9 research outputs found

    Handling Stateful Firewall Anomalies

    No full text
    Part 4: Access ControlInternational audienceA security policy consists of a set of rules designed to protect an information system. To ensure this protection, the rules must be deployed on security components in a consistent and non-redundant manner. Unfortunately, an empirical approach is often adopted by network administrators, to the detriment of theoretical validation. While the literature on the analysis of configurations of first generation (stateless) firewalls is now rich, this is not the case for second and third generation firewalls, also known as stateful firewalls. In this paper, we address this limitation, and provide solutions to analyze and handle stateful firewall anomalies and misconfiguration

    Network Security Supported by Arguments

    Get PDF
    Argumentation has been proved as a simple yet powerful approach to manage conflicts in reasoning with the purpose to find subsets of ?surviving? arguments. Our intent is to exploit such form of resolution to support the? administration of security in complex systems, e.g., in case threat countermeasures are in conflict with non-functional requirements. The proposed formalisation is able to find the required security controls and explicitly provide arguments supporting this selection. Therefore, an explanation automatically comes as part of the suggested solution, facilitating human comprehension

    fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses

    Full text link
    Cloud business intelligence is an increasingly popular choice to deliver decision support capabilities via elastic, pay-per-use resources. However, data security issues are one of the top concerns when dealing with sensitive data. In this pa-per, we propose a novel approach for securing cloud data warehouses by flexible verifiable secret sharing, fVSS. Secret sharing encrypts and distributes data over several cloud ser-vice providers, thus enforcing data privacy and availability. fVSS addresses four shortcomings in existing secret sharing-based approaches. First, it allows refreshing the data ware-house when some service providers fail. Second, it allows on-line analysis processing. Third, it enforces data integrity with the help of both inner and outer signatures. Fourth, it helps users control the cost of cloud warehousing by balanc-ing the load among service providers with respect to their pricing policies. To illustrate fVSS' efficiency, we thoroughly compare it with existing secret sharing-based approaches with respect to security features, querying power and data storage and computing costs

    Secret Sharing for Cloud Data Security

    Full text link
    Cloud computing helps reduce costs, increase business agility and deploy solutions with a high return on investment for many types of applications. However, data security is of premium importance to many users and often restrains their adoption of cloud technologies. Various approaches, i.e., data encryption, anonymization, replication and verification, help enforce different facets of data security. Secret sharing is a particularly interesting cryptographic technique. Its most advanced variants indeed simultaneously enforce data privacy, availability and integrity, while allowing computation on encrypted data. The aim of this paper is thus to wholly survey secret sharing schemes with respect to data security, data access and costs in the pay-as-you-go paradigm

    Contributions to Lifelogging Protection In Streaming Environments

    Get PDF
    Tots els dies, més de cinc mil milions de persones generen algun tipus de dada a través d'Internet. Per accedir a aquesta informació, necessitem utilitzar serveis de recerca, ja siguin motors de cerca web o assistents personals. A cada interacció amb ells, el nostre registre d'accions, logs, s'utilitza per oferir una millor experiència. Per a les empreses, també són molt valuosos, ja que ofereixen una forma de monetitzar el servei. La monetització s'aconsegueix venent dades a tercers, però, els logs de consultes podrien exposar informació confidencial de l'usuari (identificadors, malalties, tendències sexuals, creences religioses) o usar-se per al que es diu "life-logging ": Un registre continu de les activitats diàries. La normativa obliga a protegir aquesta informació. S'han proposat prèviament sistemes de protecció per a conjunts de dades tancats, la majoria d'ells treballant amb arxius atòmics o dades estructurades. Desafortunadament, aquests sistemes no s'adapten quan es fan servir en el creixent entorn de dades no estructurades en temps real que representen els serveis d'Internet. Aquesta tesi té com objectiu dissenyar tècniques per protegir la informació confidencial de l'usuari en un entorn no estructurat d’streaming en temps real, garantint un equilibri entre la utilitat i la protecció de dades. S'han fet tres propostes per a una protecció eficaç dels logs. La primera és un nou mètode per anonimitzar logs de consultes, basat en k-anonimat probabilística i algunes eines de desanonimització per determinar fuites de dades. El segon mètode, s'ha millorat afegint un equilibri configurable entre privacitat i usabilitat, aconseguint una gran millora en termes d'utilitat de dades. La contribució final es refereix als assistents personals basats en Internet. La informació generada per aquests dispositius es pot considerar "life-logging" i pot augmentar els riscos de privacitat de l'usuari. Es proposa un esquema de protecció que combina anonimat de logs i signatures sanitizables.Todos los días, más de cinco mil millones de personas generan algún tipo de dato a través de Internet. Para acceder a esa información, necesitamos servicios de búsqueda, ya sean motores de búsqueda web o asistentes personales. En cada interacción con ellos, nuestro registro de acciones, logs, se utiliza para ofrecer una experiencia más útil. Para las empresas, también son muy valiosos, ya que ofrecen una forma de monetizar el servicio, vendiendo datos a terceros. Sin embargo, los logs podrían exponer información confidencial del usuario (identificadores, enfermedades, tendencias sexuales, creencias religiosas) o usarse para lo que se llama "life-logging": Un registro continuo de las actividades diarias. La normativa obliga a proteger esta información. Se han propuesto previamente sistemas de protección para conjuntos de datos cerrados, la mayoría de ellos trabajando con archivos atómicos o datos estructurados. Desafortunadamente, esos sistemas no se adaptan cuando se usan en el entorno de datos no estructurados en tiempo real que representan los servicios de Internet. Esta tesis tiene como objetivo diseñar técnicas para proteger la información confidencial del usuario en un entorno no estructurado de streaming en tiempo real, garantizando un equilibrio entre utilidad y protección de datos. Se han hecho tres propuestas para una protección eficaz de los logs. La primera es un nuevo método para anonimizar logs de consultas, basado en k-anonimato probabilístico y algunas herramientas de desanonimización para determinar fugas de datos. El segundo método, se ha mejorado añadiendo un equilibrio configurable entre privacidad y usabilidad, logrando una gran mejora en términos de utilidad de datos. La contribución final se refiere a los asistentes personales basados en Internet. La información generada por estos dispositivos se puede considerar “life-logging” y puede aumentar los riesgos de privacidad del usuario. Se propone un esquema de protección que combina anonimato de logs y firmas sanitizables.Every day, more than five billion people generate some kind of data over the Internet. As a tool for accessing that information, we need to use search services, either in the form of Web Search Engines or through Personal Assistants. On each interaction with them, our record of actions via logs, is used to offer a more useful experience. For companies, logs are also very valuable since they offer a way to monetize the service. Monetization is achieved by selling data to third parties, however query logs could potentially expose sensitive user information: identifiers, sensitive data from users (such as diseases, sexual tendencies, religious beliefs) or be used for what is called ”life-logging”: a continuous record of one’s daily activities. Current regulations oblige companies to protect this personal information. Protection systems for closed data sets have previously been proposed, most of them working with atomic files or structured data. Unfortunately, those systems do not fit when used in the growing real-time unstructured data environment posed by Internet services. This thesis aims to design techniques to protect the user’s sensitive information in a non-structured real-time streaming environment, guaranteeing a trade-off between data utility and protection. In this regard, three proposals have been made in efficient log protection. The first is a new method to anonymize query logs, based on probabilistic k-anonymity and some de-anonymization tools to determine possible data leaks. A second method has been improved in terms of a configurable trade-off between privacy and usability, achieving a great improvement in terms of data utility. Our final contribution concerns Internet-based Personal Assistants. The information generated by these devices is likely to be considered life-logging, and it can increase the user’s privacy risks. The proposal is a protection scheme that combines log anonymization and sanitizable signatures

    Privacy in rfid and mobile objects

    Get PDF
    Los sistemas RFID permiten la identificación rápida y automática de etiquetas RFID a través de un canal de comunicación inalámbrico. Dichas etiquetas son dispositivos con cierto poder de cómputo y capacidad de almacenamiento de información. Es por ello que los objetos que contienen una etiqueta RFID adherida permiten la lectura de una cantidad rica y variada de datos que los describen y caracterizan, por ejemplo, un código único de identificación, el nombre, el modelo o la fecha de expiración. Además, esta información puede ser leída sin la necesidad de un contacto visual entre el lector y la etiqueta, lo cual agiliza considerablemente los procesos de inventariado, identificación, o control automático. Para que el uso de la tecnología RFID se generalice con éxito, es conveniente cumplir con varios objetivos: eficiencia, seguridad y protección de la privacidad. Sin embargo, el diseño de protocolos de identificación seguros, privados, y escalables es un reto difícil de abordar dada las restricciones computacionales de las etiquetas RFID y su naturaleza inalámbrica. Es por ello que, en la presente tesis, partimos de protocolos de identificación seguros y privados, y mostramos cómo se puede lograr escalabilidad mediante una arquitectura distribuida y colaborativa. De este modo, la seguridad y la privacidad se alcanzan mediante el propio protocolo de identificación, mientras que la escalabilidad se logra por medio de novedosos métodos colaborativos que consideran la posición espacial y temporal de las etiquetas RFID. Independientemente de los avances en protocolos inalámbricos de identificación, existen ataques que pueden superar exitosamente cualquiera de estos protocolos sin necesidad de conocer o descubrir claves secretas válidas ni de encontrar vulnerabilidades en sus implementaciones criptográficas. La idea de estos ataques, conocidos como ataques de “relay”, consiste en crear inadvertidamente un puente de comunicación entre una etiqueta legítima y un lector legítimo. De este modo, el adversario usa los derechos de la etiqueta legítima para pasar el protocolo de autenticación usado por el lector. Nótese que, dada la naturaleza inalámbrica de los protocolos RFID, este tipo de ataques representa una amenaza importante a la seguridad en sistemas RFID. En esta tesis proponemos un nuevo protocolo que además de autenticación realiza un chequeo de la distancia a la cual se encuentran el lector y la etiqueta. Este tipo de protocolos se conocen como protocolos de acotación de distancia, los cuales no impiden este tipo de ataques, pero sí pueden frustrarlos con alta probabilidad. Por último, afrontamos los problemas de privacidad asociados con la publicación de información recogida a través de sistemas RFID. En particular, nos concentramos en datos de movilidad que también pueden ser proporcionados por otros sistemas ampliamente usados tales como el sistema de posicionamiento global (GPS) y el sistema global de comunicaciones móviles. Nuestra solución se basa en la conocida noción de k-anonimato, alcanzada mediante permutaciones y microagregación. Para este fin, definimos una novedosa función de distancia entre trayectorias con la cual desarrollamos dos métodos diferentes de anonimización de trayectorias.Els sistemes RFID permeten la identificació ràpida i automàtica d’etiquetes RFID a través d’un canal de comunicació sense fils. Aquestes etiquetes són dispositius amb cert poder de còmput i amb capacitat d’emmagatzematge de informació. Es per això que els objectes que porten una etiqueta RFID adherida permeten la lectura d’una quantitat rica i variada de dades que els descriuen i caracteritzen, com per exemple un codi únic d’identificació, el nom, el model o la data d’expiració. A més, aquesta informació pot ser llegida sense la necessitat d’un contacte visual entre el lector i l’etiqueta, la qual cosa agilitza considerablement els processos d’inventariat, identificació o control automàtic. Per a que l’ús de la tecnologia RFID es generalitzi amb èxit, es convenient complir amb diversos objectius: eficiència, seguretat i protecció de la privacitat. No obstant això, el disseny de protocols d’identificació segurs, privats i escalables, es un repte difícil d’abordar dades les restriccions computacionals de les etiquetes RFID i la seva naturalesa sense fils. Es per això que, en la present tesi, partim de protocols d’identificació segurs i privats, i mostrem com es pot aconseguir escalabilitat mitjançant una arquitectura distribuïda i col•laborativa. D’aquesta manera, la seguretat i la privacitat s’aconsegueixen mitjançant el propi protocol d’identificació, mentre que l’escalabilitat s’aconsegueix per mitjà de nous protocols col•laboratius que consideren la posició espacial i temporal de les etiquetes RFID. Independentment dels avenços en protocols d’identificació sense fils, existeixen atacs que poden passar exitosament qualsevol d’aquests protocols sense necessitat de conèixer o descobrir claus secretes vàlides, ni de trobar vulnerabilitats a les seves implantacions criptogràfiques. La idea d’aquestos atacs, coneguts com atacs de “relay”, consisteix en crear inadvertidament un pont de comunicació entre una etiqueta legítima i un lector legítim. D’aquesta manera, l’adversari utilitza els drets de l’etiqueta legítima per passar el protocol d’autentificació utilitzat pel lector. Es important tindre en compte que, dada la naturalesa sense fils dels protocols RFID, aquests tipus d’atacs representen una amenaça important a la seguretat en sistemes RFID. En aquesta dissertació proposem un nou protocol que, a més d’autentificació, realitza una revisió de la distància a la qual es troben el lector i l’etiqueta. Aquests tipus de protocols es coneixen com a “distance-boulding protocols”, els quals no prevenen aquests tipus d’atacs, però si que poden frustrar-los amb alta probabilitat. Per últim, afrontem els problemes de privacitat associats amb la publicació de informació recol•lectada a través de sistemes RFID. En concret, ens concentrem en dades de mobilitat, que també poden ser proveïdes per altres sistemes àmpliament utilitzats tals com el sistema de posicionament global (GPS) i el sistema global de comunicacions mòbils. La nostra solució es basa en la coneguda noció de privacitat “k-anonymity” i parcialment en micro-agregació. Per a aquesta finalitat, definim una nova funció de distància entre trajectòries amb la qual desenvolupen dos mètodes diferents d’anonimització de trajectòries.Radio Frequency Identification (RFID) is a technology aimed at efficiently identifying and tracking goods and assets. Such identification may be performed without requiring line-of-sight alignment or physical contact between the RFID tag and the RFID reader, whilst tracking is naturally achieved due to the short interrogation field of RFID readers. That is why the reduction in price of the RFID tags has been accompanied with an increasing attention paid to this technology. However, since tags are resource-constrained devices sending identification data wirelessly, designing secure and private RFID identification protocols is a challenging task. This scenario is even more complex when scalability must be met by those protocols. Assuming the existence of a lightweight, secure, private and scalable RFID identification protocol, there exist other concerns surrounding the RFID technology. Some of them arise from the technology itself, such as distance checking, but others are related to the potential of RFID systems to gather huge amount of tracking data. Publishing and mining such moving objects data is essential to improve efficiency of supervisory control, assets management and localisation, transportation, etc. However, obvious privacy threats arise if an individual can be linked with some of those published trajectories. The present dissertation contributes to the design of algorithms and protocols aimed at dealing with the issues explained above. First, we propose a set of protocols and heuristics based on a distributed architecture that improve the efficiency of the identification process without compromising privacy or security. Moreover, we present a novel distance-bounding protocol based on graphs that is extremely low-resource consuming. Finally, we present two trajectory anonymisation methods aimed at preserving the individuals' privacy when their trajectories are released

    Resilient and Scalable Android Malware Fingerprinting and Detection

    Get PDF
    Malicious software (Malware) proliferation reaches hundreds of thousands daily. The manual analysis of such a large volume of malware is daunting and time-consuming. The diversity of targeted systems in terms of architecture and platforms compounds the challenges of Android malware detection and malware in general. This highlights the need to design and implement new scalable and robust methods, techniques, and tools to detect Android malware. In this thesis, we develop a malware fingerprinting framework to cover accurate Android malware detection and family attribution. In this context, we emphasize the following: (i) the scalability over a large malware corpus; (ii) the resiliency to common obfuscation techniques; (iii) the portability over different platforms and architectures. In the context of bulk and offline detection on the laboratory/vendor level: First, we propose an approximate fingerprinting technique for Android packaging that captures the underlying static structure of the Android apps. We also propose a malware clustering framework on top of this fingerprinting technique to perform unsupervised malware detection and grouping by building and partitioning a similarity network of malicious apps. Second, we propose an approximate fingerprinting technique for Android malware's behavior reports generated using dynamic analyses leveraging natural language processing techniques. Based on this fingerprinting technique, we propose a portable malware detection and family threat attribution framework employing supervised machine learning techniques. Third, we design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. We leverage graph analysis techniques to generate relevant, actionable, and granular intelligence that can be used to identify the threat effects induced by malicious Internet activity associated to Android malicious apps. In the context of the single app and online detection on the mobile device level, we further propose the following: Fourth, we design a portable and effective Android malware detection system that is suitable for deployment on mobile and resource constrained devices, using machine learning classification on raw method call sequences. Fifth, we elaborate a framework for Android malware detection that is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. We also evaluate the portability of the proposed techniques and methods beyond Android platform malware, as follows: Sixth, we leverage the previously elaborated techniques to build a framework for cross-platform ransomware fingerprinting relying on raw hybrid features in conjunction with advanced deep learning techniques

    Computational and symbolic analysis of distance-bounding protocols

    Get PDF
    Contactless technologies are gaining more popularity everyday. Credit cards enabled with contactless payment, smart cards for transport ticketing, NFC-enabled mobile phones, and e-passports are just a few examples of contactless devices we are familiar with nowadays. Most secure systems meant for these devices presume physical proximity between the device and the reader terminal, due to their short communication range. In theory, a credit card should not be charged of an on-site purchase if the card is not up to a few centimeters away from the payment terminal. In practice, this is not always true. Indeed, some contactless payment protocols, such as Visa's payWave, have been shown vulnerable to relay attacks. In a relay attack, a man-in-the-middle uses one or more relay devices in order to make two distant devices believe they are close. Relay attacks have been implemented also to bypass keyless entry and start systems in various modern cars. Relay attacks can be defended against with distance-bounding protocols, which are security protocols that measure the round-trip times of a series of challenge/response rounds in order to guarantee physical proximity. A large number of these protocols have been proposed and more sophisticated attacks against them have been discovered. Thus, frameworks for systematic security analysis of these protocols have become of high interest. As traditional security models, distance-bounding security models sit within the two classical approaches: the computational and the symbolic models. In this thesis we propose frameworks for security analysis of distance-bounding protocols, within the two aforementioned models. First, we develop an automata-based computational framework that allows us to generically analyze a large class of distance-bounding protocols. Not only does the proposed framework allow us to straightforwardly deliver computational (in)security proofs but it also permits us to study problems such as optimal trade-offs between security and space complexity. Indeed, we solve this problem for a prominent class of protocols, and propose a protocol solution that is optimally secure amongst space-constrained protocols within the considered class. Second, by building up on an existing symbolic framework, we develop a causality-based characterization of distance-bounding security. This constitutes the first symbolic property that guarantees physical proximity without modeling continuous time or physical location. We extend further our formalism in order to capture a non-standard attack known as terrorist fraud. By using our definitions and the verification tool Tamarin, we conduct a security survey of over 25 protocols, which include industrial protocols based on the ISO/IEC 14443 standard such as NXP's MIFARE Plus with proximity check and Mastercard's PayPass payment protocol. For the industrial protocols we find attacks, propose fixes and deliver security proofs of the repaired versions

    Konzepte für Datensicherheit und Datenschutz in mobilen Anwendungen

    Get PDF
    Smart Devices und insbesondere Smartphones nehmen eine immer wichtigere Rolle in unserem Leben ein. Aufgrund einer kontinuierlich anwachsenden Akkulaufzeit können diese Geräte nahezu ununterbrochen mitgeführt und genutzt werden. Zusätzlich sorgen stetig günstiger werdende Mobilfunktarife und ansteigende Datenraten dafür, dass den Nutzern mit diesen Geräten eine immerwährende Verbindung zum Internet zur Verfügung steht. Smart Devices sind dadurch nicht mehr reine Kommunikationsmittel sondern ebenfalls Informationsquellen. Darüber hinaus gibt es eine Vielzahl an Anwendungen von Drittanbietern für diese Geräte. Dank der darin verbauten Sensoren, können darauf beispielsweise ortsbasierte Anwendungen, Gesundheitsanwendungen oder Anwendungen für die Industrie 4.0 ausgeführt werden, um nur einige zu nennen. Solche Anwendungen stellen allerdings nicht nur ein großes Nutzen-, sondern zu gleich ein immenses Gefahrenpotential dar. Über die Sensoren können die unterschiedlichsten Kontextdaten erfasst und relativ präzise Rückschlüsse auf den Nutzer gezogen werden. Daher sollte bei diesen Geräten ein besonderes Augenmerk auf die Datensicherheit und insbesondere auf den Datenschutz gelegt werden. Betrachtet man allerdings die bestehenden Datensicherheits- und Datenschutzkomponenten in den aktuell vorherrschenden mobilen Plattformen, so fällt auf, dass keine der Plattformen die speziellen Anforderungen an ein mobiles Datensicherheits- und Datenschutzsystem zufriedenstellend erfüllt. Aus diesem Grund steht im Zentrum der vorliegende Arbeit die Konzeption und Umsetzung neuartiger Datensicherheits- und Datenschutzkonzepte für mobile Anwendungen. Hierfür werden die folgenden fünf Forschungsbeiträge erbracht: [FB1] Bestehende Datensicherheits- und Datenschutzkonzepte werden analysiert, um deren Schwachstellen zu identifizieren. [FB2] Ein kontextsensitives Berechtigungsmodell wird erstellt. [FB3] Das Berechtigungsmodell wird in einem flexiblen Datenschutzsystem konzeptionell eingebettet und anschließend implementiert. [FB4] Das Datenschutzsystem wird zu einem holistischen Sicherheitssystem erweitert. [FB5] Das daraus entstandene holistische Sicherheitssystem wird evaluiert. Um die Forschungsziele zu erreichen, wird mit dem Privacy Policy Model (PPM) ein gänzlich neues Modell zur Formulierung von feingranularen Berechtigungsregeln eingeführt, die es dem Nutzer ermöglichen, je nach Bedarf, einzelne Funktionseinheiten einer Anwendung zu deaktivieren, um dadurch die Zugriffsrechte der Anwendung einzuschränken. Zusätzlich kann der Nutzer auch die Genauigkeit der Daten, die der Anwendung zur Verfügung gestellt werden, reduzieren. Das PPM wird in der Privacy Policy Platform (PMP) implementiert. Die PMP ist ein Berechtigungssystem, das nicht nur für die Einhaltung der Datenschutzrichtlinien sorgt, sondern auch einige der Schutzziele der Datensicherheit erfüllt. Für die PMP werden mehrere Implementierungsstrategien diskutiert und deren Vor- und Nachteile gegeneinander abgewogen. Um neben den Datenschutz auch die Datensicherheit gewährleisten zu können, wird die PMP um den Secure Data Container (SDC) erweitert. Mit dem SDC können sensible Daten sicher gespeichert und zwischen Anwendungen ausgetauscht werden. Die Anwendbarkeit der PMP und des SDCs wird an Praxisbeispielen aus vier unterschiedlichen Domänen (ortsbasierte Anwendungen, Gesundheitsanwendungen, Anwendungen in der Industrie 4.0 und Anwendungen für das Internet der Dinge) demonstriert. Bei dieser Analyse zeigt sich, dass die Kombination aus PMP und SDC nicht nur sämtliche Schutzziele, die im Rahmen der vorliegenden Arbeit relevant sind und sich am ISO-Standard ISO/IEC 27000:2009 orientieren, erfüllt, sondern darüber hinaus sehr performant ist. Durch die Verwendung der PMP und des SDCs kann der Akkuverbrauch von Anwendungen halbiert werden
    corecore