278 research outputs found

    Mobile Sensing Systems

    Get PDF
    [EN] Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.This work has been partially supported by the "Ministerio de Ciencia e Innovacion", through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental", project TEC2011-27516, and by the Polytechnic University of Valencia, through the PAID-05-12 multidisciplinary projects.Macias Lopez, EM.; Suarez Sarmiento, A.; Lloret, J. (2013). Mobile Sensing Systems. Sensors. 13(12):17292-17321. https://doi.org/10.3390/s131217292S1729217321131

    From data acquisition to data fusion : a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices

    Get PDF
    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs)

    Monitoring System for Traffic Analysis Using Twitter Stream

    Get PDF
    Social networks are often utilized as a supply of data for event detection like road holdup and automobile accidents. Existing system present a period of time observance system for traffic event detection from twitter. The system fetches tweets from twitter and then; processes tweets victimisation text mining techniques. Last performs the classification of tweets. The aim of the system is to assign the suitable category label to every tweet, whether or not it's associated with a traffic event or not. System utilized the support vector machine as a classification model. The projected system uses the system supported semi-supervised approach, which provides coaching victimisation traffic connected dataset. we have a tendency to propose a bunch approach for classification of the tweets in traffic connected and non- traffic connected tweets. We use a geometer distance to calculate the similarity between the tweets

    Design criteria for Indoor Positioning Systems in hospitals using technological, organizational and individual perspectives

    Get PDF
    This dissertation considers three different studies that handle Indoor Positioning Systems (IPS) in hospitals. Study 1 uses the Reasoned Action Approach by questioning hospital visitors and employees about their intention to use IPS in hospitals. Study 2 reviews IPS in hospitals. Study 3 is based on the results of the first two studies. It handles expert interviews that were conducted with different hospitals and IPS developers to evaluate the determined propositions. Then, the insights were used to conduct and evaluate experiments by testing an ultrasound-based IPS for hospitals

    A service-oriented middleware for integrated management of crowdsourced and sensor data streams in disaster management

    Get PDF
    The increasing number of sensors used in diverse applications has provided a massive number of continuous, unbounded, rapid data and requires the management of distinct protocols, interfaces and intermittent connections. As traditional sensor networks are error-prone and difficult to maintain, the study highlights the emerging role of “citizens as sensors” as a complementary data source to increase public awareness. To this end, an interoperable, reusable middleware for managing spatial, temporal, and thematic data using Sensor Web Enablement initiative services and a processing engine was designed, implemented, and deployed. The study found that its approach provided effective sensor data-stream access, publication, and filtering in dynamic scenarios such as disaster management, as well as it enables batch and stream management integration. Also, an interoperability analytics testing of a flood citizen observatory highlighted even variable data such as those provided by the crowd can be integrated with sensor data stream. Our approach, thus, offers a mean to improve near-real-time applications

    Pedestrian Counting Based on Piezoelectric Vibration Sensor

    Get PDF
    Pedestrian counting has attracted much interest of the academic and industry communities for its widespread application in many real-world scenarios. While many recent studies have focused on computer vision-based solutions for the problem, the deployment of cameras brings up concerns about privacy invasion. This paper proposes a novel indoor pedestrian counting approach, based on footstep-induced structural vibration signals with piezoelectric sensors. The approach is privacy-protecting because no audio or video data is acquired. Our approach analyzes the space-differential features from the vibration signals caused by pedestrian footsteps and outputs the number of pedestrians. The proposed approach supports multiple pedestrians walking together with signal mixture. Moreover, it makes no requirement about the number of groups of walking people in the detection area. The experimental results show that the averaged F1-score of our approach is over 0.98, which is better than the vibration signal-based state-of-the-art methods.Peer reviewe

    Middleware Solutions for the Internet of Things: A Survey

    Get PDF
    The Internet of Things (IoT), along with its wider variants including numerous technologies, things, and people: the Internet of Everything (IoE) and the Internet of Nano Things (IoNT), are considered as part of the Internet of the future and ubiquitous computing allowing the communication among billions of smart devices and objects, and have recently drawn a very significant research attention. In these approaches, there are varieties of heterogeneous devices empowered by new capabilities and interacting with each other to achieve specific applications in different domains. A middleware layer is therefore required to abstract the physical layer details of the smart IoT devices and ease the complex and challenging task of developing multiple backend applications. In this chapter, an overview of IoT technologies, architecture, and main applications is given first and then followed by a comprehensive survey on the most recently used and proposed middleware solutions designed for IoT networks. In addition, open issues in IoT middleware design and future works in the field of middleware development are highlighted

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    A smartwater metering deployment based on the fog computing paradigm

    Get PDF
    In this paper, we look into smart water metering infrastructures that enable continuous, on-demand and bidirectional data exchange between metering devices, water flow equipment, utilities and end-users. We focus on the design, development and deployment of such infrastructures as part of larger, smart city, infrastructures. Until now, such critical smart city infrastructures have been developed following a cloud-centric paradigm where all the data are collected and processed centrally using cloud services to create real business value. Cloud-centric approaches need to address several performance issues at all levels of the network, as massive metering datasets are transferred to distant machine clouds while respecting issues like security and data privacy. Our solution uses the fog computing paradigm to provide a system where the computational resources already available throughout the network infrastructure are utilized to facilitate greatly the analysis of fine-grained water consumption data collected by the smart meters, thus significantly reducing the overall load to network and cloud resources. Details of the system's design are presented along with a pilot deployment in a real-world environment. The performance of the system is evaluated in terms of network utilization and computational performance. Our findings indicate that the fog computing paradigm can be applied to a smart grid deployment to reduce effectively the data volume exchanged between the different layers of the architecture and provide better overall computational, security and privacy capabilities to the system
    • …
    corecore