the binary
contains all necessary libraries, e.g. functions for time measurements and output over
UART. One can see, that the native tree uses the least resources fitting up to 40 trees
of a random forest onto the FPGA. The DNF trees as well as if-else trees also fit nicely
on the FPGA but use more resources than native trees. With this implementation, one
could roughly fit 5 trees on the FPGA. Looking at the CPU, one can observe that the
binary sizes are around 1.3 MB to 2.4 MB. The DNF tree forest implementation is an
exception in this regard with 6.8 MB.

Last, table 10.4 displays the power consumption of all models. It is well estab-
lished that the complete zedboard uses around 4−6 W in total [MWH13, MK15]. This
also takes peripheral devices such as the audio controller or the VGA controller into
account, which are not required during deployment for FACT. Therefore, we want to
focus on the energy consumption of the ARM processor as well as the FPGA. Direct
measuring of these quantities is difficult because these parts are integrated into the
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TABLE 10.3: Resource comparison for different implementations of
random forests and decision trees on the FACT data. Smaller is better.
A dash “-” indicates that the corresponding model did not fit on the

device.

FPGA
ARM [MB]

LUT FF BRAM DSP

If-Else (Tree) 10244 1317 0 0 1.3
If-Else (Forest) - - - - 2.4
Native (Tree) 31 64 5 0 1.3
Native (Forest) - - - - 1.8
DNF (Tree) 9609 3183 0 0 1.4
DNF (Forest) - - - - 6.8

board so we will rely on the estimations of the power consumption given by the syn-
thesis tool. We report all estimates for the maximum power consumption during full
load. The complete chip uses in total less than 2 W in all configurations, from which
the ARM processor uses 1.53 W. The FPGA implementations greatly vary in power
consumption ranging from 0.008W to 0.068W, but are all two to three magnitudes
lower than what the ARM processor uses. Using the throughput measurements from
table 10.2, we compute the amount of energy needed to process one measurement.
One can observe, that on the ARM the if-else implementation offers the smallest
power consumption because of the large throughput of this implementation. On the
FPGA, however, the native implementation dominates, as this also uses the least re-
sources. All in all, we see that the FPGA – despite smaller throughput – wins in terms
of energy per element for all implementations.

TABLE 10.4: Power consumption for different random forests and de-
cision implementations on the FACT data. Smaller is better. A dash “-”

indicates that the corresponding model did not fit on the device.

Power [W] Power per Element
[︁ nJ

elem

]︁
FPGA ARM FPGA ARM

If-Else (Tree) 0.068 1.53 45.95 52.76
If-Else (Forest) - 1.53 - 1961.54
Native (Tree) 0.008 1.53 6.84 105.51
Native (Forest) - 1.53 - 3326.08
DNF (Tree) 0.023 1.53 20.9 805.26
DNF (Forest) - 1.53 - 51000

10.2.3 On-Site Gamma-Hadron Separation with BNNs

The FACT pipeline heavily relies on hand-crafted features. It uses a basic trigger, i.e.,
it begins the recording of an event when sufficient energy hits the detector. Then
the data is communicated to a larger processing system (server or desktop) which
executes the remaining processing pipeline. Unfortunately, this approach does not
scale well with higher data rates and larger telescopes. For example, the Cherenkov
Telescope Ring (CTR) aims to connect multiple telescopes around the globe thereby
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increasing the data-rate orders of magnitudes [RER+19]. Moreover, we note that
even a Mac mini (as used in [BBB+15]) requires up to 85W as well as space and
cooling.

Raw Data
Calibration

Cleaning Feature
Extraction

Signal
Separation

Replace
with

ML model

FIGURE 10.3: Data processing steps from raw data acquisition to
signal separation. The workflow of using a simple trigger with data
calibration / cleaning as well as feature extraction that is now to be
replaced by a model learned from the raw observations. The figure

was taken and modified from [BBB+15].

A natural question is if we can bring this data analysis closer to the telescope and
mitigate the costly feature engineering at the same time as depicted in Figure 10.3.
To do so, we will use binarized CNNs that directly operate on the raw data of the
telescope’s camera and output the corresponding class (gamma or hadron) of the
observed shower. We specifically investigate if this model can be executed on com-
modity hardware available at the telescope to handle its data stream in real time
and also study the use of FPGAs for inference. We assume the following minimal
pre-processing:

• Sensor calibration: The detectors’ sensors behave differently in different en-
vironmental situations, e.g., the temperature has an effect on the sensor which
should be corrected. This calibration involves the correcting of sensor values
by multiplicative constants and additive biases and can therefore easily be per-
formed either by an FPGA or a digital signal processor.

• Extracting photon counts: The FACT telescope produces 1440 time series each
with a length of 150 nanoseconds. We remove noise from the time series and fo-
cus on a time window of 50 ns which contains most of the relevant Cherenkov
photons. Calibration measurements for the sensors depict a typical voltage
curve when a single photon hits the sensor. This baseline measurement is sub-
tracted as often as possible from the actual measurement until there is no signal
left [MAA+17]. The number of subtractions can be considered the number of
photons that arrived during the time series. The resulting image then shows the
photon counts for each sensor in each pixel.

• Image mapping: The FACT sensors are arranged in a hexagonal form. In
hexagonal grids, each pixel has up to six neighbors instead of four as in reg-
ular Euclidean grids. Recall, that CNNs apply rectangular convolution filters
to extract and generate higher-level features. Although the neighborhood of
pixels in rectangular and in hexagonal grids are slightly different, in a series
of pre-experiments as well as student theses, no performance difference could
be found between using rectangular and hexagonal filters for FACT [Rö17,
May18]. We, therefore, choose to transform the data into 45 × 45 images in
which the hexagonal grid is slightly rotated into the middle of the image. This
allows us to use regular CNNs architectures and filters together with common
frameworks. Figure 10.1 (right side) depicts the sensor mapping. Here, the
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red color denotes unused pixels which are always ‘0’, whereas green (and blue)
pixels are mapped to the corresponding sensors.

Experiments are designed to answer three key questions: First, can (binarized)
CNNs replace hand-crafted features with reasonable accuracy on simulated data?
Second, will these models generalize well enough to be used for real data? Third,
can we execute these models on-site and in real-time using commodity hardware
and/or FPGAs? We now tackle each question individually. For the first two questions,
we want to emphasize, that random forests are still state-of-the-art for the FACT data
due to their resilience against overfitting and thereby overcoming the gap between
simulation (see below) and real-world data.

Models

For our study, we investigate one small and one large VGG-style neural network ar-
chitecture [SZ15] each in a regular floating-point version and as a binarized version.
These networks are composed of blocks, where each block consists of two 3×3 convo-
lutional layers each followed by a batch normalization layer and a ReLU activation as
well as a single max-pooling layer of stride 2 (see also Figure 2.9). The small network
is composed of two of these blocks, while the large network is composed of four. The
number of channels in the convolution layers starts with 128 in the first block and
then increases by 128 with every following block. Finally, we compute a linear layer
of size 128 or 512, respectively. We apply batch normalization before we compute
the class probabilities using a final softmax layer. We have also experimented with
residual neural networks, as suggested by Zhang et al. for training BNNs [ZST+19],
but found that they did not outperform our purely convolutional models.

The networks are trained using the AMSGrad optimizer [RKK18] with a batch
size of 128 examples minimizing the cross entropy loss. We train our models for 100
epochs and use an initial learning rate of 0.001 which we reduce by a factor of 0.1
every 25 epochs. The neural networks learn from raw photon counts (denoted by
PhC).

Since the state of the art is the random forest (RF) learner, it is applied for com-
parison. It learns from the hand-crafted high-level features (denoted by DL2) as well
as from PhC data. Our RFs consist of 128 decision tree estimators of unlimited depth.
Its decision trees are built using bootstrap samples of the training data and each of
its splits is selected by maximizing the Gini score on a random subset of features of
size
√
d, where d = 22 (DL2) or d = 452 (PhC). For deep learning, we use PyTorch

[PGM+19] and for fitting RF we use scikit-learn [PVG+11].

Experiments on simulation data

When applying machine learning in astrophysics, it is difficult to obtain labeled data
since particles from outer space can come from any source. A common approach to
solve this problem is to combine Monte Carlo simulations with careful training of the
classifier.

Astrophysics has a profound understanding of particle interactions in the atmo-
sphere: Given the energy and direction of some parent particle (gamma, proton,
etc.), its interaction can be described by a probabilistic model which gives a probabil-
ity for particle collisions, possibly resulting in secondary particles, which again may



188 Chapter 10. Case Studies with Discrete Classifiers

interact with each other. This results in a cascade of levels of interactions that form
the air shower, which can be simulated by particle simulation software like CORSIKA
[HKC+98]. The output is a simulated air shower, which needs to be run through a
simulation of the telescope and camera device to produce realistic raw data mimick-
ing a shower that would have been recorded using the telescope. We can simulate
interesting particles (e.g. gamma) and uninteresting particles (e.g. proton) and label
the resulting raw data accordingly.

Using CORSIKA we simulate 200 000 training data and 100 000 test data, each set
with a perfectly balanced class frequency of hadron and gamma events. The simu-
lation comes in two variants, with or without quality cuts. Physicists have identified
regions, where the simulation is inaccurate and does not resemble real events suffi-
ciently well. The so-called quality cuts eliminate such unrealistic simulated events.

We train our models on both variants of the simulation data and summarize the
findings in Table 10.5. Neural networks beat the RF baseline trained on high-level
features by a large margin. Possibly due to the neatness of the simulation data, a RF
trained on photon counts also beats the baseline. As the results show, the dataset
with quality cuts poses an easier classification problem where higher accuracies are
achieved. Float models show overfitting after 100 epochs. Hence, we also tried train-
ing with early stopping after 10 epochs, which results in a small positive effect for
floating points trained with quality cuts. BNNs, however, need more training epochs
to achieve good test accuracy. Overall, our BNNs perform slightly worse than their
floating-point counterparts. However, for the large models, this difference is small.
In the next section, we investigate if our findings carry over from simulation data to
data recorded by a real telescope.

TABLE 10.5: Accuracy on simulation data. We distinguish models
trained on simulations with and without quality cuts (QC). For the
neural networks, we also report accuracies for models trained with

early stopping after 10 epochs.

Model Data Accuracy, no QC Accuracy, QC
epochs:100 epochs:10 epochs:100 epochs:10

RF DL2 0.70959 0.78483
RF PhC 0.74711 0.78839

CNN(small) PhC 0.90825 0.88867 0.93441 0.93846
BNN(small) PhC 0.90861 0.88644 0.90440 0.88866

CNN(large) PhC 0.91094 0.90251 0.93735 0.94228
BNN(large) PhC 0.90011 0.89925 0.93112 0.91369

Experiments on real-world Crab Nebula observations

Now we evaluate our trained models on real-world data collected by the FACT tele-
scope at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands,
Spain). The telescope has been directed once towards a known gamma source, the
Crab Nebula which emits large amounts of gamma rays. On these recorded data, we
run the full source detection pipeline of the FACT experiment and investigate the in-
fluence of the gamma-hadron separation models on the overall quality of the source
detection.
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The evaluation proceeds in the following steps: We take the publicly available
(https://fact-project.org/data/) Crab Nebula observation data [ABB+13, B+14],
which consists of 17.7 hours or 3 972 043 recorded events. Our gamma-hadron clas-
sification models are applied to classify which events are gamma rays. Then, an
established model estimates the direction of the incoming gamma rays [Nö17]. From
the direction, we compute the angle between the trajectory of any incoming ray and
the known direction of the Crab Nebula. The number of gamma rays can be regarded
as a distribution that depends on the angle. High counts are to be expected for small
angles. The distribution with respect to the direction of the Crab Nebula is called an
on-distribution [FSL+94]. Contrasting the distribution of counts with distributions for
five different positions with no known gamma sources yields the off-distributions. A
uniform distribution of counts over angles is expected, where the majority of counted
rays can be attributed to misclassified hadronic rays. We state the null hypothesis
that on-distribution and off-distribution follow the same distribution, or, intuitively,
that there is no gamma source at the direction of the Crab Nebula. The margin by
which a significance test rejects this null hypothesis gives us a significance of detec-
tion Sli&ma, reported by the number of standard deviations σ [LM83]. This Sli&ma

is the performance metric for gamma-hadron classifiers, where larger numbers are
better.

The trained classifiers output probabilities that an event is a gamma ray, and we
can control the classification behavior by varying the threshold for actually predicting
gamma. A large threshold yields fewer events and also fewer misclassified events
because the classifier is more certain. If we set the threshold too large, we get too few
total events which results in a small statistical significance. In contrast, if we decrease
the threshold, we obtain more events, but also more misclassifications. If we set the
value too small, we count too many noise events, and the difference between on- and
off-distribution shrinks, which also yields a low significance of detection.

To ensure that the output probabilities of the models are meaningful estimates of
the classifiers’ confidence, we apply isotonic probability calibration [ZE01] using the
simulated test examples as calibration data. If not explicitly mentioned otherwise,
the RFs use a threshold of 0.85, CNNs use a threshold of 0.6, and BNNs a threshold of
0.75.

TABLE 10.6: Significance of detection.

Model Data Sli&ma, no QC Sli&ma, QC
epoch: 100 epoch: best loss epoch: 100 epochs:best loss

RF DL2 22.86σ 23.82σ
RF PhC 2.09σ 3.35σ

CNN(small) PhC 24.09σ 25.83σ 24.12σ 24.89σ
BNN(small) PhC 19.55σ 25.87σ 22.96σ 21.67σ

CNN(large) PhC 23.68σ 24.64σ 24.20σ 23.17σ
BNN(large) PhC 22.70σ 22.92σ 22.35σ 22.26σ

In table 10.6 we summarize the results for all models. Using the established
RF classifier on high-level features, we obtain a significance of detection of 23.8σ.
Small and large float CNNs outperform the baseline with a significance of 24.12σ
and 24.20σ, respectively. BNNs achieve a slightly smaller significance of 22.96σ and
22.35σ. We hypothesize that this is again due to overfitting. To investigate this, during
the training of our models, we compute the validation loss on the simulated test data

https://fact-project.org/data/
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after each epoch and use the best epoch for classification. When we inspect the Sli&ma

scores for the epoch with the best loss, we see that these more carefully selected
models indeed perform better: Both the small BNN and CNN now achieve significance
over 25.8σ. For large models, however, we do not see the same benefits, further
analysis is needed to better understand the connection between loss on simulation
data and detection significance on real data. Last, we see that the random forests
trained on photon counts are not useful at all for real-world data.
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FIGURE 10.4: Histogram of the frequencies as a function of the
squared angular distance between the trajectory of any incoming ray
and a position in the sky. On-events show the frequency with respect
to the position of the Crab Nebula, while Off-events are w.r.t. posi-
tions with no known sources. The significance of the detection test
only considers angles smaller than 0.025 (left of the dashed vertical

line).

Visual inspection of the on- and off-distribution in Figure 10.4 reveals the differ-
ent classification behavior of the random forest baseline and our float CNN: We see
that the random forest has a uniform off-distribution, while the CNN has a decaying
distribution with smaller counts for larger angles. This suggests that our classifier is
biased to predict gamma at the camera positions used for the off-distributions. In-
deed, the gamma rays in the simulation data are not generated uniformly, which can
explain this bias.

Proof-of-concept with FPGAs

We want to measure the impact of using BNNs compared to floating-point nets run-
ning on different hardware close to the telescope. Since FACT produces data at a rate
of roughly 60 events per second, on average, we cannot spend more than 16ms to
classify a single event.

As explained above, we use FastInference to generate c-code for each model and
compile this for the target architecture, either by High-Level Synthesis or by a regular
compiler for CPUs. For CPUs, we enabled the most aggressive optimizations -Ofast
-march=native -mtune=native using gcc version 8.3. We compare our results with
the deep learning inference engine ONNX Runtime, which is optimized toward real-
time model inference. Experiments are run on commodity hardware, namely an Intel
i7-6700 CPU with 16 GB RAM. For consistent runtime measurements, we randomly
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sampled 1000 events and measure the total runtime to process these events, then
compute the average runtime per event in this batch. This process is repeated 20
times, and we report the average runtime and standard deviation per single event
across all batches.

For the FPGA, we use a Xilinx Virtex UltraScale VCU110 Evaluation Board with
805 680 lookup-tables (LUTs) and 132.9 MB Block-Ram (BRAM). The synthesis was
performed with Xilinx Vivado HLS 2018.3. We used the generated c-code as a basis
and performed a minimal design space exploration by either pipe-lining or unrolling
loops in the design to maximize the performance without exceeding the available
LUTs and BRAM. The design for the small BNN is clocked at 25 MHz2 whereas the
design for the large BNN is clocked at 100 Mhz.

Note, that we allocate independent input/output buffers for each layer. For classi-
fying a single event this is wasteful, because we only use one buffer pair at the same
time, while all other pairs are not used. However, we expect our design to run con-
tinuously so that a stream of events is available. This enables efficient pipe-lining of
the entire design: For each event, we process one layer so that the classification of
the first event is delayed by the number of layers L in the entire network. Processing
a single layer is much quicker than processing all layers, which means that, despite
the initial delay, we can classify events at a faster overall rate.

Table 10.7 shows the latency of the different neural network configurations using
different inference engines. We see that ONNX Runtime offers the fastest classifica-
tion rate for small and large float networks, whereas our code generator outperforms
Onnx Runtime in the case of BNNs. It was not possible to synthesize a working FPGA
design for float networks, because they utilize too much BRAM. The FPGA offers the
fastest (small BNN, pipelined) and slowest execution time (large binary, pipeline) for
BNNs depending on the specific configuration. In summary, for floating-point net-
works, Onnx Runtime is the fastest method, whereas for smaller BNNs the FPGA is
the fastest and for larger BNNs, our generated code seems to be the best method. The
reasons for this are three-fold: Onnx Runtime is highly optimized for floating-point
operations utilizing vectorization instructions to their fullest. In contrast, the code
generator relies on the compiler to vectorize loops. Looking at BNNs, the situation
reverses. Where our implementation exploits the specific structure of BNNs to gain
performance, Onnx Runtime does not support this. Finally, small models have the
lowest latency on FPGAs, because large parts of the network can be unrolled so that
they fit entirely on the FPGA. In contrast, larger models which do not fit well on the
FPGA suffer tremendously. If most loops cannot be unrolled, the result is a very slow
design. For the application at the Cherenkov telescope, large CNNs are not an option
with either inference system, since none of them meet the required 16 ms latency. It
is interesting to note that small float nets can be executed slightly quicker than BNNs
on commodity hardware. We attribute this fact to the floating-point vectorization in-
structions available on current Intel CPUs. If these are not available, BNNs are a very
attractive alternative, especially for large networks. All in all, the generated code sat-
isfies the most scenarios enabling small CNNs, small BNNs, and large BNNs making
it the best overall choice.

10.3 Discrete Classifiers and Approximate Memory

As a third example, we study the behavior of discrete classifiers on systems that use
approximate memory. Approximate memory is a relatively new research direction in

2We found that using fewer clocks improved latency because loops can be unrolled.
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TABLE 10.7: Latency of different neural net configurations using dif-
ferent inference engines. The best inference engine for float and bi-
nary is marked in bold. Smaller is better. A dash “-” indicates that a

model did not fit on the FPGA.

System Type Runtime [ms/event]

float binary

ONNX Runtime
large 21.083± 0.078 26.642± 0.100
small 0.957± 0.020 1.861± 0.037

Generated Code
large 78.583± 1.704 11.250± 0.077
small 2.757± 0.026 1.574± 0.014

FPGA
large - 561.588± 0.000
small - 4.221± 0.000

FPGA pipelined
large - 72.657± 0.000
small - 0.662± 0.000

the design of new memory architectures that reduces the memory supply voltage and
changes the latency parameters (e.g. for writing to the memory) with the goal of
lower power consumption and faster access. Hence, they are ideally suited for small
devices with limited power resources.

If these novel designs are pushed to the limit, high bit error rates (BERs) can oc-
cur. For modern memory technologies, such as volatile memories (SRAM [RWA+16,
YM17], DRAM [KOY+19]) and emerging non-volatile memories (e.g. STT-RAM [HPK+19,
SWH+17], RRAM [HBK+19]) the BER increases steeply when reducing the voltage
and tightening the timing.

To cope with the increase in BER two approaches are possible: First, a correction
mechanism can be adopted into the system’s design that detects and potentially cor-
rects bit errors once they occur. Second, the middleware and the user code running
on the system is designed with errors in mind, so that it still operates well with er-
rors. While both approaches are orthogonal and should be used in combination, for
the deployment of models to small devices the latter must be studied more carefully.
Here, the ML system must, by design, take the structure of the underlying hardware
into account and therefore the trained model must already be error tolerant.

Due to the excessive amount of resources required by neural networks and deep
learning, the design of error-tolerant NN architectures was in the focus early on, and
we will follow this route in this case study. The survey in [TG17] provides a compre-
hensive overview of the recent and further back work about fault and error-tolerant
NNs, from which we summarize some representative studies. For example, the study
in [EM97] proposes a penalty term that aims at distributing the computation to neu-
rons optimally to achieve error tolerance. Another study [CM99] distributes the ab-
solute values of weights evenly to neurons, while the work in [Sim01] aims at low
weight importance.

Binarized neural networks play an important role in this research direction as
they present a low-resource, error-tolerant alternative to regular NN architectures.
Recall that BNNs use one bit to store individual weights and activations and hence,
changing the status of one bit leads to a flip of a single weight or activation in the
network. While this is still a severe change in the network’s configuration it is much
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more manageable than changes in a regular NN. In regular floating-point NN, a sin-
gle bitflip can lead to changes in the sign, the mantissa, or the exponent of the float
leading to unbounded changes in the weight or activation.

Technical Note: The experiments in this section involve code from different projects
written by different people at different points in time. They require some man-
ual preparation of the data and computing environment. Hence, there is no com-
prehensive and publicly available code repository that exactly reproduces these re-
sults. Parts of the code used for these experiments can be found under https:
//github.com/sbuschjaeger/Pysembles/.

10.3.1 Margin-Maximization for Error Tolerant BNNs

In this study, we assume that bit error rates (BERs) are transient and symmetric, i.e.,
the probability for 0 to flip to 1 is the same as the probability for 1 to flip to 0. This
assumption characterizes the probability of bit flips every time when a bit is read
from the approximate memory. This matches the assumptions in recent studies about
approximate memories (SRAM [SLC+17, YBM+18, HLS20], DRAM [KOY+19]), and
non-volatile memories (RRAM [HBK+19], MRAM or STT-RAM [HPK+19]).

Currently, the only known method to enhance the bit error tolerance of BNNs is
training with bit flip injections according to the error model. Training with bit flip
injections trains the BNN via SGD as usual but introduces random bit flips during
the forward pass while the backward pass is untouched. While training with bit flip
injection is straightforward, it has disadvantages. First, recent studies have reported
that injecting bit flips during training can significantly degrade accuracy. The higher
the BER during training, the more significant the accuracy degradation [HBK+19,
KOY+19, BCC+21b]. Another disadvantage is the additional overhead [MVS+19].
During the training with bit flip injection, for every bit of the error-prone data, a
decision has to be made whether to inject a bit flip, which adds numerous additional
steps in the BNN training.

We propose a novel approach to overcome this problem that considers the classi-
fication margin. Let c = argmaxi=1,...,C ŷi be the largest output of the BNN and let
c′ = argmaxj=1,...,C,i ̸=j ŷj be the second-largest output of the BNN. Further, let

m = ŷc − ŷc′ > 0 (10.1)

be the margin of the BNN, then the output layer of the BNN tolerates

max(0,
⌊︂m
2

⌋︂
− 1) (10.2)

bit flips [BCC+21a]. Clearly, for a high error tolerance, the margin must be maxi-
mized. However, optimizing with respect to m without considering the other entries
ŷc of ŷ may not exhaust the full potential of the margin between ŷc′ and the output
of the other classes ŷc. The larger the margin between ŷc′ and ŷc of other classes c,
i.e. mc = ŷc′ − ŷc, the more bit errors can be tolerated in the neuron that calculates
ŷc without a change of the prediction. To put it concisely, for a bit error tolerant
output layer, ŷc′ needs to be as large as possible, while the other ŷc need to be as
small as possible. To achieve this, we build upon the hinge loss for maximum margin
classification. The hinge loss (c.f. [RVC+04]) for multi-class classification is defined
as

ℓMHL(ŷ, y) = max{0, (b− y · ŷ)}. (10.3)

https://github.com/sbuschjaeger/Pysembles/
https://github.com/sbuschjaeger/Pysembles/


194 Chapter 10. Case Studies with Discrete Classifiers

where we introduced a parameter b ∈ R that serves as a slack for a high penalty for
wrong predictions and a small penalty for correct predictions.

10.3.2 Experiments

In our experimental analysis, we compare the error tolerance of BNNs trained via
bit-flip injection with the max-margin training. Last, we also study the error toler-
ance when both approaches are combined. We evaluate three types of BNNs: Fully
connected BNNs (MLP) and small convolutional BNNs (CNNs) for the FashionMNIST
dataset [XRV17], and a larger CNNs for the CIFAR10 dataset [Kri09]. The specific
BNN architectures are presented in Table 10.8. The BNNs use convolutional (C) lay-
ers with size 3 × 3, fully connected (FC) layers, maxpool (MP) with size 2 × 2, and
batch normalization (BN) layers followed by activation.

Parameter Range

Fashion FCNN In → FC 2048 → FC 2048 → FC 10
Fashion CNN In → C64 → MP2 → BN → C64 → MP2 → BN

→ FC2048 → BN → FC10

CIFAR10 CNN In → C128 → BN → C128 → MP2 → BN
→ C256 → BN → C256 → MP2 → BN
→ C512 → BN → C512 → MP2 → BN
→ FC1024 → BN → FC10

TABLE 10.8: BNN architectures used for the bit-error tolerance exper-
iments.

For training, we run the Adam optimizer for 200 epochs for FashionMNIST and
500 epochs for CIFAR10, with either cross-entropy loss (CEL) or modified hinge loss
(MHL). We use a batch size of 256 and an initial learning rate of 10−3. To stabilize
training we exponentially decrease the learning rate every 25 epochs by 50 percent.
To cover a wide spectrum of bit errors, for testing we use bit error rates (BERs)
from 0% (no bit errors) up to 35%, with increments of either 1% for Fashion and
0.5% for CIFAR10. For training with bit flips we use different BERs, from 1% up to
30% BER, such that accuracy degradation is below 10% from the original accuracy.
Depending on the approximate memory and its properties, accepting BERs of this
extent can improve the approximate memory, such as in energy consumption, timing
parameters, production cost, etc.

For each data set, five BNNs were trained using MHL without any bit-flip injections
and CEL with different BERs for bit-flip injections. Moreover, for all BNNs trained
with MHL, we employed a parameter search for b, testing powers of two, up to two
times the maximum value the neurons in the output layer can compute (maximum
output value of a neuron in the output layer is the number of neurons in the layer
before the output layer). Among these configurations of b, the best one was chosen.

Figure 10.5 presents the results of this experiment. We observe that BNNs trained
with MHL without bit flip injections have better accuracy over BER than the BNNs
trained with CEL under bit flip injections. The BNNs trained with CEL suffer from a
significant accuracy drop for lower BERs, when the BER during training is high, e.g.,
CEL 20% and/or CEL 30% at low BER. The BNNs trained with MHL, however, do not
suffer from this accuracy drop. Although the CNNs trained with CEL 20% and bit-flip
injections have better accuracy for FashionMNIST when the error rate is higher than
10%, the overall accuracy drops by a significant amount, which may be unacceptable.
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FIGURE 10.5: Test accuracy over bit error rate for BNNs trained with
CEL under a given bit flip injection rate (specified in the legend, 0%,
5%, 10%, etc.) and BNNs trained with MHL without bit flip injections

for a specified b in Eq. (10.3).

Training with the max-margin loss seems favorable compared to bit-flip injections.
However, to further improve the bit error tolerance, we can also combine bit-flip injec-
tion with the max-margin loss. To do so we repeat the same experimental protocol as
described above and detect reasonable ranges for b through a set of pre-experiments,
but now minimize the MHL loss while applying bit-flip injections during training.
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FIGURE 10.6: Test accuracy over bit error rate for BNNs trained with
MHL and bit flip injections (denoted as flip 0%, 1%, etc). The number
after the b is the value to which the parameter b in the MHL is set

during training (see Eq. (10.3))

Figure 10.6 presents the experimental results of different BNNs with respect to
the accuracy over BER. In all experiments, we observe that the accuracy over the BER
of the BNNs trained under MHL and bit-flip injections is significantly higher than that
of the baseline trained by only MHL. For example, for FashionMNIST in Figure 10.6a
and 10.6b, the BER at which the accuracy degrades significantly is extended from
5% (baseline, green curve) to 20% and 15% respectively, with a small trade-off in
the accuracy at 0% BER. If more accuracy at low error bit rates is traded, the BER at
which accuracy degrades steeply can be shifted even further. For CIFAR10 in Figure
10.6c, this breaking point can also be increased. However, more accuracy has to be
traded compared to the previous cases.





197

11 | Conclusion and Future Work

Effective machine learning requires high-quality data as well as time and energy
to explore data pre-processing, classifier training, and the evaluation of the entire
ML pipeline. This leads to a tight feedback loop in which practitioners re-design
the ML pipeline and evaluate it in rapid succession to find the best combination of
pre-processing, classifier as well as training configuration. While practitioners often
spend the majority of their time in this design stage, the overall energy consump-
tion is often dominated by the continuous application of the ML system once it is
deployed.

Discrete classifiers are models that can be applied without the need for costly
floating-point operations and hence are ideally suited for energy-efficient deploy-
ment of ML systems even on the tiniest of devices. However, the performance of
these classifiers is often weaker than models that utilize floating-point operations. To
strengthen the predictive performance, an ensemble of discrete classifiers can be used
that combines multiple discrete classifiers into a single model. While the deployment
of multiple models to reduce resource consumption seems counterintuitive at first,
it offers more flexibility in the design of the ML system while mitigating the costly
floating-point operations.

In this thesis, we studied discrete classifier ensembles from a theoretical, algo-
rithmic, and practical point of view. In the theoretical study of ensembles, we found
that the bias-(co-)variance decomposition plays a major role in the design of new
ensembles. While originally presented for the mean squared error, we presented a
generalization based on a second-order Taylor approximation that recovers the orig-
inal decomposition while generalizing it to other loss functions. So far, it has been
difficult in literature to decompose classification losses such as the zero-one loss into
bias and variance while recovering the original decomposition for the MSE. The key
insight of our generalized bias-variance decomposition is that – depending on the loss
function – the remainder of this decomposition is non-zero, and many classification
losses simply do not have a non-zero remainder. Second, we studied the double-
descent phenomenon that occurs when very large models are trained on comparably
few data points: First, the model starts to overfit in an u-shaped curve, but then, once
a certain model complexity is reached, it starts to improve its performance again.
For the first time, we studied this phenomenon in the context of random forests and
found that it would not occur in these models. Moreover, we found evidence that
there is a bathtub-like relationship between the bias and the diversity of the forest in
which the exact bias-diversity trade-off does not matter, but a large range of hyper-
parameters offer similar performance. The key insight here is that the PAC-learning
theory and the Rademacher complexity do not seem to predict the performance of
RFs well, but the algorithm training the RF seems to play a more important role than
it is given credit for by this framework.

On an algorithmic level, we presented the novel Generalized Negative Correlation
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Learning (GNCL) algorithm that is derived from our novel Generalized Bias-Variance
decomposition and showed how many existing works in the literature can be ex-
pressed in the GNCL framework. We then continued to study the deployment of tree
ensembles to small devices more carefully. We discussed ensemble pruning and leaf-
refinement in detail and compared both approaches. The key insight here is that both
approaches should be unified into a single objective that refines and prunes the en-
semble at the same time. To do so, we introduced L1 regularization into the objective
and minimized it via proximal gradient descent resulting in a statistically significant
better performance of the ensemble. Taking this idea one step further, we expanded
it to the training of tree ensembles on the devices themselves. The resulting online
algorithm trains classifiers on small batches of incoming data and then performs an
online pruning step. The challenge for online learning is that the L1 regularization
acts like a soft constraint that does not guarantee a maximum number of classifiers at
all times, possibly challenging the memory of a small device. Hence, we introduced
a L0 regularization that guarantees a maximum number of classifiers that strictly
bounds the memory consumption of the model during training but also makes the
optimization much more challenging. Our novel Shrub Ensembles algorithm utilizes
proximal gradient descent to effectively minimize the overall ensemble error while
adhering to the L0 constraints. The key insight here is, that training an ensemble on
sliding windows outperforms other online learning algorithms under resource con-
straints while offering similar performance in the general case.

On an implementation level, we studied both, the best implementation for tree
ensembles and the surrounding software ecosystem for model deployment. We dis-
cussed the different types of tree implementations and showed, for the first time,
how these implementations can benefit from a better memory layout and more effec-
tive caching. The key insight for this work is that DTs have a probabilistic runtime
that can be estimated during training. During deployment, this estimated runtime
is then exploited to compute the optimal memory layout for caching through our
tree-framing algorithms. We continued to study these implementations more theo-
retically by defining a theoretical computer architecture and compared the different
implementations in terms of their expected number of clock cycles and resource con-
sumption. The key insight here is that a well-defined theoretical architecture can
guide the implementation selection early in the design process, e.g., when it is likely
that too many resources are consumed by a certain implementation.

In the last part of the thesis, we presented practical applications of discrete clas-
sifiers. We surveyed the existing landscape of model deployment frameworks and
found that most frameworks for deployment focus on deep learning and neglect clas-
sic methods. Moreover, while these frameworks offer excellent performance, they
treat models as computation graphs while ignoring their inherent structure and the
training process involved in computing them. Hence, it is impossible to apply op-
timizations such as ensemble pruning or tree framing in these frameworks. We
presented FastInferece as a model compiler that generates model- and architecture-
specific inference code for classic models as well as (binarized) feed-forward nets that
allow for optimizations of both the model and its implementation. The key insight
for FastInference is that the optimization and implementation of a model are con-
nected via the model itself and are mostly independent of the specific target system.
Hence, optimizations of the model result in a new model that can be chained together
into a list of optimizations whereas the implementation can perform implementation-
specific optimizations right before deployment. Finally, the realization of the code for
the specific target system can then be computed by instantiating the correct templates
from a template library. To the best of our knowledge, FastInference is the only tool
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that combines optimizations of models and implementations into a single framework.
The research in this thesis raises some important questions. Looking at the theo-

retical understanding of tree ensembles, neither PAC-learning theory nor the double-
descent phenomenon can really explain the overwhelming performance of random
forests in practice. Although a better estimation of the Rademacher complexity of
decision trees might redeem the usefulness of the PAC-learning theory in this con-
text, our experiments indicate that the complexity of models is not the correct tool to
understand the performance of tree ensembles, but the training algorithm seems to
play a more important role than previously thought. Taking this argument one step
further, we may hypothesize that the top-down greedy learning of DTs seems to play
a major role in this setting. And indeed, other researchers report that part of RF’s
success is due to the fact that DTs can learn noise from the data [WOBM17]. This, in
turn, is a property derived from the training algorithm of DTs, as argued in this thesis.
Tightly related here is the fact that tree ensembles that are not trained via greedy top-
down algorithms but, e.g., by SGD, often have mixed performance. Although more
careful experiments are required here, the personal experience during this thesis im-
plies that the main performance improvement when training DT ensembles with SGD
is that linear functions are used for splitting (i.e., oblique splits). Again, taking this
one step further, it is clear that neural networks empirically do not benefit as much
as decision trees from ensembling, although improvements are possible. The main
difference between the training of NNs and DTs is the training algorithm, and hence
the question becomes: Are tree ensembles more effective because trees are trained
greedily and – in turn – are ensembles of NNs less effective because deep nets are
trained via SGD-like algorithms?

Looking at the training of ensembles on small devices, we have seen that training
models on sliding windows of the data can offer better performance in resource-
constraint environments. For the training of DTs, we only require a minimal amount
of floating-point operations by design, but for BNNs, we still have to compute floating-
point gradients for SGD. Hence, we may ask if there is a training algorithm for BNNs
that does not require floating-point operations, e.g., by fitting a BNN ensemble in an
online environment using our Shrub Ensembles algorithm. The central question here
is if there exists a learning algorithm for BNNs that does not require gradients and
that is adaptive to the data, similar to top-down DT algorithms?

Looking at the deployment of ML models, we find that the verification and cer-
tification of the entire pipeline is an import issue. Model verification has already
attracted significant attention in recent years. This thesis additionally raised the issue
of implementing ML models and – by extension – the verification of these implemen-
tations as well. While there is a large body of literature in the context of software
verification, it has not yet been adapted to machine learning. More specifically, the
entire ML pipeline starting from the data-gathering process, over pre-processing to
serving predictions, must be verified both for the modeling part as well as its im-
plementation. At the same time, it is clear that machine learning has a profound
impact on the design of new computing architectures that already impact the current
landscape of hardware manufacturing. Similarly, novel hardware also impacts the
design and research in machine learning as discussed in this thesis. Putting this all
together, we may ask what is the best combination of hardware, software as well as
ML pipeline, and how do they influence each other?
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B | Additional Results for the Ex-
periments in Chapter 6

B.1 Accuracy under Memory Constraints

TABLE B.1: The accuracy score of each method on each dataset com-
puted over a five-fold cross-validation or the train/test split of the
dataset (if any) with a model size below 128 KB. A dash ’-’ indi-
cates that a method did not produce any model that fits the memory
constraint. Each entry is rounded to the second digit after to deci-
mal point. Each row represents one dataset and each column is one

method. Larger is better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 86.56 86.30 86.59 86.86 85.49 87.25 86.18 87.01 86.70 85.85
anuran 97.43 97.29 97.36 97.78 0.00 97.86 97.01 98.05 97.64 97.33
avila 92.29 89.82 91.68 91.77 0.00 78.76 83.39 88.80 91.88 87.75
bank 90.37 90.04 90.16 90.29 89.71 90.50 90.10 90.42 90.17 89.90
connect 75.51 75.49 76.15 75.81 69.50 78.11 73.84 78.72 75.38 73.67
eeg 87.15 86.68 86.48 87.05 77.45 88.22 85.61 88.50 87.52 85.57
elec 85.51 84.46 85.20 85.27 80.55 86.54 83.91 86.25 85.22 84.34
fashion 83.20 82.60 83.02 82.73 0.00 83.67 82.65 84.22 83.21 83.01
gas-drift 98.96 98.74 98.81 98.99 0.00 99.05 98.63 98.98 99.07 98.68
ida2016 99.13 99.12 99.13 99.17 98.91 99.08 99.12 99.16 99.18 99.11
japanese-vowels 91.11 90.11 91.16 89.41 0.00 91.46 90.46 92.65 91.16 90.40
magic 87.06 86.67 87.35 86.88 84.67 87.00 86.77 86.57 86.88 86.46
mnist 90.24 89.64 90.52 89.12 83.57 92.54 89.17 92.31 90.30 88.74
mozilla 94.85 94.66 94.79 94.85 0.00 94.96 94.85 94.60 94.76 94.60
postures 85.75 85.70 85.38 85.56 0.00 77.34 83.91 86.63 85.88 84.68
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TABLE B.2: The accuracy score of each method on each dataset com-
puted over a five-fold cross-validation or the train/test split of the
dataset (if any) with a model size below 256 KB. A dash ’-’ indi-
cates that a method did not produce any model that fits the memory
constraint. Each entry is rounded to the second digit after to deci-
mal point. Each row represents one dataset and each column is one

method. Larger is better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 86.75 86.35 86.76 86.86 85.82 87.25 86.36 87.01 86.84 86.31
anuran 98.05 97.71 98.05 98.12 0.00 98.30 97.92 98.37 98.33 97.93
avila 95.50 94.60 95.77 95.77 0.00 89.20 87.27 95.24 95.22 89.66
bank 90.37 90.04 90.18 90.29 89.93 90.50 90.23 90.42 90.17 90.12
connect 76.69 76.57 77.09 76.77 72.67 80.27 74.78 80.06 76.53 74.74
eeg 88.85 88.15 89.09 89.32 80.41 90.28 88.18 90.03 89.19 88.28
elec 86.11 85.71 86.22 86.29 81.86 87.81 84.97 87.44 86.28 85.14
fashion 83.77 83.84 83.86 83.82 77.46 84.85 83.91 85.02 84.01 83.54
gas-drift 99.28 99.21 99.25 99.25 91.66 99.15 99.35 99.31 99.35 99.20
ida2016 99.20 99.22 99.16 99.18 99.01 99.29 99.18 99.19 99.28 99.19
japanese-vowels 92.72 92.17 92.37 92.22 0.00 94.28 92.52 94.94 93.07 92.41
magic 87.06 86.83 87.35 86.88 85.80 87.27 86.88 86.57 86.88 86.79
mnist 92.42 91.41 92.26 91.66 83.57 93.80 90.99 94.20 92.06 91.10
mozilla 95.08 94.85 95.11 95.08 94.18 95.21 94.92 94.60 95.21 94.78
postures 89.81 88.83 89.26 89.33 65.21 84.06 87.65 90.49 89.46 88.35

TABLE B.3: The accuracy score of each method on each dataset com-
puted over a five-fold cross-validation or the train/test split of the
dataset (if any) with a model size below 512 KB. A dash ’-’ indi-
cates that a method did not produce any model that fits the memory
constraint. Each entry is rounded to the second digit after to deci-
mal point. Each row represents one dataset and each column is one

method. Larger is better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 86.95 86.35 86.76 86.86 86.21 87.25 86.55 87.01 86.84 86.31
anuran 98.33 98.26 98.12 98.33 94.37 98.64 98.54 98.75 98.54 98.29
avila 98.20 94.62 98.06 98.33 66.70 98.57 89.33 97.53 98.06 95.59
bank 90.37 90.04 90.19 90.29 90.06 90.50 90.25 90.42 90.21 90.15
connect 77.35 77.31 77.57 77.58 73.62 82.03 75.58 81.67 77.19 75.61
eeg 90.79 89.52 90.49 90.25 83.26 92.70 89.59 91.01 89.79 89.67
elec 86.78 86.59 87.46 87.08 82.76 89.01 85.75 88.45 86.99 86.32
fashion 85.10 84.57 84.90 84.54 79.60 85.91 84.61 86.28 84.94 84.65
gas-drift 99.53 99.35 99.32 99.32 96.23 99.48 99.35 99.42 99.46 99.38
ida2016 99.28 99.22 99.24 99.21 99.03 99.30 99.19 99.25 99.28 99.22
japanese-vowels 94.93 93.67 94.28 94.43 82.78 96.27 93.67 95.82 94.63 93.54
magic 87.19 86.83 87.35 87.35 85.83 87.27 87.12 86.57 87.04 86.93
mnist 93.53 92.75 93.44 93.10 87.54 95.58 93.07 95.79 93.21 92.68
mozilla 95.27 95.18 95.21 95.53 94.27 95.21 94.92 95.08 95.34 95.13
postures 92.67 92.39 92.26 92.55 72.20 92.74 90.95 93.50 92.29 91.89
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TABLE B.4: The accuracy score of each method on each dataset com-
puted over a five-fold cross-validation or the train/test split of the
dataset (if any) with a model size below 1024 KB. A dash ’-’ indi-
cates that a method did not produce any model that fits the memory
constraint. Each entry is rounded to the second digit after to deci-
mal point. Each row represents one dataset and each column is one

method. Larger is better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 86.95 86.49 86.92 86.86 86.49 87.25 86.55 87.01 86.84 86.46
anuran 98.61 98.47 98.47 98.75 96.39 98.74 98.54 98.99 98.54 98.46
avila 99.09 98.03 98.90 98.90 75.37 99.84 92.03 99.17 98.75 97.23
bank 90.37 90.28 90.36 90.46 90.33 90.50 90.38 90.42 90.38 90.15
connect 78.00 77.34 78.37 78.21 74.41 82.98 76.64 82.88 77.90 76.59
eeg 91.69 90.85 91.42 91.32 86.26 93.73 91.15 91.38 91.66 91.00
elec 88.03 87.30 88.78 88.60 84.22 90.08 86.98 89.03 87.77 87.53
fashion 85.50 85.36 85.39 85.39 80.41 86.74 85.21 87.16 85.52 85.53
gas-drift 99.53 99.42 99.50 99.46 96.36 99.59 99.46 99.55 99.46 99.43
ida2016 99.28 99.22 99.26 99.21 99.11 99.30 99.25 99.31 99.28 99.24
japanese-vowels 95.73 95.13 95.33 95.23 87.50 97.27 95.03 97.07 95.68 94.96
magic 87.19 87.06 87.38 87.54 86.69 87.27 87.22 86.57 87.04 87.14
mnist 94.35 94.10 94.23 94.14 90.86 96.79 94.14 96.75 94.37 94.07
mozilla 95.27 95.24 95.30 95.53 94.44 95.53 95.14 95.19 95.37 95.19
postures 94.21 94.16 94.40 94.14 78.56 94.98 93.19 95.79 94.50 94.04

TABLE B.5: The accuracy of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 2048 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the second digit after to decimal point. Each
row represents one dataset and each column is one method. Larger is

better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 86.95 86.67 86.92 86.86 86.82 87.25 86.55 87.01 86.92 86.55
anuran 98.89 98.54 98.89 98.82 97.50 99.15 98.54 99.17 98.89 98.67
avila 99.21 98.24 99.35 99.40 83.65 99.84 92.48 99.61 99.20 97.68
bank 90.42 90.36 90.36 90.46 90.33 90.50 90.38 90.42 90.38 90.29
connect 78.64 77.52 78.92 78.77 75.34 83.95 77.17 82.88 78.26 77.03
eeg 92.19 91.92 92.46 92.09 86.30 94.86 91.72 93.77 92.22 92.13
elec 88.90 88.05 89.12 89.24 85.13 91.84 87.75 89.77 88.87 87.97
fashion 85.86 86.06 85.91 86.07 83.45 87.28 85.97 87.24 86.16 85.81
gas-drift 99.53 99.42 99.50 99.46 98.31 99.59 99.46 99.55 99.46 99.43
ida2016 99.28 99.23 99.26 99.22 99.14 99.33 99.25 99.31 99.28 99.24
japanese-vowels 96.34 95.78 96.08 96.03 91.32 98.09 96.18 97.85 96.34 96.04
magic 87.40 87.06 87.40 87.54 87.05 87.27 87.61 86.57 87.56 87.21
mnist 95.12 94.87 95.21 94.99 90.86 97.35 94.88 97.31 95.00 94.67
mozilla 95.27 95.24 95.30 95.53 94.63 95.53 95.14 95.25 95.37 95.19
postures 95.79 95.66 95.92 95.76 84.30 97.23 95.06 96.93 95.94 95.37
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B.2 F1 score under Memory Constraints

TABLE B.6: The F1 score of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 128 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the fourth digit after to decimal point. Each
row represents one dataset and each column is one method. Larger is

better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 0.8002 0.7957 0.8008 0.8022 0.7699 0.8136 0.7950 0.8110 0.8040 0.7860
anuran 0.9409 0.9322 0.9442 0.9505 0.0000 0.9530 0.9333 0.9566 0.9374 0.9400
avila 0.8280 0.7948 0.8387 0.8897 0.0000 0.6399 0.7273 0.8746 0.8271 0.8278
bank 0.7128 0.6787 0.7155 0.7088 0.6343 0.7423 0.7188 0.7430 0.7173 0.6880
connect 0.5135 0.5305 0.5305 0.5233 0.3624 0.5274 0.4881 0.5637 0.5118 0.4834
eeg 0.8696 0.8642 0.8629 0.8685 0.7675 0.8805 0.8534 0.8837 0.8733 0.8532
elec 0.8508 0.8397 0.8466 0.8484 0.7972 0.8616 0.8331 0.8589 0.8474 0.8384
fashion 0.8290 0.8233 0.8269 0.8241 0.0000 0.8339 0.8240 0.8402 0.8296 0.8267
gas-drift 0.9888 0.9862 0.9871 0.9890 0.0000 0.9895 0.9852 0.9889 0.9897 0.9858
ida2016 0.8904 0.8894 0.8926 0.8973 0.8532 0.8871 0.8884 0.9008 0.8976 0.8892
japanese-vowels 0.9047 0.8940 0.9051 0.8877 0.0000 0.9074 0.8995 0.9209 0.9041 0.8967
magic 0.8540 0.8498 0.8564 0.8515 0.8219 0.8542 0.8504 0.8491 0.8519 0.8479
mnist 0.9008 0.8948 0.9037 0.8895 0.8296 0.9244 0.8899 0.9220 0.9016 0.8860
mozilla 0.9397 0.9377 0.9388 0.9400 0.0000 0.9413 0.9398 0.9369 0.9384 0.9370
postures 0.8558 0.8550 0.8519 0.8538 0.0000 0.7690 0.8363 0.8645 0.8569 0.8446

TABLE B.7: The F1 score of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 256 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the fourth digit after to decimal point. Each
row represents one dataset and each column is one method. Larger is

better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 0.8015 0.7991 0.8014 0.8022 0.7810 0.8136 0.7955 0.8110 0.8067 0.7944
anuran 0.9562 0.9431 0.9547 0.9572 0.0000 0.9574 0.9551 0.9635 0.9584 0.9543
avila 0.9216 0.9337 0.9434 0.9434 0.0000 0.8796 0.7654 0.9374 0.9346 0.8606
bank 0.7128 0.6916 0.7155 0.7094 0.6792 0.7480 0.7188 0.7430 0.7173 0.6960
connect 0.5450 0.5526 0.5526 0.5537 0.4440 0.5758 0.5149 0.5997 0.5346 0.5234
eeg 0.8870 0.8796 0.8893 0.8915 0.7978 0.9016 0.8801 0.8991 0.8902 0.8810
elec 0.8573 0.8528 0.8580 0.8590 0.8120 0.8748 0.8447 0.8711 0.8588 0.8465
fashion 0.8352 0.8365 0.8370 0.8354 0.7651 0.8472 0.8362 0.8495 0.8375 0.8336
gas-drift 0.9921 0.9912 0.9918 0.9921 0.9118 0.9907 0.9929 0.9923 0.9928 0.9913
ida2016 0.9007 0.9041 0.8935 0.8991 0.8713 0.9126 0.8988 0.9008 0.9118 0.9001
japanese-vowels 0.9228 0.9164 0.9181 0.9157 0.0000 0.9389 0.9194 0.9463 0.9266 0.9190
magic 0.8541 0.8513 0.8564 0.8517 0.8372 0.8578 0.8516 0.8491 0.8519 0.8516
mnist 0.9231 0.9128 0.9215 0.9155 0.8296 0.9372 0.9085 0.9412 0.9195 0.9099
mozilla 0.9432 0.9406 0.9435 0.9433 0.9312 0.9444 0.9405 0.9369 0.9448 0.9399
postures 0.8969 0.8870 0.8913 0.8921 0.6454 0.8377 0.8745 0.9038 0.8933 0.8821
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TABLE B.8: The F1 score of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 512 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the fourth digit after to decimal point. Each
row represents one dataset and each column is one method. Larger is

better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 0.8066 0.7991 0.8045 0.8022 0.7872 0.8137 0.8004 0.8110 0.8067 0.7955
anuran 0.9616 0.9581 0.9547 0.9636 0.8398 0.9716 0.9645 0.9741 0.9676 0.9593
avila 0.9812 0.9338 0.9758 0.9825 0.4289 0.9756 0.8242 0.9720 0.9758 0.9358
bank 0.7128 0.7005 0.7155 0.7130 0.6886 0.7502 0.7188 0.7434 0.7173 0.6982
connect 0.5472 0.5526 0.5566 0.5541 0.4575 0.6226 0.5162 0.6335 0.5436 0.5234
eeg 0.9065 0.8936 0.9034 0.9009 0.8280 0.9261 0.8942 0.9091 0.8957 0.8952
elec 0.8639 0.8617 0.8708 0.8672 0.8215 0.8872 0.8529 0.8816 0.8664 0.8591
fashion 0.8492 0.8435 0.8472 0.8433 0.7888 0.8579 0.8431 0.8621 0.8475 0.8442
gas-drift 0.9949 0.9928 0.9926 0.9927 0.9606 0.9942 0.9929 0.9936 0.9940 0.9931
ida2016 0.9130 0.9041 0.9068 0.9040 0.8733 0.9163 0.9004 0.9106 0.9118 0.9029
japanese-vowels 0.9454 0.9317 0.9394 0.9395 0.8063 0.9611 0.9334 0.9552 0.9429 0.9314
magic 0.8559 0.8513 0.8564 0.8583 0.8376 0.8578 0.8549 0.8491 0.8551 0.8533
mnist 0.9345 0.9265 0.9335 0.9301 0.8733 0.9552 0.9298 0.9575 0.9312 0.9257
mozilla 0.9452 0.9439 0.9444 0.9482 0.9325 0.9447 0.9405 0.9433 0.9458 0.9436
postures 0.9259 0.9232 0.9217 0.9246 0.7161 0.9264 0.9083 0.9343 0.9221 0.9180

TABLE B.9: The F1 score of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 1024 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the fourth digit after to decimal point. Each
row represents one dataset and each column is one method. Larger is

better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 0.8066 0.8002 0.8071 0.8022 0.7944 0.8137 0.8004 0.8110 0.8067 0.8006
anuran 0.9688 0.9598 0.9669 0.9708 0.9082 0.9732 0.9645 0.9762 0.9712 0.9652
avila 0.9882 0.9802 0.9842 0.9838 0.5684 0.9973 0.8896 0.9867 0.9876 0.9660
bank 0.7159 0.7117 0.7155 0.7206 0.7064 0.7502 0.7188 0.7434 0.7276 0.7049
connect 0.5472 0.5526 0.5571 0.5541 0.4675 0.6517 0.5162 0.6545 0.5436 0.5234
eeg 0.9156 0.9072 0.9129 0.9119 0.8595 0.9365 0.9102 0.9127 0.9154 0.9087
elec 0.8768 0.8693 0.8846 0.8828 0.8371 0.8982 0.8658 0.8877 0.8744 0.8717
fashion 0.8531 0.8516 0.8523 0.8522 0.7973 0.8662 0.8498 0.8711 0.8532 0.8531
gas-drift 0.9949 0.9937 0.9946 0.9940 0.9620 0.9956 0.9939 0.9950 0.9940 0.9938
ida2016 0.9130 0.9041 0.9095 0.9040 0.8871 0.9163 0.9075 0.9179 0.9118 0.9056
japanese-vowels 0.9536 0.9479 0.9502 0.9477 0.8640 0.9712 0.9463 0.9688 0.9537 0.9464
magic 0.8563 0.8543 0.8590 0.8601 0.8488 0.8578 0.8563 0.8491 0.8551 0.8552
mnist 0.9428 0.9403 0.9417 0.9406 0.9073 0.9675 0.9407 0.9671 0.9431 0.9400
mozilla 0.9452 0.9448 0.9455 0.9482 0.9345 0.9485 0.9438 0.9446 0.9460 0.9440
postures 0.9416 0.9410 0.9434 0.9408 0.7809 0.9494 0.9311 0.9575 0.9444 0.9397
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TABLE B.10: The F1 score of each method on each dataset computed
over a five-fold cross-validation or the train/test split of the dataset
(if any) with a model size below 2048 KB. A dash ’-’ indicates that a
method did not produce any model that fits the memory constraint.
Each entry is rounded to the fourth digit after to decimal point. Each
row represents one dataset and each column is one method. Larger is

better. The best method is marked in bold.

COMP DREP IC IE L1 L1+LR LMD LR RE RF

adult 0.8072 0.8023 0.8071 0.8023 0.8013 0.8137 0.8020 0.8110 0.8075 0.8006
anuran 0.9754 0.9666 0.9740 0.9745 0.9376 0.9804 0.9652 0.9809 0.9750 0.9680
avila 0.9906 0.9826 0.9914 0.9899 0.7245 0.9973 0.9191 0.9946 0.9921 0.9758
bank 0.7183 0.7117 0.7191 0.7244 0.7064 0.7502 0.7188 0.7434 0.7276 0.7114
connect 0.5472 0.5526 0.5571 0.5541 0.4781 0.6784 0.5162 0.6681 0.5436 0.5234
eeg 0.9206 0.9179 0.9234 0.9198 0.8599 0.9479 0.9158 0.9369 0.9209 0.9202
elec 0.8858 0.8769 0.8882 0.8894 0.8467 0.9163 0.8736 0.8954 0.8854 0.8762
fashion 0.8567 0.8591 0.8572 0.8590 0.8305 0.8720 0.8578 0.8719 0.8599 0.8563
gas-drift 0.9949 0.9937 0.9946 0.9940 0.9824 0.9956 0.9939 0.9950 0.9940 0.9938
ida2016 0.9130 0.9053 0.9095 0.9040 0.8910 0.9186 0.9075 0.9179 0.9118 0.9056
japanese-vowels 0.9599 0.9549 0.9576 0.9565 0.9069 0.9795 0.9593 0.9768 0.9605 0.9576
magic 0.8585 0.8548 0.8590 0.8601 0.8536 0.8578 0.8612 0.8491 0.8603 0.8570
mnist 0.9507 0.9482 0.9516 0.9494 0.9073 0.9732 0.9482 0.9728 0.9494 0.9461
mozilla 0.9452 0.9448 0.9455 0.9482 0.9369 0.9485 0.9438 0.9452 0.9460 0.9440
postures 0.9575 0.9562 0.9587 0.9573 0.8404 0.9721 0.9501 0.9690 0.9590 0.9532
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FIGURE C.1: (left) Test-then-train accuracy and memory consumption
on the agrawal_a dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the agrawal_a dataset

of each method.
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FIGURE C.2: (left) Test-then-train accuracy and memory consumption
on the agrawal_g dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the agrawal_g dataset

of each method.
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FIGURE C.3: (left) Test-then-train accuracy and memory consumption
on the airlines dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the airlines dataset of

each method.
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FIGURE C.4: (left) Test-then-train accuracy and memory consumption
on the covtype dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the covtype dataset

of each method.
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FIGURE C.5: (left) Test-then-train accuracy and memory consumption
on the elec dataset of the best configuration over the number of data
items in the stream. (right) Pareto front on the elec dataset of each

method.
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FIGURE C.6: (left) Test-then-train accuracy and memory consumption
on the gas-sensor dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the gas-sensor dataset

of each method.
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FIGURE C.7: (left) Test-then-train accuracy and memory consumption
on the led_a dataset of the best configuration over the number of data
items in the stream. (right) Pareto front on the led_a dataset of each

method.
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FIGURE C.8: (left) Test-then-train accuracy and memory consumption
on the led_g dataset of the best configuration over the number of data
items in the stream. (right) Pareto front on the led_g dataset of each

method.



212 Appendix C. Additional Results for the Experiments in Chapter 7

0 5k 10k 15k 20k 25k 30k 35k

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5k 10k 15k 20k 25k 30k 35k

2

5

10k

2

5

100k

2

5

1M

2

5

10M

2

5

100M

SE ARF SRP Bag SB HTT HT NB SDT

Number of items

A
c
c
u
r
a
c
y

M
e
m

o
r
y
 [

K
B

]

nomao

0 20000 40000 60000 80000 100000
Model Size [KB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy ARF

Bag
HT
HTT
NB
SB
SDT
SE
SRP

FIGURE C.9: (left) Test-then-train accuracy and memory consumption
on the nomao dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the nomao dataset of

each method.
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FIGURE C.10: (left) Test-then-train accuracy and memory consump-
tion on the rbf_f dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the rbf_f dataset of

each method.
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FIGURE C.11: (left) Test-then-train accuracy and memory consump-
tion on the rbf_m dataset of the best configuration over the number of
data items in the stream. (right) Pareto front on the rbf_m dataset of

each method.
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FIGURE C.12: (left) Test-then-train accuracy and memory consump-
tion on the weather dataset of the best configuration over the number
of data items in the stream. (right) Pareto front on the weather dataset

of each method.
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