8 research outputs found

    Uniform Infinite Planar Triangulations

    Full text link
    The existence of the weak limit as n --> infinity of the uniform measure on rooted triangulations of the sphere with n vertices is proved. Some properties of the limit are studied. In particular, the limit is a probability measure on random triangulations of the plane.Comment: 36 pages, 4 figures; Journal revised versio

    Random Planar Lattices and Integrated SuperBrownian Excursion

    Get PDF
    In this paper, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius r_n of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r=R-L of the support of the one-dimensional ISE. More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero. The first combinatorial ingredient is an encoding of quadrangulations by trees embedded in the positive half-line, reminiscent of Cori and Vauquelin's well labelled trees. The second step relates these trees to embedded (discrete) trees in the sense of Aldous, via the conjugation of tree principle, an analogue for trees of Vervaat's construction of the Brownian excursion from the bridge. From probability theory, we need a new result of independent interest: the weak convergence of the encoding of a random embedded plane tree by two contour walks to the Brownian snake description of ISE. Our results suggest the existence of a Continuum Random Map describing in term of ISE the scaled limit of the dynamical triangulations considered in two-dimensional pure quantum gravity.Comment: 44 pages, 22 figures. Slides and extended abstract version are available at http://www.loria.fr/~schaeffe/Pub/Diameter/ and http://www.iecn.u-nancy.fr/~chassain

    Logical limit laws for minor-closed classes of graphs

    Get PDF
    Let G\mathcal G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {\em connected} graphs in G\mathcal G on nn vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G\mathcal G on nn vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface SS. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length ≈5⋅10−6\approx 5\cdot 10^{-6}. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on nn vertices, even in FO.Comment: minor changes; accepted for publication by JCT

    Limit of normalized quadrangulations: The Brownian map

    Full text link
    Consider qnq_n a random pointed quadrangulation chosen equally likely among the pointed quadrangulations with nn faces. In this paper we show that, when nn goes to +∞+\infty, qnq_n suitably normalized converges weakly in a certain sense to a random limit object, which is continuous and compact, and that we name the Brownian map. The same result is shown for a model of rooted quadrangulations and for some models of rooted quadrangulations with random edge lengths. A metric space of rooted (resp. pointed) abstract maps that contains the model of discrete rooted (resp. pointed) quadrangulations and the model of the Brownian map is defined. The weak convergences hold in these metric spaces.Comment: Published at http://dx.doi.org/10.1214/009117906000000557 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The logic of random regular graphs

    Full text link

    0-1 Laws for Maps

    No full text
    A class of finite structures has a 0--1 law with respect to a logic if every property expressible in the logic has a probability approaching a limit of 0 or 1 as the structure size grows. To formulate 0--1 laws for maps (i.e., embeddings of graphs in a surface), it is necessary to represent maps as logical structures. Three such representations are given, the most general being the full cross representation based on Tutte's theory of combinatorial maps. The main result says that if a class of maps has two properties, richness and large representativity, then the corresponding class of full cross representations has a 0--1 law with respect to first-order logic. As a corollary the following classes of maps on a surface of fixed type have a first-order 0--1 law: all maps, smooth maps, 2-connected maps, 3-connected maps, triangular maps, 2-connected triangular maps, and 3-connected triangular maps. c fl ??? John Wiley & Sons, Inc. Keywords: 0--1 law, maps 1. INTRODUCTION. In probability..
    corecore