52 research outputs found

    Annual Report of Research and Creative Productions by Faculty and Staff, January to December, 2020

    Get PDF
    Annual Report of Research and Creative Productions by Faculty and Staff, January to December, 2020

    Annual Report of Research and Creative Productions by Faculty and Staff, January to December, 2019

    Get PDF
    Annual Report of Research and Creative Productions by Faculty and Staff, January to December, 2019

    Introductory Chapter: Recent Advances in Image Restoration

    Get PDF

    Incorporate ACO routing algorithm and mobile sink in wireless sensor networks

    Get PDF
    Today, science and technology is developing, particularly the internet of things (IoT), there is an increasing demand in the sensor field to serve the requirements of individuals within modern life. Wireless sensor networks (WSNs) was created to assist us to modernize our lives, saving labor, avoid dangers, and that bring high efficiency at work. There are many various routing protocols accustomed to increase the ability efficiency and network lifetime. However, network systems with one settled sink frequently endure from a hot spots issue since hubs close sinks take a lot of vitality to forward information amid the transmission method. In this paper, the authors proposed combining the colony optimization algorithm ant colony optimization (ACO) routing algorithm and mobile sink to deal with that drawback and extend the network life. The simulation results on MATLAB show that the proposed protocol has far better performance than studies within the same field

    Applications of ontology in the Internet of Things: a systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions

    A Survey of Enabling Technologies for Smart Communities

    Get PDF
    In 2016, the Japanese Government publicized an initiative and a call to action for the implementation of a Super Smart Society announced as Society 5.0. The stated goal of Society 5.0 is to meet the various needs of the members of society through the provisioning of goods and services to those who require them, when they are required and in the amount required, thus enabling the citizens to live an active and comfortable life. In spite of its genuine appeal, details of a feasible path to Society 5.0 are conspicuously missing. The first main goal of this survey is to suggest such an implementation path. Specifically, we define a Smart Community as a human-centric entity where technology is used to equip the citizenry with information and services that they can use to inform their decisions. The arbiter of this ecosystem of services is a Marketplace of Services that will reward services aligned with the wants and needs of the citizens, while discouraging the proliferation of those that are not. In the limit, the Smart Community we defined will morph into Society 5.0. At that point, the Marketplace of Services will become a platform for the co-creation of services by a close cooperation between the citizens and their government. The second objective and contribution of this survey paper is to review known technologies that, in our opinion, will play a significant role in the transition to Society 5.0. These technologies will be surveyed in chronological order, as newer technologies often extend old technologies while avoiding their limitations

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Blockchain-based Architecture for Secured Cyberattack Signatures and Features Distribution

    Full text link
    One effective way of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Despite the increased accuracy of IDSs, distributed or coordinated attacks can still go undetected because of the single vantage point of the IDSs. Due to this reason, there is a need for attack characteristics\u27 exchange among different IDS nodes. Another reason for IDS coordination is that a zero-day attack (an attack without a known signature) experienced in organizations located in different regions is not the same. Collaborative efforts of the participating IDS nodes can stop more attack threats if IDS nodes exchange these attack characteristics among each other. Researchers proposed a cooperative intrusion detection system (CoIDS) to share these attack characteristics effectively. Although this solution enhanced IDS node’s ability to respond to attacks previously identified by cooperating IDSs, malicious activities such as fake data injection, data manipulation or deletion, data integrity, and consistency are problems threatening this approach. In this dissertation, we develop a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The developed architecture achieves this result by continuously monitoring blockchain nodes\u27 behavior to detect and prevent malicious activities from both outsider and insider threats. Apart from this, the architecture facilitates scalable attack characteristics’ exchange among IDS nodes and ensures heterogeneous IDS participation. It is also robust to public IDS nodes joining and leaving the network. The security analysis result shows that the architecture can detect and prevent malicious activities from both outsider and insider attackers, while performance analysis shows scalability with low latency

    Applications of ontology in the internet of things: A systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions
    corecore