4,487 research outputs found

    Typical Phone Use Habits: Intense Use Does Not Predict Negative Well-Being

    Full text link
    Not all smartphone owners use their device in the same way. In this work, we uncover broad, latent patterns of mobile phone use behavior. We conducted a study where, via a dedicated logging app, we collected daily mobile phone activity data from a sample of 340 participants for a period of four weeks. Through an unsupervised learning approach and a methodologically rigorous analysis, we reveal five generic phone use profiles which describe at least 10% of the participants each: limited use, business use, power use, and personality- & externally induced problematic use. We provide evidence that intense mobile phone use alone does not predict negative well-being. Instead, our approach automatically revealed two groups with tendencies for lower well-being, which are characterized by nightly phone use sessions.Comment: 10 pages, 6 figures, conference pape

    Equation of State Based Slip Spring Model for Entangled Polymer Dynamics

    Full text link
    A mesoscopic, mixed particle- and field-based Brownian dynamics methodology for the simulation of entangled polymer melts has been developed. Polymeric beads consist of several Kuhn segments, and their motion is dictated by the Helmholtz energy of the sample, which is a sum of the entropic elasticity of chain strands between beads, slip springs, and nonbonded interactions. The entanglement effect is introduced by the slip springs, which are springs connecting either nonsuccessive beads on the same chain or beads on different polymer chains. The terminal positions of slip springs are altered during the simulation through a kinetic Monte Carlo hopping scheme, with rate-controlled creation/destruction processes for the slip springs at chain ends. The rate constants are consistent with the free energy function employed and satisfy microscopic reversibility at equilibrium. The free energy of nonbonded interactions is derived from an appropriate equation of state, and it is computed as a functional of the local density by passing an orthogonal grid through the simulation box; accounting for it is necessary for reproducing the correct compressibility of the polymeric material. Parameters invoked by the mesoscopic model are derived from experimental volumetric and viscosity data or from atomistic molecular dynamics simulations, establishing a "bottom-up" predictive framework for conducting slip spring simulations of polymeric systems of specific chemistry. The mesoscopic simulation methodology is implemented for the case of cis-1,4-polyisoprene, whose structure, dynamics, thermodynamics, and linear rheology in the melt state are quantitatively predicted and validated without a posteriori fitting the results to experimental measurements.Comment: 80 pages, 17 figure

    Scaling of fracture systems in geological media

    Get PDF
    • …
    corecore