6,303 research outputs found

    Local spatiotemporal modeling of house prices: a mixed model approach

    Get PDF
    The real estate market has long provided an active application area for spatial–temporal modeling and analysis and it is well known that house prices tend to be not only spatially but also temporally correlated. In the spatial dimension, nearby properties tend to have similar values because they share similar characteristics, but house prices tend to vary over space due to differences in these characteristics. In the temporal dimension, current house prices tend to be based on property values from previous years and in the spatial–temporal dimension, the properties on which current prices are based tend to be in close spatial proximity. To date, however, most research on house prices has adopted either a spatial perspective or a temporal one; relatively little effort has been devoted to situations where both spatial and temporal effects coexist. Using ten years of house price data in Fife, Scotland (2003–2012), this research applies a mixed model approach, semiparametric geographically weighted regression (GWR), to explore, model, and analyze the spatiotemporal variations in the relationships between house prices and associated determinants. The study demonstrates that the mixed modeling technique provides better results than standard approaches to predicting house prices by accounting for spatiotemporal relationships at both global and local scales

    Geographical and temporal weighted regression (GTWR)

    Get PDF
    Both space and time are fundamental in human activities as well as in various physical processes. Spatiotemporal analysis and modeling has long been a major concern of geographical information science (GIScience), environmental science, hydrology, epidemiology, and other research areas. Although the importance of incorporating the temporal dimension into spatial analysis and modeling has been well recognized, challenges still exist given the complexity of spatiotemporal models. Of particular interest in this article is the spatiotemporal modeling of local nonstationary processes. Specifically, an extension of geographically weighted regression (GWR), geographical and temporal weighted regression (GTWR), is developed in order to account for local effects in both space and time. An efficient model calibration approach is proposed for this statistical technique. Using a 19-year set of house price data in London from 1980 to 1998, empirical results from the application of GTWR to hedonic house price modeling demonstrate the effectiveness of the proposed method and its superiority to the traditional GWR approach, highlighting the importance of temporally explicit spatial modeling

    A Spatial and Temporal Autoregressive Local Estimation for the Paris Housing Market

    Get PDF
    This original study examines the potential of a spatiotemporal autoregressive Local (LSTAR) approach in modelling transaction prices for the housing market in inner Paris. We use a data set from the Paris Region notary office (“Chambre des notaires d’Île-de-France”) which consists of approximately 250,000 transactions units between the first quarter of 1990 and the end of 2005. We use the exact X -- Y coordinates and transaction date to spatially and temporally sort each transaction. We first choose to use the spatiotemporal autoregressive (STAR) approach proposed by Pace, Barry, Clapp and Rodriguez (1998). This method incorporates a spatiotemporal filtering process into the conventional hedonic function and attempts to correct for spatial and temporal correlative effects. We find significant estimates of spatial dependence effects. Moreover, using an original methodology, we find evidence of a strong presence of both spatial and temporal heterogeneity in the model. It suggests that spatial and temporal drifts in households socio-economic profiles and local housing market structure effects are certainly major determinants of the price level for the Paris Housing Market.Hedonic Prices; Heterogeneity; Paris Housing Market; STAR Model

    The importance of scale in spatially varying coefficient modeling

    Get PDF
    While spatially varying coefficient (SVC) models have attracted considerable attention in applied science, they have been criticized as being unstable. The objective of this study is to show that capturing the "spatial scale" of each data relationship is crucially important to make SVC modeling more stable, and in doing so, adds flexibility. Here, the analytical properties of six SVC models are summarized in terms of their characterization of scale. Models are examined through a series of Monte Carlo simulation experiments to assess the extent to which spatial scale influences model stability and the accuracy of their SVC estimates. The following models are studied: (i) geographically weighted regression (GWR) with a fixed distance or (ii) an adaptive distance bandwidth (GWRa), (iii) flexible bandwidth GWR (FB-GWR) with fixed distance or (iv) adaptive distance bandwidths (FB-GWRa), (v) eigenvector spatial filtering (ESF), and (vi) random effects ESF (RE-ESF). Results reveal that the SVC models designed to capture scale dependencies in local relationships (FB-GWR, FB-GWRa and RE-ESF) most accurately estimate the simulated SVCs, where RE-ESF is the most computationally efficient. Conversely GWR and ESF, where SVC estimates are naively assumed to operate at the same spatial scale for each relationship, perform poorly. Results also confirm that the adaptive bandwidth GWR models (GWRa and FB-GWRa) are superior to their fixed bandwidth counterparts (GWR and FB-GWR)

    A spatiotemporal deformation modelling method based on geographically and temporally weighted regression

    Get PDF
    The geographically and temporally weighted regression (GTWR) model is a dynamic model which considers the spatiotemporal correlation and the spatiotemporal nonstationarity. Taking into account these advantages, we proposed a spatiotemporal deformation modelling method based on GTWR. In order to further improve the modelling accuracy and efficiency and considering the application characteristics of deformation modelling, the inverse window transformation method is used to search the optimal fitting window width and furthermore the local linear estimation method is used in the fitting coefficient function. Moreover, a comprehensive model for the statistical tests method is proposed in GTWR. The results of a dam deformation modelling application show that the GTWR model can establish a unified spatiotemporal model which can represent the whole deformation trend of the dam and furthermore can predict the deformation of any point in time and space, with stronger flexibility and applicability. Finally, the GTWR model improves the overall temporal prediction accuracy by 43.6% compared to the single-point time-weighted regression (TWR) model

    Robust Spatial-Temporal Analysis of Toddler Pneumonia Cases and its Influencing Factors

    Get PDF
    Pneumonia is a disease that causes inflammation of the lungs and is one of the most common diseases infecting toddlers. As a directly infectious disease, there is a possibility of the influence of location diversity on the number of pneumonia sufferers. Robust Geographically and Temporally Weighted Regression (RGTWR) is a method used to model data by considering the heterogeneity of location and time and to overcome outliers in the data. The data used is the number of pneumonia sufferers aged under five and the factors that are thought to influence it, namely the number of health centers, population density, percentage of children under five with complete basic immunizations, percentage of children under five who are exclusively breastfed 0-6 months, and percentage of poor people. This study was conducted to model pneumonia sufferers under five and to find out the factors that significantly affect the number of sufferers in each observation. RGTWR produces an optimal model with an R2 value of 99.9997%, a Mean Absolute Deviation of 21.6852, and a Median Absolute Deviation of 6.9661 compared to the Geographically and Temporally Weighted Regression model. Variables number of puskesmas, percentage of infants with complete basic immunization, and percentage of poor population are factors that influence the number of pneumonia sufferers under five in most locations in 34 provinces and 5 years of observation

    A comparison of statistical and machine-learning approaches for spatiotemporal modeling of nitrogen dioxide across Switzerland

    Get PDF
    Land use regression modeling has commonly been used to model ambient air pollutant concentrations in environmental epidemiological studies. Recently, other statistical and machine-learning methods have also been applied to model air pollution, but their relative strengths and limitations have not been extensively investigated. In this study, we developed and compared land-use statistical and machine-learning models at annual, monthly and daily scales estimating ground-level NO2 concentrations across Switzerland (at high spatial resolution 100 × 100 m). Our study showed that the best model type varies with context, particularly with temporal resolution and training data size. Linear-regression-based models were useful in predicting long-term (annual, monthly) spatial distribution of NO2 and outperformed machine-learning models. However, linear-regression-based models were limited in representing short-term temporal variation even when predictor variables with temporal variability were provided. Machine-learning models showed high capability in predicting short-term temporal variation and outperformed linear-regression-based models for modeling NO2 variation at high temporal resolution (daily). However, the best performing models, XGBoost and LightGBM, constantly overfit on training data and may result in erratic patterns in the model-estimated concentration surfaces. Therefore, the temporal and spatial scale of the study is an important factor on which the choice of the suitable model type should be based and validation is required whatever approach is used

    Scalable model selection for spatial additive mixed modeling: application to crime analysis

    Full text link
    A rapid growth in spatial open datasets has led to a huge demand for regression approaches accommodating spatial and non-spatial effects in big data. Regression model selection is particularly important to stably estimate flexible regression models. However, conventional methods can be slow for large samples. Hence, we develop a fast and practical model-selection approach for spatial regression models, focusing on the selection of coefficient types that include constant, spatially varying, and non-spatially varying coefficients. A pre-processing approach, which replaces data matrices with small inner products through dimension reduction dramatically accelerates the computation speed of model selection. Numerical experiments show that our approach selects the model accurately and computationally efficiently, highlighting the importance of model selection in the spatial regression context. Then, the present approach is applied to open data to investigate local factors affecting crime in Japan. The results suggest that our approach is useful not only for selecting factors influencing crime risk but also for predicting crime events. This scalable model selection will be key to appropriately specifying flexible and large-scale spatial regression models in the era of big data. The developed model selection approach was implemented in the R package spmoran
    corecore