413 research outputs found

    Enhanced LoD concepts for virtual 3D city models

    Get PDF
    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and ist exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 × 106^{6} Ne, 2.2 × 106^{6} Mg, and 1.6 × 106^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005

    CAREER: Data Management for Ad-Hoc Geosensor Networks

    Get PDF
    This project explores data management methods for geosensor networks, i.e. large collections of very small, battery-driven sensor nodes deployed in the geographic environment that measure the temporal and spatial variations of physical quantities such as temperature or ozone levels. An important task of such geosensor networks is to collect, analyze and estimate information about continuous phenomena under observation such as a toxic cloud close to a chemical plant in real-time and in an energy-efficient way. The main thrust of this project is the integration of spatial data analysis techniques with in-network data query execution in sensor networks. The project investigates novel algorithms such as incremental, in-network kriging that redefines a traditional, highly computationally intensive spatial data estimation method for a distributed, collaborative and incremental processing between tiny, energy and bandwidth constrained sensor nodes. This work includes the modeling of location and sensing characteristics of sensor devices with regard to observed phenomena, the support of temporal-spatial estimation queries, and a focus on in-network data aggregation algorithms for complex spatial estimation queries. Combining high-level data query interfaces with advanced spatial analysis methods will allow domain scientists to use sensor networks effectively in environmental observation. The project has a broad impact on the community involving undergraduate and graduate students in spatial database research at the University of Maine as well as being a key component of a current IGERT program in the areas of sensor materials, sensor devices and sensor. More information about this project, publications, simulation software, and empirical studies are available on the project\u27s web site (http://www.spatial.maine.edu/~nittel/career/)

    A location-based personal task reminder for mobile users

    Get PDF
    [[abstract]]Personal task reminders have been indispensable for modern people, in order to remind them of their tasks at specific circumstances. Traditional paper-based reminders are still useful, but they cannot be organized efficiently. Electronic reminders based on the calendar in cell phones are more efficient and gaining popularity, but such reminders are mostly triggered by time. In many situations, tasks are only meaningful to be performed at a specific location, so it would be useful if reminders for those tasks can be triggered only when the person to be reminded is physically near or located at that location. Therefore, in this research, we develop a location-based personal task reminder for Android-based smartphones and tablets. To distinguish our work from existing ones that rely solely on the GPS technology, we take advantage of the ubiquity of IEEE 802.11 WLAN infrastructure to compliment the “blind spots” of GPS location sensing. Combining the two technologies makes it possible for the personal task reminder to be effective in both indoor and outdoor environments. We also propose two operating models for the personal task reminder to boost the usability of the application. Furthermore, as long as the WLAN infrastructure is available, our work as a foundation of location-based services can easily be extended to be used in many other scenarios, such as guiding in public transportation systems or tourist attractions, location-based learning, and even caring of the Dementia residents.[[incitationindex]]SCI[[booktype]]電子版[[booktype]]紙

    The technological growth in eHealth services

    Get PDF
    The infusion of information communication technology (ICT) into health services is emerging as an active area of research. It has several advantages but perhaps the most important one is providing medical benefits to one and all irrespective of geographic boundaries in a cost effective manner, providing global expertise and holistic services, in a time bound manner. This paper provides a systematic review of technological growth in eHealth services. The present study reviews and analyzes the role of four important technologies, namely, satellite, internet, mobile, and cloud for providing health services.Web of Scienceart. no. 89417

    Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    International audienceA precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio inprimary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 × 105antiproton events and 2.42 × 109 proton events. The fluxes and flux ratios of charged elementary particlesin cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton ¯p, protonp, and positron eþ fluxes are found to have nearly identical rigidity dependence and the electron e− fluxexhibits a different rigidity dependence. Below 60 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios eachreaches a maximum. From ∼60 to ∼500 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios show no rigiditydependence. These are new observations of the properties of elementary particles in the cosmos

    Mapping subnational HIV mortality in six Latin American countries with incomplete vital registration systems

    Get PDF
    Background: Human immunodeficiency virus (HIV) remains a public health priority in Latin America. While the burden of HIV is historically concentrated in urban areas and high-risk groups, subnational estimates that cover multiple countries and years are missing. This paucity is partially due to incomplete vital registration (VR) systems and statistical challenges related to estimating mortality rates in areas with low numbers of HIV deaths. In this analysis, we address this gap and provide novel estimates of the HIV mortality rate and the number of HIV deaths by age group, sex, and municipality in Brazil, Colombia, Costa Rica, Ecuador, Guatemala, and Mexico. Methods: We performed an ecological study using VR data ranging from 2000 to 2017, dependent on individual country data availability. We modeled HIV mortality using a Bayesian spatially explicit mixed-effects regression model that incorporates prior information on VR completeness. We calibrated our results to the Global Burden of Disease Study 2017. Results: All countries displayed over a 40-fold difference in HIV mortality between municipalities with the highest and lowest age-standardized HIV mortality rate in the last year of study for men, and over a 20-fold difference for women. Despite decreases in national HIV mortality in all countries—apart from Ecuador—across the period of study, we found broad variation in relative changes in HIV mortality at the municipality level and increasing relative inequality over time in all countries. In all six countries included in this analysis, 50% or more HIV deaths were concentrated in fewer than 10% of municipalities in the latest year of study. In addition, national age patterns reflected shifts in mortality to older age groups—the median age group among decedents ranged from 30 to 45 years of age at the municipality level in Brazil, Colombia, and Mexico in 2017. Conclusions: Our subnational estimates of HIV mortality revealed significant spatial variation and diverging local trends in HIV mortality over time and by age. This analysis provides a framework for incorporating data and uncertainty from incomplete VR systems and can help guide more geographically precise public health intervention to support HIV-related care and reduce HIV-related deaths
    corecore