111 research outputs found

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Location Reference Recognition from Texts: A Survey and Comparison

    Full text link
    A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location references from texts and identifying their geospatial representations. While geoparsing can benefit many domains, a summary of its specific applications is still missing. Further, there is a lack of a comprehensive review and comparison of existing approaches for location reference recognition, which is the first and core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic management, spatial humanities, tourism management, and crime management. We then review existing approaches for location reference recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based, gazetteer matching–based, statistical learning-–based, and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the 27 most widely used approaches for location reference recognition based on 26 public datasets with different types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide. Results from this thorough evaluation can help inform future methodological developments and can help guide the selection of proper approaches based on application needs

    CAREER: Data Management for Ad-Hoc Geosensor Networks

    Get PDF
    This project explores data management methods for geosensor networks, i.e. large collections of very small, battery-driven sensor nodes deployed in the geographic environment that measure the temporal and spatial variations of physical quantities such as temperature or ozone levels. An important task of such geosensor networks is to collect, analyze and estimate information about continuous phenomena under observation such as a toxic cloud close to a chemical plant in real-time and in an energy-efficient way. The main thrust of this project is the integration of spatial data analysis techniques with in-network data query execution in sensor networks. The project investigates novel algorithms such as incremental, in-network kriging that redefines a traditional, highly computationally intensive spatial data estimation method for a distributed, collaborative and incremental processing between tiny, energy and bandwidth constrained sensor nodes. This work includes the modeling of location and sensing characteristics of sensor devices with regard to observed phenomena, the support of temporal-spatial estimation queries, and a focus on in-network data aggregation algorithms for complex spatial estimation queries. Combining high-level data query interfaces with advanced spatial analysis methods will allow domain scientists to use sensor networks effectively in environmental observation. The project has a broad impact on the community involving undergraduate and graduate students in spatial database research at the University of Maine as well as being a key component of a current IGERT program in the areas of sensor materials, sensor devices and sensor. More information about this project, publications, simulation software, and empirical studies are available on the project\u27s web site (http://www.spatial.maine.edu/~nittel/career/)

    Recent Developments and Future Trends in Volunteered Geographic Information Research: The Case of OpenStreetMap

    Get PDF
    User-generated content (UGC) platforms on the Internet have experienced a steep increase in data contributions in recent years. The ubiquitous usage of location-enabled devices, such as smartphones, allows contributors to share their geographic information on a number of selected online portals. The collected information is oftentimes referred to as volunteered geographic information (VGI). One of the most utilized, analyzed and cited VGI-platforms, with an increasing popularity over the past few years, is OpenStreetMap (OSM), whose main goal it is to create a freely available geographic database of the world. This paper presents a comprehensive overview of the latest developments in VGI research, focusing on its collaboratively collected geodata and corresponding contributor patterns. Additionally, trends in the realm of OSM research are discussed, highlighting which aspects need to be investigated more closely in the near future

    BITOUR: A Business Intelligence Platform for Tourism Analysis

    Full text link
    [EN] Integrating collaborative data in data-driven Business Intelligence (BI) system brings an opportunity to foster the decision-making process towards improving tourism competitiveness. This article presents BITOUR, a BI platform that integrates four collaborative data sources (Twitter, Openstreetmap, Tripadvisor and Airbnb). BITOUR follows a classical BI architecture and provides functionalities for data transformation, data processing, data analysis and data visualization. At the core of the data processing, BITOUR offers mechanisms to identify tourists in Twitter, assign tweets to attractions and accommodation sites from Tripadvisor and Airbnb, analyze sentiments in opinions issued by tourists, and all this using geolocation objects in Openstreetmap. With all these ingredients, BITOUR enables data analysis and visualization to answer questions like the most frequented places by tourists, the average stay length or the view of visitors of some particular destination.This work has been supported by COLCIENCIAS through a PhD scholarship. This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R.Bustamante, A.; Sebastiá Tarín, L.; Onaindia De La Rivaherrera, E. (2020). BITOUR: A Business Intelligence Platform for Tourism Analysis. ISPRS International Journal of Geo-Information. 9(11):1-23. https://doi.org/10.3390/ijgi9110671S123911Nakahira, K. T., Akahane, M., & Fukami, Y. (2012). The Difference and Limitation of Cognition for Piano Playing Skill with Difference Educational Design. Smart Innovation, Systems and Technologies, 609-617. doi:10.1007/978-3-642-29934-6_59Chua, A., Servillo, L., Marcheggiani, E., & Moere, A. V. (2016). Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy. Tourism Management, 57, 295-310. doi:10.1016/j.tourman.2016.06.013Karagiannakis, N., Giannopoulos, G., Skoutas, D., & Athanasiou, S. (2015). OSMRec Tool for Automatic Recommendation of Categories on Spatial Entities in OpenStreetMap. Proceedings of the 9th ACM Conference on Recommender Systems. doi:10.1145/2792838.2796555Burcher, M., & Whelan, C. (2017). Social network analysis as a tool for criminal intelligence: understanding its potential from the perspectives of intelligence analysts. Trends in Organized Crime, 21(3), 278-294. doi:10.1007/s12117-017-9313-8Alcabnani, S., Oubezza, M., & Elkafi, J. (2019). An approach for the implementation of semantic Big Data Analytics in the Social Business Intelligence process on distributed environments (Cloud computing). Proceedings of the 4th International Conference on Big Data and Internet of Things. doi:10.1145/3372938.3373003Zeng, B., & Gerritsen, R. (2014). What do we know about social media in tourism? A review. Tourism Management Perspectives, 10, 27-36. doi:10.1016/j.tmp.2014.01.001Lalicic, L. (2018). Open innovation platforms in tourism: how do stakeholders engage and reach consensus? International Journal of Contemporary Hospitality Management, 30(6), 2517-2536. doi:10.1108/ijchm-04-2016-0233Dwyer, L., & Kim, C. (2003). Destination Competitiveness: Determinants and Indicators. Current Issues in Tourism, 6(5), 369-414. doi:10.1080/13683500308667962Gomezelj, D. O., & Mihalič, T. (2008). Destination competitiveness—Applying different models, the case of Slovenia. Tourism Management, 29(2), 294-307. doi:10.1016/j.tourman.2007.03.009Zhong, L., Deng, J., & Xiang, B. (2008). Tourism development and the tourism area life-cycle model: A case study of Zhangjiajie National Forest Park, China. Tourism Management, 29(5), 841-856. doi:10.1016/j.tourman.2007.10.002Fernández, J. I. P., & Rivero, M. S. (2009). Measuring Tourism Sustainability: Proposal for a Composite Index. Tourism Economics, 15(2), 277-296. doi:10.5367/000000009788254377Cibinskiene, A., & Snieskiene, G. (2015). Evaluation of City Tourism Competitiveness. Procedia - Social and Behavioral Sciences, 213, 105-110. doi:10.1016/j.sbspro.2015.11.411Business Intelligence (BI)—Glossaryhttps://www.gartner.com/it-glossary/business-intelligence-bi/Mariani, M., Baggio, R., Fuchs, M., & Höepken, W. (2018). Business intelligence and big data in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 30(12), 3514-3554. doi:10.1108/ijchm-07-2017-0461Maeda, T. N., Yoshida, M., Toriumi, F., & Ohashi, H. (2016). Decision Tree Analysis of Tourists’ Preferences Regarding Tourist Attractions Using Geotag Data from Social Media. Proceedings of the Second International Conference on IoT in Urban Space. doi:10.1145/2962735.2962745Guy, I., Mejer, A., Nus, A., & Raiber, F. (2017). Extracting and Ranking Travel Tips from User-Generated Reviews. Proceedings of the 26th International Conference on World Wide Web. doi:10.1145/3038912.3052632Peng, M. Y.-P., Tuan, S.-H., & Liu, F.-C. (2017). Establishment of Business Intelligence and Big Data Analysis for Higher Education. Proceedings of the International Conference on Business and Information Management - ICBIM 2017. doi:10.1145/3134271.3134296Castellanos, M., Gupta, C., Wang, S., Dayal, U., & Durazo, M. (2012). A platform for situational awareness in operational BI. Decision Support Systems, 52(4), 869-883. doi:10.1016/j.dss.2011.11.011Cohen, L. (2017). Impacts of business intelligence on population health. Proceedings of the South African Institute of Computer Scientists and Information Technologists on - SAICSIT ’17. doi:10.1145/3129416.3129441Love, M., Boisvert, C., Uruchurtu, E., & Ibbotson, I. (2016). Nifty with Data. Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education. doi:10.1145/2899415.2899431Berndt, D. J., Hevner, A. R., & Studnicki, J. (s. f.). Hospital discharge transactions: a data warehouse component. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. doi:10.1109/hicss.2000.926791Musa, G. J., Chiang, P.-H., Sylk, T., Bavley, R., Keating, W., Lakew, B., … Hoven, C. W. (2013). Use of GIS Mapping as a Public Health Tool–-From Cholera to Cancer. Health Services Insights, 6, HSI.S10471. doi:10.4137/hsi.s10471Mooney, S. J., Westreich, D. J., & El-Sayed, A. M. (2015). Commentary. Epidemiology, 26(3), 390-394. doi:10.1097/ede.0000000000000274Wisniewski, M. F., Kieszkowski, P., Zagorski, B. M., Trick, W. E., Sommers, M., & Weinstein, R. A. (2003). Development of a Clinical Data Warehouse for Hospital Infection Control. Journal of the American Medical Informatics Association, 10(5), 454-462. doi:10.1197/jamia.m1299Miah, S. J., Vu, H. Q., Gammack, J., & McGrath, M. (2017). A Big Data Analytics Method for Tourist Behaviour Analysis. Information & Management, 54(6), 771-785. doi:10.1016/j.im.2016.11.011Li, D., Deng, L., & Cai, Z. (2019). Statistical analysis of tourist flow in tourist spots based on big data platform and DA-HKRVM algorithms. Personal and Ubiquitous Computing, 24(1), 87-101. doi:10.1007/s00779-019-01341-xKrawczyk, M., & Xiang, Z. (2015). Perceptual mapping of hotel brands using online reviews: a text analytics approach. Information Technology & Tourism, 16(1), 23-43. doi:10.1007/s40558-015-0033-0Alaei, A. R., Becken, S., & Stantic, B. (2017). Sentiment Analysis in Tourism: Capitalizing on Big Data. Journal of Travel Research, 58(2), 175-191. doi:10.1177/0047287517747753Thelwall, M. (2019). Sentiment Analysis for Tourism. Big Data and Innovation in Tourism, Travel, and Hospitality, 87-104. doi:10.1007/978-981-13-6339-9_6Höpken, W., Fuchs, M., Höll, G., Keil, D., & Lexhagen, M. (2013). Multi-Dimensional Data Modelling for a Tourism Destination Data Warehouse. Information and Communication Technologies in Tourism 2013, 157-169. doi:10.1007/978-3-642-36309-2_14Sabou, M., Onder, I., Brasoveanu, A. M. P., & Scharl, A. (2015). Towards Cross-Domain Decision Making in Tourism: A Linked Data Based Approach. SSRN Electronic Journal. doi:10.2139/ssrn.2580242Fermoso, A. M., Mateos, M., Beato, M. E., & Berjón, R. (2015). Open linked data and mobile devices as e-tourism tools. A practical approach to collaborative e-learning. Computers in Human Behavior, 51, 618-626. doi:10.1016/j.chb.2015.02.032Wöber, K. W. (2003). Information supply in tourism management by marketing decision support systems. Tourism Management, 24(3), 241-255. doi:10.1016/s0261-5177(02)00071-7Vajirakachorn, T., & Chongwatpol, J. (2017). Application of business intelligence in the tourism industry: A case study of a local food festival in Thailand. Tourism Management Perspectives, 23, 75-86. doi:10.1016/j.tmp.2017.05.003Diakopoulos, N., Naaman, M., & Kivran-Swaine, F. (2010). Diamonds in the rough: Social media visual analytics for journalistic inquiry. 2010 IEEE Symposium on Visual Analytics Science and Technology. doi:10.1109/vast.2010.5652922Bustamante, A., Sebastia, L., & Onaindia, E. (2019). Can Tourist Attractions Boost Other Activities Around? A Data Analysis through Social Networks. Sensors, 19(11), 2612. doi:10.3390/s19112612Yasseri, T., Quattrone, G., & Mashhadi, A. (2013). Temporal analysis of activity patterns of editors in collaborative mapping project of OpenStreetMap. Proceedings of the 9th International Symposium on Open Collaboration. doi:10.1145/2491055.2491068Jilani, M., Corcoran, P., & Bertolotto, M. (2013). Multi-granular Street Network Representation towards Quality Assessment of OpenStreetMap Data. Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Computational Transportation Science - IWCTS ’13. doi:10.1145/2533828.2533833Luxen, D., & Vetter, C. (2011). Real-time routing with OpenStreetMap data. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS ’11. doi:10.1145/2093973.2094062Baumbach, S., Rubel, C., Ahmed, S., & Dengel, A. (2019). Geospatial Customer, Competitor and Supplier Analysis for Site Selection of Supermarkets. Proceedings of the 2019 2nd International Conference on Geoinformatics and Data Analysis. doi:10.1145/3318236.3318264Milot, J., Munroe, P., Beaudry, E., Grondin, F., & Bourdeau, G. (2016). Lookupia. Proceedings of the 25th International Conference Companion on World Wide Web - WWW ’16 Companion. doi:10.1145/2872518.2890485Ciepluch, B., Mooney, P., Jacob, R., & Winstanley, A. C. (2009). Using OpenStreetMap to deliver location-based environmental information in Ireland. SIGSPATIAL Special, 1(3), 17-22. doi:10.1145/1645424.1645428Del Pilar Salas-Zárate, M., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., & Alor-Hernández, G. (2014). A study on LIWC categories for opinion mining in Spanish reviews. Journal of Information Science, 40(6), 749-760. doi:10.1177/0165551514547842Gambino, O. J., & Calvo, H. (2016). A Comparison Between Two Spanish Sentiment Lexicons in the Twitter Sentiment Analysis Task. Advances in Artificial Intelligence - IBERAMIA 2016, 127-138. doi:10.1007/978-3-319-47955-2_11Mooney, P., Corcoran, P., & Winstanley, A. C. (2010). Towards quality metrics for OpenStreetMap. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS ’10. doi:10.1145/1869790.1869875El-Ashmawy, K. l. A. (2016). TESTING THE POSITIONAL ACCURACY OF OPENSTREETMAP DATA FOR MAPPING APPLICATIONS. Geodesy and cartography, 42(1), 25-30. doi:10.3846/20296991.2015.116049

    Parking Space Management via Dynamic Performance-Based Pricing

    Get PDF
    In congested urban areas, it remains a pressing challenge to reduce unnecessary vehicle circling for parking while at the same time maximize parking space utilization. In observance of new information technologies that have become readily accessible to drivers and parking agencies, we develop a dynamic non-cooperative bi-level model (i.e. Stackelberg leader-follower game) to set parking prices in real-time for effective parking access and space utilization. The model is expected to fit into an integrated parking pricing and management system, where parking reservations and transactions are facilitated by sensing and informatics infrastructures, that ensures the availability of convenient spaces at equilibrium market prices. It is shown with numerical examples that the proposed dynamic parking pricing model has the potential to virtually eliminate vehicle circling for parking, which results in significant reduction in adverse socioeconomic externalities such as traffic congestion and emissions

    Machine Learning Framework for the Estimation of Average Speed in Rural Road Networks with OpenStreetMap Data

    Get PDF
    Average speed information, which is essential for routing applications, is often missing in the freely available OpenStreetMap (OSM) road network. In this contribution, we propose an estimation framework, including different machine learning (ML) models that estimate rural roads’ average speed based on current road information in OSM. We rely on three datasets covering two regions in Chile and Australia. Google Directions API data serves as reference data. An appropriate estimation framework is presented, which involves supervised ML models, unsupervised clustering, and dimensionality reduction to generate new input features. The regression performance of each model with different input feature modes is evaluated on each dataset. The best performing model results in a coefficient of determination R2^{2}=80.43%, which is significantly better than previous approaches relying on domain-knowledge. Overall, the potential of the ML-based estimation framework to estimate the average speed with OSM road network data is demonstrated. This ML-based approach is data-driven and does not require any domain knowledge. In the future, we intend to focus on the generalization ability of the estimation framework concerning its application in different regions worldwide. The implementation of our estimation framework for an exemplary dataset is provided on GitHub

    Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control

    Get PDF
    Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHu

    AN EXTENDABLE VISUALIZATION AND USER INTERFACE DESIGN FOR TIME-VARYING MULTIVARIATE GEOSCIENCE DATA

    Get PDF
    Geoscience data has unique and complex data structures, and its visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. In today’s big data era, the needs of visualizing geoscience data become urgent, especially driven by its potential value to human societies, such as environmental disaster prediction, urban growth simulation, and so on. In this thesis, I created a novel geoscience data visualization framework and applied interface automata theory to geoscience data visualization tasks. The framework can support heterogeneous geoscience data and facilitate data operations. The interface automata can generate a series of interactions that can efficiently impress users, which also provides an intuitive method for visualizing and analysis geoscience data. Except clearly guided users to the specific visualization, interface automata can also enhance user experience by eliminating automation surprising, and the maintenance overhead is also reduced. The new framework was applied to INSIGHT, a scientific hydrology visualization and analysis system that was developed by the Nebraska Department of Natural Resources (NDNR). Compared to the existing INSIGHT solution, the new framework has brought many advantages that do not exist in the existing solution, which proved that the framework is efficient and extendable for visualizing geoscience data. Adviser: Hongfeng Y

    AN EXTENDABLE VISUALIZATION AND USER INTERFACE DESIGN FOR TIME-VARYING MULTIVARIATE GEOSCIENCE DATA

    Get PDF
    Geoscience data has unique and complex data structures, and its visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. In today’s big data era, the needs of visualizing geoscience data become urgent, especially driven by its potential value to human societies, such as environmental disaster prediction, urban growth simulation, and so on. In this thesis, I created a novel geoscience data visualization framework and applied interface automata theory to geoscience data visualization tasks. The framework can support heterogeneous geoscience data and facilitate data operations. The interface automata can generate a series of interactions that can efficiently impress users, which also provides an intuitive method for visualizing and analysis geoscience data. Except clearly guided users to the specific visualization, interface automata can also enhance user experience by eliminating automation surprising, and the maintenance overhead is also reduced. The new framework was applied to INSIGHT, a scientific hydrology visualization and analysis system that was developed by the Nebraska Department of Natural Resources (NDNR). Compared to the existing INSIGHT solution, the new framework has brought many advantages that do not exist in the existing solution, which proved that the framework is efficient and extendable for visualizing geoscience data. Adviser: Hongfeng Y
    corecore