18 research outputs found

    Hydrogen, carbon dioxide, and methane adsorption potential on Jordanian organic-rich source rocks: Implications for underground H2 storage and retrieval

    Get PDF
    Hydrogen (H2) storage in geological formations offers a potential large-scale solution suitable for an industrial-scale hydrogen economy. However, the presence of organic residuals can significantly influence the H2 storage efficiency, as well as cushion gas performance, such as CO2 and CH4, injected to maintain healthy reservoir pressure. Thus, the H2 storage efficiency and cushion gas selectivity were thoroughly investigated in this work based on H2, CO2, and CH4 adsorption measurements using, for the first time, actual organic-rich carbonate-rich Jordanian source rock samples (TOC = 13 % to 18 %), measured at 60 °C temperature and a wide range of pressure (0.1 – 10.0 MPa). Initially, the samples were characterized using various analytical methods. Results demonstrated that H2 adsorption capacities reached up to 0.47 mol/kg at 9.0 MPa. The measured adsorption of CO2 was four times higher than H2. An increase in TOC significantly decreased H2 adsorption compared to CO2 and CH4. Additionally, CO2 demonstrated preferential behavior as a cushion gas compared to CH4, attributed mainly to the calcite content and presence of carboxyl and sulfonyl groups. This study provides fundamental data for understanding H2 potential storage issues in an organic-rich rock formation and thus aids in the industrial implementation of an H2 supply chain

    Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis

    Get PDF
    In non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.info:eu-repo/semantics/publishedVersio

    Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis

    Get PDF
    In non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa

    Genomic and transcriptomic analyses of Microbotryum lychnidis-dioicae provide insights into the biology of a fascinating fungal phytopathogen.

    Get PDF
    This study made use of the Silene latifolia/Microbotryum lychnidis-dioicae phytopathogen system as the focal system to establish the first reference genome for Microbotryum violaceum sensu lato. In silico analysis was performed on the genome assembly to identify various characteristics of the genome. Using RNA-Sequencing technologies on the Illumina platform, we collected transcriptomic data for both in vitro and in planta life stages of the fungus, providing the most comprehensive look at the gene expression and regulation of this fungus. Due to a lack of identifiable domains on the predicted genes, gene set enrichment analysis was done in context, by including gene sets like “secreted proteins”, “small secreted proteins” and “unique proteins”, to aid discovery of the features in the different datasets. To further research into Microbotryum species in general, we developed, for the first time, a robust and repeatable Agrobacterium-mediated transformation system. Using genomic and transcriptomic data, we were able to select native promoters that drive transcription in specific conditions, making it a highly versatile and controllable system

    It\u27s getting complicated-A fresh look at p53-MDM2-ARF triangle in tumorigenesis and cancer therapy

    Get PDF
    Anti-tumorigenic mechanisms mediated by the tumor suppressor p53, upon oncogenic stresses, are our bodies\u27 greatest weapons to battle against cancer onset and development. Consequently, factors that possess significant p53-regulating activities have been subjects of serious interest from the cancer research community. Among them, MDM2 and ARF are considered the most influential p53 regulators due to their abilities to inhibit and activate p53 functions, respectively. MDM2 inhibits p53 by promoting ubiquitination and proteasome-mediated degradation of p53, while ARF activates p53 by physically interacting with MDM2 to block its access to p53. This conventional understanding of p53-MDM2-ARF functional triangle have guided the direction of p53 research, as well as the development of p53-based therapeutic strategies for the last 30 years. Our increasing knowledge of this triangle during this time, especially through identification of p53-independent functions of MDM2 and ARF, have uncovered many under-appreciated molecular mechanisms connecting these three proteins. Through recognizing both antagonizing and synergizing relationships among them, our consideration for harnessing these relationships to develop effective cancer therapies needs an update accordingly. In this review, we will re-visit the conventional wisdom regarding p53-MDM2-ARF tumor-regulating mechanisms, highlight impactful studies contributing to the modern look of their relationships, and summarize ongoing efforts to target this pathway for effective cancer treatments. A refreshed appreciation of p53-MDM2-ARF network can bring innovative approaches to develop new generations of genetically-informed and clinically-effective cancer therapies

    Relevant properties and governing mechanisms for oil recovery and geological carbon dioxide storage applied to jordanian shale

    Get PDF
    Mit Blick auf den stetig wachsenden Energiebedarf und der damit im Zusammenhang stehenden dramatischen Zunahme der CO2-Konzentration in der Atmosphäre steht die Menschheit vor der Aufgabe, Antworten auf bislang beispiellose Herausforderungen zu finden. Trotz verstärkter Bemühungen, die sogenannte Energiewende voranzutreiben, geht der Großteil der Vorhersagen davon aus, dass die Grundlage zur Deckung des globalen Energiebedarfes weiterhin durch fossile Brennstoffe gesichert wird. Gleichzeitig ist eine deutliche Abnahme der Produktion aus konventionellen Ölreserven zu verzeichnen, sodass nicht-konventionelle Ressourcen in Zukunft eine größere Rolle übernehmen werden. Auf der anderen Seite werden die Bemühungen zur Abtrennung und Untertagespeicherung von CO2 als ein Bestandteil der Dekarbonisierung vorangetrieben. Erfahrungen mit der Injektion von CO2 existieren bereits seit den 1970er Jahren im Rahmen der sogenannten “CO2-enhanced oil recovery” (CO2-EOR) mit gutem Erfolg zur Steigerung der Förderraten aus konventionellen Lagerstätten. Daher erscheint es naheliegend, die beiden Prozesse im Sinne einer zügigen Umsetzung der Energiewende zu kombinieren und in der Folge auch für nicht-konventionelle Lagerstätten in Betracht zu ziehen. Über die mögliche Anwendung innovativer Methoden in diesen oft sehr komplexen Gesteinsformationen ist bislang wenig bekannt geworden. Daher befasst sich die aktuelle Dissertation mit einer Reihe an Phänomenen, die im Zusammenhang mit der Applikation von komprimiertem CO2 auf Schieferformationen relevant sind. Entscheidende Systemeigenschaften wurden in dieser Arbeit untersucht mit dem Ziel, Möglichkeiten zur Kombination einer CO2-gestützten Förderung von Kohlenwasserstoffen mit der Einspeicherung von CO2 in nicht-konventionellen Lagerstätten zu evaluieren. Jordanischer Ölschiefer (Sultani) dient hier als Beispiel mit einem erheblichen Potenzial aus wirtschaftlicher und umwelttechnischer Sicht. Es werden umfangreiche und systematische experimentelle Untersuchungen zum grundlegenden Phasen-, Grenzphasen- und Stofftransportverhalten in komplexen dichten Wasser- und Kohlenwasserstoffhaltigen Gesteinsformationen in Kontakt mit komprimiertem CO2 vorgestellt. In einem ersten Schritt wurde Sultani-Schiefer einer Extraktion mit überkritischem CO2 unterzogen. Dabei wurde der Einfluss unterschiedlicher Betriebsparameter auf die Ausbeute untersucht, die wiederum in direktem Zusammenhang mit der Löslichkeit unterschiedlicher im Ölschiefer enthaltener Komponenten in der CO2-Phase steht. Neben der Analyse des Mehrphasenverhaltens, zu dem die Bestimmung von Gemischdichten, die Löslichkeit von CO2 in Kohlenwasserstoffmischungen und die daraus folgende volumetrische Ausdehnung der Kohlenwasserstoffphase gehört, bestand ein Schwerpunkt der Arbeit in der experimentellen Betrachtung von Grenzphaseneigenschaften unter Lagerstättenbedingungen. Als eine maßgebliche Größe wurde die Grenzflächenspannung in mehrphasigen Multikomponentensystemen mittels der Methode des hängenden, stehenden bzw. liegenden Tropfens bestimmt. Die Benetzung an den inneren Porenwänden wird durch den Dreiphasen-Kontaktwinkel beschrieben, der sowohl im System CO2- Formationswasser-Schiefer als auch in dem System CO2-Kohlenwasserstoff-Formationswasser-Schiefer an liegenden Tropfen bestimmt wurde. Zur Erklärung der Abhängigkeit der Benetzung von der Zusammensetzung der wässerigen Phase wurden Messungen des Zeta – Potentials an in wässerigen Salzlösungen suspendierten Schieferpartikeln unternommen. Die Grenzfläche Feststoff-CO2 war hingegen Gegenstand von Messungen mittels einer gravimetrischen Methode, mittels derer die Adsorptionskapazität des Schiefers bestimmt wurde, die einerseits als eine der möglichen Speichermechanismen für CO2 gilt und andererseits in direkter Beziehung zum Benetzungsverhalten in Anwesenheit von wässerigen Salzlösungen steht. In Ergänzung zu dem Mehr- und Grenzphasenverhalten wurden Diffusionskoeffizienten von komprimiertem CO2 im Gestein bestimmt, die letzten Endes über die Zeitskala der im Fokus stehenden ablaufenden Prozesse entscheidet. Im Ergebnis führen die hohen Wechselwirkungen aller beteiligten Phasen mit überkritischem CO2 zu bedeutenden Änderungen in den Systemeigenschaften, die die Mobilisierung der Kohlenwasserstoffe generell fördern, während sich diese auch negativ auf eine GeoSpeicherung von CO2 etwa über die Herabsetzung des kapillaren Eindringdruckes auswirken können. Die Arbeit liefert einen wertvollen Einblick in Mechanismen, Systemeigenschaften sowie kritische Faktoren, die für eine erfolgreiche Umsetzung einer CO2-gestützten Ölförderung und der CO2-Speicherung bzw. einer Kombination beider Prozesse in nicht-konventionellen Gesteinsformationen relevant sindIn light of the ever-growing energy demand and the increasing atmospheric concentrations of carbon dioxide, the necessity of finding a panacea to these global challenges is unprecedented. In spite of several attempts to accelerate the energy transition, future outlooks indicate that fossil fuels will remain the foundation that supports the livelihood and economic prosperity of global societies. Owing to the declining rates of conventional oil production and the inevitable depletion of conventional reserves, it is predicted that unconventional resources will play a significant role in reshaping future energy markets, implying that the climate change dilemma associated with fossil fuels will linger on. On the other hand, Carbon Capture and Storage (CCS) has emerged as a pathway to decarbonization, whereas enhanced oil recovery using carbon dioxide (CO2-EOR) has already demonstrated great success in boosting oil production of existing oil fields since the 1970s. Accordingly, the combination of CCS and CO2-EOR is proposed as a solution to the energy-climate predicament. This approach is also being currently considered in shales, however, little is still known about its applicability in these formations. Accordingly, the current work aims to investigate a series of phenomena that contribute to oil recovery from shale using supercritical CO2. Additionally, within the context of geological carbon storage (GCS), several decisive interfacial and phase properties are examined, with the objective of combining the use of CO2 for oil recovery with its own storage. Jordanian oil shale (Sultani) is used as an example in the current work for the potential economic and environmental interest on the one hand, and for the acquired knowledge that can be generalized and transferred to any oil-bearing unconventional reservoir on the other. The presented work is a comprehensive experimental study on the principal phase, interfacial and transport properties taking place when complex oil and water-bearing shale formations are contacted with compressed CO2. As an initial step in this investigation, Sultani shale is subject to supercritical fluid extraction using CO2 as solvent. The impact of several parameters on the yield, which is related to the solubility of various compounds in the supercritical phase, is examined. Apart from the phase behavior that also includes mixture densities, volumetric expansion and gas solubility in hydrocarbons, interfacial properties are the principal focus of this work. Interfacial tension in binary and multicomponent systems at reservoir conditions, i.e. at elevated pressures, is measured using the pendant drop and the rising bubble methods, respectively. The contact angle, a measure of wettability, is determined using the sessile drop in CO2- brine-shale systems. The captive bubble method is employed to assess the contact angle in the multicomponent system comprising CO2, brine, oil and shale. Zeta potential is determined for “shale in water/brine” suspensions to investigate the evolution of the charge at the water/brine-shale interface in pursuit of explaining the wettability alteration in response to changing the aqueous phase composition. With respect to the fluid-solid interface, the CO2 adsorption capacity of shale is measured at pressures and temperatures relevant to gas storage using a gravimetric method, and its relation to the wetting behavior in presence of brines representative of formation water is elucidated. Complementing the interfacial properties and the phase behavior, CO2 diffusivity within shale formations is quantified. All in all, it is found that the strong interactions of supercritical CO2 with all coexisting phases alter the system properties significantly, mainly in an advantageous way regarding oil recovery. In terms of GCS, supercritical CO2 is found to alter system properties in both favorable and unfavorable ways, depending on the gas storage mechanism in question. The findings of the current work give valuable insight into mechanisms, properties, and critical factors which are necessary for the design and implementation of successful oil recovery and CO2 storage processe
    corecore