5 research outputs found

    Towards Reliable Benchmarks of Timed Automata

    Get PDF
    The verification of the time-dependent behavior of safety-critical systems is important, as design problems often arise from complex timing conditions. One of the most common formalisms for modeling timed systems is the timed automaton, which introduces clock variables to represent the elapse of time. Various tools and algorithms have been developed for the verification of timed automata. However, it is hard to decide which one to use for a given problem as no exhaustive benchmark of their effectiveness and efficiency can be found in the literature. Moreover, there does not exist a public set of models that can be used as an appropriate benchmark suite. In our work we have collected publicly available timed automaton models and industrial case studies and we used them to compare the efficiency of the algorithms implemented in the Theta model checker. In this paper, we present our preliminary benchmark suite, and demonstrate the results of the performed measurements

    Compilation de systèmes temps réel

    Get PDF
    I introduce and advocate for the concept of Real-Time Systems Compilation. By analogy with classical compilation, real-time systems compilation consists in the fully automatic construction of running, correct-by-construction implementations from functional and non-functional specifications of embedded control systems. Like in a classical compiler, the whole process must be fast (thus enabling a trial-and-error design style) and produce reasonably efficient code. This requires the use of fast heuristics, and the use of fine-grain platform and application models. Unlike a classical compiler, a real-time systems compiler must take into account non-functional properties of a system and ensure the respect of non-functional requirements (in addition to functional correctness). I also present Lopht, a real-time systems compiler for statically-scheduled real-time systems we built by combining techniques and concepts from real-time scheduling, compilation, and synchronous languages

    Contracts for Systems Design: Theory

    Get PDF
    Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems,and more, involve systems design as a critical step. Complexity has caused system design times and coststo go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods andstandard practices do not seem to scale with complexity so that novel design methods and tools based on astrong theoretical foundation are sorely needed. Model-based design as well as other methodologies suchas layered and compositional design have been used recently but a unified intellectual framework with acomplete design flow supported by formal tools is still lacking.Recently an “orthogonal” approach has been proposed that can be applied to all methodologies introducedthus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contractbaseddesign. Several results have been obtained in this domain but a unified treatment of the topic that canhelp in putting contract-based design in perspective is missing. This paper intends to provide such treatmentwhere contracts are precisely defined and characterized so that they can be used in design methodologiessuch as the ones mentioned above with no ambiguity. In addition, the paper provides an important linkbetween interface and contract theories to show similarities and correspondences.This paper is complemented by a companion paper where contract based design is illustrated throughuse cases

    Statistical Model Checking of Rich Models and Properties

    Get PDF

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends
    corecore