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Pàmies-Estrems per a l’obtenció del t́ıtol de Doctor, ha estat real-
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“What are the roots that clutch, what branches grow

Out of this stony rubbish? Son of man,

You cannot say, or guess, for you know only

A heap of broken images, where the sun beats,

And the dead tree gives no shelter, the cricket no relief,

And the dry stone no sound of water. Only

There is shadow under this red rock,

(Come in under the shadow of this red rock),

And I will show you something different from either

Your shadow at morning striding behind you

Or your shadow at evening rising to meet you;

I will show you fear in a handful of dust.”

T.S. Eliot
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by David Pàmies-Estrems

Every day, more than five billion people generate some kind of data over the

Internet. As a tool for accessing that information, we need to use search services,

either in the form of Web Search Engines or through Personal Assistants. On each

interaction with them, our record of actions via logs, is used to offer a more useful

experience. For companies, logs are also very valuable since they offer a way to

monetize the service.

Monetization is achieved by selling data to third parties, however query logs could

potentially expose sensitive user information: identifiers, sensitive data from users

(such as diseases, sexual tendencies, religious beliefs) or be used for what is called

”life-logging”: a continuous record of one’s daily activities. Current regulations

oblige companies to protect this personal information. Protection systems for

closed data sets have previously been proposed, most of them working with atomic

files or structured data. Unfortunately, those systems do not fit when used in the

growing real-time unstructured data environment posed by Internet services.

This thesis aims to design techniques to protect the user’s sensitive information in a

non-structured real-time streaming environment, guaranteeing a trade-off between

data utility and protection. In this regard, three proposals have been made in effi-

cient log protection. The first is a new method to anonymize query logs, based on

probabilistic k-anonymity and some de-anonymization tools to determine possible

data leaks.

A second method has been improved in terms of a configurable trade-off between

privacy and usability, achieving a great improvement in terms of data utility.

Our final contribution concerns Internet-based Personal Assistants. The infor-

mation generated by these devices is likely to be considered life-logging, and it

can increase the user’s privacy risks. The proposal is a protection scheme that

combines log anonymization and sanitizable signatures.
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Outline of the Thesis

This thesis is organized in 6 chapters.

Chapter 1 states the thesis’ aims and objectives. It also outlines the direction

taken in our research, and introduces the results contained in the remainder of the

thesis.

Chapter 2 summarizes the most relevant and up to date research conducted in

this field. It briefly explains the concepts of privacy and anonymization, study-

ing in detail the main techniques applied in fixed-length and data-stream input

treatment.

Chapter 3 proposes a new method to anonymize query logs based on k-anonymity.

It also proposes some de-anonymization tools to determine possible privacy prob-

lems, in case an attacker gains access to the anonymized query logs. This approach

tries to preserve the original user interests, but spreads possible semi-identifier in-

formation over many users, to prevent linkage attacks.

Chapter 4 presents an alternative method to anonymize query logs, with the goal

of obtaining the same or better level of privacy, in addition to a customizable data

utility through the use of parameterizable levels of categorization. It also devises

formal and experimental proofs that ensure its feasibility in terms of privacy,

utility, and scalability achievement.

Chapter 5 highlights the threats generated by the use of Internet-based personal

assistants. Although the interaction with those devices is conducted by voice in

a local environment, the generated logs are often collected and stored on remote

servers, which can lead to serious privacy risks. To mitigate privacy threats,

this chapter proposes a protection scheme that combines log anonymization and

sanitizable signatures.

Chapter 6 presents the main conclusions of the thesis, including achieved goals,

limitations of the current approach and avenues for future research.
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Chapter 1

Introduction

This chapter is divided into three main sections. In section 1.1 we briefly introduce

the conjunction of the facts that motivates the direction taken in our research. In

section 1.2 we give a general description of each of the contributions of this thesis.

Finally, section 1.3 lists the publications emanating from this thesis.

1.1 Motivation

The whole data created, captured, or replicated, is called the Global Datasphere.

IDC predicts that the Global Datasphere will grow at an annual rate of 61%, from

33 Zettabytes (ZB) in 2018 to 175 ZB by 2025. In terms of population, more than

five billion people generate some kind of data every day. By 2025, that number

will be six billion, or 75% of the world’s population, and each connected person

will have at least 5 000 daily digital interactions, in front of the current 800 [1].

Global Datasphere is composed of very varied data sources, such as surveillance

cameras, medical data, digital TV/radio, video games, mobile phones, VoIP, PCs,

servers’ logs, and embedded systems (in automobiles, vending machines, etc.).

If we focus only on the Web, individuals usually interact with what is known as a

Web Search Engine (WSE), a system that is designed to search the World Wide

1
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2 Introduction

Web in a systematic way for particular information specified in a textual search

query [2]. These queries contain certain keywords related to the topics they are

looking for. The WSE, then retrieves and presents an accurate list of responses

that tackle those topics. Generally, people use these services mainly for one of

these three reasons: information research, shopping, or entertainment.

Popularity of these tools remain very high [3] since only sending a basic query

allows people to find, with a minimal response time, what they are looking for.

Therefore, it can be assumed that services such as the ones offered by Google or

Bing will continue to be essential in the coming years.

Apart from the information retrieval process needed to fulfill the user’s query, the

service also starts a data gathering process that stores the submitted query (i.e.,

the keywords) and some metadata e.g. date of the query, some identifiers of the

query issuer (user id), which specific search result was selected by the issuer (if

applies), and other user related information [4, 5]. Additionally, queries made

on most modern devices often send the user location and the local time as two

additional parameters when it comes to find the most convenient information in

each situation. Therefore, user, location, and local time are also registered in the

company servers. This information is usually registered in the form of a log, and

all the logs are usually stored in a file or database, which contains all the previously

recorded logs, and is generally referred to as query logs [6]. Over time, the query

logs gathering process, produces a huge data repository of information about our

everyday lives, which can be called lifelogging [7].

In the past, people have only used Web Search Engines as the main gateway to the

Internet, but as time goes by, we can find more alternatives. The new proposals

are trying to reduce the barriers to access information even more and to make

it accessible to everyone, anytime. As a consequence of these innovations, today

we can find a multitude of technological tools that have been developed precisely

for this reason: smartphones, smartgateways, smartwatches and activity bands.

As a whole, we will refer to these devices as Personal Assistants. For reasons of

economies of scale, the development of this type of device is only available to a
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1.1. Motivation 3

few technological organizations [8, 9]. These tools allow the lifelogging process to

be even more exhaustive.

Furthermore, the data about individuals, groups, and periods of time could be

combined into bigger groups over longer periods of time; what has been recently

designated as Big Data.

Once the query logs are generated, they are processed and analyzed to build users’

profiles [10] which could be used to improve their services in several ways. In the

literature, a user profile is generally considered a set of well-defined categories of

interests (e.g. science, health, society, sports, etc.) with a certain weight assigned

to each one according to the evidence generated by the corresponding user and

how they have been classified under each category [11]. When focusing on search

services, search queries are the evidence, and the amount of queries from each user

classified under each category reflects the related weight.

Users’ profiles could be helpful in improving the service offered in the following

ways:

• Personalization. Query terms can have multiple meanings; therefore, iden-

tifying the sense required by the user represents a challenge. In order to

better fulfill their needs, more relevant results should be placed in the first

position of the returned results. By analyzing the queries submitted by users

in the past, the service providers can gain knowledge about their preferences,

and this knowledge can be used to contextualize and disambiguate terms in

the future [12, 13]. This way, if a user searches for “Mercury” and her pro-

file indicates that she is interested in “Astronomy”, the WSE can prioritize

relevant results (e.g., URLs) that correspond to the planet Mercury in the

initial positions of search results, instead of the chemical element.

• Usability: By knowing the frequencies of most formulated queries and

most selected results, online services are able to improve the ranking algo-

rithms [14]. This can also be used to suggest alternative queries [15]. Such

suggestions can show how to correct mistakes when typing, add specificity
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4 Introduction

to the initial query, or provide similar queries with more results after retriev-

ing poor results for the original query submission [16]. Continuing with the

example of the term “Mercury”, if a user inputs just this term, the service

could suggest more specific alternative queries, such as “Mercury - Planet”,

“Mercury - Element”, “mercury poisoning”, and “mercury marine”, among

others. These alternative keywords are expected to retrieve more accurate

results for the user.

However, query logs can also be exploited for other purposes because they reveal

powerful insights about customer intent-to-purchase and other factors [17]. This

new exploitation can be conducted by the service provider itself or by a third

party, for the following purposes:

• Marketing: While characterizing general user profiles, user behavior, and

user search habits, it is possible to improve keyword advertising campaigns

and extract market tendencies among others. For example, the user can be

characterized by their query logs (gender, age, income, education, etc.) and

afterwards verify if the advertisements have had an impact on the intended

audience (interests and behaviour) [18, 19]. Besides this, it is possible to

extract market tendencies [20]. More concretely, search analytics is one of

the cornerstones of so-called Search Engine Marketing and it is in charge

of using search data to investigate particular interactions among searchers,

the search engine, or content during searching episodes [21]. For example,

Google Trends1 is a service that exploits this kind of data. In particular,

Google Trends shows how often a particular term is searched according to

the total search volume across various regions of the world.

• Research: As stated in [22], query logs contain information that would

never be available to researchers using conventional data collection tech-

niques. For example, a medical researcher might discover that people with

1Google Trends. https://www.google.com/trends/
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1.1. Motivation 5

asthma tend to wear wool or live in areas with coal power plants; a soci-

ologist may study how ideas spread from one person to an entire commu-

nity, or may investigate the differences between the interests that individuals

claim to have during face-to-face interviews and the real interests that their

search queries reveal [23]; a political scientist might learn about democracy

by studying the evolution of political searches by users in a developing coun-

try. Query logs also enable researchers to ask questions that would normally

require going backward in time. For example, a medical researcher might

study people diagnosed with diabetes today to find out what their primary

symptoms were six months ago. Asking them directly, once they learn they

have diabetes, may result in subjective bias [22]. Last but not least, a

computer scientist may study and analyze new Information Retrieval (IR)

algorithms via a common benchmark query log [24]. It may also be used to

learn about users information needs and query formulation approaches [20]

and revolve around the use of language in queries [25], among other research

topics [26–30].

Turning this data into knowledge is a key interest for many companies, since

the extraction of valuable information is what enables those companies to obtain

economic benefits. This process is known as data monetization [31]. A classic

example of data monetization can be found in the supermarket group Tesco [32],

which uses a data ecosystem to monetize data from its loyalty program, the Tesco

ClubCard. In return for opting in to ClubCard, customers receive personalized

offers. The same knowledge could be extracted from the queries against Internet

services, making that information valuable. In addition to those benefits, building

and exploiting query logs may lead to serious privacy problems as well, since this

process enables these organizations to compile a lot of data about individuals.

Each query logged contains a user identifier, a text about what the user is looking

for, the time when it was done, the results selected by the user, and in some cases,

the user’s location.
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6 Introduction

The keywords of each query and the related metadata may provide sensitive infor-

mation from the user such as behaviors, habits, interests, religious views, sexual

orientation, etc. to anyone who has access to the logs and therefore to third parties.

Even more, some query keywords may contain identifiers and quasi-identifiers [33],

which may allow to link queries with real people. This is specially feasible, given

current tendencies such as vanity search and egosurfing [34], in which people look

for their own names over the Internet.

Someone might think that if it is too dangerous to save these logs, a possible

solution would be to not store any of them. However, as we have seen, the service

they offer is essential in order to allow people to find information on the Internet,

and the economic viability of the companies that offer this service is closely linked

to the data monetization process. Therefore, they will continue keeping the data.

The current practice was recently put in the spotlight by the U.S. Federal Trade

Commission when it published a report about data collection and use practices of

the most relevant Data Brokers [35]. The widespread development of technologies

such as Data Mining and Artificial Intelligence over Big Data, make the task of

extracting information, knowledge, or relevant relationships easier every day [36].

This can lead to very serious privacy risks of personal data disclosure, as this data

can be exploded not only in isolation, but also as a combination of information

generated between several sources.

Anyone who uses these services is constantly disclosing, in a direct or indirect

way, personal data to the organization which provides the service. Using Personal

Assistants, the situation is even more accentuated, since the user is not in front

of a computer. Users tend to establish more relaxed relationships with the device,

sometimes without even knowing if it is working or sending information to another

site, and mostly seeing it as a friend or an extension of its person.

Therefore there is a strong need to protect sensible users’ data, while allowing the

resulting data to remain useful for companies that offer the service.
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1.1. Motivation 7

To protect the privacy of individuals, several measures were established by law-

makers, from the USA Privacy Act of 1974 [37], until the recent General Data

Protection Regulation (GDPR), adopted by the European Union in 2016 [38].

Specifically in this last case, all entities that perform personal data processing

related to European citizens, must be able to demonstrate at any time that they

are complying with the regulations established by the GDPR.

Although query logs could be protected prior to their publication, there is no ab-

solute guarantee of anonymity. To protect the user’s identity and sensitive data,

there exist some techniques that are able to eliminate direct user identifiers. How-

ever, a specialized type of attack, called Record Linkage attack, allows the linking

of different user records, which contain seemingly harmless information, but when

all the data can be related to, it can end up revealing sensitive information from

the users [19, 39]. As an example, there is one well-known case, the AOL Research

scandal, in which around 36 million queries performed by AOL’s customers were

publicly disclosed. Although records were previously de-identified, it was possible

to identify some users from the disclosed query logs and other sensitive information

was exposed [40]. The case ended up with an important damage to AOL users’ pri-

vacy and to AOL itself, with several class action law suits and complaints against

the company [41–43].

In addition, these data protection schemes have traditionally been constructed

from a static point of view; that is, a closed data set taken and protected in

isolation. These techniques may be improved to reach a good level of protection,

but our context seems different. Interactions made by a user and therefore their

history, increase frequently. This could be seen in global terms as a real-time data

stream.

As indicated by [1], real-time data currently represents 15% of the Global Datas-

phere, but predictions point that nearly 30% will be real-time by 2025. Enterprises

looking to provide superior customer experience and grow share must have data

infrastructures that can meet this growth in real-time data. Therefore, what we

need to propose is a streaming protection scheme.
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8 Introduction

More specifically, we propose using a server-side software capable of processing

queries in real time and building anonymized query logs that still retain enough

data utility to allow its monetization. As a result, search service providers may

then offer the protected query logs to external organizations for data monetization

purposes while keeping the real query logs in a safe place; otherwise, search service

providers may also decide to only keep protected logs, getting in turn a lower risk

of information disclosure in case of a direct attack.

At the same time, search service providers may generate profiles that contain simi-

lar queries from other users. Each profile is not the user’s profile, but it contains

the same interests, with the benefit that quasi-identifiers do not correspond with

this user.

We also want to study an additional case, that may remain vulnerable: lifelogging

data streams generated by Internet-based personal devices like Google Home and

Amazon Echo [5, 44]. The issue generated by such devices, related to other data

information actors in terms of EU data protection directives, is an interesting topic

which may need some customised solution, therefore we will scrutinize that case

in detail.

To sum up, this thesis proposal takes into account the role of the organizations and

their needs to monetize the user’s data, and aims to generate streams of query logs

in real time that preserve an adequate level of data utility for the monetization

process, but at the same time with a limited privacy disclosure risk.

1.2 Research Contributions

In this section we briefly describe each of the contributions of this thesis. In

the order of appearance in the remainder of the text, the research contributions

are: Working at the Web Search Engine Side to Generate Privacy-preserving User

Profiles, A Real-Time Query Log Protection Method for Web Search Engines,

Lifelogging Protection Scheme for Internet-Based Personal Assistants.
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1.2.1 Working at the Web Search Engine Side to Generate

Privacy-preserving User Profiles

The popularity of Web Search Engines (WSEs) enables them to generate a lot of

data in form of query logs. These files contain all search queries submitted by

users. Economical benefits could be earned by means of selling or releasing those

logs to third parties. Nevertheless, this data potentially expose sensitive user

information. Removing direct identifiers is not sufficient to preserve the privacy of

the users. Some existing privacy-preserving approaches use log batch processing

but, as logs are generated and consumed in a real-time environment, a continuous

anonymization process would be more convenient. In this way, in this paper we

propose: i) a new method to anonymize query logs, based on k-anonymity; and ii)

some de-anonymization tools to determine possible privacy problems, in case that

an attacker gains access to the anonymized query logs. This approach preserves the

original user interests, but spreads possible semi-identifier information over many

users, preventing linkage attacks. To assess its performance, all the proposed

algorithms are implemented and an extensive set of experiments are conducted

using real data.

1.2.2 A Real-Time Query Log Protection Method for Web

Search Engines

Web search engines (e.g., Google, Bing, Qwant, and DuckDuckGo) may process a

myriad of search queries per second. According to Internet Live Stats, Google han-

dles more than two hundred million queries per hour, i.e., about two trillion queries

per year. For monetization purposes, the queries can be stored and complemented

with additional data, referred to as query logs. Together, they can correlate valu-

able information to build accurate user profiles. Before releasing the query logs to

third parties (e.g., for profit purposes), the personal information contained in the

query logs must be properly protected by the web search engines. Current regula-

tions establish strict control, and require from provable anonymization processing
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10 Introduction

(e.g., in terms of statistical disclosure) of any personally identifiable information.

In this paper, we tackle this challenge. We propose a real-time anonymization

solution to protect streams of unstructured data at the server side. Our approach

is based on the use of a probabilistic k-anonymity technique. It allows proba-

bilistic processing of personally identifiable attributes contained in the query logs,

with provable privacy properties. Our solution handles limitations of traditional k-

anonymity approaches with respect to unstructured data and real-time processing.

We present the implementation of our solution and report experimental evaluation

results. The evaluation is conducted in terms of privacy, utility, and scalability

achievement. Results validate the feasibility of our proposal.

1.2.3 Lifelogging Protection Scheme for Internet-Based

Personal Assistants

Internet-based personal assistants are promising devices combining voice control

and search technologies to pull out relevant information to domestic users. They

are expected to assist in a smart way to household activities, such as to schedule

meetings, find locations, reporting of cultural events, sending of messages and

a lot more. The information collected by these devices, including personalized

lifelogs about their corresponding users, is likely to be stored by well-established

Internet players related to web search engines and social media. This can lead to

serious privacy risks. The issue of protecting the identity of domestic users and

their sensitive data must be tackled at design time, to promptly mitigate privacy

threats. Towards this end, this paper proposes a protection scheme that jointly

handles the aforementioned issues by combining log anonymization and sanitizable

signatures.
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Chapter 2

State of the Art

Privacy in our society is increasingly critical. Mobile and computing applications

are dramatically increasing the amount of personal data released to service pro-

viders as well as to third parties [48]. This data often includes the location of

individuals, their movement patterns as well as sensor-acquired data that may

reveal individuals’ physical conditions and habits. Privacy solutions must comply

to ethical and legal requirements, and not prevent profitable business models.

The illegitimate use of personal data is becoming a commonplace. We can find

varied examples. In the AOL Research case [49], a detailed search logs by AOL

were released. The release was intentional and intended for research purposes;

however, the public release meant that the entire Internet could see the results

rather than a select number of academics. AOL did not identify any user in the

report, and in fact the logs were previously protected, but personally identifiable

information was present in many of the queries. This allowed to identify some

user and sensible information from the query logs [40]. This case underscores how

much people unintentionally reveal about themselves when they use search engines,

and how risky it can be for companies like AOL, Google and Yahoo to compile

such data. AOL itself, has been sued over its online release of data, accused

of violating the Electronic Communications Privacy Act and of fraudulent and

deceptive business practices, among other claims [42]. The lawsuit seek at least

13
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14 State of the Art

$5,000 for every person whose search data was exposed. Two AOL employees were

fired and the Chief Technology Officer resigned over the incident.

In fact, other companies are also not exempt from controversy. USA Justice De-

partment request data about user’s search queries to America Online, Yahoo,

Microsoft an Google [43]. That case did not involve information that could be

linked to individuals, but highlights what Internet user can expect for the data

trail they leave online.

In a similar vein we can find other cases concerning privacy, such as NSA PRISM

program revealed by E. Snowden in May 20131, or the recent scandal of Cambridge

Analytica and Facebook, published in April 20182.

Our work is focused on to the use of privacy-enhancing technologies (PETs) applied

to the web search paradigm. In this chapter, we summarise most relevant research

conducted in this field and published up to date. The responsibility of applying

PETs relies on two main actors: user and WSE. Notwithstanding, we have chosen

to organize the research in three main groups as shown on Figure 2.1, on the basis

of previous classifications [3, 50, 51]. All the proposals are designed to protect the

user’s privacy in front of WSEs.

The first group, studied in detail in Section 2.1, contains proposals that protect

user’s privacy at the WSE side without the need for user’s participation. They

are asynchronous and transparent to the user. The second group, described in

Section 2.2, includes approaches that protect user’s privacy without any help from

the WSE, i.e., when user do not require any changes at the server side of the WSE.

The third group, in Section 2.3 comprises approaches that require a certain level

of cooperation between the user and the WSE. The latter are not considered as

server-side, since the user actively participate in the process — when WSEs do

not cooperate, it is assumed that the user immediately detect them. In the sequel,

we report related work under all three categories.

1http://www.bbc.com/news/world-us-canada-23123964
2http://fortune.com/2018/04/10/facebook-cambridge-analytica-what-happened/
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WSE PETs

SERVER-SIDE

Fixed-length Inputs

Suppression

Generalization

k-anonymity

Differential Privacy

Data-stream Inputs

Rank Swapping

Differential Privacy

k-anonymity

Probabilistic k-anonymity

CLIENT-SIDE
Obfuscation Techniques

Standalone Systems

Distributed Systems
Anonymous Channels

COLLABORATIVE WSE-CLIENT

Private Information Retrieval

Platform for Privacy Preferences

Context-based Retrieval

Figure 2.1: Classification of Web Search Engine Privacy Enhancing Technolo-
gies (PETs)

2.1 Survey on Server Side Proposals

Anonymization of query logs on Server Side has been addressed in the literature

from different approaches. WSEs aim at anonymizing data while minimizing infor-

mation loss, with the goal of commercialize releases of the protected set of query

logs to third-parties. Therefore, our work is focused on this assumption. Anonymi-

zation solutions to reach such a goal can get classified according to anonymizaiton

inputs. Most solutions are either processing fixed-length (e.g., block-based) or

data-stream inputs.

2.1.1 Fixed-length input

Chronologically, the fixed-length input methods were the first to be proposed.

Some statistic and/or semantic methods are applied to the data-set to find the

sensible information and reduce the sensible information disclosure.
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Existing proposals of this type, consider a set of finite and static data structures,

therefore, each set contains all the elements before beginning the treatment. To

make the protection of the whole dataset, the protection is conducted as a two-

step process, first all the dataset elements are analyzed and then a comprehensive

protection can be applied where needed.

The interesting thing about this approach is that some logs may not divulge in-

formation for themselves, but once some logs of the same user are related, the

aggregated data may reveal some additional sensible information about the indi-

vidual. By having all the data available, it allows those methods to process all the

queries and strategically modify or remove queries to reduce the risk of information

disclosure, before publishing any data.

A possible drawback of this approach can be found by anonymizing twice the

same data and obtaining slightly different results. In this case, each additional

anonymization would be releasing additional information about the original data.

Another limitation of these approaches is that they need to complete the data

set, before being able to treat it and release it. These sets can be large and slow

to complete. Therefore, in some scenario where data is needed continuously, this

approach is not feasible. Additionally, if periodic blocks of information are freely

released, these approaches may also reveal certain temporary information related

to the user.

Below are explained the main approaches which belong to the fixed-length input

category, divided in four main subcategories, depending of the applied technique:

Suppression, Generalization, k-anonymity and Differential Privacy.

2.1.1.1 Suppression

Considering that the data to be treated is in fixed-length input, a possible first

approach to achieve query log anonymization is to review all that data and elimi-

nate or hash those elements which, in isolation or combination, may reveal sensible
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information. The analysis of the dataset assumes either statistic or semantic meth-

ods, to identify which elements require suppression.

Examples of suppression under the context of query logs anonymization exist in

the related literature [16]. In particular, they pose seven proposals: Log deletion,

hashing queries, identifier deletion, hashing identifiers, scrubbing query content,

deleting infrequent queries and shortening sessions. Those include some basic

statistic and semantic methods, concluding that search industry, academia, con-

sumers, and regulators all play important roles in determining how to strike the

balance between utility and privacy.

More concretely, methodologies based on shortening sessions, simply remove old

query sets assuming that query logs will not be large enough to enable identity

disclosure. However, this assumption does not take into account the existence

of highly identifying queries. This can be seen on the three-month of query logs

published by AOL [40], which does not record the user’s AOL screen names, hop-

ping it would benefit academic researchers. Shortly after the publication, some

user’s names and addresses were identified among the logs. Those logs underscore

how much people unintentionally reveal about themselves when they use search

engines, and how risky it can be for companies like AOL, Google and Yahoo to

compile such data.

Another approach is to remove sets of queries, instead of only the old ones [52],

also assuming that the size of the user’s logs will not be large enough to allow

diffusion of the user identity. In this case, the protection of privacy against highly

identifying queries also remain compromised.

A more appropriate approach [26] proposes a solution, based on a threshold cryp-

tography system, that only eliminates highly identifying queries, in real time,

without preserving history. They assume that those queries are more likely to re-

fer to identifying or quasi-identifying information. It uses a scheme for encrypting

unique queries with a hash that can be decrypted given sufficient examples of the

query being used by multiple users. This approach is not free of issues. If an
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attacker knows or forces a user to make a query, the attacker can effectively mark

all that session.

Also, targeting at unique queries seems to be a overly aggressive technique, as the

elimination of a significant number of non-identifying queries becomes a complex

and error-prone task. However, this is difficult to avoid due to the fact that the

vast majority of queries appear only a limited number of times, as it can be seen

at the query traffic analysis conducted on [27]. This analysis was conducted on

an hourly basis by matching it against list of queries that have been topically pre-

categorized by human editors. In any case, it can be quite challenging to select

the proper deletion threshold using this approach.

A report illustrates how top search engines deal with the retention of user’s search

information [53], also based in suppression methods. In this case, some WSE give

to the user the ability to opt out of having WSE retain their search information,

including IP address, ID and search query, or delete that information after a certain

time. Some apply a personal information filter to remove unique identifiers, names,

physical addresses, phone numbers, social security numbers, bank accounts or any

other identification data related to the user. It is important to note, that when a

user chooses to delete information from their personal search history, it will still

remain on the search engine’s servers until the minimum retention time defined in

their policy, which in some cases is declared to be up to 18 months. Therefore,

these data are still exposed to a data breach, even after the user’s request for

removal.

Nevertheless, the AOL incident reveals the limitations of this approach [41–43].

AOL apologized for its massive search data disclosure, but also declared that

the personally identifiable data was removed from these accounts. The existence

of quasi-identifiers in the AOL dataset, and the complexity of identifying their

combinations, were proven enough to re-identify AOL users via traditional log

correlation techniques [40]. Many AOL users could be identified, as vanity searches

for name or social network profile, or searches related to city and neighborhood,

appear in the search history and it may provide clues to user’s identity. Therefore,
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this shows us that combining the remaining no-identifying data may be enough to

disclose the identities of the individuals in some cases.

More elaborated approaches in this field [20] show how queries, clicks and counts

can be published in a perturbed manner that preserves privacy. The conducted

perturbation focuses on removing those queries that end up with the user clicking

common URLs, considering that those queries may be dependent, therefore, high-

lighting quasi-identifiers. In addition, they generate keywords from the perturbed

data and show that those resemble the ones generated from the original data.

However this approach could be deceived, forcing the search engine to publish

private data. The authors also state that this approach could be improved using

generalization techniques.

Another possibility is the representation of query logs using graph theory [19]. The

graph representation is used for query log privacy preservation analysis, defining

a heuristic for log anonymization through graph disconnection. In this approach,

nodes are seen as user queries. A query is connected to other user queries whenever

the intersection of their clicked URLs sets is non empty. Then the system sorts

the nodes (queries) on their total number of queries divided by clicked documents.

The anonymization process is done by disconnecting the graph. It can be achieved

by iteratively suppressing infrequent queries, the queries that return less than k

documents. Those queries are most likely to point to individuals (i.e., queries with

partial or full target URLs) and therefore are considered more vulnerable, so it is

intuitively desirable to suppress them. This approach could benefit from grouping

infrequent queries, to obtain higher frequency terms.

As we have seen in the last suppression proposals, a further study on general-

ization techniques seems that could help to improve anonymization results. In

this context, transforming infrequent queries into frequent ones, but other impli-

cations may arise, so we will continue studying some proposals that point on that

direction.
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2.1.1.2 Generalization

Another approach used to provide anonymity is based on the use of generalization

between domains relationships and between values that the associated attributes

can assume. In general, this approach seeks to make users who performed similar

queries, indistinguishable among them.

The concept of minimal generalization was introduced in [54], where they illus-

trate how k-anonymity can be provided by using generalization and suppression

techniques. They introduce the concept of minimal generalization, which captures

the property of the release process not to distort the data more than needed to

achieve k-anonymity. However, some aspects remain unresolved, the definition of

quasi-identifiers and of an appropriate size of k must be addressed. Determining

the quality and utility in other settings must be further researched. They also need

further investigation of an efficient algorithm, considering specific queries, multiple

releases over time, and data updating, which may allow inference attacks.

Due to the dimensionality and unbounded nature of query logs, some authors have

proposed a top-down, approaches, using lexical and semantic databases to conduct

general-purpose generalizations. As it can be seen in a partition-based approach

to anonymize set-valued data that scales linearly with the input size and scores

well on an information-loss data quality metric [55]. The proposed algorithms in

this case are efficient enough to be applied to non-trivial real-world data, but the

information loss results are not as satisfactory in search query logs as when it was

applied to other kinds of more structured data.

Another pioneer work on the field of semantic generalization [56], do not distin-

guish data as sensitive and non-sensitive, but consider all the data as potential

sensitive data. The idea is to transform groups of input queries to common con-

ceptual abstractions (e.g. sailing and swimming to water sports), in order to

make users who performed similar queries indistinguishable. The main proposed
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algorithm finds the optimal solution, however, at a high cost which makes it in-

applicable for realistic problems. Then, they propose two greedy heuristics, which

find a solution close to the optimal at a minor cost.

For proposals that are based on concept generalization, is very useful the use of

knowledge bases, such as WordNet [57]. WordNet is an online lexical database

designed for use under program control. English nouns, verbs, adjectives, and ad-

verbs are organized into sets of synonyms, each representing a lexicalized concept.

Semantic relations link the synonym sets to determine word definitions.

The main limitations of a generalization approach is that a query could be mean-

ingless in a generic dictionary, but it could be identified as dangerous, according to

a more specific dictionary. Therefore, they may need a specific dictionary for each

language or sub-domain used on the original data set, which makes the creation

and maintenance of these dictionaries an important task for the proper functioning

of the proposals, specially in a broad contexts such as query logs. It appears that

anonymizing data containing large sets from large domains appears to be a very

difficult problem that may require techniques beyond generalization.

2.1.1.3 k-anonymity

To overcome previous limitations, the concept of k-anonymity was proposed [54]

which minimizes the risk of record-linkage. They also illustrate how k-anonymity

can be provided by using a combination of generalization and suppression tech-

niques.

Conducting a k-anonymity process at the server-side, before releasing the query

logs, leads to the release of k-anonymized data-sets. Those data-sets will satisfy

the k-anonymity privacy property whenever user data contained within the query

logs cannot be distinguished from at least k − 1 other users — whose data also

appear in the release. In other words, no individual can be re-identified with

probability exceeding 1
k

through linking attacks alone.
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In a more recent paper [58], the author describes how the techniques developed for

protecting data have evolved in the years. It starts by providing an overview of the

first privacy definitions (k-anonymity, l-diversity, t-closeness and their extensions)

aimed at ensuring proper data protection against identity and attribute disclosures.

It also shows the impact on privacy when considering multiple releases of the same

data or dynamic data collections, fine-grained privacy definitions, generic privacy

constraints, and the external knowledge that a potential adversary may exploit

for inferring sensitive information. Those are the main shortcomings of the k-

anonymity based approach. They also briefly present the concept of differential

privacy, as an alternative privacy definition, which we will study in detail later.

Next step in the evolution of proposals were provable anonymization methods

based on Statistical Disclosure Control (SDC ) techniques [33]. Those methods,

must be conducted to guarantee bounded disclosure risks [59]. Their goal is to

transform query records into anonymous logs while retaining the maximum level

of information and reducing the amount of query deletion.

We can see an example in [60], where an anonymization model is presented. This

model extends the notion of k-anonymity and provides metrics for user similarity

and query similarity. The inherent utility and privacy trade-off was analyzed, and

experimental results show that with this model it is possible to achieve high user

similarity in the anonymized data quite efficiently. However the suitability of the

method remains untested in different important applications, such as query log

mining.

Also, [61] introduces an approach to anonymize search query logs by means of

microaggregation to protect the user privacy. In this approach there is also an

attempt to provide a high degree of privacy ensuring k-anonymity on the data,

without having to completely eliminate any record, to allow the search logs to

retain its usefulness. However disclosure risk and information lose of the data re-

mains untested. Besides, a better aggregation of query terms by means of semantic

generalization could be obtained using the WordNet lexical database.
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Another subset of approaches try to use logs of similar queries to group users,

and later their queries are rewritten by a prototype query, so that they become

indistinguishable. We proceed to study those approaches in more detail below.

In [62] a new scheme that generates distorted user queries from a semantic point

of view in order to preserve the usefulness of user profiles is presented. The new

queries, created by analyzing those already performed by the user, introduce a

configurable degree of information distortion proportional to the desired level of

privacy. The most CPU-demanding task in this scheme is the retrieval of concepts

from the background ontologies. Due to the lower-efficient access method and

the larger size of the ODP repository, the analysis of a query may take up to an

average of 1 500 ms, and this is the main disadvantage of the proposal.

An improved method based on micro-aggregation [63], uses search results to in-

crease the semantic interpretation of the query logs, providing more data reliability

than previous methods. The improvement is solely based on the new similarity

function, but as they state, using a clustering heuristic such as Maximum Distance

Average Vector (MDAV ) can improve the achieved results in those techniques.

The usage of MDAV was introduced in [64], which based on semantic micro-

aggregation, enable the publication of privacy-preserved query logs. Query logs are

clustered into groups, using ODP categories, of size k (data partition) and replaced

by the cluster centroid (data anonymization) using MDAV, which establish the

base of their query anonymization proposal. Thanks to that, the semantics and

distribution of original queries was preserved, while disclosure risk was kept at a

reasonable level.

Another approximation using MDAV was presented on [65], that defines an ano-

nymization method for set-valued data based on semantic micro-aggregation by

extracting their conceptualisations from an ontology. This enables to aggregate

set-valued data from a semantic perspective by means of an adaptation of the

MDAV algorithm. In this case, the synthetic records that semantically match the

cluster centroids are generated by randomly picking values from different records

of the input data set.
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Also using micro-aggregation, we found another approach for query logs anony-

mization [66]. In this case the original queries were also replaced by the centroid.

The novelty of this approach is that the other parts of the log are aggregated by

using the arithmetic mean for the rank and the timestamp, and generalizing the

user selected URL to the right-most common part, i.e. the sub-domain. This

proposal seeks to achieve full k-anonymity of the user in the query log.

Up to this point we have seen that users and queries are conserved, although

queries are transformed to reduce the risk of disclosure. However, alternative ap-

proaches have been proposed to generate fake messages, and mix them together

with the legitimate ones to make more difficult to relate sensitive information. As

an example, [67] presents a scheme that obfuscates the real user’s profile, gener-

ating fake messages together with legitimate ones. The fake messages use terms

semantically correlated with user posts to distort and, hence, hide the real profile.

This scheme effectively distorts user profiles, producing uniform (i.e. balanced)

profiles that hardly characterize any user. This scheme could face limitations

against ad hoc profiling methods specially designed to detect fake messages. So

custom systems that recognize and omit fake messages could be developed us-

ing trained classifiers or defining specific detection rules, so the protection of this

proposal could be defused.

As many infrequent queries can be seen as refinements of a more general frequent

query, a different approach [68] tries to mask the infrequent queries using the gen-

eral ones. It presents a semantic approach applied in three steps: query concept

mining, automatic query expansion, and affinity assessment of expanded queries.

Doing so, the approach is able to mask identifying queries while retaining a sub-

stantial amount of highly infrequent queries, achieving levels of privacy comparable

to those of plain k-anonymity while at the same time reducing the data losses.

Statistical disclosure control, so far, seems the more suitable approach for our

purpose. It could be accomplished trough different anonymization techniques and

statistical criteria, being k-anonymity the most widely accepted technique. Event
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though k-anonymity seems very promising, all the approaches based on the gen-

eralisation of original values suffer from a high information loss, derived from the

reduced granularity of the output values. Moreover, its application is limited solely

to finite sets of data. As in the context we are studying the data is generated con-

tinuously, data utility will be one of our concerns. We need to look further for a

more appropriate approach for our case.

2.1.1.4 Differential privacy

Initially described as a solution, which, intuitively, captures the increased risk

to one’s privacy incurred by participating in a given dataset [69]. However, an

auxiliary information generator with information about someone not even in the

database can cause a privacy breach to this person. In order to sidestep this issue

they part from absolute guarantees about disclosures to relative ones: any given

disclosure will be, within a small multiplicative factor. As a consequence, there

is a nominally increased risk to the individual in participating, and only nominal

gain to be had by concealing or misrepresenting one’s data.

Using this idea, interactive scenarios of the same approach do also exist [70], to

provide safe interactive access to search logs, instead of releasing them. In those

methods, who accesses the data is just allowed to make some queries, accessing

partial information of the data-set. However, if these queries are intelligently

conducted, they may end up revealing information from the original user. For

that reason, semantic policies are used to infer the higher levels of information

that can be mined from a data-set based on the fields accessed by a researcher.

The accessed fields are then used to build research profile(s) that guide the amount

of privacy to be enforced using differential privacy, and if the fixed privacy limit is

surpassed, then the system stops responding, which is the first limitation of this

proposal. A second limitation is that the raw search logs cannot be given or sold

to a third party, so they are limited to conduct research over the logs using the

provided tool.
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Since the protected output may still preserve some statistics (e.g., query sugges-

tions, spelling corrections and query classification), extended proposals [20] aim

at similar systems, but returning only some statistics to further limiting the risk

of information disclosure.

Authors in [71] propose a technique which seeks to greedily select representative

samples in query logs with high utility and provide privacy guarantee by prior

estimation of n-word phrase utility. In the estimation, they utilize click entropy

to measure the click distribution of the same query. In this way, samples with

high utility are selected to become the representative records in each cluster with-

out sacrificing privacy while reducing redundancy, which can help to achieve the

objective of leaking less privacy and releasing more useful information.

We can also find other proposals using differential privacy on query logs to guar-

antee high levels of privacy [72]. In this case, they also provide a proof for why the

user IDs in each individual search records can not be released in order to achieve

such differential privacy. They also illustrate the privacy-utility trade-off in query

log releasing process. Regarding to this, the proposal was too strict to use in a

WSE environment and some settings need to be relaxed to maintain data utility

of the released query log. A similar framework [73] was introduced to anonymize

query logs by differential privacy. The framework is empirically evaluated and ex-

periments show that the Web search algorithms using the anonymized logs do not

perform significantly different from those using the original logs. They also sug-

gest using more relaxed settings in a WSE context, to maintain high data utility.

Both cases pose the addition of Laplacian noise to the logs, to preserve privacy.

However, the noise added is highly related with the loss of data utility. The more

noise is added, the more data utility gets reduced.

In general, differential privacy methods, still use some kind of data perturbation.

Therefore all of them suffer from unmitigated risks, such as leakage in queries and

URL, as well as noise addition.
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2.1.2 Data-stream input

Data-streams can be considered as one of the main sources of what is called big

data. Therefore, it has been the target of some research in recent years. However

few proposals has been directly applied to WSE query logs viewed as a data-

stream, but this kind of approach could be relevant for our research because it

allows to treat data partially. Considering that data-stream usually contains huge

volumes of data and could be virtually infinite, techniques that do not need the

full data set are definitely deserve to be considered.

The storage, querying and mining of such data is a resource intensive task, and

maintaining the privacy is challenging. Previous reviewed statistical disclosure

control (SDC ) or privacy-preserving techniques, usually cannot be applied directly

in a data-stream environment.

We need schemes that consider data as an unlimited stream and that are able

to process information as soon as it is generated. A preliminary review of some

proposals in this regard [74] points that this kind of systems do not need to store

all the data to start dealing with it, and also are able to generate data output

with a minimum delay. It also stands out that due to the huge amounts of data,

it is important to design efficient techniques that can have only one look or less

over the incoming data-stream, and this should be accompanied with acceptable

result accuracy. Some of the reviewed proposals include an interactive mining

environment to satisfy user requirements. However, mining data streams is a

highly application oriented field and it is hard to generalize in broad contexts

such as query logs. Other approach, is to define a pre-processing step that can

guarantee quality of the results. However in this case data pre-processing is a

resource intensive step. Therefore, mining massive data streams that have privacy

protection in a network environment is a challenging task.

Also [75] presents a discussion on open challenges for data stream mining. The

identified challenges cover the full cycle of knowledge discovery and involve such
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problems as: protecting data privacy, dealing with legacy systems, handling in-

complete and delayed information, analysis of complex data, and evaluation of

stream mining algorithms. They conclude that in many cases it would be benefi-

cial to step aside from building upon existing offline approaches, and start blank

considering what is required in the stream setting.

Below we present the main data-stream input proposals, grouped according to

the data processing technique they use: Rank swapping, differential privacy, k-

anonymity and probabilistic k-anonymity.

2.1.2.1 Rank swapping

Rank swapping is a well known method for Statistical Disclosure Control, which

ranks the original data and then randomly exchanges the values between records

that are in near positions on that rank.

The method was first described for ordinal variables in [76]. Although initial ideas

associated to swapping data exist in other previous areas [77] where it is presented

as an alternative for the release of micro-data from a statistical database. Their

results show that the resulting data will be close to the original one in terms of

the desired statistics, but preserving the confidentiality of the original data. It

also becomes clear that approximate data-swapping can be applied practically to

large categorical databases with a range of statistical information that is to be

preserved. However, the study of approximate data-swapping is not complete, so

other methods must be sought.

Although originally described only for ordinal variables, we can also find other

methods proposed for any numerical variable [78]. In this case, values of variable

Vi are ranked in ascending order. Then, each ranked value of Vi is swapped with

another ranked value randomly chosen within a restricted range (e.g., the rank of

two swapped values cannot differ by more than p percent of the total number of

records).
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Detailed results could be found in [79], showing that rank swapping techniques

outperform the best micro-aggregation techniques up to this point. In fact, the

best performer is using a p around 15 percent.

All their proposals use structured data, to facilitate the arrangement of data in a

ranking using the value of an attribute. The implementation of masking random

noise used on the tests, uses a simple algorithm for uni-variate Gaussian noise

generation, and further tests with multivariate Gaussian noise is required. The

results show that information loss and number of re-identifications are highly de-

pendent on the set of variables and the number of categories in each variable. All

this makes these proposals less applicable to our goal.

A different approach [80] studies the application of rank swapping to numerical

data streams, composed by records referring to individuals or entities which are

generated as streams. In this case, the output can be stored for future analysis

or even analyzed in (close to) real time, without risking the disclosure of sensitive

information from the data. This method was studied in terms of information loss

and could be used as a starting point for considering rank swapping a candidate

to be applied in streaming data.

As seen in this section, the traditional approaches consist in using one variable at

a time for rank swapping, however at least a generalization of the method using

multivariate ranking/mapping functions should be defined as a first step to use

those methods over more complex data. However, this is not a trivial undertak-

ing, as more complex ranking/mapping could lead to very poor fits. Finally, no

application of ranking algorithms was found using query logs or other types of

unstructured data.

2.1.2.2 Differential privacy

As seen in 2.1.1.4, the concept of differential privacy was defined in [69]. The

same approach can also be applied to anonymize data-stream environments. In a

sample application [81], there is no release of the original query, but a synthetic
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one, obtained using semantic similarity. In this way, they preserve the cardinality

of the query logs, and also drive the distortion consistently with the semantics

of the queries. That is, the queries used as replacements of the original ones are

probabilistically chosen according to their semantic similarity and the desired level

of protection. This contributes to preserve the utility of the protected query logs.

However, the proposal remains untested using structured knowledge sources other

than Word-Net, such as ODP, YAGO or DBPedia, which may offer more detailed

and finer grained taxonomies that could also be used to increase the accuracy.

The lack of structure of query logs, combined with new terms which may not be

present into the semantic database, could represent a challenge for this approach.

Data micro-aggregation, which consists on grouping similar records/logs together

and replacing them by a representative value, can be used to decrease the sen-

sitivity of the differentially private mechanism proportionally to the size of the

data aggregation. The main challenge in this case, would be to adapt the micro-

aggregation algorithm, to the lack of structure of query logs.

Another limitation using differential privacy in a streaming environment is to

maintain a fixed privacy level. It is possible that no more data can be published

in order to preserve user’s privacy.

2.1.2.3 k-anonymity

As the previous methods, k-anonymity was also firstly proposed only for static data

sets. All the methods for static data anonymization cannot be directly applied to

anonymizing data streams, however, below we will follow the evolution of the

proposals regarding to k-anonymity in more complex environments.

The use of k-anonymity in high dimensional data, such as query logs, was studied

in [82]. This approach is relevant since k-anonymity was designed for structured

databases with a limited number of attributes. They discuss the effects of the curse

of high dimensionality on privacy preserving data mining algorithms. As more

attributes are added to the data, the possibility of inference attacks increases, as
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it is proportional to the number of possible combinations of attributes. Also in

their proposal, when the data contains a large number of attributes which may

be considered quasi-identifiers, it becomes difficult to anonymize the data without

an unacceptably high amount of information loss, and performance is severely

hampered with high dimensional data. This is because an exponential number of

combinations of dimensions can be used to make precise inference attacks. More

appropriate approaches must be sought.

A proposal that tries to improve the performance [83], presents a one-pass algo-

rithm, using weak clustering based data streams k-anonymity method for data

publishing. This method first measures information loss of each anonymous clus-

ter, then it considers data privacy and data protection achieved according to con-

tinuous classification attributes of data stream. It uses little processing time and

memory for each tuple of data steam, and both privacy preserving and utility of

anonymous data are considered. However, they found some concept drift, which

needs further research. Also some aspects of data anonymity remain untested.

Deeper anonymization schemes were proposed [84], integrating two approaches,

data stream management and privacy protection. They propose a method called

SKY (Stream K-anonymitY ) to continuously facilitate 6-constraint k-anonymity

on streaming data for privacy protection.

A similar approach can be found in [85], where they study a framework named

KIDS (K-anonymization Data Stream based on sliding window) to solve this prob-

lem by continuously k-anonymity on the sliding window. It adopts a top-down

specialization tree (TDS-Tree) for completing the k-anonymization, and adjust

the TDS-Tree with each update of sliding window. Regarding to the results, it

protects privacy of data stream and considers the distribute density of data in

data stream, thereby improve usefulness of data over previous methods.

Other alternatives using randomization exist [86]. They tackled the problem of

continuous privacy preserving publishing of data streams, by using an approach

which considers both the distribution of the data entries to be published and

the statistical distribution of the data stream. In some proposed applications, it
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is required to monitor certain statistics or maintain a classification model on a

published data stream.

However, those methods present some inconvenience. First, a delay, as they need

to wait for new tuples to cluster the data stream. Second, it is hard to determine

how the data stream could be published so that the privacy preserving requirement

is honored and the statistics and classification model can be mined as accurately

as possible.

A different clustering proposal [87] defines an algorithm to publish the tuples

without violating the anonymization principles and keep the information loss as

low as possible. They employ a clustering strategy with tuples at its core and a

cluster reusing strategy. The reuse constraint of the stored k-anonymized clusters

also sets a threshold to the size of the k-anonymized cluster set, which is vital to

the linear time and space complexity of the proposed algorithms. However some

issues remain unsolved. The clustering strategy may publish a newly arrived tuple

early before its time limit. So, it will cost extra information loss if the new tuple

can be published with lower information loss by a cluster created later. Moreover,

it is possible that the additional information loss caused by substituting another

tuple for the new tuple is greater than the information loss reduction acquired by

deferring its publication. However, the prediction process may be time-consuming.

We found another cluster-based proposal [88] based on a Fast Anonymizing Algo-

rithm for Numerical Streaming daTa (FAANST ), which can anonymize numerical

streaming data quite fast, while providing a moderate data loss. It uses a clus-

tering algorithm, k-means, which takes advantage of the concept of a centroid.

However, this concept can not be defined on categorical values, which arises the

main problem of this proposal, that it can only anonymize numerical data. Some

additional work to adapt this approach to support categorical attributes, could be

useful to our research.

Related to multivariate data-sets, an interesting approach [89] propose a Fast Data-

oriented Microaggregation algorithm (FDM ) that efficiently anonymizes large mul-

tivariate numerical data-sets for multiple successive values of k. The FDM can

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



2.1. Survey on Server Side Proposals 33

save a significant time and resource in protecting large numerical data-sets. It is

also shown that the method usually achieves a better trade-off between disclosure

risk and information loss measures. However, other data types different from the

numerical ones, remains untested.

Up to this point, presented methods are mainly based on clustering incoming

data streams. All of them need to wait for new tuples in order to build the

anonymized clusters. In order to avoid the problems inherent to accumulation-

based methods, the authors of [90], present a delay-free anonymization framework

for preserving the privacy of electronic health data streams. Input streams are

anonymized immediately with counterfeit values. However, data utility of the

anonymization results remains low and the counterfeit values unmanaged. Also

data throughput of the proposal is low to process high volumes of data.

Despite being interesting, an important issue of traditional k-anonymity ap-

proaches is the difficulty of using unstructured streams of data while satisfying

the aforementioned privacy properties. Some of them are not fast enough, which

poses an additional problem to WSEs requiring, moreover, real-time processing.

Also, enforcing strict k-anonymity implies variability loss and therefore quality

loss. This is especially serious in a scenario with informed intruders, who know

the values of some confidential attributes as these attributes can be viewed as

additional quasi-identifiers. The more quasi-identifier attributes, the more data

quality loss is caused by k-anonymity. So we continue to seek alternative strategies

that allow us to overcome those limitations.

2.1.2.4 Probabilistic k-anonymity

The concept of probabilistic k-anonymity was introduced on [91], which relaxes the

indistinguishability requirement of k-anonymity. More precisely, it only requires

that the probability of re-identification is maintained, with regard to the case of

k-anonymity. Like standard k-anonymity, probabilistic k-anonymity guarantees

that the probability of correct re-identification is at most 1
k
, but without explicitly
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requiring that the quasi-identifier attributes take identical values within each group

of k records.

Their work shows that, for a fixed re-identification probability 1
k
, the proba-

bilistic k-anonymity methods are much more quality-preserving than standard

k-anonymity enforcement.

An evolution of the concept can be seen in [92]. In this case they propose a system

that dynamically anonymizes data to compile privacy-preserving query logs that

may be monetized. The proposed scheme has been designed to process queries as

fast as possible, to be able to process all the queries received by a WSE. It also

takes into account the degree of privacy of the individuals.

Probabilistic k-anonymity does not have the same limitations as those we have

seen so far. By relaxing the requirement of indistinguishability, a better use of the

data may be accomplished. Another improvement that brings the application of

these methods to query logs is that the original queries can be released, instead of

having them replaced with some synthetic ones, just as with many of the previous

described techniques.

Proposals in this section point in the same direction. From all the studied alter-

natives, this seems the one which better suits our needs. On the negative side,

given the continuous generalization of unstructured dataset elements, a certain

imprecision is added to the generated profiles. Existing limitations in the related

literature [92] are found in terms of classification methods, which are very basic.

Hence, resulting in a low category count that leads to high degrees of data utility

loss.

2.2 Survey on Client Side Proposals

One may argue that WSEs have no motivation to protect the privacy of their user.

Indeed, user may be seen as the only interested party responsible to protect data

privacy. Under this assumption, we find some protection approaches which do not
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expect any collaboration between WSEs and user. Such approaches can be classi-

fied in two main categories: i) obfuscation techniques and ii) anonymous channels.

Obfuscation techniques generate noise to distort the user’s profile managed by the

WSEs. Anonymous channels assume an infrastructure between user and WSE to

handle the profiling of activities. The use of client side techniques are assumed

to generate non-realistic profiles that may have an adverse effect on the services

provided by WSEs.

2.2.1 Obfuscation Techniques

Early techniques assume the introduction of random queries (e.g., fake queries), in

order to obscure user’s profile. Random queries must be indistinguishable from the

real queries. This property is known as unobservability. Representative solutions

based on obfuscation techniques can be classified according to the number of users

that participate in the protocol. We found standalone solutions and distributed

solutions. Standalone solutions assume individual user handling their own privacy

in front of the WSE. Distributed solutions assume groups of users working together

to protect the privacy of each user. Next, we provide some examples for each

category.

2.2.1.1 Standalone Systems

These schemes generate synthetic queries that are used to hide the real queries

of the user [11, 62, 93–99]. Synthetic queries are submitted together with the

real queries, obfuscating the profiles that the WSE owns for each user. If the

synthetic queries are in some way semantically related to the user’s queries, the

obfuscated profile will still be usable, i.e., the WSE will be able to personalize

the user’s results. When the synthetic queries are semantically unrelated to the

user’s queries, the profile will be heterogenous and the personalization will be less

accurate. This does not mean that one alternative is better than the other, since a

user may have different preferences regarding of the trade-off between privacy and
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utility. However, some works show that it is possible to distinguish real queries

from synthetic queries [97, 100–102]. These works rely on the idea that machine-

generated queries do not have the same features as human-generated queries.

2.2.1.2 Distributed Systems

These schemes require the collaboration of a group of users that work in partner-

ship to protect their privacy, i.e., they hide their actions within the actions of many

others [103–109]. Typically, these schemes put a user into a large group where they

submit requests on behalf of other members. Users exchange their queries. Person-

alization is only possible if the members of the group share the same interests [3].

In some proposals [103–105], there is a central node that poses a bottleneck in

the overall system performance. In other cases, one type of path [103, 106–109]

is created to submit the query or a group of users must be created [103–105]. In

both cases, a significant delay is introduced [3].

2.2.2 Anonymous Channels

Proposals under this category use anonymous infrastructures [110, 111] in order

to send user’s queries to the WSE. By concealing user’s identity associated to the

queries, WSEs are assumed to be unable to profile the user. However, this may

affect the quality of the service offered by the WSEs to the user.

Chaum’s mix networks [112] are representative cases of solutions under the cat-

egory of anonymous channels. Messages pass through several nodes. Each node

disassociates the input messages from the output messages, by means of cryp-

tography [110, 111]. Evolved techniques assume the use of proxies [113], relying

connections (e.g., queries) from user to the recipient (e.g., the WSE). The key con-

cept is that the proxy delivers the messages but does not disclose the source (e.g.,

the user’ identity). DuckDuckGo3, Start Page4 and Yippy5 are some significant

3https://duckduckgo.com/
4https://www.startpage.com/
5https://www.yippy.com/
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examples using proxy-like infrastructures. By using these solutions, user transfer

their trust from WSEs to the proxies (i.e., user must assume that proxies do not

monitor or log their traffic).

Web MIXes [114] provides anonymous and unobservable real-time Internet access.

It incorporates an authentication mechanism in order to prevent flood attacks.

Additionally, it includes a feedback system with an interface that informs user

about their current level of protection. However, some flaws in their authentica-

tion process may allow external attackers to perform replay attacks [115]. The

synchronous nature of Web MIXes may also generate problems when dealing with

asynchronous TCP/IP networks [116].

The use of onion routing [117] to establish anonymous channels under the context

of queries and WSEs has also been proposed in the literature [118]. General

purpose plugins, and modified web-browsers6 using the Tor Project [119], are user-

friendly solutions based on the onion routing paradigm. Similarly, the Invisible

Internet Project (I2P) [120] builds an anonymous network layer designed to be

used for anonymous communication. Nonetheless, several weaknesses have been

reported [121], and Tor does not attempt to offer security against passive global

adversaries [111].

2.3 Survey on Collaborative WSE-Client Pro-

posals

Solutions under this category assume that user and WSE work together in order

to protect user’s privacy. Next, we report solutions under this category in three

main groups: i) Private Information Retrieval; ii) Platform for Privacy Preferences

(P3P); and iii) Context-based Retrieval.

6https://gitweb.torproject.org/tor-browser.git/
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2.3.1 Private Information Retrieval

Private Information Retrieval (PIR) schemes [122–125] enable user to obtain in-

formation from a database privately, i.e., the server cannot know what information

was retrieved. Through a PIR scheme, user can search documents stored in the

database and recover those of their interest. The problem of submitting a query

to a WSE while preserving the user’s privacy is equivalent to the PIR problem.

However, PIR schemes suffer from two practical problems that make them not

appropriate for WSEs [104]: PIR schemes are not suitable for large databases,

and user is assumed to know the precise location of the records to be recovered.

2.3.2 Platform for Privacy Preferences (P3P)

The Platform for Privacy Preferences (P3P) [126, 127] was created by the World

Wide Web Consortium (W3C) with the objective of making easier for user to

obtain information about the privacy policies of the sites that they visit. P3P

is a framework through which user can automate the protection of their privacy.

They can define their privacy preferences and, when a website does not conform to

these preferences, then P3P-enabled browsers may alert the user and even take pre-

established actions (e.g., deny access to cookies). The Do-Not-Track initiative [128]

is a policy-based P3P system in which HTTP headers request web applications

not to track the user. The web application must be P3P-complaint in order to

be effective. It has been studied in several works [129–131] and standardized

by W3C. However, it is considered as an obsolete protocol nowadays. In fact,

P3P-like solutions have been criticized due to the impact that governmental laws

may have over the user [132], the lack of follow-up from websites w.r.t. privacy-

protection mandates in their legal jurisdictions (e.g., compliance difficulties of

websites to enforce their own privacy policies) [133], and low number of potential

adopters [134].

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



2.4. Final thoughts 39

2.3.3 Context-based Retrieval

Context-based retrieval proposals aim at storing user profiles (e.g., search history)

on the client’s machine. This information allows to obtain user’s interests and

re-rank search results according to them. WSE and user participate together in

the searching process in order to obtain the final results, i.e., the WSE receives

the query and returns the results. Then, these results are re-ranked at the client-

side. The User-Centered Adaptive Information Retrieval (UCAIR) project [135]

collects and exploits available user context from submitted queries and clicked

results. Similar schemes allows user to choose the content and degree of details

of their profiles exposed to the WSE [13, 136, 137]. In the end, user determine

the profile content that is revealed to the WSE when a query is submitted. The

adjustment of parameters associated to the stored profiles is possible, in order to

improve the quality of the results. Potential disadvantages of these proposals relate

to performance and effectiveness limitations of results ranked at the client (i.e.,

much less effective than ranking the results at the server side) [135]. Moreover,

it is expected that WSEs can still profile the user after several executions of the

approach.

2.4 Final thoughts

Within this broad classification that we have studied extensively, three main types

of proposals were found, regarding to the actor who applies them: server-side,

client-side or collaborative proposals.

We assumed that for monetization purposes the goal of WSE is to preserve as much

data utility as possible, the feasibility of client side approaches seems limited in

this context. As already discussed, introduction of fake queries, delayed response

time as well as mixed user profiles, generate drawbacks in result’s data utility.

Regarding to collaborative proposals between WSE and clients, we found distinct

approaches. Private Information Retrieval (PIR) schemes, that have turned out
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not suitable for large databases, like the ones on a WSE environment. Platform

for Privacy Preferences (P3P) solutions have been criticized due to the impact

that governmental laws may have over the user, the lack of follow-up and low

number of potential adopters. Finally Context-based Retrieval showed potential

disadvantages related to performance and effectiveness limitations of results ranked

at the client. Additionally, it is expected that WSEs can still profile the user after

several interactions. Therefore, a certain degree of trust must be deposited in the

server, even when achieving a reduced data utility, as shown.

Therefore, server side approaches seem more appropriate to maximise both privacy

and data utility over large amount of data. Such approaches use two great types

of methods to protect data, those who use perturbative techniques and those who

use nonperturbative techniques.

With perturbative approaches, the data-set is distorted before publication. As a

result, unique combinations in the original data may disappear and new combi-

nations may appear in the perturbed data. Such changes may be beneficial for

preserving confidentiality, but may have an adverse effect in relation to data utility.

On the other hand, nonperturbative methods do not alter original data, which is

more appropriate to preserve data utility. These methods use techniques such as

global recoding, partial suppression and sampling, to preserve user confidentiality.

From the point of view of their data input, server side anonymization methods fall

into the following two broad categories: fixed-length input and data-stream input.

We will analyze them in the sequel.

2.4.1 Fixed-length input

We found some works that try to anonymize textual query logs, but that do not

consider the dynamic nature of those sources of data, and treat them as a fixed-

length input. Fixed-length input approaches, work well only with static data.

This implies that, if they were used to anonymize query logs, these sources of data

must be “closed” before applying any procedure.
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According to this, and depending on their size, two main options are considered:

i) the query logs to be anonymized contain all the queries received from time 0

until now; or ii) the query logs to be anonymized correspond just to a short and

limited period of time.

In the first option, with all the queries received from time 0, the anonymization

method in use will deal with a huge quantity of data; even worse, query logs are

expected to grow daily and, hence, each anonymization process will be required

to process bigger amounts of data. In order to show the relevance of this problem,

it has to be noted that usual anonymization methods that provide k-anonymity

in databases have shown significant limitations when dealing with large quantities

of data. For example, well-known SDC techniques based on generalization or

micro-aggregation suffer from a very high cost when performing the partition of

the database, in this way, authors have reported quadratic costs in this steps

that clearly disqualifies these techniques for the volume of information that is

considered in this case [138]. Being more specific, the authors in [139] apply

semantic micro-aggregation to anonymize WSE query logs and their conclusion

is that these techniques do not fit well with large sets of data that require a

continuous update of the anonymization due to new data being added continuously.

Regarding the second case, anonymizing a short period of time, an organization

that builds query logs can work with “limited” sets of data by means of classifying

received search queries by week, month, trimester or semester; then, at the end

of the chosen period of time, just the corresponding and limited query log is

anonymized and disclosed. This option clearly alleviates the cost required by the

anonymization method in use; however, it only focus on a specific window of time,

which implies that a lot of queries are discarded and, hence, the accuracy of the

anonymized outputs is expected to be jeopardized due to the loss of information.

In conclusion, “closing” query logs, which are a dynamic source of data that is

continuously growing with new search queries issued by the WSE ’s user, is contrary

to their real nature and it has been acknowledged in the literature that it is an

ineffective strategy. It may be interesting from a research point of view, but
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hard to translate to a real environment. As a consequence, we need to focus on

methods for real-time processing that may be applied to the considered scenario,

using data-streams.

2.4.2 Data-stream input

As we have seen to this point, WSE query logs produce a huge volume of data

which needs to be dynamically treated and that grows continuously. This fact

makes traditional methods not practical for their application in this context, and

only data-stream based methods seem to make sense.

If we look for proposals with this approach on the literature, we have found some

custom designed methods to privacy-preserve data on a streaming context. How-

ever, the fast proposals focus only on structured information. More specifically,

the considered data input is mainly numerical, which is the main limitation when

considering its possible application to the anonymization of WSE query logs. As

it has been shown, in query logs of the WSE s it is usual to find unstructured data

made of both textual and numerical data referring to searched keywords.

The proposals closer to our needs, are the ones that use methods of probabilistic k-

anonymity, but unfortunately, these methods are in an early stage of development

and therefore we should work on improving them. If we could improve them, the

result could be an interesting approach to anonymize query logs.

In addition, we want to consider the utility of the resulting anonymized data.

This is a critical aspect to facilitate the exploitation of data to third parties.

Therefore, a study of the differences in the utility of the data is essential, and we

have not found it in the previous described methods. This fact, in conjunction

with the limitations that we have exposed shows that there is still room in the

literature for new schemes specially designed to anonymize dynamic query logs

while maximizing the data utility.
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Non-perturbative approaches seem more suitable to facilitate the exploitation of

data by third parties with the adequate protection of sensible user information,

owing to the fact that they achieve a high level of data utility.

Therefore, our proposal will focus on suitable non-perturbative server side meth-

ods to deal with a data-stream input in real time. The use of probabilistic k-

anonymity, seems appropriate to bound disclosure risk of personally identifiable

user attributes. Additionally, our solution should be able to handle unstructured

data. It should provide a fast probabilistic method to blend streams of queries with

high similarity to those requiring protection, but coming from different users.
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Chapter 3

Working at the WSE side to

generate privacy-preserving user

profiles

3.1 Introduction

The popularity of Web Search Engines (WSEs) has grown with the number of

websites present on the Internet. According to the Netcraft January 2020 Web

Server Survey, there exist 1 295 973 827 (over 1.2 billion) websites, 249 618 033

unique domains, and 9 576 845 web-facing computers [140]. Therefore, it can be

assumed that WSEs will continue to be essential to surf the Web.

When a person submits a query to a WSE, it looks for the requested information

among its indexed web pages, but it also stores the submitted query (i.e., the

keywords) and some metadata (e.g., date of the query, some identifiers of the

query issuer, which specific search result was selected by the issuer, etc.). As a

result, everyone who uses a WSE is disclosing personal data, such as personal

characteristics and preferences, and enabling WSEs to compile those query logs.

45
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46 Working at the WSE side to generate privacy-preserving user profiles

Query logs make up a set of unstructured data, which is generated as a continuous

data stream. Although a fast process could protect query logs prior to their

publication, there is no absolute guarantee of anonymity, as the combination of

modified data may disclose enough information to re-identify some users [19, 141].

As an example, there is one well-known case, the AOL scandal, in which around 36

million queries performed by AOL’s costumers were publicly disclosed. Although

records were previously de-identified, it was possible to identify some users from

the disclosed query logs and other sensitive information was exposed [40]. This

case ended up with an important damage to AOL users’ privacy and to AOL itself,

with several lawsuits against the company [42].

Therefore, in order to get viable data monetization, better tools capable of mod-

ifying query logs by limiting the privacy disclosure risk but preserving as much

data utility as possible should be provided. More specifically, in this chapter, we

propose using a server side software capable of processing queries, as unstructured

data, in real time and building anonymized query logs that still retain enough data

utility to allow its monetization. As a result, WSEs may then offer the protected

query logs to external organizations for data monetization purposes while keeping

the real query logs in a safe place; otherwise, WSEs may also decide to only keep

protected logs, getting in turn a lower risk of information disclosure in case of a

direct attack.

The rest of this chapter is organized as follows: in Section 3.2, we define the

requirements of the system. In Section 3.3, we describe in detail the proposal,

used to implement the system. In Section 3.4, we analyze the results. In Section

3.5, we highlight the conclusions we have reached.

3.2 Requirements

Our proposal, in a nutshell, is based on a server-side architecture that enables

WSEs to anonymize query logs in a streaming environment. The outputs of this

system are two: i) a real-time stream of anonymized logs; and ii) a database of
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user profiles. The main target is to allow WSEs to sell or release both data sets

to interested third parties without threatening the privacy of the individuals who

have filled the query logs with their issued search queries. In order to achieve that,

the resulting outputs must fulfill certain requirements that are next detailed.

3.2.1 Privacy requirements

The main requirement for the proposed system is that it must preserve the privacy

of the individuals who contribute to the WSE query logs.

Privacy could be achieved by means of query de-identification, following one of

the following approaches:

• Full de-identification: it is achieved when all identifiers, direct and indi-

rect, are removed and there is no reasonable basis to believe that remaining

information can be used to identify an individual.

• Partial de-identification: it is achieved when only direct identifiers are

removed (indirect ones remain).

• Statistical de-identification: it is achieved by maintaining a trade-off be-

tween keeping as much useful data as possible while guaranteeing statistically

acceptable data privacy.

Direct identifiers (e.g., full name, national id, etc.) can be easily removed from

query logs. However, the textual content of search queries may contain any possible

value of any domain; this is very likely to produce cases in which may be very

difficult to distinguish identifying queries from innocuous ones. As a result, in the

considered scenario full de-identification requirement cannot be guaranteed.

Partial de-identification is easier to achieve and, additionally, more data utility

may also be preserved. However, it is prone to record-linkage attacks [54] that

would allow to re-identify users by means of certain apparently innocuous queries.
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Statistical de-identification seems the more suitable approach. It is obta-

ined trough certain statistical criteria and anonymization techniques, being k-

anonymity and its extension l-diversity the two most widely accepted models.

Those models were proposed for structured data [85, 86, 142]. However, the cur-

rent proposal seeks to prove its usefulness also when anonymizing unstructured

data streams.

3.2.2 Functional requirements

To enable the use of current proposal in a real environment, it must also fulfill a

set of functional requirements:

• Scalability: It is the capability of a system to handle a growing amount

of work, or its potential to be enlarged in order to accommodate that

growth [143]. Specifically we want to achieve load scalability, that is the

ability to easily expand or contract to accommodate heavier or lighter loads.

Scalability methods fall into two broad categories [144]: i) Horizontal scala-

bility which is related to the ability of a system to add more working nodes,

such as a new computer; and ii) Vertical scalability which is related to the

ability of adding resources to a single node in a system, typically involving

the addition of CPUs or memory. Both approaches have their own trade-

offs, and the proposed architecture should take advantage of all the available

resources. Configuring an existing idle system has always been the less ex-

pensive alternative, regardless of the approach. So the proposed architecture

should be designed to take advantage of this fact and, therefore, it should

use the existing WSE infrastructure.

• Processing speed: In order to minimize delays generating anonymized data

stream, a high processing speed should be a main requirement. It’s also fun-

damental in order to being able to process all requests received by the WSE.

A WSE receives every second thousands of queries. For example, Google is

processing in average 40000 queries per second [145]. This fact implies that
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the new proposal should be able to meet similar speed requirements as the

ones met by WSEs.

• Resource consumption: As an additional requirement, the resource con-

sumption of the system must be low, in order to facilitate its inclusion in

an existing WSE, minimizing overhead cost. Even though the system is

supposed to scale with added resources, it is important to not increase un-

reasonably current WSEs resource consumption.

• Transparency: To ease the integration of the proposed system in existing

WSEs architectures, it must be transparent. New modules can hid internal

details, making them invisible for the main architecture, i.e. encapsulated.

Mainly, they should adhere to previous external interfaces without chang-

ing them, while changing its internal behavior, i.e. generating anonymized

query logs with the same structure than original logs. The main purpose of

providing a transparent system is to avoid changing any existing part of the

WSE to be integrated with.

• Modularity: As explained above, the proposed solution should be easily in-

tegrable in an existing WSE. According to this, functional scalability should

be achieved, i.e. being able to enhance the system by adding new function-

ality at minimal cost. To do achieve this, the proposed system should be

designed to be modular and to have low coupling and high cohesion.

3.2.3 Utility requirements

Although full de-identification is desirable from a privacy point of view, ideally,

preserving the privacy of the individuals should be compatible with allowing WSEs

to sell non-sensitive user information to third parties. Logically, the economical

value of these privacy-safe data will directly depend on its remaining quality from

the utility point of view. As a result, there is a clear trade-off between anonymizing

logs and keeping them useful to extract information through data mining processes.

Therefore, the main challenge related to data utility is to anonymize sensitive user
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data, removing as few information as possible in order to have enough interesting

information to be analyzed.

To achieve this, the proposed system aims to build fake logs and user profiles

which should retain users’ interests (maximizing the data utility) and eliminate

any direct or quasi-identifier that could allow their re-identification (maximizing

the user privacy). It should be as difficult as possible to relocate queries in order

to build the original profile of a certain user.

3.3 Proposal

In Figure 3.1, three sub-systems that conform the proposed scheme are depicted.

Note that, from those sub-systems, only the WSE Anonymizer should be inte-

grated into the WSE environment. The other two are just defined to evaluate

proposed method.

3.3.1 Actors

The main actors considered in the proposed process are the following:

• WSE: The web search engine. It builds the original query logs and it has

the target of generating an anonymized version together with a users’ profile

database in order to sell or disclose them for economical purposes.

• Customer: Represents a third party who wants to legitimately access the

anonymized query logs and the users’ profile database.

• Attacker: Represents a third party who wants to gain illegitimate access

to the original query logs using as input the anonymized query logs and the

users’ profile database.
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Figure 3.1: Main Architecture

3.3.2 Phases

Current study is divided into the following phases:

• Anonymization and profile creation: Main phase, which takes the origi-

nal query logs generated by the WSE as input and generates the anonymized

query logs and a database of user profiles as outputs.

• Anonymization analysis: Anonymization and performance benchmark-

ing, taking into account original data, anonymization time and resource us-

age.

• De-anonymization: Using the anonymized query logs as input, an attack

is simulated, trying to link anonymized logs with the users that issued them.
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• Analysis: De-Anonymization and performance benchmarking, taking into

account original and anonymized data, time and resource usage.

3.3.3 Interactions

As the system is designed to anonymize a stream of query logs in real time, inter-

actions are defined by production and consumption of streams of logs. The main

interaction is defined between a WSE as producer, and a customer as consumer

of the anonymized logs. An attacker will try to gain access to the anonymized

stream of logs, such as any legitimate client and, then, it will try to de-anonymize

them in order to recover the original query logs.

3.3.4 Anonymization and profile creation

In Figure 3.2, the main modules of the anonymization and profile creation sub-

systems are represented. Each of them is responsible of a single action. All modules

are described below.

3.3.4.1 Classifier

Represented in Algorithm 1, the classifier uses query logs generated on the WSE

as main input. It also needs access to a database of entropies, recommendations

and categories for a given word. Once the classifier receives an user query, it’s

processed and categorized in real time. Then the categorized query is released.

The process followed by the classifier is divided into the following stages:

• Natural language processing: Which is applied to query’s text field to

extract its semantic units (SUs) [62]. Only nouns or adjectives are used.

Then the HIPAA [146] Privacy Rule is applied, to remove all the SUs that

could be considered identifiers or quasi-identifiers, such as a name, address,

phone number etc.
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Figure 3.2: Anonymization and profile creation

• Recommendation: To correct possible misspellings, selected SUs are val-

idated against a recommendation database, which returns the correct term

in case of a misspelled word.

• Entropies: The amount of information (entropies) are calculated for each

of the remaining SUs. To do so, a database of entropies is used, which should

provide the number of references on the WSE for a given term. The algorithm

will chose as main SU the one which has less references, which is assumed

to be the most specific and, hence, informative term of the query [147].

• Categorization: The corresponding category for the query is then cal-

culated using main SU and a database of categories, obtaining the most

specific topic of the query.

As a representative example of how the Classifier works, let us assume an input

query whose keywords are: “european soccer barcelona players”. The first step
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Algorithm 1: Classifier

Input : query logs, entropies, recommendations, categories
Output: categorized logs

1 foreach log ∈ query logs do
2 SUs← lemmatize(log);
3 min entropy ←∞;
4 foreach SU ∈ SUs do
5 l← recommendation(SU);
6 e← entropy(SU);
7 if e < min entropy then
8 min entropy ← e;
9 main SU ← l;

10 end
11 log category ← category(main SU);
12 send log, log category;

13 end

of this process extracts the SUs: “european soccer”, “barcelona” and “players”.

Next, entropies are calculated for each SU, getting the following results according

to Google’s WSE: “european soccer”: 56 500 000 results; “barcelona”: 504 000 000

results; and “players”: 544 000 000 results. According to these numbers, “euro-

pean soccer” is selected as the main SU of the input query. In the last step,

“european soccer” (as main SU) is used to assign a corresponding category of

interest to the input query by means of a knowledge base. In this way, if the Open

Directory Project (ODP) 1 is used as knowledge base and queried with “european

soccer”, retrieving “Sports” as the resulting category. Therefore, the input query

is categorized as related to “Sports”.

3.3.4.2 Anonymizer

Represented in Algorithm 2, it uses as input the categorized logs that are generated

in real time by the classifier (see the previous explanation for more details about

this). Those logs are split in two sets for each category, one that stores the users,

and another that stores the text of the queries. When a category set reaches the

maximum allowed value, defined by k, the algorithm randomly takes an user and

1Open Directory Project. http://www.dmoz.org/
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a query from that category and builds with those the anonymized query with a

minimum delay.

Algorithm 2: Anonymizer

Input : categorized logs, k, δ
Output: Anonymized logs

1 foreach log ∈ categorized logs do
2 user, query, category ← log;
3 users[category]← user;
4 query[category]← query;
5 if size(users[category]) = k then
6 if ∀u ∈ users[category], ∃u 6= user then
7 pop random u ∈ users[category];
8 pop random q ∈ query[category];
9 send u, q;

10 else k = k ∗ δ;
11 end

A special case occurs when all users stored in certain category set are the same.

In this case, the selected user would be the same than the original one. In order

to prevent this situation (which, in any case, it is very unlikely to happen due

to the huge quantity of queries that a WSE receives each second), we impose an

additional restriction, not shown in Algorithm 2 for simplicity: When all users in a

certain category are the same, the anonymizer must increment the corresponding

k value. This is done by multiplying k by a δ value.

As an example of how the proposed Anonymizer works, let us assume that the

system works with parameter k = 4 and that in the data structure in charge of

storing queries related to “Sports” there are already stored three queries: i)“novak

djokovic tennis titles”, sent by user A; ii)“monza formula1 tickets”, sent by user

B; and iii)“champions league final”, sent by user C. The Anonymizer receives the

query “european soccer barcelona players” that has been categorized as “Sports”

in the last phase by the Classifier. The data structure “Sports” contains now four

queries so, it is full, according to k; therefore, one of the stored queries is selected

at random and it is assigned to a sender at random too. Following this example,

let us assume that “champions league final” and user A are randomly selected. As

a result, an anonymized log is outputted where user A is now linked to “champions
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league final” instead of to her original query “novak djokovic tennis titles”. It can

be seen that, by doing this, the generality is kept (i.e., A is interested in “Sports”)

while the specificity is eliminated (i.e., A was specifically interested in “Tennis”

instead of “Soccer”). As explained in works such as [148], keeping general interests

improves the utility of the anonymized data while hiding specific interests is useful

to preserve the privacy of the respondents.

3.3.4.3 Profiler

This element uses as input the anonymized record generated by the anonymizer

and the corresponding category. With this data a user profile is created or updated

in real-time. Therefore, the profiler is in charge of keeping the profile database

updated. As it has been explained in the Introduction, in the literature, a user

profile is generally considered a set of well-defined categories of interests (e.g.,

science, health, society, sports, etc.) with a certain weight assigned to each one

according to the evidences generated by the corresponding user and how they have

been classified under each category [11].

As an example of how the proposed Profiler works, let us assume that the system

uses the following set of categories: Arts, Health, Shopping, Science, Computers,

Sports, Society and Business (note that the proposed system is not bounded to

this set of categories, this is only an example). Let us assume also that a certain

individual has already sent: 5 queries related to Science; 10 queries related to

Business; 20 queries related to Arts; 5 queries related to Health and 10 queries

related to Computers. As a result, the current profile for that person stored in

the profile database is: (Arts: 40%, Health: 10%, Shopping: 0%, Science: 10%,

Computers: 20%, Sports: 0%, Society: 0%, Business: 20%). Now, let us assume

that this person is assigned to the new query “champions league final” by the

Anonymizer, this query has been categorized as “Sports” by the Classifier. The

Profiler obtains the new evidence and updates the corresponding user profile as

follows: (Arts: 39.2%, Health: 9.8%, Shopping: 0%, Science: 9.8%, Computers:

19.6%, Sports: 1.9%, Society: 0%, Business: 19.6%).
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3.3.5 De-anonymization

The purpose of this process is to try to link the anonymized logs with the indi-

viduals who generated them. By this way, the system tries to evaluate whether

the anonymization process executed previously has been successful or not and,

therefore, whether the resulting protected query logs can be disclosed or not.

As seen in Figure 3.3, the de-anonymization process is very similar to the ano-

nymization one. We assume that the attacker has already gained access to the

stream of anonymized logs generated by the WSE. Those logs are the main input

for the process.

Classifier

Query
logs

Categorized
logs

De-
Anonymizer

Anonymized
logs

Profiles
MEM

Entropies

Recomm

Categories

Figure 3.3: De-anonymization

First of all, the input logs should be classified by the attacker. Best de-anonymiza-

tion could be achieved if the attacker manages to get the same categorization used

by the WSE (this is also the worst-case scenario form a privacy point of view). As

result, the attacker can use Algorithm 1 to categorize the anonymized logs prior

to perform their de-anonymization. In this way, the attacker also needs access to

a database of entropies, recommendations and categories.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



58 Working at the WSE side to generate privacy-preserving user profiles

Then, each categorized log is send to the de-anonymizer algorithm, which will try

to recover the original query logs. Several de-anonymizer algorithms are proposed

and tested on next section. All of them share the same basic structure, shown on

Algorithm 3.

Algorithm 3: De-anonymizer

Input : categorized logs, k, δ
Output: query logs

1 foreach log ∈ categorized logs do
2 user, query, category ← log;
3 users[category]← user;
4 query[category]← query;
5 if size(users[category]) = k then
6 if ∀u ∈ users[category], ∃u 6= user then
7 pop selected u ∈ users[category];
8 pop selected q ∈ query[category];
9 send u, q;

10 else k = k ∗ δ;
11 end

The de-anonymization algorithm also uses two additional parameters, k and δ.

Their function is the same than in Algorithm 2. An attacker will always attempt

to use similar values to the ones used in the anonymization process.

Each de-anonymizer variation defines a different pop selected function, and some

specific data structures, represented with dashed lines on Figure 3.3. All those

variations are detailed in Section 3.4.

Following the same example used to explain the work of the Anonymizer, in this

case, the De-anonymizer takes as input the anonymized query logs. Let us assume

that this is: i) “champions league final”, sent by A; ii) “monza formula1 tickets”,

sent by Z; iii) “novak djokovic tennis titles”, sent by B; and iv) “european soccer

barcelona players”, sent by C. The De-anonymizer first categorizes the anonymi-

zed query logs to ascertain the category of interest linked to each query (as done in

the anonymization process) and then tries to link a certain query with its original

sender. The process followed to do that may vary and different approaches are

explained in the Implementation section. A simple approach would be to match

sender and query keywords at random (as done in the anonymization process).
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Using this method in this example may lead to match B with “european soccer

barcelona players” which would get a failure in the de-anonymization process, or

with “monza formula1 tickets” which would get a success.

3.3.6 Analysis

Finally we also need a basic algorithm to verify that the proposed scheme is work-

ing properly, this is a log matcher. More concretely, it gets two log streams as

input, and returns the number of matching logs, i.e. identical logs appearing in

the two input streams. A resource profiler is also needed for a proper analysis,

which at least should calculate amount of time and resources used in each task.

3.4 Evaluation

In this section, the implementation used to test our proposal is described. All the

conducted tests are also detailed. Finally a discussion of system performance in

terms of user’s privacy, functional requirements and data utility is provided.

3.4.1 Implementation

All algorithms described in Section 3.2 were implemented in Python. Input and

output query logs are stored in plain text files preserving the original format of

logs. Communication between modules was also done via plain text files, to enable

posterior analysis, but all modules could also use a sockets based communication.

A No-SQL database, was used to store user profiles as well as other persistent data.

Beside those implementation decisions, all other major changes that have been

made to the initial algorithms during the implementation process, are discussed

below.

Classification is a complex task to achieve outside of a WSE context, mainly

because, besides the original logs, some additional information is required. As
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previously described, the proposed algorithm needs a database of word entropies,

a database of word recommendations and a database of word categories. In a

WSE, this information would be provided by the WSE itself. It should be noted

that a WSE already generates some of this information with each search, therefore

it would not represent an extra cost. Outside of a WSE, this information should

be retrieved querying an external WSE during the classification process but, by

doing this, the obtained results in terms of time and resource usage may differ

significantly from the ones that would be achieved in a real environment. In order

to prevent this situation, a web scrapper was implemented as a preparatory step.

The web scrapper retrieves information from remote sources and creates three

local No-SQL databases that are the ones used in the classification step, therefore

obtaining an environment similar to a real one.

Once classifying the data, we also need a way to lemmatize each query text, which

is a phrase written on natural language. As the system was implemented in Python,

the NLTK package (Natural Language Toolkit) 2. This package provides interfaces

to corpora and lexical resources such as WordNet, along with text processing

libraries. On preliminary tests, NLTK was very slow for the requisites of our

system, but due to the fact that it is a very generic system prepared for a wide

variety of texts, uses and situations, a modified version of NLTK designed to fulfill

our requirements was developed. This modified NLTK showed the same utility as

the original package when dealing with query logs but it became hundreds orders

of magnitude faster due to their focus on a more specific duty.

3.4.2 Evaluation methodology

In order to evaluate the architecture proposed in Section 3.2 we have implemented

our system as described in Section 3.4.1. Only those systems which would be

used on a real environment are evaluated regarding privacy, functional and utility

requirements.

2Natural language toolkit. http://www.nltk.org/
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Table 3.1: AOL query log example

1887264 5424618 ninja turtles rap lyrics 2006-05-22 17:04:54 1 http://www.lyrics007.com
1887267 5424618 myspace.com 2006-05-22 17:55:28 2 http://music.myspace.com
1887549 5426574 rio hotel and casino 2006-03-20 18:36:01 5 http://www.destination360.com
1887552 5426574 orleans hotel casino 2006-03-21 16:06:02 3 http://www.tickco.com
2536798 9146863 invest in spring drinking water 2006-03-07 13:51:21 2 http://www.fool.com
2536814 9146863 spring water stocks to buy 2006-03-13 22:13:44 4 http://importer.alibaba.com

3.4.2.1 Data

We ran our experiments on logs released by AOL 3 stored on plain text files,

and on a database of word entropies, a database of word recommendations and

a database of word categories, stored in a NoSQL database. Released AOL data

contains 36 389 576 query logs, corresponding to a period of three months of real

activity. Table 3.1 provides a brief sample of the used logs.

Databases of word entropies, recommendations and categories are created using

the web scrapper defined in Subsection 3.4.1. Since the database content is gen-

erated based on logs content, databases only contain log related data, which can

slightly affect system performance measures. A first attempt of data gathering

was conducted using Google but it applies a very restrictive limit to the number

of search queries from a certain source that can be served; as a result, our pro-

cesses were blocked. Finally, Microsoft Bing was used to fill word entropies and

recommendations databases. To create database of word categories, Open Direc-

tory Project (ODP) was used. ODP is a large, categorized directory of websites

and pages, which is managed by volunteers.

Once the databases were created, no other query was done to any WSE, and all

tests were conducted using those databases as the only data repository. At the end

of scrapping process, databases contained 1 587 451 word categorizations, 1 751 632

word entropies and 258 504 word recommendations. Note that some query logs

contain a query text with no understandable value. Grammatical mistakes were

resolved using a word recommendation database. Other queries contain no query

text, or it does not make any sense, being just lots of consonants concatenated.

As a category for those last logs cannot be found, they were discarded.

3AOL keyword searches. http://www.gregsadetsky.com/aol-data/
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62 Working at the WSE side to generate privacy-preserving user profiles

3.4.2.2 Conducted tests

Only two parameters can be modified in the proposed system: k and δ. Therefore,

several test were conducted to determine the effects of different k and δ values. It

was also necessary some additional testing to determine the accomplishment for

the rest of the requirements defined on Section 3.2.

δ adjustments — Some preliminary test were conducted to determine the

effect of δ value. As explained on the algorithm definition, δ determines how fast

k value increases when all k-elements on a category are the same. With a small δ

the category size should be increased more times until we get different elements in

the category. But with a small δ, the final k value fits best the needs of the data.

With a large δ, category size should be increased less times, but the final k value

should be bigger than the needs of the data.
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Figure 3.4: Effects of δ on time

Figure 3.4 shows that the size of δ does not affect the running time of the proposed

system, hence, this is not a relevant factor to fix a certain δ value. Regarding the

effect of δ on k value during the execution of the anonymization process, Fig-

ure 3.5 depicts that, even though bigger δ values produce slightly bigger final k
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values reached by the system after multiple iterations, the difference obtained is

not significant enough. Due to the fact that a small δ provides a more accurate

final k value and smaller memory consumption without affecting other parame-

ters, we decided to fix δ to 1.2 for the following tests. This leaves k as the only

adjustable parameter of the proposal. As stated on following sections, the system

performance, as well as the user privacy, depend on k.
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Figure 3.5: Effects of δ on final k

Classifier — The proposed classifier cannot be customized in any way; there-

fore, only some functional and utility tests were conducted.

Anonymizer — Privacy, functional and utility tests were conducted for the

anonymizer, all of them with various values of k.

Profiler — The proposed profiler cannot be customized in any way; therefore,

only some functional and utility tests were conducted.
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De-anonymizer — In order to perform detailed privacy tests, some attacks

were simulated using different variations of the de-anonymizer algorithm. In all

these cases, the time field contained in the logs was used to consider the proper

order in which each search query was received. We next detail each variation of

the de-anonymizer element:

• De-anonymizer 1 : This approach tries to retrieve original logs choosing one

random log and one random user from the k-element sets, which the de-

anonymizer recreates, conducting the same operations than the WSE.

• De-anonymizer 2 : This approach does the same than the first version, but

instead of selecting a random user, selects the user who appears more times

in the k-element set linked to a certain category.

• De-anonymizer 3 : This approach has access to the number of queries related

to each category that were sent by this user until that moment. In this way,

from the users who appear in the k-element set linked to a certain category

on a given time, the proposed algorithm selects the user who has sent more

queries related to this category. Therefore, this method makes its decision

taking into account the query history of the respondents instead of just their

temporal appearance in the k-element set linked to a certain category of

interest.

• De-anonymizer 4 : Uses the same approach than in the third version, but

the number of queries related to each category that are obtained from the

query history are multiplied by the number of times that the respondent

appears in the k-element set linked to a certain category. The respondent

with the highest result is then assigned to the current query. This approach

considers the query history but tries to give more weight to the fact that an

individual has sent a certain type of queries recently (which are those stored

in the k-element set).
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3.4.2.3 Test environment

All experiments were performed using a Dell notebook running Ubuntu Linux

14.04 LTS, with a 1.8 GHz Intel CoreTMi7-4500U CPU and 8GB of RAM. Sys-

tem hard disk was a Seagate ST1000LM014, which performance profile is skewed

strongly towards small file I/O, and a below average overall performance. Much

better results could be obtained with a faster hard disk or Solid State Disks (SSD),

that are already installed in many servers nowadays. All algorithms were im-

plemented and executed in Python 2.7.6. MongoDB 3.0.7 was used as No-SQL

database, which was also installed and running on the same computer.

3.4.3 Privacy study

To test the privacy level provided by the new proposal, the original query logs

were compared to the anonymized query logs, counting the percentage of matching

records. Results can be seen on Figure 3.6.
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Figure 3.6: Matching records
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Figure 3.7: Matching records. De-anonymizer

In this figure, the case A(NR) represents what would happen if the anonymizer

does not increment the corresponding k value when all users stored in certain

category set are the same (this is a special case explained in Section 3.3.4). In

this case, the figure depicts that k remains constant but the output contains non-

anonymized logs. When this special case is covered by means of incrementing k,

better privacy is obtained. Data generated by the anonymizer, A in the figure, do

not contain any matching registers; therefore, full privacy seems to be obtained.

However, all de-anonymizer algorithms described above were used with the ano-

nymized logs in order to try to reconstruct the original log stream. Results can

be seen in Figure 3.6 and, more concretely, Figure 3.7 focuses on the four pro-

posed de-anonymizers. The +T element means that those de-anonymizers use

logs sorted according to time field. In all the tests, all the de-anonymizer versions

performed in a similar way (some differences applies but they are not significant)

and they only were able to recover around 1.89% of original logs with the lowest

k value (best case for the de-anonymizers). As a result of our tests, it can be

concluded that it is quite difficult to link the anonymized logs with their original

users.
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3.4.4 Functional study

We next discuss the level of achievement of the functional requirements defined

previously.

3.4.4.1 Modularity

The proposed system was developed as a set of independent services, forming

a micro-service architecture. It allows to accomplish a low coupling and high

cohesion system. This architecture makes the system more reliable and easy to

maintain. Some services could be changed by existing modules in the WSE, e.g.

a WSE classifier. Other services could optionally be deployed or not depending

on the needs of the WSE. For example, the profiler should be used if the WSE is

willing to create anonymous user profiles but, if the WSE only desires to release

an anonymized log stream, the proposed system would also work without it.

3.4.4.2 Scalability

Thanks to the high modularity of the developed services, it is easy to deploy them

on available idle systems, using the existing WSE infrastructure. Horizontal scala-

bility could be achieved by deploying more than one instance of each service, either

at the same or at different systems. Vertical scalability could be also achieved,

since a faster CPU, disk or some memory dedicated to cache data would increase

significantly the amount of work the system could handle. In lighter loads, modules

will remain idle, consuming an insignificant amount of resources. Most modules

could be closed completely if not used, for example, the classifier and the profiler.

So this system shows a high load scalability.
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3.4.4.3 Speed

Time consumption of WSE processes can be seen in Table 3.2. Even though the

computer used for the tests has 4 cores, only 1 was used in each test. All algorithms

support multi-threading, so better results could be obtained by simply enabling

it.

Table 3.2: Runtime cost

Time/log (µs)
Mean ± SD

Queries/second
(Threads Google)

Classifier 1 503 ± 24.0 665 (60)
Anonymizer 22 ± 0.35 45 454 ( 1)
Profiler 267 ± 4.73 3 745 (11)

The classifier and the profiler do not use k values and, hence, they are not affected

by its variations. In the other hand, the anonymizer uses k, but results do not

change significantly with different k values, as it is reflected by the small standard

deviation.

The classifier was the slowest algorithm, because it has to search in several

databases. We must be aware of two factors that affect its performance: i) the

content of those databases was mainly generated using logs’ content, therefore,

databases only contain log related data; and ii) the majority of the time used by

the classifier corresponds to I/O from disk, hence, a faster disk, or placing the data

in the system’s memory would greatly improve the performance of the classifier.

The same idea could be applied to the profiler, which creates users profiles on a

disk database.

Using as reference the 40 000 queries per second that Google processes on average,

one single thread of the anonymizer in the used test environment can anonymize

all Google queries in real-time. On the other hand, we need 60 classifier threads

and 11 profiler threads to reach real-time performance in our test environment,

but with the discussed changes, those numbers could be lower on a real setting.

For completeness, all de-anonymizer algorithms were also tested. Results can be

seen in Figure 3.8. As expected, algorithms that count the number of times that
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a user appears on a category, are the slowest overall, and more affected when k

increases. Using profiles and choosing the best fit on a category was also affected

by k.
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Figure 3.8: De-anonymizer speed

3.4.4.4 Resource consumption

Table 3.3 shows the achieved results for maximum memory and disk usage at each

process. It’s important to note that de-anonymizer-3 and de-anonymizer-4 keep

basic user profiles in memory, and that is the reason because they consume more

memory. Apart from those two algorithms, the rest should not use more memory,

whatever the amount of logs they deal with.

Regarding the disk space, when output log streams are stored in the disk, they

use exactly the same amount of space than the original log streams. Furthermore,

if the profiler stores queries in a user profile, with 4GiB of test data, it generated

a 3GiB profiles database, with an average record size of 112 bytes. Note that, in

any case, this will depend on the input data.
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Table 3.3: Memory usage

Max. mem (KiB)
Mean ± SD

Classifier 111 581 ± 145
Anonymizer 10 347 ± 72
Profiler 12 120 ± 94
De-anonymizer 1 9 316 ± 640
De-anonymizer 2 9 375 ± 687
De-anonymizer 3 312 273 ± 4 620
De-anonymizer 4 311 782 ± 2 945

3.4.4.5 Transparency

This proposal only needs to read the stream of logs already generated by a WSE,

so it is no necessary to make changes at the existing WSE architecture. The

resulting anonymized log stream has exactly the same structure and size than

the original one. Therefore, this system can be plugged at the end of the current

process followed by the WSE and generate an anonymized output without changing

anything else.

3.4.5 Utility study

This section studies the classifier and the anonymizer in terms of utility. Even

though the classifier obtains a hierarchical categorization for each query, the ano-

nymizer sets are based only on very generic categories. When a query cannot be

classified into any category, the classifier uses Microsoft Bing recommendations to

find alternatives. As a result, the proposed classifier was capable of categorizing

85% of the all the tested queries. In order to verify that this automatic cate-

gorization was working properly, a sample of 1 068 logs were manually classified

and compared to the results of the algorithm. This sample, in our population

of 36 389 576 logs, provides a confidence level of 95%, with a margin of error of

3%. Through this comparison we found 58.99% of logs in a correct category. In

Table 3.4 all used categories can be seen. Those categories correspond to the first
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hierarchical level of ODP. Percentage of correctly classified logs for each category

was also estimated.

Table 3.4: Classification utility

Classification
% Correct

Classification
% Correct

Arts 57.23% Recreation 55.22%
Business 77.39% Reference 69.23%
Computers 64.79% Regional 69.08%
Games 56.25% Science 47.22%
Health 88.10% Shopping 69.64%
Home 81.48% Society 56.76%
Kids and Teens 37.65% Sports 40.48%
News 16.67% World 30.77%

It can be seen that this strategy works better in some categories. For instance,

with categories that contain very specific terms, such as Health, the best results are

obtained. In contrast, worse results are gathered in categories with generic terms,

such as News. This is because the proposed algorithm only selects the word with

lower entropy, which is expected to be the most specific one. Categorization was

solely based on this word. When a combination of words changes the meaning of

the query, this approach led to errors. For example, in the query “artic monkeys”,

the lowest entropy word is “artic”. This word is categorized as “Regional: Polar

Regions”. That is correct for the word itself but using the whole context, category

should be “Arts: Music”. These results show that a better classifier should only be

obtained by means of applying more complex natural language processing systems;

however, this is outside of the scope of this proposal.

In addition to that, to check the anonymizer’s utility, two sets of user profiles were

created using the profiler. The first set contained profiles created with original logs

while the second set contained profiles created with anonymized logs. Both sets

were compared in order to check whether they were equivalent. It was confirmed

that, for a given user, both sets of profiles contained the same number of queries for

each category. We argue that if an anonymized profile contains the same categories

with the same weights than an original profile, it implies that the anonymized

profile retains the same utility than the original one.
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3.5 Conclusions

This chapter has presented a novel framework for anonymizing query logs gener-

ated by WSEs. Privacy guarantee is defined in terms of set theory, which relates

sets of users to sets of query logs. Data could be released without other modifi-

cations than removing direct identifiers from query text and remapping between

those two sets. This contrasts to existing approaches that release heavily modified

data, either distorted or generalized, to maintain anonymity.

In our evaluation, we have considered the worst-case scenario, in which an attacker

who is willing to use the anonymized query logs to retrieve the original query logs

has gained access to the same base information and algorithms than the WSE. We

conducted tests under this context and the best attempt to recover the original logs

only obtained a 1.89% of them. All the proposed methods were tested using the

AOL released logs; therefore, we argue that our solution is capable of dealing with

real data in a real setup. In this way, we have considered also the average Google’s

load to study the runtime cost and the memory usage. The query log’s utility

after its anonymization was also analyzed, and the results showed that original

query logs and anonymized query logs were equivalent in terms of categories being

reflected.
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Chapter 4

A Real-Time Query Log

Protection Method for Web

Search Engines

4.1 Introduction

As previously discussed, query logs are fundamental for the proper operation of

several services offered over the Internet, but also can lead to some severe problems,

related to users’ privacy. In the last chapter, we obtained query logs with high

degree of privacy using a statistical de-identification approach. Our proposal was

able to process a stream of query logs in real time and generate anonymized logs

with similar queries from disctinct users.

In this chapter, we want to improve the previously proposed system. We assume

WSEs are seeking to monetize query logs by making them available to third parties,

while respecting privacy regulations [38]. In order to make data monetization

viable, one also must keep in mind that reducing privacy disclosure risk is not

enough. At the same time, as much data utility as possible should be preserved.

In the previous chapter, query logs were classified using broad categories, which

caused a certain degree of utility loss.

73
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We reason some modifications over the previous approach to achieve a system

with customizable data utility, in addition to the proposed use of probabilistic

k-anonymity to bound disclosure risk of personally identifiable user attributes.

Therefore, the present chapter expands our previous proposal to use parameter-

izable levels of categorization. We seek to enable the WSE to adjust utility of

generated logs according to the needs of each application. We will also validate

the proposal to prove that it is able to achieve the same or better level of pri-

vacy than previously reported, with an improved overall data utility. Formal and

experimental proofs will be devised to ensure its feasibility.

The rest of this chapter is organised as follows: Section 4.2 presents our proposal.

Section 4.3 provides architectural components and requirements. Section 4.4 pro-

vides experimentation results validating our approach. Section 4.5 concludes the

chapter.

4.2 Our Proposal

We present in this section our anonymization proposal. Table 4.1 introduces the

notation used along this section. Next, we provide a formal definition of the

expected data we aim to anonymize, the way how the data is structured, a formal

analysis about the privacy properties of the proposal, and the algorithmic version

of our anonymization process.

4.2.1 Data Structures

We assume a stream of query logs, formed by m registers, where rm corresponds

to the last received query log:

R = {r0, .., rm} (4.1)
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Table 4.1: Notations used in this chapter.

R : Stream of query logs
rj : Individual query log
ui : User unique identifier
qj : Individual query text
cq : Full individual query classification
τ : Hierarchical ontology of categories
V : Set of vertices
vhx : Vertex at depth h depth and width x
E : Set of edges
ef : Edge between two vertices
Qh

x : Set of queries for vertex vhx
Uh
x : Set of users for vertex vhx

γhx : Category for vertex vhx
τ ∗`,k : τ with a depth ` and width k

Each register is of the form:

rj = {ui, qj, cg} (4.2)

where ui is a unique identifier that represents the user who sent the query qj to

the WSE. Each query qj is composed of a set of unstructured terms, which we

previously provided to a categorizer (cf. Section 4.3) to obtain the classification

of the query, denoted as cg. This classification cg is represented as the path from

a general category γ1s to a more specific category γhs∗ , with the form:

cg = {γ1s , γ2s′ , ..., γhs∗} (4.3)

The path is created according to a hierarchical ontology structure by means of a

tree structure τ , which is formed by a set of edges ef ∈ E and vertices vhx ∈ V ,

where h is the depth and x the width. Each vertex vhx of τ represents a category

γhx , and is related to other categories through the edges. The vertices or categories

are more generic the closer they are to the roots {v11...v1x}, and more specific the

closer to the leaves. Thus, every query is classified by assigning it to one of the

vertices of the tree. As mentioned, the classification is the path between the root

and the vertex, and it is composed by all the γ categories of the nodes that are in

the path.
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τ =< V,E > (4.4)

V = {v11, ..., v`z}

E = {e1, ..., eg}

vhx = {Uh
x , Q

h
x, γ

h
x}

ef = {vhx , vh+1
x′ }

The maximum depth of the hierarchy τ is `max, defined as the distance or minimum

path between the root and its farthest leaf. The number of terms or depth for

each classification may be `max or lower, but we will use limited versions at depths

up to `, where ` goes from 1 to `max.

Each vertex vhx contains a set of users Uh
x , and a set of queries Qm

n . The size of

Um
n will be k, but the size of Qh

x may be larger. This is because U is defined using

arity, but Q is defined without the need of using arity.

max | Uh
x | = k (4.5)

max | Qh
x | ≥ k (4.6)

Therefore, we call τ ∗`,k the tree τ with a depth ` and a value of |U | = k.

4.2.2 Restrictions

To properly explain why Uh
x and Qh

x may have different size, we introduce two

additional restrictions that we impose to our proposal (cf. Restrictions 4.1 to 4.2).

Restriction 4.1. A given query associated to an anonymized log must not be

assigned to the same user that issued the query on the unanonymized log.
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Restriction 4.2. When creating an anonymized query log, user must be selected

randomly between at least k different user values.

Restriction 4.1 ensures that outputs do not contain unanonymized pairs of user

and query. Restriction 4.2 imposes probabilistic k-anonymity, setting at least k

distinct values for users in each category when randomly creating an anonymized

log.

4.2.3 Anonymization Process

We define our anonymization process as the method that generates the probabilis-

tic k-anonymous stream of logs R′:

R′ = {r′0, ..., r′m} (4.7)

We assume that each record rj = {ui, qj, cg} in R is assigned to the corresponding

vhx using its categorization cg. The record rj is then separated in two parts: ui

which is assigned to Uh
x , and qj which is assigned to Qh

x. Records in R′ are obtained

by applying a random match between one element of Uh
x and one element of Qh

x,

once | Uh
x |= k:

r′j = {u′i, qj, cg} (4.8)

where qj ∈ Qh
x is matched with a u′i ∈ Uh

x 6= ui.

The Id function is assumed to be a correct identification function, which given r′j

responds with the original ui. The function Re is a re-identification function used

over the records in R′, which given a r′j responds with:

Re(r′j) = ui ∈ Uh
x , uj 6= u′i (4.9)
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The goal of probabilistic k-anonymity is to limit the probability of performing the

right re-identification to at most 1
k

for all ui ∈ R and for all the values of Re(r′j):

P (Re(r′j) = Id(r′j)) ≤
1

k
(4.10)

The stream of logs R′ is said to satisfy probabilistic k-anonymity if, by knowing

R′ and the anonymization process, the probability to link any record r′j ∈ R′ and

its corresponding record rj ∈ R is, at most, 1
k
.

We show next that our proposal satisfies the property defined in Eq. (4.10). For

each vertex vhx of τ , the random selection of an element (Restriction 4.2) guaran-

tees that all outcomes are equally likely to be selected. Therefore, we can state

maximum probability of re-identification of a r′j over τ using:

P (Re(r′j) = Id(r′j)) ≤ max
∀x,h

|Uh
x ∩ Id(r′j)|
|Uh

x |
(4.11)

As Uh
x sets are defined using arity, we know that:

∀x, h, Id(r′j)→ |Uh
x ∩ Id(r′j)| ∈ 0, 1 (4.12)

Someone could argue that Restriction 4.1 leads to a value of k − 1. However,

since Restriction 4.2 establishes this value to k (Restriction 4.2 also assures that

|Uh
x | ≥ k), the upper bound of our proposal for P (Re(r′j) = Id(r′j)) is strictly lower

or equal to 1
k
, hence satisfying probabilistic k-anonymity. A more formal analysis

about this result is provided next.

4.2.4 Privacy Analysis

Given k (anonymity parameter) in Z+, a set of users U equal to u1, ..., un (such

that n ≥ k), a set of query logsQ equal to (uij , qj)
j
j=1 up to the processing iteration
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j, where qk 6= ql ∀k, l ∈ [j], (k 6= l), uij ∈ U . We also assume that users repeat

(i.e. uik = uil).

We assume that given a query in R′, the whole R′ and k, an arbitrary PPT

(Probabilistic Polynomial-Time) adversary A has at most 1
k

chance of guessing

the user the given query was attached to in R.

Now, with the notation above, and let j0 ∈ [j] define and experiment ExpRe(k,R),

in which:

R′ ← Anon(k,R) (4.13)

R∗ ← Re(k,R′)

let b =

1, if R = R∗

0, otherwise

return b

Theorem 1. Anon (cf. Eq.(4.13)) is probabilistic k-anonymous if, for every user

set, for every query log R and every index j0 ∈ [j], any PPT adversary A has a

bounded advantage up to 1
k
, i.e.,

AdvA(k,R) = (4.14)

P [ExpRe(k,R)] ≤ 1

k

Proof. Let R′ = (u′ij , q
′
j)

j′

j=1 and j the iteration at which the first log entry is

released by the anonymizer after (u, q) has been read by itself. Let UR′
j =

(uij1 , ..., uiJ ) be the users presents at R′ at iteration j and Uj = (ui1 , ..., uik) be the

user set used internally in the anonymizer at iteration j (i.e., we know u ∈ Uj ∈ UR′
j

and Uj has at least k different users).

P (A(R′, q) = u) =∑
u′∈U

P (A(R′, q) = u|(u′, q) ∈ R) · P ((u′, q) ∈ R)
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If Uj and Qj are the users and queries stored by the anonymizer after reading

query q, where Uj has at least k different users, permute users from the queries of

Qj to R (all in Uj) has no effect on the anonymizer output, i.e.:

P (A(R′, q) = u|R = Re(R′)) =∑
u∈Uj

P (A(R′, q) = u|[R = Re(R′)] ∩ [Uj = U ]) · P (Uj = U)

where Uj contains the users that can appear in step j, hence u ∈ U . If Uj is fixed

and u ∈ Uj, we can consider an R where the query q is paired with each of the

users u′ of Uj, and one of the queries q′ whence the entries of u′ from Uj are now

paired with U .

If we have read ju times the user u, ∀i : ji ≥ 1, we obtain that the ratio of R∗s,

being R∗ = Re(R′) and Uj = U , which contain the original pair (u, q) is:

P (A(R′, q) = u|R = Re(R′)) =

(ju2 + ...+ juk
+ ju−1)!

(ju2 + ...+ juk
+ ju)!

=

1

(ju2 + ...+ juk
+ ju)

≤ 1

k

hence satisfying Theorem 1.

4.2.5 Algorithmic Version of our Proposal

An algorithmic version of our anonymization process is presented in Algorithm 4.

Algorithm 5 presents the anonymization process counterpart, assumed to be im-

plemented by a PPT adversary. Algorithm 4 receives three main inputs: desired

k, ` values, and R as a stream of hierarchically categorized query logs.

Even if all the sets are initialized empty, our proposed algorithm guarantees that

Uh
x is of size k every time a new anonymized log is generated from that category.

It also tries to keep the Qh
x size as close as possible to the k value. As it always
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chooses between k different users and at least k different queries, probabilistic

k-anonymity is guaranteed.

Qh
x size may be bigger than k in the following situation: each time a new log enters

a category and the log’s user was already present on that category, user’s arity

is increased by one in Uh
x and the query is added to Qh

x. Therefore, |Uh
x | stays

the same but |Qh
x| is increased by one. If Restriction 4.2 is not met, there is no

anonymized log release (i.e., the size of Qh
x can be bigger than k).

If Restriction 4.2 is met, and some user’s arity is greater than one, then Algorithm 4

releases an additional log to reduce the size of Q and user arity, also enforcing

Restriction 4.1. This extra step is only done once per log, therefore at most two

logs are generated each time a new record enters the category, until all users’

arities are equal to one.

Algorithm 4: Anonymization Process

Input : R, k, `
Output: R’

1 foreach rj ∈ R do
2 // Get current user, query text and full query categorization
3 u, q, c← rj;
4 // Truncate categorization to level `
5 cat← {γ1s , ..., γ`s∗} ∈ c;
6 // Add current user to users’ category set
7 users[cat]← u;
8 // Add current query and full categorization to queries’ category set
9 query[cat]← {q, c};

10 // While there are more than k distinct users on the current category
11 while distinct(users[cat]) > k do
12 // Select and remove a random query and categorization from the

category’s set
13 pop random {q′, c′} ∈ query[cat];
14 // Select and remove a random user from the category’s set, distinct from

the original user related to the query
15 pop random u′ ∈ users[cat], u′ 6= Id(q);
16 // Send to the output the selected user, query and category
17 send u′, q′, c′;

18 end

19 end
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Algorithm 5: De-Anonymization Process

Input : R’, k, `
Output: R*

1 foreach r′j ∈ R′ do
2 // Get current user, query text and full query categorization
3 u, q, c← r′j;

4 // Truncate categorization to level `
5 cat← {γ1s , ..., γ`s∗} ∈ c;
6 // Add current user to users’ category set
7 users[cat]← u;
8 // Add current query and full categorization to queries’ category set
9 query[cat]← {q, c};

10 // While there are more than k distinct users on the current category
11 while distinct(users[cat]) > k do
12 // Select and remove a query and categorization from the category’s set,

using one of the record linkage algorithms
13 record linkage {q′, c′} ∈ query[cat];
14 // Select and remove a user from the category’s set, using one of the

record linkage algorithms
15 record linkage u ∈ users[cat];
16 // Send to the output the selected user, query and category
17 send u, q, c;

18 end

19 end

System performance remains stable whenever variations of the set size is propor-

tionally conducted (cf. Chapter 3). Hence, we modify the size of each set in

incremental unitary steps. This allows the most efficient memory usage. In addi-

tion to the k parameter, the depth of categories’ tree must be specified using the `

parameter. Both k and ` remain fixed to the specified value throughout the entire

execution.

Tables 4.2 and 4.3 depicts an example using k = 2 and ` = 1. These values

have been chosen to facilitate the understanding of the example, but they are

inferior to desirable values in a real application of the algorithm (cf. Section

4.4). The example starts with an empty system, receiving a stream R of query

logs classified in two distinct categories. Figure 4.1 depicts the used R, and the

contents of τ and R’ at the end of the aforementioned example. Figure 4.2 depicts

the deanonymization counterpart, leading to faulty re-identification.
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STEP 1: first query arrives

INPUT: r1{u=Alice, q=”piano”, c=Arts/Music}

users[Arts] = Alice
query[Arts] = ”piano”

STEP 2: second query goes to a new category

INPUT: r2{u=Bob, q=”myspace”, c=Computers/Internet}

users[Arts] = Alice
query[Arts] = ”piano”
users[Computers] = Bob
query[Computers] = ”myspace”

STEP 3, 4: still no distinct users > k in any category

INPUT: r3{u=Alice, q=”guitar”, c=Arts/Music}
INPUT: r4{u=Charlie, q=”violin”, c=Arts/Music}

users[Arts] = Alice, Alice, Charlie
query[Arts] = ”piano”, ”guitar”, ”violin”
users[Computers] = Bob
query[Computers] = ”myspace”

STEP 5: distinct users > k in ”Arts”, but k after the first output

INPUT: r5{u=Bob, q=”flute”, c=Arts/Music}

users[Arts] = Alice, Alice, Charlie, Bob
query[Arts] = ”piano”, ”guitar”, ”violin”, ”flute”
users[Computers] = Bob
query[Computers] = ”myspace”

Category full: distinct(users[Arts]) = 3 > k
OUTPUT: r′1{u=Charlie, q=”piano”, c=Arts/Music}

users[Arts] = Alice, Alice, Bob
query[Arts] = ”guitar”, ”violin”, ”flute”
users[Computers] = Bob
query[Computers] = ”myspace”

Table 4.2: Applying Algorithm 4 with k=2 and `=1 (Part I)
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STEP 6: new query, but no disctinct users > k in any category

INPUT: r6{u=Charlie, q=”google”, c=Computers/Internet}

users[Arts] = Alice, Alice, Bob
query[Arts] = ”guitar”, ”violin”, ”flute”
users[Computers] = Bob, Charlie
query[Computers] = ”myspace”, ”google”

STEP 7: distinct users > k in ”Computers”

INPUT: r7{u=Alice, q=”aol”, c=Computers/Internet}

users[Arts] = Alice, Alice, Bob
query[Arts] = ”guitar”, ”violin”, ”flute”
users[Computers] = Bob, Charlie, Alice
query[Computers] = ”myspace”, ”google”, ”aol”

Category full: distinct(users[Computers]) = 3 > k
OUTPUT: r′2{u=Bob, q=”google”, c=Computers/Internet}

users[Arts] = Alice, Alice, Bob
query[Arts] = ”guitar”, ”violin”, ”flute”
users[Computers] = Charlie, Alice
query[Computers] = ”myspace”, ”aol”

STEP 8: distinct users > k in ”Arts”; k after the second output

INPUT: r8{u=Charlie, q=”drums”, c=Arts/Music}

users[Arts] = Alice, Alice, Bob, Charlie
query[Arts] = ”guitar”, ”violin”, ”flute”, ”drums”
users[Computers] = Charlie, Alice
query[Computers] = ”myspace”, ”aol”

Category full: distinct(users[Arts]) = 3 > k
OUTPUT: r′3{u=Alice, q=”drums”, c=Arts/Music}
Category full: distinct(users[Arts]) = 3 > k
OUTPUT: r′4{u=Bob, q=”guitar”, c=Arts/Music}

users[Arts] = Alice, Charlie
query[Arts] = ”violin”, ”flute”
users[Computers] = Charlie, Alice
query[Computers] = ”myspace”, ”aol”

Table 4.3: Applying Algorithm 4 with k=2 and `=1 (Part II)
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Alice piano Arts/Music

r
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Bob myspace Computers/Internet
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Alice guitar Arts/Music

r
4

Charlie violin Arts/Music

r
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Bob flute Arts/Music

r
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Charlie google Computers/Internet
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Figure 4.1: Contents of R, τ and R′ in the example provided in Tables 4.2,4.3.
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Figure 4.2: Contents of τ ′ and R∗ when trying to deanonymize R′ from the
example provided in Tables 4.2,4.3
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4.3 Practical Implementation

We present in this section a practical implementation of our proposal. We de-

scribe the architecture and requirements, before moving to the presentation of the

experimental results.

4.3.1 Initial Architecture

We aim at implementing an anonymization method that can be used by Web

Search Engines (WSEs) to anonymize query logs in a streaming environment, and

at server-side (cf. Figure 4.3). The input data of the anonymization algorithm

is a continuous stream of categorized query logs. The outputs are a continuous

stream of anonymized logs and a database of user profiles. To meet the goals

of our proposal, we must ensure that those outputs meet a set of requirements

detailed below.

WSE
Anonymizer

Query
logs

Anonymized
logs

Profiles

Figure 4.3: Our proposal defines a WSE query logs anonymization method in
a streaming environment. The input of the algorithm is a stream of query logs.
The outputs are a stream of anonymized logs and a database of user profiles.
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4.3.2 Functional Requirements

In addition to the restrictions and properties already defined in Section 4.2, we

report next some functional requirements for the practical implementation of our

proposal.

Scalability — It refers to the capability of a system to handle a growing amount

of work, or its potential to be enlarged in order to accommodate that growth [149].

In our system, the objective is to achieve load scalability, defined as the ability

to accommodate heavier or lighter loads. Those methods can be classified in two

main categories [150]:

• Horizontal Scalability is related to the ability of a system to add more

working nodes, such as a new computer. Hundreds of small computers may

be configured in a cluster to obtain aggregate computing power. This ap-

proach demands an architecture that allows efficient management and main-

tenance of multiple nodes.

• Vertical Scalability is related to the ability of adding resources to a sin-

gle node in a system, typically involving the addition of CPUs or memory.

Such approach could be interesting in a virtualized environment, as it could

provide more resources according to the virtual node needs. This approach

demands an architecture that allows efficient management of used processes

and memory.

The two models have their own particular benefits and limitations. If necessary,

our proposal should use all possible assets. In such a case, the design should be

integrated into existing systems on a WSE architecture. Ideally, our system can

take advantage of underused resources.

Resource Consumption — In order to take advantage of underused resources on

existing architectures, and minimize system deployment costs, we want a minimal

resource consumption. If the designed system is able to use a limited amount of
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resources, all necessary data could be kept and processed in memory, obtaining

better execution times.

Speed — We need a fast processing speed to be able to process all received logs

in real time. Otherwise, some kind of memory buffer will be necessary to keep

incoming logs until processed. That buffer will increment our resource consump-

tion. An additional requirement, in terms of processing speed, must be defined

and only use small buffers at specific overload times. Nowadays, a WSE receives

millions of user queries each hour. Therefore, our system should handle that load,

to be able to integrate it in a existing WSE architecture.

Efficiency — Beyond reduced resource consumption and fast processing time, we

aim at assuring the algorithmic efficiency of the proposal. We consider that this

requirement will be achieved if the algorithmic time complexity of our proposal is

linear according to the inputs.

Transparency — We want a straightforward integration of our approach into an

existing architecture. Having a transparent system implies that no component of

the existing WSE should be modified. For this purpose, our module is expected to

be encapsulated within the WSE. It should also be able to interact to the existing

interfaces of the WSE, without forcing any changes. It should also be able to

generate anonymized logs, while complying with all the previous requirements.

Modularity — We want to have low coupling and high cohesion to achieve a fully

transparent component. Modularity has the added benefit that modifications to

the proposal could be implemented with minimal effort, as well as to carry out

tests with different alternatives for the treatment of the data.

4.3.3 Expanded Architecture

The initial proposal depicted in Figure 4.3 is expanded with two additional parts:

Attacker and Researcher. This allows a proper empirical evaluation, in addition
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to the analysis conducted in Section 4.2. The proposed system is designed using

a micro-service architecture pattern as presented in Figure 4.4. For the current

study, all the defined systems are used. In a real WSE environment, only the parts

marked as WSE should be deployed.

Within the expanded architecture, we find two main components: anonymizer and

profiler. The anonymizer is a component implementing Algorithm 4. The profiler

creates protected user profiles, using the categories of each log assigned to that

user by the anonymizer. Those categories are added to a user profile database in

real-time. Each profile on the database contains a frequency distribution of those

categories queried by the user. They can be seen as user interests that could be

released to third parties, for profit.

WSE

CPX Proves 
d'esforç

 

WSE
Anonymizer

Query
logs

Anonymized
logs

Profiles

Profiles'

Query
logs'

CPX Proves 
d'esforç

 

De-
Anonymizer

CPX Proves 
d'esforç

 

Profile
matcher

Profile
utility

ResearcherResearcherWSE

AttackerAttacker

Figure 4.4: Full Architecture: WSE Anonymizer takes a stream of query logs
and anonymizes them, also generating a database of user profiles. It imple-
ments Algorithm 4 (cf. Section 4.2). De-anonymizer implements Algorithm 5
and simulates adversarial actions over the anonymized logs. It tries to recreate
the original logs and user profiles. Profile matcher, responsible of benchmark-
ing anonymization, de-anonymization and performance, also generates a profile

utility metric.
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4.3.3.1 Actors

Three actors are defined in our current test architecture:

• WSE — has the responsibility of query logs anonymization and publication.

• Attacker — has access to the anonymized stream of logs, tries to recover

the original relationship between the log and the user who made the original

query.

• Researcher — can check all the data, but can not modify anything, to test

the validity of the proposal.

4.3.3.2 Phases

Our study is divided into three main phases:

• Anonymization and profile creation — this phase represents the normal

execution of the system on the WSE environment. It takes the query logs

generated and anonymizes them, also generating a database of user profiles.

• De-anonymization — it simulates attacks, trying to link as much of the

anonymized logs with the user that originally made the query.

• Analysis — it conducts anonymization, de-anonymization and performance

benchmarking, taking into account original and generated data, time and

resource usage.

4.3.3.3 Interactions

In a real WSE environment, the WSE will anonymize the query logs and release the

anonymized ones to its clients as the main interaction. In our tests, the attacker

is acting as a normal client from the WSE point of view. The attacker process

the anonymized output of the WSE and generates another log stream, trying to

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



4.4. Experimental Results 91

reconstruct original query logs. Only during the tests, secondary interactions occur

between those actors and the researcher, who receives original, anonymized and

de-anonymized query logs. Some further information about it is presented in the

sequel.

4.4 Experimental Results

We report in this section a practical implementation of our approach, and report

experimental tests and results, to validate our approach in terms of privacy, data

utility and other functional requirements.

Experiments were conducted using a Dell notebook running Ubuntu Linux 16.04

LTS, with a 1.8 GHz Intel CoreTMi7-4500U CPU and 8GB of RAM. System hard

disk was a Seagate ST1000LM014, whose performance profile is skewed strongly

towards small file I/O, and a below average overall performance. All algorithms

were implemented and executed in Python 2.7.12.

4.4.1 Implementation

Algorithm 4, described in Section 4.2, has been implemented using the Python

language. Input query logs used to test our system were downloaded from the

public available AOL log repository, in form of plain text files. In order to respect

our transparency functional requirement, we chose to make this file the main input

of our system. However, other methods to feed logs to the system, such as a real

time input via sockets, could be used. The same applies to system output and

we also decided to store them in plain text files, preserving original logs’ format.

Additionally, a No-SQL database was used to store generated user profiles.

Because AOL’s released files do not have any classification, they need to be cat-

egorized by an external categorizer before any of the proposed algorithms could

be applied. We used a modified version of the deterministic classifier proposed in

Chapter 3. The use of a deterministic classifier guarantees that the same query
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will always provide the same unique category. In case a query triggers multiple

categories, the classifier will always take the most probable one. Other families of

classifiers can be adapted and integrated in our approach thanks to the proposed

micro-service architecture. Classifier modifications allow us to obtain a query cat-

egorization organized in several hierarchical levels. Some queries contain letters

or symbols without any meaning, and some contain no text at all. Our classifier

was not able to resolve those logs, and they were left out of data used to test the

proposal. However, some changes made to natural language processing algorithms

on the classifier lead to categorize 98% of original logs, an improvement of over

the 85% categorized in Chapter 3. As it is out of the scope of the current proposal,

implementation of the classifier will not be evaluated. Priority will be given to

allow interoperability between our proposal and different classifiers. Usually, clas-

sification process needs more specific data, related to WSE environment or desired

output categories. Thus, we leave freedom to each WSE to choose the strategy

that best suits their needs.

We also validate the possible record linkage of the anonymized stream, imple-

menting three different record linkage algorithms, and evaluate for each algorithm

whose requirements are fulfilled. In addition, some other changes that have been

made to the initial architecture described in Section 4.3 are discussed below.

4.4.2 Evaluation Methodology

The algorithmic solution proposed in Section 4.2, and all the architectural compo-

nents, requirements and implementation details defined in Sections 4.3 and 4.4.1,

have been used to conduct an experimental evaluation and comparison to previ-

ous work in Chapter 3. In particular, one version of the anonymizer, and three

versions of the de-anonymizer are implemented and evaluated in terms of utility,

privacy and functional requirements.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



4.4. Experimental Results 93

4.4.2.1 Experimental Datasets

For our experiments, we use plain datasets (i.e., text files), containing query logs

released by AOL [151]. The released AOL data contains up to thirty six million

(36 389 576) query logs. Such query logs correspond to a three-month period of

real web search activity conducted by AOL users, and released by AOL for research

purposes. Figure 4.5 provides a brief sample of the used logs.

116874 thompson water seal 2006 -05 -24 11:31:36 1 www.thompsonswaterseal.com

116874 express -scripts 2006 -05 -30 07:56:03 1 www.express -scripts.com

116874 express -scripts 2006 -05 -30 07:56:03 2 member.express -scripts.com

116874 knbt 2006 -05 -31 07:57:28

116874 knbt.com 2006 -05 -31 08:09:30 1 www.knbt.com

117020 naughty thoughts 2006 -03 -01 08:33:07 2 www.naughtythoughts.com

117020 really eighteen 2006 -03 -01 15:49:55 2 www.reallyeighteen.com

117020 texas penal code 2006 -03 -03 17:57:38 1 www.capitol.state.tx.us

117020 hooks texas 2006 -03 -08 09:47:08

117020 homicide hooks texas 2006 -03 -08 09:47:35

117020 homicide bowie county 2006 -03 -08 09:48:25 6 www.tdcj.state.tx.us

117020 texarkana gazette 2006 -03 -08 09:50:20 1 www.texarkanagazette.com

117020 tdcj 2006 -03 -08 09:52:36 1 www.tdcj.state.tx.us

117020 naughty thoughts 2006 -03 -11 00:04:40 1 www.naughtythoughts.com

117020 cupid.com 2006 -03 -11 00:08:50

Figure 4.5: AOL log format. Each row represents a query log. Columns
contain, from left to right: user identifier, query submitted, time submitted,

result selected and result URL.

The Classifier (cf. Section 4.4.1), adds to each log record an additional column

with a hierarchical classification in form of a list with n elements. In our case,

n was between one and 13, and each element of the list represents a subcategory

of the previous element. This classification is generated independently of the

anonymizer. Therefore, this list contains all the subcategories which the Classifier

is able to generate for a given query, regardless of the ` used by the anonymization

process.

4.4.2.2 Conducted Tests

Proposed system could be configured using two parameters: k and `, being k the

desired number of different users on each category and ` the maximum depth of

categories and subcategories used for each record. Several tests were conducted to

determine its effects.
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Anonymizer To generate anonymized data, proposed anonymizer was exe-

cuted on all available AOL logs multiple times, to cover different k and ` values.

k has taken values between 3 and 200 to be able to compare obtained results with

previous ones in Chapter 3. To do this, Algorithm 4 needs to be tested at least

using ` = 1. We decided to test all available ` values, that with our classification

correspond to values between one and 13, but we found that from 11 onwards,

differences were not significant: few logs have more than 11 categories of depth.

Our privacy, functional and utility requirements are checked for every combination

of k and `.

Profiler Specific tests were conducted with the profiler, to determine the

amount of data utility that could be lost with anonymized profiles creation re-

spect to unanonymized profiles. For those tests, we used k values between three

and 90 and ` values between one and 13.

De-anonymizer A de-anonymization has been attempted against all anony-

mized data. All anonymized data was tested against three different record-linkage

algorithms:

• Record-linkage 1 — This is the simplest record-linkage algorithm we

tested. It tries to apply an inverse transformation to anonymized query

logs by applying a similar algorithm to the one used in the anonymization

process (cf. Algorithm 4 in Section 4.2). In short, it tries to recreate orig-

inal logs by randomly matching users and queries from the same category.

Attacker also takes advantage of both restrictions 4.1, 4.2 to achieve higher

levels of de-anonymization.

• Record-linkage 2 — It improves the performance over Record-linkage 1.

Instead of randomly matching users and queries, it assigns the user that

appears more times on a category to the selected query. Just like other

algorithms, both restrictions are respected.
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• Record-linkage 3 — It keeps track of how many times a user issued a

query on each category, constantly updating a simplified user profile. When

the algorithm needs to assign a user to a query, the user with more issued

queries on that category will be chosen. If a user appears more than one

time, the result will be multiplied by the number of appearances of that

user, balancing the importance between current state of the system and

historical values.

4.4.3 Privacy Study

Our privacy test compares original query logs data with the anonymized ones.

Results for this base case show that none of the original pairs of user/query appear

on the anonymized query log. Notwithstanding, that result did not guarantee full

user privacy, since some attacks are possible over the output data flow, and some

user logs may be re-identified. Three different record-linkage algorithms were

applied to the anonymized query logs (cf. Algorithm 5). Resulting logs were

compared to the original ones, counting the percentage of matching records.

Our de-anonymization algorithms proposal is based on Algorithm 5, that is similar

to Algorithm 4 used in anonymization. It uses the stream of anonymized logs

generated by the WSE as the main input. It also needs k and ` parameters

(explained in Section 4.2). The smaller the difference between k and ` values used

in both algorithms, the better the results obtained from de-anonymization. In

other words, the attacker will be able to re-identify the original data more easily.

The stream of anonymized logs is classified in the same way as the original one,

since we assume that categorization is public and the attacker can use it. There-

fore, the de-anonymization process uses the same categorization, which enables

this algorithm to obtain the best de-anonymization rate when trying to recover

the original logs.
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The main difference with the anonymizer algorithm is the use of record linkage

function, different for each implementation of the de-anonymizer algorithms. The

most complex de-anonymizers also use additional data structures to improve de-

anonymization performance. Differences of each algorithm are fully explained in

Section 4.4.2.2.

For analysis purposes, we need to evaluate the amount of memory and time used in

each algorithm execution, therefore, previous algorithms were modified to calculate

those values. An additional algorithm must be defined to find the number of logs

that are identical comparing two log streams.

Figure 4.6 shows percentage of matching records, executing the three algorithms

with values of k between three and 200 and values of ` between one and 13. With

` = 1, only one level of the tree structure was used, which results in a data

structure equivalent to the one used in Chapter 3. ` = 13 is the maximum depth

that our classifier was able to generate. Thus, there is no need to use higher `

values. We also picked out k values to be able to compare results between our

current and former evaluation.
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Figure 4.6: Record linkage (%). Percentage of matching records, executing
the three de-anonymization algorithms with values of k between three and 200

and values of ` between one and 13.
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In all cases, results are under the theoretical maximum probability 1
k

of being

re-identified [152]. We ran the Kolmogorov-Smirnov goodness-of-fit statistical

test [153, 154] to compare the k-anonymity probability with the experimental re-

sults, Figure 4.7. The maximum difference between the cumulative distributions,

D, is 0.08 with a corresponding p-value of 0.9977. Therefore, the statistical test

yields to acceptance of the null hypothesis that our results follow k-anonymity’s

probability of re-identification (at the 5% level of significance).
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Figure 4.7: Comparison between cumulative fraction functions of the the-
oretical k-anonymity (dashed) and experimental results (solid). Used for the

Kolmogorov-Smirnov test (D = 0.08, p-value= 0.9977).

Each record-linkage version improves re-identification rate, being the third version

the one that obtains better results overall. k value was highly correlated with

privacy, because when the value of k increases, record linkage decreases. ` also

affects privacy. With a higher number of levels (high ` value) users were matched

with more specific queries, therefore, it was also more probable to obtain a correct

re-identification of the original user. Here, we face a trade-off between privacy and

data utility.

Results obtained this way, are close to the ones obtained in our previous article

using the proposed algorithm without restriction, since now the effective size of

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



4.4. Experimental Results 99

the category sets are closer to the k value specified as a parameter. However, on

average a better anonymization is obtained, since the size of Q must be temporarily

increased to meet the restrictions 4.1 and 4.2.

Figure 4.8 shows mean final | Q | values, related to ` and initial k value. For low `

values, mean final | Q | values are higher because they have less categories results

and more user coincidences on the same category. However, with small k and `

values, the high number of queries that passes through each category counter this

effect. With higher ` values, final | Q | values tend to match up with specified k.

|Q
|

Figure 4.8: Final | Q |-value. For low ` values, final | Q | is higher due to
more user coincidences on the same category. With higher ` values, final | Q |

tend to match the specified k.

The highest record linkage is obtained with highest ` and lowest k values. Our

best de-anonymizer algorithm was able to link 23.18% records to the original user.

De-anonymization tests were conducted knowing exactly all algorithms, categories

and variables used for anonymization. This ratio decreases quickly when initial k

value is increased, obtaining a record linkage lower than 1% from k values greater

than 90. In conclusion, desired record linkage level could be adjusted by modifying

the k value, even offsetting the effect of ` variations on the record linkage.
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4.4.4 Utility Study

We proceed to analyze the utility of the proposed anonymizer. This analysis has

been focused on two different aspects:

• Percentage of logs that the system can generate as an output.

• Preservation of original user’s interest in anonymized user’s profiles.

First, we want to analyze the percentage of logs that can be generated by the

system over the total number of logs that it gets. The proposed system uses sets,

and each set must have at least k different users before being able to release an

anonymized log. A possible drawback to this approach is that some sets do not

reach k users and, therefore, the logs contained in this set do not end up leaving the

system. As we can see in Figure 4.9, this effect exists and it is directly proportional

to the depth of the category tree. This is consistent, since with more depth, more

categories are created and the minimum of k users on these categories is reached

more slowly. However, we see that as more queries enter the system, all categories

become filled with queries and the percentage of log output increases, tending to

a 100% rate for any depth of the tree.

Secondly, to measure the preservation of original user’s interest in anonymized

user’s profiles, we will measure the distance between them, using a metric known

as Earth Mover’s Distance (EMD) [155].

We calculate the distance between the categories of queries assigned to the original

profile and the anonymized profile. As our classification of categories is stored in

a tree graph, this distance is defined as the minimum length of the path that

connects the categories assigned to the original and anonymized query. Once we

have calculated the distance between individual queries, we add all the distances

of that profile and, thus, we obtain the total distance between profiles.

Notice that if two queries are classified and anonymized with the same category,

there is no distance between the two queries and there is no utility loss. This
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Figure 4.9: Output queries vs. total queries (%). Some sets take a while to
fill. This effect is directly proportional to the depth of the category tree as more

sets need to get k different users.

happens to all the queries when the depth of the tree is set to 13. However,

other tree depths can lead to utility loss. For instance, in the example of Tables

4.2, 4.3, “piano” is classified as “Arts/Music” but the anonymizer is just using

“Arts”, since the value of ` is equal to 1. Queries classified as “Arts/Music” and

“Arts/Painting” are mixed in “Arts” and assigned to different users. A third party

could think that Alice is interested in “Painting”, when she is just interested in

“Music”. i.e., there is a certain degree of utility loss. Since the third party still

knows that Alice is interested in “Art”, we can see the previous case as an example

of partial utility loss. Therefore EMD represents the distance between the original

user’s interests, and the ones that are deducted from the anonymized queries.

In Figure 4.10, we can see the average value of the EMD distances, as well as the

maximum theoretical distance between profiles using the chosen categorization.

This theoretical maximum distance is constant, regardless of which ` and k values

we use. The real distance we get is not affected by k, but is inversely proportional

to `. This means that the more levels we use in our anonymizer, the closer the

anonymized queries get to their original category and we obtain a better data
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Figure 4.10: Maximum theoretical distance between profiles, constant, and
average EMD distances, inversely proportional to `.

Figure 4.11: Loss of utility (%), the more levels we use in our anonymizer,
the better data utility.

utility. In Figure 4.11, we can see the loss of utility expressed as a percentage.

Using this metric, it can be seen that with ` = 1, loss of utility is over 40% on

average. With ` = 6, the loss of utility is near to 0%, according to our definition

of utility.
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4.4.5 Functional Study

Next, we detail the accomplishment of proposed functional requirements.

4.4.5.1 Modularity

To allow a modular system, this has been designed as a set of micro-services.

As our proposal uses micro-service architecture, it will be easier to modify and

adapt when applied to different environments. In addition, this design helps each

service to focus only on a specific process. By doing so, we achieve a system with

low coupling and high cohesion. The anonymization service has been thoroughly

explained. This service can be connected to other modules such as categorization

and profile creation.

4.4.5.2 Scalability

The proposed system can be scaled, both vertically and horizontally. Vertical

scalability is achieved by varying the number of resources assigned to the system.

These resources can be added either in form of memory or CPU cycles. Horizontal

scalability can also be achieved by activating or deactivating different instances

in parallel. In addition, with the proposed anonymizer, the value of k could be

dynamically adjusted, which also allows to improve the scalability of the system

using it in a wider range of situations.

4.4.5.3 Speed

Speed of the anonymizer and deanonymizers was tested. All the results that are

shown correspond to the time required to completely treat a query using a single

thread of execution on a single core. All the proposed algorithms can be used in

parallel, achieving a better system throughput.
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The fastest execution was achieved with k = 3 and ` = 1, where on average a

query was processed in 18.99 µs. Therefore, the system can handle up to 52659

queries per second, on average.

Average processing time per query was 33.68 µs, or 29691 queries per second. It

includes executions with all the k and ` values we have tested. Compared to our

previous proposal where we obtained 22 µs per query, we see that the system is

slower on average, but with greater data utility. However, depending on which

parameter values are used, the system is faster than our previous proposal, as

described below.

Figure 4.12: Anonymizer mean time per query (µs). `-value has little effect
on required time, k-value has a greater effect.

Speed of the anonymizer is affected by k and `. If we look at Figure 4.12, we can

see that changes in the value of ` have little effect on required time. Contrarily,

changes in the value of k have an important effect. For example, for k = 3 the

system can process a log in about 18.99 µs. This value reaches 49.71 µs with a

a value of k = 190. Taking into account that Google treats an average of 40000

queries per second (cf. Ref. [156] and citations thereof), a thread of our algorithm
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could handle all real-time queries, using k-values up to 50 with any value of `,

according to our test results.

Figure 4.13: De-anonymizer 1 - Mean time per query (µs). First de-
anonymizer obtained comparable results to the anonymizer.

Figure 4.14: De-anonymizer 2 - Mean time per query (µs). Second de-
anonymizer, which is more complex, is also slower and more affected by increases

in k-value.

The same analysis has also been done with proposed de-anonymization algorithms.

Results can be seen in Figures 4.13 4.14 4.15. The first de-anonymizer approach

obtained results comparable to the anonymizer. This was expected since in both

cases the same base algorithm was used. Second and third de-anonymizers, which
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Figure 4.15: De-anonymizer 3 - Mean time per query (µs). Third de-
anonymizer, the most complex, is also the slowest, being more noticeable with

high k-values.

perform more complex operations, are also slower and more affected by increases

in k-values. In all cases, we see that variations of `-values are less important.

4.4.5.4 Delay

Another factor that we consider important to evaluate is the average delay of

queries between entering and leaving the system in form of anonymized query

logs. Figure 4.16 shows this delay as the mean number of other queries that enter

the system during the period between the entry and the release of a given query.

As we can see, this delay is increased proportionally to the chosen `-value, but it

ends up stabilizing. This is reasonable, since the system needs to fill categories

initially and once this happens, the output stabilizes.

Taking as reference the 40000 queries per second that Google receives (according

to Ref. [156]), we see that our system’s output stabilizes in a few minutes for larger

values of `. Once the delay is stable, our system takes less than one second for

values ` ≤ 6, and does not reach two seconds for larger values of `.
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Figure 4.16: Queries delay, as the mean number of other queries that enter
the system during the period between the entry and the leave of a given query.

Once the categories are full, the output stabilizes.

4.4.5.5 Resource Consumption

Notice that our algorithms do not use any disk space, therefore only memory

consumption needs to be evaluated.

We have identified the variations in `-value as the main parameter that affects

resource consumption. Memory consumption increases when a new level of depth

is added to the tree, in proportion to the number of effective categories that are

added (cf. Table 4.4). Categories were created dynamically, depending on query’s

classification, therefore a different data set will generate different categories. At

the end of our tests, we used a maximum of 194 505 categories, in a tree with

depth thirteen.

With our test data, we see that most records are classified at depths between

five and seven, although we found a maximum depth of thirteen. As we increase

depth, there are fewer queries that can be classified at the last levels, using the

same data and the same classifier. Although we increase the value of ` the effective

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



108 A Real-Time Query Log Protection Method for Web Search Engines

` Added categories Total categories
1 16 16
2 537 553
3 5 523 6 076
4 21 786 27 862
5 36 806 64 668
6 35 543 100 211
7 39 998 140 209
8 26 914 167 123
9 16 863 183 986
10 7 863 191 849
11 2 143 193 992
12 441 194 433
13 72 194 505

Table 4.4: Number of categories added with each increase in `-value and total
categories of a tree with ` depth. Although we found a maximum depth of
thirteen, we see that most records are classified at depths between five and

seven.

number of categories created is marginally increased from this point. This also

causes memory consumption to stabilize. Let us illustrate the previous observation

with an example. Given a query classified as ”a:b:c:d:e” if we use an ` equal to 4,

the level 4 vertex ”a:b:c:d” is used for anonymization. If we increase ` to 5, or a

higher value, we use for anonymization the complete category, i.e. level 5 vertex

”a:b:c:d:e”, even if we use an ` = 13.

On the other hand, we can see that k adds a multiplicative factor in the consump-

tion of resources, depending on the number of existing effective categories. The

results in Figures 4.17, 4.18 and 4.19, only show the maximum memory consump-

tion.

Regarding different algorithms set forth, both anonymizer and de-anonymizer 1

show the same memory consumption profile. De-anonymizer 3 is the algorithm

with higher memory consumption. This is because that algorithm creates user

profiles in memory and therefore is reasonable that it uses more resources. Ano-

nymizer and de-anonymizers 1 and 2 should not use more memory than the

reported, regardless of the volume of logs they deal with. However, this is not
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the case of deanonymizer 3, as when it creates new user profiles, it increases the

memory consumption.

Figure 4.17: Anonymizer/De-anonymizer 1 - Memory consumption (GB). The
value of ` is the main parameter that affects memory consumption. The value
of k adds a multiplicative factor. Both the anonymizer and de-anonymizer 1

show the same memory profile.

Figure 4.18: De-anonymizer 2 - Memory consumption (GB). In this case, the
value of ` is also the main parameter that affects memory consumption, and the

value of k adds the same multiplicative factor.
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Figure 4.19: De-anonymizer 3 - Memory consumption (GB). The value of `
and k affect memory consumption in the same way. However, in this case we
have a higher memory consumption, because it creates user profiles in memory.

4.4.5.6 Efficiency

As we have seen in the previous sections, a lightweight method has been defined.

It allows the logs to be quickly processed with reduced resource consumption.

Studying the anonymizer we see that both delay and memory consumption vary

initially, because the system starts empty and the sets must be filled. As we have

seen, once the sets achieve k elements, these values stabilize. On the other hand,

the processing speed of a log depends on the value of k and `, but it remains

constant throughout each test set.

Analyzing the proposed algorithm, we can see that each log is only treated once.

This allows us to equate its efficiency with well known singly-linked list traversal

algorithms. Therefore, the algorithmic time complexity of our proposal is linear

regarding to the input and could be established as O(n).
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4.4.5.7 Transparency

The input of the system should be a stream of classified query logs that can be

obtained from the WSE. In case that only unclassified logs are available, a classi-

fication micro-service could be implemented and added to the WSE architecture,

as we previously showed in Chapter 3. In case that classified logs are available,

those logs could be used without further modifications. Our system generates an

anonymized stream of logs, preserving the existing structure. From the point of

view of an existing client, generated output will be completely indistinguishable

of the original one. Therefore, total transparency is reached.

4.5 Conclusion

A formal approach for the anonymization of WSE query logs has been presented.

Our proposal allows to publish query logs without any other modification than

eliminating direct identifiers and equivalent user re-assignment categories. This

contrasts with existing approaches that release heavily modified data, either dis-

torted or generalized, to maintain anonymity. In addition, our proposal allows

some degree of configuration, using two main parameters:

• k to adjust the level of diversity on each category.

• ` to adjust the amount of available categories.

This parameterization allows to adjust privacy and utility levels of generated logs

according to the needs of each application.

Three algorithms have been evaluated performing an attack to the anonymized

data, using the most favorable scenario for the attacker, i.e., when the attacker

knows the algorithms used by the WSE, all the parameters and the data. The

attacker has access to the anonymized log stream, but not to the original logs.

Tests with this context and several values of k and ` were conducted.
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Our best record-linkage attempt re-identified 23.18% of original logs with the low-

est k-value, highest `-value and using the most complex record-linkage algorithm,

which is also the one that needs more resources. With the same parameters, using

the simplest record-linkage algorithm we get an 18.36%. These results are reduced

rapidly, recovering less than 1% of original logs when using values of k over 100.

Variations in the values of ` do not have a representative impact in terms of record

linkage, but they do offer a significant improvement in terms of data utility.

Our proposed ideas were tested using the AOL released logs, showing the feasibil-

ity of our solution over real environments. The application of our work is sufficient

to generate anonymized logs that meet representative criteria, e.g., release of ano-

nymized data to third parties. Our solution can handle the equivalent to Google’s

average load, using only one execution thread in our testing environment. To eval-

uate log’s utility after anonymization, we have measured distances between user

profiles using Earth Mover’s Distance. We have found that using an `-value of

one, a 42.03% of utility was lost. Using `-values of six or more, less than 1% of

utility was lost.
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Chapter 5

Lifelogging Protection Scheme for

Internet-based Personal

Assistants

5.1 Introduction

Traditionally, people have used Web Search Engines, as the main gateway to the

Internet, but as time goes by, new proposals are trying to reduce the barriers to

access information even more.

In a broad sense, most of these new proposals are considered Smart Things [157],

a group which includes smartphones, smartgateways, smartwatches and activity

bands. A subset of Smart Things is getting a lot of attention in recent years. This

set of devices is known as Internet-based Personal Assistants, containing some

outstanding examples, such as Google Home and Amazon Echo [5, 44].

The traditional use of the WSEs is expected to be broaden when using Personal

Assistants, to aid domestic users in their household activities: shopping, travel

planning and home automation, among others. The remote participation of WSEs

and Social Network providers in the process, makes it already possible to process
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vast amount of information to increase social experiences such as scheduling of

meetings and spontaneous gatherings with family members and friends [44].

It is often easy to forget that when we interact with some online services, our

usage data is stored on the Internet. Using Personal Assistants, since the user is

not in front of a computer, the situation is even more accentuated. Users tend

to establish more relaxed relationship with the device, sometimes without even

knowing if it is working or sending information to another site, and mostly seeing

it as a friend or an extension of its person.

The recording and processing of all this information, denoted as lifelogging, that

is a term used to describe recording our everyday lives. Current applications of

lifelogging are built around remembrance or searching for specific events from the

past. In [7], they propose to extend this to allow them to characterise and measure

the occurrence of everyday activities of the user and in so doing to gain insights into

the user’s everyday behaviour. Their methods are to capture everyday activities,

and to use an algorithm which indexes the occurrence of basic semantic concepts.

Then use data reduction techniques to automatically generate a profile of the user’s

everyday behaviour and activities. They conclude that the overall performance of

these techniques makes it usable for characterizing the lifestyle and behaviour of

subjects. Therefore, it is possible to generate a more enriched users’ profiles, using

all the data generated by these devices.

Related to Internet-based Personal Assistants’ architecture, novel privacy risks also

arise. In [4] current topics in Smart environments are discussed while describing

interconnection issues, security threats and suggesting a lightweight framework

for ensuring security, privacy and trustworthy lifelogging. Under the scope of the

presented framework, new issues and security threats were undercovered. Security

challenges appear due to the lack of suitable security mechanisms and protocols

in the Internet of Things because of the limited resources of smart objects.

To sum up, in this chapter, we address the issue of transforming raw user’s data

from lifelogging data streams generated by Internet-based Personal Devices like

Google Home and Amazon Echo. We study the relation of such devices with other
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data information actors in terms of EU data protection directives and propose a

protection solution via anonymity transformation. Our proposal takes into account

the role of the organizations and their needs to monetize generated data. Our

protection scheme aims at limiting the risk of privacy disclosure, while maintaining

an adequate level of data utility.

The remainder sections of the chapter are organized as follows. Section 5.2 intro-

duces our problem statement. Sections 5.3 and 5.4 present the general overview

and architecture of our proposal. Section 5.5 concludes the chapter.

5.2 Problem Statement

5.2.1 EU Data Protection Actors

EU Directive 95/46/EC [158], nowadays superseded by the new General Data

Protection Regulation (GDPR) [38], defines different roles that are relevant to

the protection of general-case lifelogging environments. First, it defines the Data

Controller as the natural or legal person, public authority, agency or any other

body which alone or jointly with others determines the purposes and means of the

processing of personal data.

Lifelogging environments need to clearly identify who is the Data Controller, since

it determines which national law is applied. The data controller is the responsible

for determining what data must be processed, which third parties can access this

data and when this data must be deleted.

In addition, the figure of the Data Processor has the responsibility to ensure the

security in the processing of personal data. The directive states that it is the

natural or legal person, public authority, agency or any other body that processes

personal data on behalf of the controller. It is also necessary to determine the

Data Processor, as it also sets the national law to be applied. It is also necessary

to consider the Data Subject, as the person who is generating the data and from
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which we need the consent. The directive also requires to guaranteeing a set of

basic rights to the Data Subject, such as the right to access their information or

to oppose to the data processing.

Main
Service

3rd party

3rd party

3rd party

User A

User B
Personal 
Assistant

Figure 5.1: Main Architecture. Users represent the data subject, and are au-
thorized to interact with the Personal Assistant devices, by submitting queries
and commands. Personal Assistant devices then send those commands to the
Main Service that take the role of data collectors. Finally, the Third Parties are
the entities acting as data processors. They represent those parties that express

interest on legitimately accessing the anonymized query and command logs.

Figure 5.1 depicts a lifelogging environment which involves several actors, namely:

Users, Personal Assistant devices, remote Main Services and Third Parties. Users

represent the actors related to data subject, i.e., they represent the entities that are

authorized to interact with the Personal Assistant devices, by submitting queries

and commands. The Personal Assistant devices receive both queries and com-

mands from associated users. Queries and commands are sent and processed by

the Main Services for customized results. The remote Main Services take the role

of data collectors. They have direct access to the original queries and, e.g., com-

mand and control logs, sent by the Personal Assistant devices. Third Parties are

the entities acting as data processors. They represent those parties that express

interest on legitimately accessing the anonymized query and command logs, to

eventually process and use them.
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Table 5.1: General search query example

Request What’s the most populous country in the world
Response Ten Countries with the Highest Population in the World - Internet World

Stats
Time 25 Apr 2018, 13:34:37
Products Assistant
Locations 48.624924, 2.443970

Table 5.2: Location based query example

Request What’s the weather like tomorrow?
Response In Paris, tomorrow, there will be storms intermittently, with a maximum

temperature of 24 degrees and a minimum temperature of 13 degrees
Time 22 May 2018, 14:09:53
Products Assistant
Locations 48.624924, 2.443970

5.2.2 Data Structure

Personal Assistant devices may receive three different types of queries: (1) general

search queries, (2) location based queries and (3) commands. They are transferred

to the Main Servers for processing. Hence, the Main Service stores all the original

logs for each Personal Assistant device with respect to its different associated

Users. Queries and commands are defined as follows:

• General search queries — These are the traditional queries we are accus-

tomed to send to a Web search engine using, e.g., a computer or a mobile

phone. These queries help users to find what they are looking for, from

over 1.8 billion websites [159]. Users just have to ask a question and the

system returns the main result they are looking for. The query example 5.1

illustrates a general search query log, based on the Google-Home personal

assistant device.

• Location based queries — based on spatial and temporal data, location-

based queries are classified on two categories: elementary queries and deriva-

tive queries. Navigation and search for Point of Interests are typical elemen-

tary location based queries. Derivative queries are mainly processed for guid-

ing or tracking to provide customized results to users. The query example

5.2 presents an elementary location-based query log, based on Google-Home

personal assistant device.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



118 Lifelogging Protection Scheme for Internet-based Personal Assistants

Table 5.3: Command example

Request Can you increase the sound to 20%
Response
Time 3 May 2018, 09:06:01
Products Assistant
Locations 48.624924, 2.443970

• Commands — They allow users to request direct actions that affect their

own environment. These actions are usually related to home automation,

multimedia control, alarms, lists, etc. Although these actions usually only

have a local repercussion, all the data they generate is also stored together

with the rest of the logs. The example 5.3 presents a command log, based

on Google-Home personal assistant device.

5.2.3 Security and Functional Requirements

The proposed scheme has to fulfill a series of security and functional require-

ments. First of all, and in terms of user privacy entities’ privacy can be pre-

served thanks to the query de-identification, using different approaches, namely

full de-identification, partial de-identification and statistical de-identification. It is

commonly agreed that statistical de-identification is the more suitable approach.

It is accomplished trough many statistical criteria and anonymization techniques,

being k-anonymity and its extension l-diversity the two most widely accepted

techniques. Those techniques were proposed for structured data [78, 79, 85, 86].

In terms of scalability, the system shall be capable of handling any increase of

workload. It shall be capable of accommodating any type of growth [149]. As an

additional requirement, the system shall guarantee that the resource consump-

tion is kept low, to facilitate its inclusion in existing architectures, minimizing

overhead cost. Even though the system is supposed to scale with added resources,

it is important not to increase unreasonably the current system’s resource con-

sumption.

In terms of data utility, and although full de-identification is desirable from a

privacy standpoint, organizations need to monetize some non-sensitive user infor-

mation, selling it to a third party. Also third parties want to extract some useful
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user characteristics from the data they bought. The main problem is that query

and command logs can also reveal sensitive information, raising some serious pri-

vacy concerns. So there is a trade-off between anonymizing logs and keeping them

useful to extract information through data mining processes. Therefore, the main

challenge related to data utility is to anonymize sensitive user data removing as

few information as possible in order to have enough interesting information to be

analyzed. To do so, the proposed scheme aims to build synthetic logs and user

profiles, which should maintain users’ interests and break quasi-identifiers that

could allow to identify an user. Queries should be anonymized to not relate sensi-

tive information to a user identity. It should be as difficult as possible to relocate

queries in order to build original user’s profile. In the end, the proposed system

should generate those fake logs and profiles with other users’ queries.

5.3 Proposal

In this section we will propose a preliminary implementation of a system to protect

users’ privacy, protecting logs generated from the use of virtual assistants. This

proposal wants to be a proof of concept to study the viability of this type of

solutions and promote its discussion.

Our ultimate goal is to allow the monetization of those logs by the organizations,

preserving the privacy of users. This will also allow these logs to be sold to third

parties, without disseminating sensitive user information.

As we have seen, working in a trusted environment may have some problems. In

our proposal we assume that we are in a semi-trusted environment, where all the

actors can be honest but curious.

To achieve a viable architecture in this environment, we need to add some actors

to the basic architecture of the system, as we can see in Figure 5.2.

The Identity Screener ensures the compliance with the legal constraints and re-

quirements to settle, e.g., privacy prevention algorithms, based on criteria set by

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO LIFELOGGING PROTECTION IN STREAMING ENVIRONMENTS 
David Pàmies Estrems 
 



120 Lifelogging Protection Scheme for Internet-based Personal Assistants

3rd party

Personal
Assistant

Auditor

Identity
Screener

Main
Service

User A

User B

Figure 5.2: Proposed architecture for semi-trusted environment, where all the
actors can be honest but curious. It contains a Identity Screener which acts
as a container of privacy algorithms, and an Auditor, responsible of auditing

accountability and users’ consent requirements.

EU regulation directives. Indeed, it acts as a container of privacy algorithms to

enforce data protection and control any misuse between the other parties. In the

following section, we describe more in depth the working properties of an idealized

Identity Screener conducting sanitizable signatures and log anonymization. The

Auditor is a dedicated entity which is responsible of auditing the Identity Screener

and Main Service activities with respect to accountability and users’ consent re-

quirements.

5.3.1 Sanitizable Signatures

The notion of sanitizable signatures was introduced in [160]. Sanitizable signatures

are malleable mathematical schemes, that allows an authorized semi-trusted party,

referred to as sanitizer, to modify designated portions of a signed message in a

limited and controlled fashion.

The sanitizer can modify parts of the original message m when the original en-

tity that created the message, referred to as the signer provides a description

of the admissible modifications, hereinafter denoted as Adm, for each message-

sanitizer pairs. That is, the signer divides the message m ∈ {0, 1}∗ into N blocks

m1, · · · ,mN , defines the set Adm ⊆ {1, N} of admissible blocks and signs the

whole message using a key related to the sanitizer. Using the aforementioned
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key, the sanitizer is able to modify the admissible parts of m in a way that keeps

the resulting signature still valid, under the public key of the signer. Therefore,

the sanitizer could produce a valid signature of the legitimately modified message

without interacting with the original signer.

There are several constructions for this primitive, based on standard signature

schemes, such as chameleon hashes, which are proved secure under common cryp-

tographic assumptions.

Sanitizable signatures can also be improved to satisfy unlinkability [161]. Unlink-

ability is a strong privacy property which forbids a third party from linking two

(or more) messages. In other words, it guarantees that is unfeasible to distinguish

between sanitized signatures that have been produced from the same message or

by the same sanitizer. It is also possible to limit the set of all possible modifica-

tions on one single block and how to enforce the same modifications on different

messages blocks [162].

The aforementioned properties, draw sanitizable signatures as specially interesting

for architectures where multiple actors interact, such as in the Personal Assistant

environment. The implemented scheme and experimental performance measure-

ments for the implementation of a sanitizable signature scheme, demonstrates that

the scheme could be practical and efficient for our application.

5.3.2 Probabilistic k-anonymity

Most approaches that want to anonymize data in real-time use k-anonymity and

try to minimize the time needed to process the data [87, 88]. A data-set that

has been k-anonymized, fulfills the property that each record is indistinguishable

from at least k − 1 other records, and therefore no user can be re-identified with

a probability greater than 1
k
, using only record linkage attacks. We believe that a

more appropriate approach may be based on probabilistic k-anonymity [91], which

relaxes the indistinguishability requirement of k-anonymity and only requires that

the probability of re-identification be the same as in k-anonymity. This approach
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may be suitable for Personal Assistant logs as it is adaptable to a streaming

environment. In addition this process is also very fast in one way, anonymization,

but difficult to undo. Probabilistic k-anonymity also allows to select desired user

privacy level modifying k parameter values. The other advantage of using this

approach is that anonymized logs are generated using real user queries, they are

not modified, but distributed among other users with similar interests. In this way

the quasi-identifiers get dispersed between several users and thus prevent record

linkage attacks, but data utility can be preserved as well (see Chapter 4).

5.4 System Overview

We propose the creation of a modular system, following the design that can be

seen in Figure 5.3. The system consists of five different parts. Within each of these

parts we divide the tasks into different modules. Each module will be responsible

of a single action in order to accomplish the Single Responsibility Principle, defined

as a micro-services architecture.

Our proposal is focused on the Request Architecture. To have the full system

operative, it is necessary to add more components to that architecture to handle

the responses, using the same concepts. Therefore, the proposed system begins

with the interaction of the User and the Personal Assistant, which will generate a

set of queries. These queries will be sent through the network for treatment. Once

treated, the resulting logs will be properly anonymized, increasing the privacy

protection of the user. That makes possible to sell these protected logs to third

parties to monetize them. Below we will briefly describe the functions performed

at each stage of the proposed system.

5.4.1 System Initialization

As a prior step to the start of system execution, we must ensure the distribution of

the key pairs to create and check the User Sanitizable Signatures and the Service
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USER_ID ENCRYPTED USS

USER_ID QUERY

PRIV_ID ENCRYPTED USS

Query
Anonymizer

Request
Decrypter

Query
Generalizer

Command
Generalizer

PRIV_ID QUERY

3rd party

Auditor

Identity Screener

Main
Service

3rd party

ID
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Filter
Auditor

Service
Auditor

Request
Integrator
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Figure 5.3: Request Architecture. The User will interact with the Personal
Assistant, which will generate a set of queries. These queries will be sent through
the Identity Screener, which will hide the user identity. Then the Main Service
will treat and anonymize these queries. After passing through the Identity
Screener again, it is possible to safely sell these protected logs to Third Parties.

Sanitizable Signatures, as well as the certified public key of the Main Service to

all the Personal Assistants.

5.4.2 Query Pre-processing

The pre-processing steps are performed before the query reaches the Main Service.

These steps encrypt the query, and replace the original user ID with an anonymous

one.

5.4.2.1 Local Device

The user sends a question to the Local Device, that recognizes who has formulated

it and transforms it into text. Once transformed, our model proposes to encrypt

this query using the public key of the Main Service and then sign it using the User
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Sanitizable Signature. This signature will allow the Identity Screener to modify

the user’s part, but not the rest of the message.

5.4.2.2 ID Anonymizer

Then the query is sent to the Identity Screener, which is a distinct administrative

entity than the Main Service. Using the ID Anonymizer module, it is respon-

sible for replacing the original USER ID with an anonymous ID, which we call

PROX ID. The purpose of this change is to prevent the Main Service from know-

ing the real identity of the user that generated the original query. We want to

emphasize that Identity Screener do not have access to the original query, since in

this point is encrypted.

5.4.3 Anonymization

The anonymization process, which is conducted entirely in the Main Service, is

the responsible of anonymize and generalize the requests. All steps in this part,

are carried out without knowing the real identity of the users, thanks to the pre-

processing steps.

5.4.3.1 Request Decrypter

The first step that the Main Service does is to verify that the signature of the query

is correct. Then it discards that signature and proceeds to decrypt the body of

the query with the Main Service private key.

5.4.3.2 Request Classifier

As introduced in Section 5.2.2, our system will receive three different types of

logs. The main responsibility of the Request Classifier is to process all the logs,

to find the type of each log and to decide how it will be treated. Therefore, it acts
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as the facade or distributor part of the system. By itself it does not make any

modification to the data generated by the user.

5.4.3.3 Query Anonymizer

This module is the responsible for anonymizing general search queries. To do

this, we propose to use a system based on probabilistic k-anonymity (Chapter 4).

This system uses a natural language categorizer of logs in real time and for each

category creates two sets of k elements. In the first set, it stores the users and in

the second set the queries. When a category contains k elements, the algorithm

randomly picks one user and one query from each of the sets in the same category.

With them, it builds a new anonymized log, with a minimum delay. This system

obtains a level of protection similar to other methods using k-anonymity.

5.4.3.4 Query Generalizer

This module will be in charge of anonymizing the Location Based Queries. To

do this, we propose to use an approach similar to the following [163–165]. In

this case, the situation is quite different, since both the query, all the associated

information (location and time) and the response that the user receives, may

disclose something that affects directly the user’s privacy. The basis of the system

is also k-anonymity, but also some data perturbation system may be applied, for

location and time information. It is difficult to unleash the logs of that effect,

since the results with better utility are the ones that are directly related to the

users location and time. This raises new challenges when it comes to protecting

this information, without losing data utility. Therefore it would be desirable to be

able to configure this module with different levels of privacy/utility, depending on

when and where the query was generated, in order to protect the identity of the

user.
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5.4.3.5 Command Generalizer

We will use an algorithm similar to the one proposed in the previous section, to

be able to obtain anonymity on the user commands, as well as to anonymize both

the moment and the exact location of the user that issued them. We deal with

the commands in a different way, than with the queries, as we anticipate that we

will face different requirements when it comes to reducing the risk of information

disclosure in both scenarios.

5.4.3.6 Request Integrator

Once we have performed all the anonymization tasks in the previous modules, this

is the module in charge of unifying the results and then generating and publishing

the logs as the main system output. It also adds a Service Sanitizable Signature,

which will allow the Identity Screener to modify the user field, but not the rest.

5.4.4 Query Post-processing

The post-processing, in the current version, is only performing the ID De-

anonymizing step, which is mandatory for the proposed architecture. However,

further steps may be included in this part if required by third parties.

5.4.4.1 ID De-anonymizer

Once the Main Service has finished performing all of its tasks, the resulting logs

are resubmitted to the Identity Screener which, in turn, checks the Sanitizable

Signature Service and if it is correct then proceeds to restore the original USER ID,

through the ID De-anonymizer. We need to do this, since the third-party pays for

this relationship between the user and his interests. However, it should be noted

that now the text of the query is conveniently anonymized and therefore, despite

being able to extract the interests of users, they can not perform record linkage

attacks to obtain sensible information that threatens user privacy.
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5.4.5 Response

Below we will explain how the response is sent to the user. It is not the main focus

of our proposal, but we think that it is necessary in order to fully understand the

proposed architecture. An overview of the response architecture can be seen on

Figure 5.4.

5.4.5.1 Response Generator

Once the request has reached the Main Service, and passed through the Request

Decrypter, the Main Service has access to the user’s original query. Therefore it

can proceed to search for the necessary information and create the right answer

for the user, using Response Generator. Once this response has been created, the

same Response Generator will encrypt it and sign it with a Server Sanitizable

Signature.

USER_ID RESPONSE

PRIV_ID ENC. RESPO. SSS

Request
Classifier

Query
Anonymizer

Request
Decrypter

Query
Generalizer

Command
Generalizer

PRIV_ID QUERY

Auditor

Identity Screener

Main
Service

ID
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ID
De-anonym.

Filter
Auditor

Service
Auditor

Request
Integrator

Response
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ENC. RESPO. SSSUSER_ID

Figure 5.4: Response Architecture. The Main Service creates and signs the
response for the User, using Response Generator. Then, it is submitted to
the Identity Screener, which restores the original USER ID, through ID De-
anonymizer, and send it to the Personal Assistant device, which decrypts and

provides the result to the user.
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5.4.5.2 ID De-anonymizer

Once the Main Service has finished performing all of its tasks, the resulting record

is resubmitted to the Identity Screener, that checks the Sanitizable Signature

Service. If this is correct, then the Identity Screener proceeds to restore the original

USER ID, through the ID De-anonymizer. However, it should be noted that the

response text is conveniently encrypted. Once this response reaches the Personal

Assistant device, it will be decrypted and provided to the user.

5.4.6 Audit

The auditing process is performed by a dedicated authority, mainly relying on the

verification process of Service Sanitizable Signature. That is, the auditor has to

verify the consistency of signed queries and responses, generated by the User, the

Identity Screener and the Main Service, such as:

• Identity Screener activities auditing — the auditor is able to verify

the consistency of signed queries, and responses, generated by the Iden-

tity Screener. In other words, honestly generated (i.e., signing correctness)

and sanitized (i.e., sanitizing correctness) signatures have to be accepted by

the verifier, and honestly generated proofs on valid signatures (proof cor-

rectness) have to be accepted by the judge algorithm of Service Sanitizable

Signature [160].

Recall that during the request process, the Identity Screener sanitizes the

user identifier using the PROX ID before sending the sanitized generated

query to Main Service. Consequently, a correspondence table should be

maintained by the Identity Screener, to be able to recover the USER ID,

when sanitizing the response query received later by the Main Service. In

addition, to comply with GDPR [38], with regard to accountability purposes,

the Proxy Filter has to store a proof for every personal data processing. That

is, for each USER ID, a set of signatures’ tuples associated with a session

identifier needs to be stored. Each tuple is represented as follows:
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{session identifier, signed query (PA), sanitized query (Identity Screener)}

Hence, the auditor may check both generated signatures, by the Personal

Assistant and the Identity Screener during the request process, and by the

Main Service and the Identity Screener, during the response process and also

compare consistency between the original signature and sanitized one.

• Main Service activities — similarly, the dedicated auditor verifies the

consistency of signed original queries’ responses and anonymized query logs,

generated by the Main Service.

Recall that the Main Service should store anonymized query logs and is

able to process personal data, only with the consent of the corresponding

data owner [38]. That is, when registering with Main Service, each user

generates an authorization vector av, specifying the allowed actions on his

data. For instance, for transfer actions, each user has to specify which data

processors (Third Party) are authorized to collect his data from the Main

Service. As detailed below, to comply with GDPR [38], with regard to user

consent compliance, Main Service has to store a proof for every personal data

processing. For instance, for each transfer process, a set of signatures’ tuples

associated with a session identifier needs to be stored. Each tuple includes

the transfer session identifier, the original signed query, the anonymized

signed query as well as the third party identifier. It is represented as follows:

{transfer session identifier, signed original query (MS), signed anonymized query

(MS), TP identifier}.

As each anonymized query has to be sent the Proxy Filter, in order to

sanitize the query identifier using the USER ID, before transmitting to Third

Parties. Hence, the auditor may check both generated signed and sanitized

signatures, by Main Service and the Identity Screener respectively and also

verify if transfer actions are allowed with regard to each user authorization

vector.
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5.5 Conclusion

Internet-based personal assistants can lead to serious privacy risks. They can

release sensitive information about the identity of domestic users and their sen-

sitive data. The issue must be tackled by jointly addressing anonymization by

organizational roles in terms of Data Controller, Data Processor and Data Sub-

ject. Towards this end, we have proposed an architecture that combines lifelogging

anonymization and sanitizable signatures, to promptly mitigate privacy threats.

We believe that the proposed architecture is very encouraging, in order to define

a system that allows us to work in a trusted-but-curious Internet-based Personal

Assistants environment. Anyway, we are aware that this approach has some limi-

tations in which we are still working. Regarding the part of communication with

the user, it must be ensured that the Personal Assistant does not send informa-

tion to the Main Service directly, therefore escaping the treatment of the Identity

Screener.

Regarding the communication with the Third Parties, we do not have this problem,

since if they want to recover the original USER ID, all messages must go through

the Identity Screener. In this case, the possible privacy problem would appear

if any of the third parties send the data back to the Main Service once it have

been processed by the Identity Screener. In this case, the Main Service, would

have access to the anonymized query and the original USER ID. Therefore, if the

Main Service has saved the correspondence between the original query and the

anonymized query, it could fetch the original query and user pair.

We are currently in a preliminary work stage of this system, with the limitations

that this implies, but we are trying to improve this aspect of our proposal.

Next steps include a more thorough analysis about the cooperation of the different

elements of our architecture, as well as to provide further investigation about the

effective techniques included in the architecture with a specific brand of Internet-

based personal assistants. Snippets of code, available at http://j.mp/lps-ipa,
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based on a cryptographic library [166], released to facilitate the understanding and

validation of the proposed architecture.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In order to access the Internet people need to use search services, whether this be

in their classical Web Search Engine form or through personal assistants, which

provide a more transparent tool for accessing information. Interactions with these

services leaves a record of interests, personal and work information. For service

providers, these records are very valuable, since they provide a way to improve the

service, and a way to monetize it.

Monetization is achieved by selling data to third parties, but it is necessary to be

extremely careful in the process. Selling data may generate huge negative con-

sequences, since query logs may contain identifiers or sensitive data from users

(such as diseases, sexual tendencies, religious beliefs). Besides ethical considera-

tions, current regulations oblige companies to protect personal information.

In the literature review, protection systems for data-sets were found, most of

them working with perturbative approaches over atomic files. Unfortunately, the

scenario posed by Internet searches is closer to a real time stream of the user’s data.

Considering this scenario, we did not find an ideal solution for these requirements,

given that the data is intended to be consumed once protected, and therefore have

to maintain a high degree of utility.
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In this sense, a novel framework for anonymizing query logs has been presented.

Privacy guarantee is defined in terms of set theory, which relates sets of users

to sets of query logs. Data could be released without modifications other than

removing direct identifiers from query text and remapping between those two sets.

This contrasts with existing approaches that release heavily modified data, either

distorted or generalized, to maintain anonymity.

Regarding privacy, we have devised formal and experimental proofs to ensure

proposal’s comportment. In our evaluations we have considered the worst-case

scenario, in which an attacker who is willing to use the anonymized query logs to

retrieve the original ones has gained access to the base information of the service:

algorithms, anonymized logs, k and ` values.

Our first proposal is fast and with a high level of privacy. However, since the

number of categories it uses is low, the utility of the anonymized data could be

improved. This led us to our second proposal. In this case, the proposal allows one

to adjust the amount of available categories, as well as the number of elements in

each category. This parameterization permits different privacy and utility levels,

according to the needs of each application.

In order to evaluate query log’s utility after applying anonymization, we have

measured distances between user profiles using Earth Mover’s Distance and also

manually classified and compared a sample of logs. To achieve comparable results

between our first and second proposal, we used the second one with an `-value of 1,

which draws them equivalents in terms of anonymization. Studying the results we

have found that just above 40% of utility was lost in both cases. However, utility

increases rapidly with bigger `-values in our second proposal. With `-values of 6 or

more, less than 1% of utility was lost, without affecting privacy, since we achieve a

protection of 1
k

in all cases. Therefore, the application of our proposal is sufficient

to generate anonymized logs that meet the defined utility criteria and could be

released to third parties safely.

Algorithmic time complexity of our proposal is linear regarding to the input and

could be established as O(n). We have also considered the average Google’s load,
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in queries per second, to study the run-time cost and the memory usage. The

results show that proposed anonymizer algorithms could handle the equivalent to

the average of Google’s load in real-time, using only one thread of execution and

a feasible amount of memory, in our test environment.

A full architecture, taking into account the use of Internet-based Personal Assis-

tants, was finally presented. This architecture, jointly addresses anonymization by

organizational roles in terms of Data Controller, Data Processor and Data Subject,

in order to comply with the guidelines of the GDPR. Arriving at the final pro-

posal of an architecture that combines lifelogging anonymization and sanitizable

signatures, to promptly mitigate privacy threats.
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6.2 Future Work

The proposed architecture is very encouraging in defining a system that allows us

to work in trusted-but-curious Internet-based environments. We are aware that

this approach has some limitations, but there are some parts that may be further

expanded on and become future work lines.

All the proposals that have been presented need to use classified queries in order to

later protect them. In our case, we used a custom classifier, which was not the main

subject of our research. The proposed classifier algorithms could be the subject of

further study. The classifier may be improved by means of a more accurate natural

language analysis in order to perform a semantic analysis of queries. However, the

classifier was also the slowest part of the process and a more sophisticated one

may need more processing power. Anyway, there is room to develop more efficient

alternatives using NLP or Artificial Intelligence (AI) systems to perform query

analysis.

AI by means of the subfields of machine learning (ML) and search, provides some

techniques that can be used to deanonymize transformed datasets. Impact on ano-

nymity can get higher when data combines merged information from heterogeneous

nature, data sources coming from third parties which, although not malicious, may

have different objectives from those of a defender (e.g. sharing anonymized or

truncated data that becomes unusable or even harmful). This concerns the pro-

tection against attacks on the learning phase, which we consider as an interesting

complementary line of research.

In order to properly control the risk, attacks on the test phase must also be

addressed. Regarding this last point, the problem can be summarized by the

fact that a very precise classifier will have difficulty generalizing his decisions and

conversely a classifier able to handle data relatively different from those on which

he has been trained will tend to be quite imprecise. Overly precise algorithms

will be difficult to generalize but will also be more sensitive to attacks resulting in
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poor classification on slightly noisy data [167]. Conversely, an algorithm that is

sensitive to detail will tend to let malicious content flow more easily.

We propose to integrate this kind of compromise into the security game modeling

risk management. An interesting avenue would be to consider the possibility for

a classifier not to produce an answer. This behavior corresponds to the rejection

principle, which is relatively well known in the classification community, but to

our knowledge, is poorly understood in the context of application to security [168].

Regarding the anonymizer, our best proposal is able to work with custom degrees

of classification. However, the degree, once selected, becomes fixed. It would be

interesting to expand the anonymizer to use dynamic degrees of classification, both

globally or for some specific categories.

Although the proposed architectures use a micro-service approach, a distributed

environment remains untested. A more thorough analysis of the cooperation of

the different elements would be beneficial. This could improve the system per-

formance, but other concerns may arise in terms of management, security, and

privacy.

When we take into account the use of Personal Assistant devices, as the main

communication interface with the user, it must be ensured that these devices

act honestly. In fact, they should not have the opportunity to send information

directly to the Main Service, therefore escaping the treatment of the proposed

Identity Screener, however, this could be addressed by a simple address control at

the local router.

Regarding the communication with Third Parties, we do not have this problem,

since if they want to recover the original USER ID, all messages must go through

the Identity Screener. The possible privacy problem would appear if any of the

third parties send the data back to the Main Service once it has been processed

by the Identity Screener. In this case, the Main Service would have access to the

anonymized query and the original USER ID. Therefore, if the Main Service has
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saved the correspondence between the original query and the anonymized query,

it could fetch the original query and user pair.

Finally, a large scale investigation with a specific search engine and a brand of

Internet-based personal assistants would provide a full validation of the proposal.
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