29 research outputs found

    An in-band full-duplex radio receiver with a passive vector modulator downmixer for self-interference cancellation

    Get PDF
    In-band full-duplex (FD) wireless, i.e., simultaneous transmission and reception at the same frequency, introduces strong self-interference (SI) that masks the signal to be received. This paper proposes a receiver in which a copy of the transmit signal is fed through a switched-resistor vector modulator (VM)that provides simultaneous downmixing, phase shift, and amplitude scaling and subtracts it in the analog baseband for up to 27 dB SI-cancellation. Cancelling before active baseband amplification avoids self-blocking, and highly linear mixers keep SIinduced distortion low, for a receiver SI-to-noise-and-distortionratio (SINDR) of up to 71.5 dB in 16.25 MHz BW. When combined with a two-port antenna with only 20 dB isolation, the low RX distortion theoretically allows sufficient digital cancellation for over 90 dB link budget, sufficient for short-range, low-power FD links

    Interference Suppression Techniques for RF Receivers

    Get PDF

    Interference suppression techniques for millimeter-wave integrated receiver front ends

    Get PDF

    Sistemas eficientes de transmissão de energia sem-fios e identificação por radiofrequência

    Get PDF
    Doutoramento em Engenharia EletrotécnicaIn the IoT context, where billions of connected objects are expected to be ubiquitously deployed worldwide, the frequent battery maintenance of ubiquitous wireless nodes is undesirable or even impossible. In these scenarios, passive-backscatter radios will certainly play a crucial role due to their low cost, low complexity and battery-free operation. However, as passive-backscatter devices are chiefly limited by the WPT link, its efficiency optimization has been a major research concern over the years, gaining even more emphasis in the IoT context. Wireless power transfer has traditionally been carried out using CW signals, and the efficiency improvement has commonly been achieved through circuit design optimization. This thesis explores a fundamentally different approach, in which the optimization is focused on the powering waveforms, rather than the circuits. It is demonstrated through theoretical analysis, simulations and measurements that, given their greater ability to overcome the built-in voltage of rectifying devices, high PAPR multi-sine (MS) signals are capable of more efficiently exciting energy harvesting circuits when compared to CWs. By using optimal MS signals to excite rectifying devices, remarkable RF-DC conversion efficiency gains of up to 15 dB with respect to CW signals were obtained. In order to show the effectiveness of this approach to improve the communication range of passive-backscatter systems, a MS front-end was integrated in a commercial RFID reader and a significant range extension of 25% was observed. Furthermore, a software-defined radio RFID reader, compliant with ISO18000-6C standard and with MS capability, was constructed from scratch. By interrogating passive RFID transponders with MS waveforms, a transponder sensitivity improvement higher than 3 dB was obtained for optimal MS signals. Since the amplification and transmission of high PAPR signals is critical, this work also proposes efficient MS transmitting architectures based on space power combining techniques. This thesis also addresses other not less important issues, namely self-jamming in passive RFID readers, which is the second limiting factor of passive-backscatter systems. A suitable self-jamming suppression scheme was first used for CW signals and then extended to MS signals, yielding a CW isolation up to 50 dB and a MS isolation up 60 dB. Finally, a battery-less remote control system was developed and integrated in a commercial TV device with the purpose of demonstrating a practical application of wireless power transfer and passive-backscatter concepts. This allowed battery-free control of four basic functionalities of the TV (CH+,CH-,VOL+,VOL-).No contexto da internet das coisas (IoT), onde são esperados bilhões de objetos conectados espalhados pelo planeta de forma ubíqua, torna-se impraticável uma frequente manutenção e troca de baterias dos dispositivos sem fios ubíquos. Nestes cenários, os sistemas radio backscatter passivos terão um papel preponderante dado o seu baixo custo, baixa complexidade e não necessidade de baterias nos nós móveis. Uma vez que a transmissão de energia sem fios é o principal aspeto limitativo nestes sistemas, a sua otimização tem sido um tema central de investigação, ganhando ainda mais ênfase no contexto IoT. Tradicionalmente, a transferência de energia sem-fios é feita através de sinais CW e a maximização da eficiência é conseguida através da otimização dos circuitos recetores. Neste trabalho explora-se uma abordagem fundamentalmente diferente, em que a otimização foca-se nas formas de onda em vez dos circuitos. Demonstra-se, teoricamente e através de simulações e medidas que, devido à sua maior capacidade em superar a barreira de potencial intrínseca dos dispositivos retificadores, os sinais multi-seno (MS) de elevado PAPR são capazes de excitar os circuitos de colheita de energia de forma mais eficiente quando comparados com o sinal CW tradicional. Usando sinais MS ótimos em circuitos retificadores, foram verificadas experimentalmente melhorias de eficiência de conversão RF-DC notáveis de até 15 dB relativamente ao sinal CW. A fim de mostrar a eficácia desta abordagem na melhoria da distância de comunicação de sistemas backscatter passivos, integrou-se um front-end MS num leitor RFID comercial e observou-se um aumento significativo de 25% na distância de leitura. Além disso, desenvolveu-se de raiz um leitor RFID baseado em software rádio, compatível com o protocolo ISO18000-6C e capaz de gerar sinais MS, com os quais interrogou-se transponders passivos, obtendo-se ganhos de sensibilidade dos transponders maiores que 3 dB. Uma vez que a amplificação de sinais de elevado PAPR é uma operação crítica, propôs-se também novas arquiteturas eficientes de transmissão baseadas na combinação de sinais em espaço livre. Esta tese aborda também outros aspetos não menos importantes, como o self-jamming em leitores RFID passivos, tido como o segundo fator limitativo neste tipo de sistemas. Estudou-se técnicas de cancelamento de self-jamming CW e estendeu-se o conceito a sinais MS, tendo-se obtido isolamentos entre o transmissor e o recetor de até 50 dB no primeiro caso e de até 60 dB no segundo. Finalmente, com o objetivo de demonstrar uma aplicação prática dos conceitos de transmissão de energia sem fios e comunicação backscatter, desenvolveu-se um sistema de controlo remoto sem pilhas, cujo protótipo foi integrado num televisor comercial a fim de controlar quatro funcionalidades básicas (CH+,CH-,VOL+,VOL-)

    Acoustoelectric Amplification in Piezoelectric-Silicon Micromachined Lamb Wave Devices

    Get PDF
    In this dissertation, heterostructured micro-acoustic devices are explored that leverage the interactions between acoustic phonons and electrons to enable radio frequency (RF) signal amplification or attenuation. Thin films of piezoelectric and semiconductor material are tailored into a heterostructure that allows for a strong acoustoelectric (AE) effect due to the combination of high electromechanical coupling and high electron drift velocity in said films respectively. In such devices, the relative electron drift and acoustic velocities could determine whether the RF signal undergoes AE gain or loss, rendering the device non-reciprocal. This is a highly sought-after property for building isolators and circulators which facilitate full-duplex communication and interference cancellation in forthcoming generations of telecommunication. The AE effect attracted a great deal of attention during the mid-twentieth century, ultimately leading to the invention of interdigital transducers for excitation of surface acoustic waves as the preferred enabler of such effect which is still being investigated. However, the widespread application of such class of AE components is hindered by their poor performance metrics such as low power efficiency and limited frequency scaling. In this dissertation, by taking advantage of the superior properties of Lamb waves, namely, higher frequency scaling and lower insertion loss at larger available bandwidth, power-efficient and high power-handling AE devices are realized in a lithium niobate on silicon micromachined platform. Through this platform in this work, at few milliwatts of bias power, more than 30 dB of AE gain with larger than 40 dB nonreciprocal transmission is realized in a sub-millimeter form factor. This novel platform enables single-chip realization of frequency-disperse high power-handling ultrasonic signal processors with numerous functionalities such as gain, non-reciprocal behavior, tunable attenuation, insertion delay, and switching. This could significantly reduce the number of components in an RF frontend module, shrink their footprints, and facilitate packaging

    Studies on Mobile Terminal Energy Consumption for LTE and Future 5G

    Get PDF

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications
    corecore