151 research outputs found

    Liver Directed Drugs for Transthyretin-Mediated Amyloidosis

    Get PDF
    AIM: Transthyretin-mediated amyloidosis (ATTR) is a rare, under-recognized, progressively debilitating, fatal disease caused by the aggregation and extracellular deposition of amyloid transthyretin (TTR) fibrils in multiple organs and tissues throughout the body. TTR is predominantly synthesized by the liver, and normally circulates as a homotetramer, while misfolded monomers aggregate to form amyloid fibrils. One strategy to treat ATTR amyloidosis is to reduce the amount of TTR produced by the liver using drugs that directly target the TTR mRNA or gene. METHODS: This narrative review focuses on how TTR gene silencing tools act to reduce TTR production, describing strategies for improved targeted delivery of these agents to hepatocytes where TTR is preferentially expressed. RESULTS: Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), termed RNA silencers, cause selective degradation of TTR mRNA, while a TTR gene editing tool reduces TTR expression by introducing nonsense mutations into the TTR gene. Two strategies to facilitate tissue-specific delivery of these nucleic acid-based drugs employ endogenous receptors expressed by hepatocytes. Lipid nanoparticles (LNPs) that recruit apolipoprotein E support low density lipoprotein receptor-mediated uptake of unconjugated siRNA and is now used for CRISPR gene editing tools. Additionally, conjugating N-acetylgalactosamine (GalNAc) moieties to ASOs or siRNAs facilitates receptor-mediated uptake by the asialoglycoprotein receptor. CONCLUSION: ATTR is a progressive disease with various clinical manifestations due to TTR aggregation, deposition, and amyloid formation. Receptor-targeted ligands (e.g., GalNAc) and nanoparticle encapsulation (e.g., LNPs) are technologies to deliver ASOs, siRNAs, and gene editing tools to hepatocytes, the primary location of TTR synthesis

    Inotersen treatment for patients with hereditary transthyretin amyloidosis

    Get PDF
    BACKGROUND: Hereditary transthyretin amyloidosis is caused by pathogenic single-nucleotide variants in the gene encoding transthyretin ( TTR) that induce transthyretin misfolding and systemic deposition of amyloid. Progressive amyloid accumulation leads to multiorgan dysfunction and death. Inotersen, a 2'- O-methoxyethyl-modified antisense oligonucleotide, inhibits hepatic production of transthyretin. METHODS: We conducted an international, randomized, double-blind, placebo-controlled, 15-month, phase 3 trial of inotersen in adults with stage 1 (patient is ambulatory) or stage 2 (patient is ambulatory with assistance) hereditary transthyretin amyloidosis with polyneuropathy. Patients were randomly assigned, in a 2:1 ratio, to receive weekly subcutaneous injections of inotersen (300 mg) or placebo. The primary end points were the change in the modified Neuropathy Impairment Score+7 (mNIS+7; range, -22.3 to 346.3, with higher scores indicating poorer function; minimal clinically meaningful change, 2 points) and the change in the score on the patient-reported Norfolk Quality of Life-Diabetic Neuropathy (QOL-DN) questionnaire (range, -4 to 136, with higher scores indicating poorer quality of life). A decrease in scores indicated improvement. RESULTS: A total of 172 patients (112 in the inotersen group and 60 in the placebo group) received at least one dose of a trial regimen, and 139 (81%) completed the intervention period. Both primary efficacy assessments favored inotersen: the difference in the least-squares mean change from baseline to week 66 between the two groups (inotersen minus placebo) was -19.7 points (95% confidence interval [CI], -26.4 to -13.0; P<0.001) for the mNIS+7 and -11.7 points (95% CI, -18.3 to -5.1; P<0.001) for the Norfolk QOL-DN score. These improvements were independent of disease stage, mutation type, or the presence of cardiomyopathy. There were five deaths in the inotersen group and none in the placebo group. The most frequent serious adverse events in the inotersen group were glomerulonephritis (in 3 patients [3%]) and thrombocytopenia (in 3 patients [3%]), with one death associated with one of the cases of grade 4 thrombocytopenia. Thereafter, all patients received enhanced monitoring. CONCLUSIONS: Inotersen improved the course of neurologic disease and quality of life in patients with hereditary transthyretin amyloidosis. Thrombocytopenia and glomerulonephritis were managed with enhanced monitoring. (Funded by Ionis Pharmaceuticals; NEURO-TTR ClinicalTrials.gov number, NCT01737398 .)

    Liver as a target for oligonucleotide therapeutics

    Get PDF

    Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis

    Get PDF
    Introduction: Hereditary transthyretin-mediated amyloidosis (ATTRv; v for variant) is an underdiagnosed, progressive, and fatal multisystemic disease with a heterogenous clinical phenotype that is caused by TTR gene mutations that destabilize the TTR protein, resulting in its misfolding, aggregation, and deposition in tissues throughout the body. Areas covered: Inotersen, an antisense oligonucleotide inhibitor, was recently approved in the United States and Europe for the treatment of the polyneuropathy of ATTRv based on the positive results obtained in the pivotal phase 3 trial, NEURO-TTR. This review will discuss the mechanism of action of inotersen and its pharmacology, clinical efficacy, and safety and tolerability. A PubMed search using the terms 'inotersen,' 'AG10,' 'antisense oligonucleotide,' 'hereditary transthyretin amyloidosis,' 'familial amyloid polyneuropathy,' and 'familial amyloid cardiomyopathy' was performed, and the results were screened for the most relevant English language publications. The bibliographies of all retrieved articles were manually searched to identify additional studies of relevance. Expert opinion: Inotersen targets the disease-forming protein, TTR, and has been shown to improve quality of life and neuropathy progression in patients with stage 1 or 2 ATTRv with polyneuropathy. Inotersen is well tolerated, with a manageable safety profile through regular monitoring for the development of glomerulonephritis or thrombocytopenia

    2023 FDA TIDES (Peptides and Oligonucleotides) Harvest

    Get PDF
    A total of nine TIDES (pepTIDES and oligonucleoTIDES) were approved by the FDA during 2023. The approved four oligonucleotide are indicated for various types of disorders, including amyotrophic lateral sclerosis, geographic atrophy, primary hyperoxaluria type 1, and polyneuropathy of hereditary transthyretin-mediated amyloidosis. All oligonucleotides showed chemically modified structures, to enhance their stability and therapeutic effectiveness as antisense or aptamer oligomers. Some of them demonstrate various types of conjugation to driving ligands. The approved peptides comprise various structures including linear, cyclic, lipopeptides and with diverse applications. Interestingly, the FDA has granted an orphan drug designation for a first peptide-based drug as a highly selective chemokine antagonist. Furthermore, Rett syndrome has found its first ever core symptoms treatment, which is also peptide-based one. Here we analyse the TIDES approved in 2023 on the basis of their chemical structure, medical target, mode of action, administration route, and common adverse effects

    Polineuropatia amiloidótica familiar: sequenciação do gene da TTR e análise "in silico"

    Get PDF
    Mestrado em Biomedicina MolecularFamilial amyloid polyneuropathy (FAP) or paramiloidosis is an autosomal dominant neurodegenerative disease with onset on adult age that is characterized by mutated protein deposition in the form of amyloid substance. FAP is due to a point alteration in the transthyretin (TTR) gene and until now more than 100 amyloidogenic mutations have been described in TTR gene. FAP shows a wide variation in age-at-onset (AO) (19-82 years, in Portuguese cases) and the V30M mutation often runs through several generation of asymptomatic carriers, before expressing in a proband, but the protective effect disappear in a single generation, with offspring of late-onset cases having early onset. V30M mutation does not explain alone the symptoms and AO variability of the disease observed in the same family. Our aim in this study was to identify genetic factors associated with AO variability and reduced penetrance which can have important clinical implications. To accomplish this we genotyped 230 individuals, using a directautomated sequencing approach in order to identify possible genetic modifiers within the TTR locus. After genotyping, we assessed a putative association of the SNPs found with AO and an intensive in silico analysis was performed in order to understand a possible regulation of gene expression. Although we did not find any significant association between SNPs and AO, we found very interesting and unreported results in the in silico analysis since we observed some alterations in the mechanism of splicing, transcription factors binding and miRNAs binding. All of these mechanisms when altered can lead to dysregulation of gene expression, which can have an impact in AO and phenotypic variability. These putative mechanisms of regulation of gene expression within the TTR gene could be used in the future as potential therapeutical targets, and could improve genetic counselling and follow-up of mutation carriers.A Polineuropatia amiloidótica familiar (FAP) ou paramiloidose é uma doença neurodegenerativa autossómica dominante com início na vida adulta sendo caracterizada pela deposição da proteína mutada na forma de substância amilóide. A FAP é devida a uma mutação pontual no gene transtirretina (TTR) e até agora mais de 100 mutações amiloidogénicas foram descritas neste gene. A FAP apresenta uma grande variação na idade de início (AO) (19-82 anos, nos casos portugueses) e a mutação V30M pode segregar através de várias gerações de portadores assintomáticos, antes de se expressar num probando. No entanto, este efeito protetor pode desaparecer numa única geração, com os filhos de casos tardios a apresentarem um início precoce. A mutação V30M não explica por si só os sintomas e a variabilidade da AO observada dentro de uma mesma família. O nosso objetivo neste trabalho foi identificar fatores genéticos associados com a variabilidade da AO e a penetrância reduzida. De modo a cumprir este objetivo genotipámos 230 doentes, por sequenciação automática, para identificar possíveis modificadores genéticos dentro do locus da TTR. Após a genotipagem, investigamos uma possível associação dos SNPs encontrados com a AO e realizamos uma intensiva análise in silico de modo a perceber uma possível regulação da expressão génica. Apesar de não termos encontrado nenhuma associação entre os SNPs e a AO, encontrámos resultados não descritos e muito interessantes na análise in silico dado termos observado algumas alterações a nível do mecanismo de splicing, ligação de fatores de transcrição e ligação de miRNAs. Todos estes mecanismos quando alterados podem levar à desregulação da expressão do gene, o que pode ter um impacto na AO e variabilidade fenotípica. Estes mecanismos hipotéticos da regulação da expressão génica no gene da TTR podem ser úteis para no futuro serem aplicados como potenciais alvos terapêuticos, beneficiando o aconselhamento genético e o follow-up dos portadores da mutação

    Short-interference RNAs: becoming medicines

    Get PDF
    RNA interference is a cellular mechanism by which small molecules of double stranded RNA modulate gene expression acting on the concentration and/or availability of a given messenger RNA. Almost 10 years after Fire and Mello received the Nobel Prize for the discovery of this mechanism in flat worms, RNA interference is on the edge of becoming a new class of therapeutics. With various phase III studies underway, the following years will determine whether RNAi-therapeutics can rise up to the challenge and become mainstream medicines. The present review gives a thorough overview of the current status of this technology focusing on the path to the clinic of this new class of compounds

    Advances in the delivery of RNA therapeutics: from concept to clinical reality

    Get PDF
    Abstract - The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.Juvenile Diabetes Research Foundation (postdoctoral fellowship Grant 3-PDF-2017-383-A-N)National Cancer Institute (U.S.) (Cancer Center Support (core) Grant P30-CA1405

    Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition

    Get PDF
    Each of the 30 human amyloid diseases is associated with the aggregation of a particular precursor protein into amyloid fibrils. In transthyretin amyloidosis (ATTR), mutant or wild-type forms of the serum carrier protein transthyretin (TTR), synthesized and secreted by the liver, convert to amyloid fibrils deposited in the heart and other organs. The current standard of care for hereditary ATTR is liver transplantation, which replaces the mutant TTR gene with the wild-type gene. However, the procedure is often followed by cardiac deposition of wild-type TTR secreted by the new liver. Here we find that amyloid fibrils extracted from autopsied and explanted hearts of ATTR patients robustly seed wild-type TTR into amyloid fibrils in vitro. Cardiac-derived ATTR seeds can accelerate fibril formation of wild-type and monomeric TTR at acidic pH and under physiological conditions, respectively. We show that this seeding is inhibited by peptides designed to complement structures of TTR fibrils. These inhibitors cap fibril growth, suggesting an approach for halting progression of ATTR
    corecore