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Random Planar Lattices and Integrated
SuperBrownian Excursion

Philippe Chassaing, Gilles Schaeffer

ABSTRACT: In this extended abstract, a surprising connection is de-
scribed between a specific brand of random lattices, namely planar quadrangula-
tions, and Aldous’ Integrated SuperBrownian Excursion (ISE). As a consequence,
the radius r,, of a random quadrangulation with n faces is shown to converge, up
to scaling, to the width r = R — L of the support of the one-dimensional ISE, or
more precisely:

n 4y, BN (8/9) /4 7.

The combinatorial ingredients are an encoding by well labelled trees, reminiscent
of the work of Cori and Vauquelin, and the conjugation of tree principle, used to
relate the latter trees to embedded (discrete) plane trees in the sense of Aldous.
From probability, we need a new result of independent interest, namely the
weak convergence of the encoding of a random embedded plane tree by two contour

walks (e™), W) to the Brownian snake description (e, W) of ISE.

1 Introduction

From a distant perspective, this article uncovers a surprising, and hopefully deep,
relation between two famous models: random planar maps, as studied in combi-
natorics and mathematical quantum physics, and Brownian snakes, as studied in
probability and mathematical statistical physics. More precisely, our results re-
late some distance-related functionals of random quadrangulations to functionals
of Aldous’ Integrated SuperBrownian Ezxcursion (ISE) in dimension one.

In this extended abstract, proofs are omitted due to space limitations.

Quadrangulations. On the one hand, quadrangulations are finite plane graphs
with four-regular faces (see Section 2 for precise definitions). Random quadrangu-
lations, like random triangulations, random polyhedra, or physicists’ ¢*-models,
are instances of a general family of random lattices that has received consider-
able attention both in combinatorics (under the name random planar maps, fol-
lowing Tutte’s terminology [26]) and in physics (under the name Fuclidean two-
dimensional discretised quantum geometry, or more simply dynamical triangula-
tions or fluid lattices [2, 8, 14]).

Many probabilistic properties of random planar maps have been studied, that
are local properties like vertex or face degrees [6, 13], or 0 — 1 laws for properties
expressible in first order logic [7]. Other well documented families of properties are
related to connectedness and constant size separators [5], also known as branchings
into baby universes [17]. In this article we consider another fundamental aspect of
the geometry of random maps, namely global properties of distances. The profile
(H)k>0 and radius r, of a random quadrangulation with n faces are defined
in analogy with the classical profile and height of trees: H}’ is the number of
vertices at distance & of a basepoint, while r,, is the maximal distance reached. The
profile was studied (with triangulations instead of quadrangulations) by physicists



Watabiki, Ambjgrn et al. [27, 3] who gave a consistency argument proving that
the only possible scaling for the profile is k ~ n!/*, a property which reads in their
terminology the internal Hausdorff dimension is 4. Independently the conjecture
that E(r, ) ~ cn'/* was proposed by Schaeffer [24].

Integrated SuperBrownian Excursion. On the other hand, ISE was intro-
duced by Aldous as a model of random distributions of masses [1]. He considers
random embedded discrete trees as obtained by the following two steps: first an
abstract tree t, say a Cayley tree with n nodes, is taken from the uniform dis-
tribution and each edge of ¢ is given length 1; then ¢ is embedded in the regular
lattice on Z<, with the root at the origin, and edges of the tree randomly mapped
on edges of the lattice. Assigning masses to leaves of the tree t yield a random
distribution of mass on Z? Upon scaling the lattice to n~'/4Z<, these random
distributions of mass admit, for n going to infinity, a continuum limit J which is
a random probability measure on R? called ISE.

Derbez and Slade proved that ISE describes in dimension larger than eight
the continuum limit of a model of lattice trees [12], while Hara and Slade obtained
the same limit for the incipient infinite cluster in percolation in dimension larger
than six [15]. As opposed to these works, we shall consider ISE in dimension one
and our embedded discrete trees should be thought of as awfully folded on a line.
The support of ISE is then a random interval (L, R) of R that contains the origin.

From quadrangulation to ISE. The purpose of this paper is to draw a rela-
tion between, on the one hand, random quadrangulations, and, on the other hand,
Aldous’ ISE. This relation implies in particular that the radius r,, of random quad-
rangulations, upon proper scaling, weakly converges to the width of the support
of ISE in one dimension, that is the continuous random variable r = R — L. We
shall indeed prove (Corollary 5.2) that

n~ /4, law, (8/9)1/4 T.

While this proves the conjecture E(r,,) ~ ¢n'/4, the value of the constant ¢ remains

unknown because, as mentioned by Aldous [1], nothing is known on R or R — L.

The path from quadrangulations to ISE consists of three main steps, the
first two of combinatorial nature and the last with a more probabilistic flavor.
Our first result, Theorem 3.1, revisits a correspondence of Cori and Vauquelin [10]
between planar maps and some well labelled trees, that can be viewed as plane
trees embedded in the positive half-line. Thanks to an alternative construction
from [24, Chap. 7], we show that in this correspondence the profile can be mapped
to the mass distribution on the half-line.

Safe the positivity condition, well labelled trees would be constructed exactly
according to Aldous’ prescription for embedded discrete trees. Our second step,
Theorem 4.2, thus consists in removing the conditioning. More precisely, using the
congugation of tree principle of [24, Chap. 2], we bound the discrepancy between
the mass distribution of our conditioned trees on the half-line and a translated
mass distribution of freely embedded trees. In particular the radius r,, is attached
to the width of the support of random freely embedded trees:

|rn — (R — Lp)| < 2.

Since our freely embedded trees are constructed according to Aldous’ prescription,
one could expect to be able to conclude directly.



Contour walks and Brownian snakes. A first objection is that the construc-
tion of ISE as a continuum limit of mass distributions supported by embedded
discrete trees was only outlined in Aldous’ original paper. The original mathemat-
ical definition is by embedding a continuum random tree (CRT), which amounts
to exchanging the embedding and the continuum limit. But Borgs et al. proved
that indeed ISE is the limit of mass distributions supported by embedded Cayley
trees [9] and their proof could certainly be adapted to other simple classes of trees
and in particular to our embedded plane trees.

However a second, more important, objection is that weak convergence of
probability measures is not adequate to our purpose, since we are interested in
particular in convergence of the width of the support, which is not a continuous
functional on the space of measures. In order to override this objection, we turn
to the description of ISE in terms of superprocesses: ISE can be constructed from
the Brownian snake with lifetime e, the standard Brownian excursion [1, 19].

From the discrete point of view, we consider the encoding of an embedded
plane tree by a couple of contour walks (zx,yr), that encode respectively the
height of the node visited at time k and its position on the line. Our last result,
Theorem 5.1, is the weak convergence, upon proper scaling, of this couple of walks
to the Brownian snake with lifetime e:

(e (s), W™ () 25 (e(s), Ws)-

Finally as R = max; Ws and L = ming Ws this convergence result is sufficient to
conclude on the radius and to deal with other functionals like the profile.

2 Combinatorial and probabilistic models

2.1 Planar maps and quadrangulations

A planar map is a proper embedding (without edge crossings) of a connected graph
in the plane. Loops and multiple edges are a priori allowed. A planar map is rooted
if there is a root, i.e. a distinguished edge on the border of the infinite face, which
is oriented counterclockwise. The origin of the root is called the root verter. Two
rooted planar maps are considered identical if there exists an homeomorphism of
the plane that sends one map onto the other (roots included).

7 = 00

Figure 1: Two distinct planar maps, and a spherical representation of the second.



Figure 2: Random quadrangulations, in planar or spherical representation.

The difference between planar graphs and planar maps is that the cyclic
order of edges around vertices matters in maps, as illustrated by Figure 1. Observe
that planar maps can be equivalently defined on the sphere. In particular Euler’s
characteristic formula applies and provides a relation between the numbers n of
edges, f of faces and v of vertices of any planar map: f+v =n+ 2.

The degree of a face or of a vertex of a map is its number of incidence of
edges. A planar map is a quadrangulation if all faces have degree four. All (planar)
quadrangulations are bipartite: their vertices can be colored in black or white so
that the root is white and any edge joins two vertices with different colors. In
particular a quadrangulation contains no loop but may contain multiple edges.
See Figures 2 and 3 for examples of quadrangulations.

2.2 Random planar lattices

Let Q,, denote the set of rooted quadrangulations with n faces. A quadrangulation
with n faces has 2n edges (because of the degree constraint) and n + 2 vertices
(applying Euler’s formula).

Let L,, be a random variable with uniform distribution on Q,,. More formally,
L, is the Q,-valued random variable such that for all Q) € Q,,

Pr(Ly = Q) = @

The random variable L,, is our random planar lattice. To explain this terminology,
taken from physicists, observe that locally the usual planar square lattice is a
planar map whose faces and vertices all have degree four. Our random planar
lattice corresponds to a relaxation of the constraint on vertices.

Classical variants of this definition are obtained by replacing quadrangula-
tions with n faces by triangulations with 2n triangles, or by (vertex-)4-regular
maps with n vertices, or by all planar maps with n edges, etc. All these random
planar lattices have been considered both in combinatorics (see [5] and references
therein) and in mathematical physics (definitions are there phrased using a “sym-
metry weight” instead of rooted objects, see [2] and references therein). They are
believed to behave exactly the same with respect to long range phenomena [23].

In this article we concentrate on quadrangulations because of their combina-
torial relation to well labelled trees, as explained below.



Figure 3: Labelling by distance from the root vertex and the two possible config-
urations of labels (top: a simple face; bottom: a confluent face).

2.3 The profile of a map

The distance d(z,y) between two vertices x and y of a map is the minimal number
of edges on a path from x to y (in other terms all edges have abstract length 1).

The profile of a rooted map M is the sequence (Hg)r>1, where Hy = Hy (M)
is the number of vertices at distance k of the root vertex vg. By construction the
support of the profile of a rooted map is an interval i.e. {k | H, > 0} = [1,7]
where r is the radius of the map (sometimes also called eccentricity). The radius r
is closely related to the diameter, that is the largest distance between two vertices
of a map: in particular r < d < 2r. The quadrangulation of Figure 3 has radius 3.

The profile of the random planar lattice L,, is the random variable (H ,g")) E>1
that is defined by taking the profile of an instance of L,,. Similarly the radius of a
random planar lattice is a positive integer valued random variable r,.

3 Encoding the profile with well labelled trees
3.1 Well labelled trees and the encoding result

A plane tree is a rooted planar map without cycle (and thus with only one face).
Equivalently plane trees can be recursively defined as follows:

o the smallest tree is made of a single vertex,
e any other tree is a non-empty sequence of subtrees attached to a root.

Observe that plane trees with n edges under the uniform distribution are exactly
Galton-Watson trees with geometrically distributed offspring conditioned to have
n + 1 nodes.

A plane tree is well labelled if all its vertices have positive integral labels,
the labels of two adjacent vertices differ at most by one, and the label of the root
vertex is one.

The label distribution of a well labelled tree is the sequence (Ag)r>1 where Ay
is the number of vertices with label k in the tree. By construction the support of
the label distribution is an interval: there exists an integer u such that {k | Ay >



Figure 4: A well labelled tree and an unconstrained well labelled tree with their
label distributions.

0} = [1, p]- This integer u is the maximal label of the tree. These definitions are
illustrated by Figure 4 (left-hand side).

Our main encoding tool is the following theorem.

Theorem 3.1 (Cori-Vauquelin [10], Schaeffer [24]) There exists a bijection
between rooted quadrangulations with n faces and well labelled trees with n edges
such that the profile (Hy)r>1 is mapped onto the label distribution (Ag)g>1.

The proof goes in three steps. First some properties of distances in quadran-
gulations are indicated. This allows in a second step to define the encoding, as a
mapping 7 from quadrangulations to well labelled trees. A decoding procedure
allows then to prove that 7 is faithful.

Let us first make a few historical comments. Well labelled trees were intro-
duced by Cori and Vauquelin [10] to give an encoding of all planar maps with n
edges. Because of a classical bijection between the latter maps and quadrangu-
lations with n faces, their result imply the first part of Theorem 3.1. Cori and
Vauquelin’s bijection has been extended to bipartite maps by Arqués [4] and to
higher genus maps by Marcus and Vauquelin [21]. All these constructions were re-
cursive and based on encodings of maps with permutations (also known as rotation
systems). They do not provide a clear interpretation of the Ag.

The bijection we use here is much simpler and immediately leads to the
second part of Theorem 3.1. This latter approach was extended to non separable
maps by Jacquard [16] and to higher genus by Marcus and Schaeffer [20].

3.2 Properties of distances in a quadrangulation

Let @ be a rooted quadrangulation and denote vq its root vertex. The labelling ¢
of the map @ is defined by ¢(x) = d(x,v) for each vertex z, where d(z,y) denote
the distance in @ (cf. Figure 3). This labelling satisfies the following immediate
properties:

Proposition 3.2 If x and y are joined by an edge, |¢(x) — ¢(y)| = 1. Indeed the
quadrangulation being bipartite, a verter x is white if and only if ¢(x) is even,
black if and only if ¢(x) is odd.

Corollary 3.3 Around a face, four vertices appear: a black x1, a white y1, a
black x5 and a white yo. These vertices satisfy at least one of the two equalities

(x1) = d(x2) or d(y1) = ¢(y2) (cf. Figure 3).

A face will be said simple when only one equality is satisfied and confluent
otherwise (see Figure 3). It should be noted that one may have z; = z3 or y; = y».



Figure 5: The rules of selection of edges and an example.

3.3 Construction of the encoding

Let @ be a rooted quadrangulation with its distance labelling. The map @’ is
obtained by dividing all confluent faces @ into two triangular faces by an edge
joining the two vertices with maximal label. Let us now define a subset 7(Q) of
edges of Q' by two selection rules:

e In each confluent face of @, the edge that was added to form @' is selected.

e For each simple face f of @), an edge e is selected: let v be the vertex with
maximal label in f, then e is the edge leaving v with f on its left.

These two selection rules are illustrated by Figure 5. The first selected edge around
the endpoint of the root of @ is taken to be the root of 7(Q).

The proof of Theorem 3.1 is now completed in two steps. First 7(Q), which
is a priori only defined as a subset of edges of Q' together with their incident
vertices, is shown to be in fact a well labelled tree with n edges. Second the
inverse mapping is described and used to prove that the mapping 7 is faithful.
This proves the following proposition, which clearly implies Theorem 3.1.

Proposition 3.4 (Schaeffer [24]) The mapping T is one-to-one between quad-
rangulations with n faces and well labelled trees with n edges.

4 Random embedded trees

4.1 Unconstrained well labelled trees as embedded trees

A plane tree is an unconstrained well labelled tree if all its vertices have integral
labels, the labels of two adjacent vertices differ at most by one, and the label of
the root vertex is one.

The advantage of unconstrained well labelled trees over well labelled trees is
that their labels are not anymore required to be positive. In particular the number
of unconstrained labellings of a plane tree with n edges is just 3".

The label distribution of an unconstrained well labelled tree is now a sequence
(Ak)m<k<n, that is supported by an interval [m, M] with m > 1 > M. These
definitions illustrated by Figure 4 (right-hand side).



Similar labellings have been considered by D. Aldous [1] with the following
interpretation: the tree is folded on the line with its root at position 1 and with
each edge receiving a random length (here +1, 0, or —1). The labels thus describe
the position of nodes on the line and, upon counting the number of nodes at
position j, a random mass distribution is obtained.

In view of this interpretation and for concision’s sake, let us rename uncon-
strained well labelled trees and call them instead embedded trees.

4.2 Random trees

Let W, denote the set of well labelled trees with n edges and U, the set of em-
bedded trees (unconstrained well labelled trees) with n edges. Of course W,, C U,

and -
n
U.| =
[t n+1 ( n )
since the number of plane trees with n edges is the nth Catalan number.

Let us consider the random variables W,, and U,, with uniform distribution
on these two sets (W, is W,-valued and U, is U,-valued). The label distribution
of the corresponding random trees are two random variables that we shall denote
(M )k>1 for random well labelled trees, and (A}")gez for random embedded

trees. For random well labelled trees we also use the notation y,,, and for random
embedded trees the notations m,, and M,,.

On the one hand, random well labelled trees “are” random quadrangulations.
For instance, the next corollary is an immediate consequence of Theorem 3.1.

Corollary 4.1 The label distribution of random well labelled trees is equidistributed
to the profile of quadrangulations:

law

()‘Ecn))kZI (ng;n))kzl'

In particular vy, = .

On the other hand, random embedded trees are defined in accordance with
Aldous’ prescription for ISE. Observe moreover that random well labelled trees are
random embedded trees conditioned to positivity of the support. Instead of study-
ing directly random well labelled trees we shall thus use a second combinatorial
ingredient to reduce the problem to embedded trees.

4.3 How to relieve the positivity conditioning

Let us consider the following cumulated profile and label distributions: for & > 0,
R k . k R k
He =Y Hi, M= A Ay =D Arma
=1 =1 =1

The random variables H ,E"), :\fc") and A;cn) are defined accordingly. (In the definition
of A;" , beware that the occurrences of m,, and A k" are to be evaluated on a same
instance of L,.)



Theorem 4.2 There is a coupling (W,,,U,) (i.e. a distribution on Wy, X U, such
that the marginals are W, and U, as previously defined) such that the induced
joined distribution (A, A(™) satisfies for all k

S L

and in particular
|Nn - (M, _mn)| <2

As proven at the end of this section, Theorem 4.2 is merely a probabilistic restate-
ment of the following combinatorial result.

Theorem 4.3 There ezists a partition of Un = Jgec, C into disjoint conjugacy
classes each of size at most n + 2 and such that in each class C € C,

o well labelled trees are fairly represented:

2-1C] = (n+2)-|CNW,y|,

o and for any W e W, NC, U €C and k>1,

A2 (U) < Me(W) < Apya (U).

Corollary 4.4 (Cori-Vauquelin, 1981) The number of well labelled trees with
n edges, (which is also the number of quadrangulations with n faces), is

2 2 3" [(2n
Wal = 2 el = ().

T n+2 n+2'n+1

The proof of Theorem 4.3 relies on an encoding of plane trees in terms of another
family of trees, called blossom trees, and on the conjugation of tree principle.
These tools were introduced in [24] for the different purpose of giving a direct
combinatorial proof of Corollary 4.4.

Proof of Theorem 4.2. The distribution on W,, X U,, is immediately obtained from
the partition U, = Jp e, C as follows: for any (W,U) in Wy, X Uy, let

ln‘ if U, W are both in C with [CNW,| =2,
- if U, W are both in C with [N Wa| =1,
ifU € C; and W € Cy with (4 75 Cs.

2
\

-

Pr((Wn,Un) = (W,U)) =

of

In view of the first part of Theorem 4.3, the marginals are uniformly distributed.
The second part of Theorem 4.3 gives the two inequalities. O

5 Embedded trees and Brownian snakes

To each embedded tree U with size n is associated a bidimensional path, with
length 2n, starting from and arriving at (0, 0), and whose value at step k is (zx, yr),
in which zj, is the height (distance from the root) of the vertex vy, visited at step
k in the contour walk around the tree, and y;, is the label of the same vertex wvy.



The path (Z1)y< <oy, i the Dyck path associated to the tree U, also called contour
process in [19, Ch. 1.3]. For each well labelled tree U with size n, set

= _ T|2ns| (U) Y|2ns| (U) \/g
o = ()

Turning now to the uniform distribution on embedded trees with size n, we de-

fine three random variables X (") e(n) W("), with values in the Skorohod spaces
D([0,1], R?) (resp. D([0,1], R):

xm = (e("),W(")) = E.(Up).

As was proved by Kaigh [18], the scaled version of the contour process, e(™,
converges weakly to the normalised Brownian excursion e. In this section we extend
Kaigh’s result to X (™). Let

W= (Ws(t))0§s§1, 0<t<e(s)

be the Brownian snake with lifetime e, as studied previously in [1, 9, 11, 12, 19, 25].
That is, t = W,(t) is a standard Brownian motion defined for 0 < ¢t < e(s), and
s = W;s(.) is a path-valued Markov process with transition function described as
follows: for s; < sg, and for m = inf,, <4<,, e(u), conditionally given Wy, (.), on
the one hand we have that

(Ws, (t))ogtgm = (W, (t))ogtgma

and on the other hand (Wi, (m +1))o<;<c(s,)—m 18 @ standard Brownian motion
starting from Wy, (m), independent of Wy, (.). Set

W, = Wy(e(s)), X, = <e(s),Ws) :

Theorem 5.1 X converges weakly to X = (Xs)o<s<t-

According to Corollary 4.1 and to Theorem 4.2, the radius r, of the quadrangu-
lation corresponding to U, satisfies

‘@/9)1/4 (max W — min WSW) V| < onm1t,

0<s<i ° 0<s<1

Theorem 5.1 thus not only proves the conjecture E(r,,) = ©(n'/*) but leads to a
much more precise characterization:

1/4

Corollary 5.2 The random variable n=/* r,, converges weakly to (8/9)'/* r, in

which . )
r = max W; — min W,.
0<t<1 0<t<1

Let J, denote the empirical measure of labels of a random embedded tree:

1
In = E;Akak-

10



Following Aldous [1], for simple families of trees 7, is expected to converge upon
scaling to a random mass distribution J called ISE, related to W through

/ngZ/)lg(Ws) ds, (1)

see [19, Ch. IV.6]. In [9] the convergence of J,, to J is proved for random embedded
Cayley trees. Although these trees are not exactly our random embedded plane
trees, the proof could certainly be adapted.
In view of Relation (1) the limiting radius r is the width of the support of
J, that is
r=R-L

in the notations of [1, Section 3.2]. However, 7 is not a continuous functional of 7,
so that the weak convergence of 7, to J, as obtained in [9], would not be sufficient
to yield Corollary 5.2.
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