129 research outputs found

    A New Low-Power CMOS Quadrature VCO with Current Reused Structure

    Get PDF
    A new quadrature voltage controlled oscillator (QVCO) circuit topology is proposed for low-voltage and low-power applications. In the proposed circuit, two oscillators with current-reused structure are coupled to each other by two P&N-MOS pairs. In this way, low phase noise quadrature signals are generated with low-voltage and low-power. The simulation is made by Cadence in chartered 0.18 μm CMOS process. The simulation result shows that the QVCO phase noise is approximately - 117.1 dBc/Hz at 1MHz offset from 1.8 GHz operation frequency. The QVCO dissipates 1.92 mW with a 1.1 V supply voltage

    LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies

    Get PDF
    In this paper, an LC voltage-controlled oscillator (LC-VCO) design optimization methodology based on the gm/ID technique and on the exploration of all inversion regions of the MOS transistor (MOST) is presented. An in-depth study of the compromises between phase noise and current consumption permits optimization of the design for given specifications. Semiempirical models of MOSTs and inductors, obtained by simulation, jointly with analytical phase noise models, allow to get a design space map where the design tradeoffs are easily identified. Four LC-VCO designs in different inversion regions in a 90-nm CMOS process are obtained with the proposed methodology and verified with electrical simulations. Finally, the implementation and measurements are presented for a 2.4-GHz VCO operating in moderate inversion. The designed VCO draws 440 μA from a 1.2-V power supply and presents a phase noise of -106.2 dBc/Hz at 400 kHz from the carrier

    Fully Integrated 1.7GHz, 188dBc/Hz FoM, 0.8V, 320uW LC-tank VCO and Frequency Divider

    Get PDF
    This paper presents a 0.13/spl mu/m CMOS 1.7GHz VCO with frequency divider, suitable for ultra-low-power hearing-aid applications. The circuit has a 16% tuning range, a minimum power consumption of 320/spl mu/W from a 0.8V power supply, power-supply and temperature compensation, an excellent 188dBc/Hz figure-of-merit without the need of off-chip components, and an area of 0.2mm/sup 2/

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    1.05-GHz CMOS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Contour-Mode MEMS Resonators

    Get PDF
    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contour-mode resonators. The oscillator shows a phase noise level of −81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of −146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-μm complementary metal-oxide-semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications

    A Nano-Power Voltage-Controlled Oscillator Design for RFID Applications

    Get PDF
    Passive RFID transponder is a tiny device that has unique ID information for communication with RFID readers and relies on the reader as a source of power supply. The main components of a typical transponder IC include antenna, analog front-end circuit and baseband processor, where the system clock is provided by a local oscillator. One of the biggest challenges for the oscillator is to ensure the lowest possible power consumption for passive RFID applications. A nano-power VCO capable of functioning as a local oscillator for the transponders is obtained by biasing the delay cells to operate in weak inversion region. Further power reduction is achieved by transistor sizing. Designed in a 90-nm CMOS technology, the proposed circuit oscillates with a power supply of 0.3V with frequency tuning characteristics and consumes only 24nW. The center frequency is 5.12MHz and the phase noise is -80.43 dBc/Hz at 10KHz offset

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic
    corecore