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-e geographically and temporally weighted regression (GTWR) model is a dynamic model which considers the spatiotemporal
correlation and the spatiotemporal nonstationarity. Taking into account these advantages, we proposed a spatiotemporal de-
formation modelling method based on GTWR. In order to further improve the modelling accuracy and efficiency and considering
the application characteristics of deformation modelling, the inverse window transformationmethod is used to search the optimal
fitting window width and furthermore the local linear estimation method is used in the fitting coefficient function. Moreover, a
comprehensive model for the statistical tests method is proposed in GTWR. -e results of a dam deformation modelling
application show that the GTWRmodel can establish a unified spatiotemporal model which can represent the whole deformation
trend of the dam and furthermore can predict the deformation of any point in time and space, with stronger flexibility and
applicability. Finally, the GTWRmodel improves the overall temporal prediction accuracy by 43.6% compared to the single-point
time-weighted regression (TWR) model.

1. Introduction

Regression analysis is a commonly used deformation
modelling method. It can establish a functional model be-
tween deformation and influence factors and then carry out
physical interpretation and prediction of deformation.
Specific regression modelling methods include multiple
linear regression [1], stepwise regression [2], principal
component regression, and independent component re-
gression (ICR) models [3, 4], but all of them are for single-
point models without considering the spatial correlation and
the spatiotemporal nonstationarity of the deformation
monitoring data. In order to take into account the temporal
nonstationarity, Lu et al. [5] used the time-weighted re-
gression (TWR) method to model dam deformation. -e
TWR model assumes that the linear regression coefficient is
a function of time to adapt the temporal nonstationarity, and
the prediction accuracy of the model is higher than that of
the linear regression model. However, TWR does not

consider the spatial correlation between the monitoring
points and still belongs to the single-point model. When
there are many monitoring points, using the single-point
model will cause model redundancy and it is difficult to
analyze the overall deformation of the deformable body
since spatial correlation is not considered. Li et al. [6] and
Dai et al. [7] applied the space-time autoregressive
(STAR) model and the spatiotemporal independent
component regression (STICR) model to build a defor-
mation model. Both consider the spatiotemporal corre-
lation and can establish an overall spatiotemporal
deformation model for all points. However, both do not
consider the spatiotemporal nonstationarity, which will
reduce the prediction accuracy of the models. In order to
take both the spatiotemporal correlation and the spa-
tiotemporal nonstationarity of the deformation data into
consideration, a spatiotemporal deformation modelling
method based on the GTWR model was proposed and
applied for dam deformation modelling. Furthermore, to
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avoid the boundary effect of the model regression coef-
ficient fitting in GTWR, the local linear estimation
method is used in the fitting coefficient function. -e
statistical test is very important in GTWR modelling to
ensure the reliability of the model. However, most of the
current statistical test methods in GTWR modelling only
focus on the spatiotemporal nonstationarity test of the
model as a whole and ignore the spatiotemporal non-
stationarity test of the regression coefficients. In this
paper, we combine the existing statistical test theory of the
GTWR model, including the regression coefficients test of
the GTWR model proposed by Xiao et al. [8] and then
establish a five-step test method to conduct a compre-
hensive statistical test on the GTWR model.

2. Geographically and Temporally
Weighted Regression

Huang et al. [9] introduced a time factor based on the
geographically weighted regression (GWR) model [10, 11],
and it is extended to the GTWR model [9, 12, 13]. -e
GTWR model assumes that the linear regression coefficient
is a function of time and the coordinate parameters as
follows:

Yj � β0 uj, vj, tj􏼐 􏼑 + 􏽘
d

k�1
βk uj, vj, tj􏼐 􏼑Xjk + εj. (1)

In equation (1), j � 1, 2, . . . , n, εj is a random error, u
and v represent spatial two-dimensional coordinates, and t
is defined as time coordinates. (uj, vj, tj) represents the
coordinates of the j-th space-time point, and βk(uj, vj, tj) is
the function of the k-th regression coefficient. Xjk repre-
sents the dependent variable corresponding to the k-th
regression coefficient of the j-th space-time point. In order
to more clearly represent the sampling information of the
monitoring points in different spatial positions at different
times, the space-time point variation parameter j in
equation (1) is separately expressed as a spatial position
parameter and a time parameter, and then the GTWR

model can be expressed as equation (2). In equation (2), i
represents a spatial position variation parameter, h rep-
resents a time variation parameter, where i � 1, 2, . . . , n;

h � 1, 2, . . . , T, βk(ui, vi, th) is a regression coefficient, and
(Yih; Xih0, Xih1, . . . , Xihd) are the observation values at time
h of the i-th monitoring point. Let Xih0 ≡ 1, that is, the
model containing the spatiotemporal intercept term
β0(ui, vi, th). -e random error εih is independent of each
other and satisfies E(εih) � 0 and Var(εih) � σ2.

Yih � 􏽘
d

k�0
βk ui, vi, th( 􏼁Xihk + εih. (2)

2.1. Local Linear Estimation Method of Regression Coefficient
Function. Huang et al. [9] used the local constant estimation
method to fit the GTWRmodel, but it has a boundary effect.
Because the local linear estimation can avoid the boundary
effect [14], it is used to establish the GTWR model in this
paper.

It is assumed that each regression coefficient function
βk(u, v, t)(k � 0, 1, . . . , d) in equation (2) has a continuous
partial derivative with respect to space-time three-dimen-
sional coordinates (u, v, t). (um, vm, tp) is any point in the
study area, where m and p are the spatial position and time
parameters, respectively. Each of the regression coefficient
functions can be approximated according to the Taylor series
as follows:

βk(u, v, t) ≈ βk um, vm, tp􏼐 􏼑 + β(u)
k um, vm, tp􏼐 􏼑 u − um( 􏼁

+ β(v)
k um, vm, tp􏼐 􏼑 v − vm( 􏼁 + β(t)

k um, vm, tp􏼐 􏼑 t − tp􏼐 􏼑.

(3)

In equation (3), β(u)
k (um, vm, tp), β(v)

k (um, vm, tp), and
β(t)

k (um, vm, tp) denote the values of partial derivatives of k
for u, v, and t at point (um, vm, tp), respectively. According to
local linear fitting of the variable coefficient regression
model, least squares function can be constructed as follows:

Q � 􏽘
n

i�1
􏽘

T

h�1
yih − 􏽘

d

k�0
βk um, vm, tp􏼐 􏼑 + β(u)

k um, vm, tp􏼐 􏼑 u − um( 􏼁 + β(v)
k um, vm, tp􏼐 􏼑 v − vm( 􏼁 + β(t)

k um, vm, tp􏼐 􏼑 t − tp􏼐 􏼑􏽨 􏽩Xihk

⎧⎨

⎩

⎫⎬

⎭

2

· wih um, vm, tp􏼐 􏼑,

(4)

where wih(um, vm, tp) is the weight of point (ui, vi, th) to
point (um, vm, tp). Let the partial derivative of this function

for βk(um, vm, tp) equal to 0, then the estimated value
􏽢βk(um, vm, tp) of βk(um, vm, tp) can be obtained as

􏽢β um, vm, tp􏼐 􏼑 � Id+1, 0d+1, 0d+1, 0d+1( 􏼁 X
T

um, vm, tp􏼐 􏼑W um, vm, tp􏼐 􏼑X um, vm, tp􏼐 􏼑􏽨 􏽩
− 1

X
T

um, vm, tp􏼐 􏼑W um, vm, tp􏼐 􏼑Y, (5)
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where 􏽢β(um, vm, tp), W(um, vm, tp), andX(um, vm, tp) are
shown in equation (6). -e nondiagonal elements of the
weight W(um, vm, tp) are irrelevant because they are 0:

􏽢β um, vm, tp􏼐 􏼑 � 􏽢β0 um, vm, tp􏼐 􏼑, 􏽢β1 um, vm, tp􏼐 􏼑, . . . , 􏽢βd um, vm, tp􏼐 􏼑􏽨 􏽩
T

X(1) �

X110, . . . , X11d, X110 u1 − um( 􏼁, . . . , X11d u1 − um( 􏼁

X120, . . . , X12d, X120 u1 − um( 􏼁, . . . , X12d u1 − um( 􏼁

⋮ ⋮ ⋮ ⋮

XnT0, . . . , XnTd, XnT0 un − um( 􏼁, . . . , XnTd un − um( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X(2) �

X110 v1 − vm( 􏼁, . . . , X11d v1 − vm( 􏼁, X110 t1 − tp􏼐 􏼑, . . . , X11d t1 − tp􏼐 􏼑

X120 v1 − vm( 􏼁, . . . , X12d v1 − vm( 􏼁, X120 t2 − tp􏼐 􏼑, . . . , X12d t2 − tp􏼐 􏼑

⋮ ⋮ ⋮ ⋮

XnT0 vn − vm( 􏼁, . . . , XnTp vn − vm( 􏼁, XnT0 tT − tp􏼐 􏼑, . . . , XnTd tT − tp􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X um, vm, tp􏼐 􏼑 � X(1), X(2)􏽨 􏽩
nT×4(d+1)

W um, vm, tp􏼐 􏼑 � diag w11 um, vm, tp􏼐 􏼑, w12 um, vm, tp􏼐 􏼑, . . . , wnT um, vm, tp􏼐 􏼑􏼐 􏼑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

Let (um, vm, tp) � (ui, vi, th)(i � 1, 2, . . . , n; h � 1, 2, . . . ,

T) to calculate the estimated values of all regression coef-
ficients as follows:

􏽢β ui, vi, th( 􏼁 � Id+1, 0d+1, 0d+1, 0d+1( 􏼁

· X
T

ui, vi, th( 􏼁W ui, vi, th( 􏼁X ui, vi, th( 􏼁􏽨 􏽩
− 1

· X
T

ui, vi, th( 􏼁W ui, vm, th( 􏼁Y,

(7)

then the fit value at each point (ui, vi, th) can be calculated
using the following equation:

Yih � Xih
􏽢β ui, vi, th( 􏼁

� Xih, 0d+1, 0d+1, 0d+1( 􏼁

· X
T

ui, vi, th( 􏼁W ui, vi, th( 􏼁X ui, vi, th( 􏼁􏽨 􏽩
− 1

· X
T

ui, vi, th( 􏼁W ui, vi, th( 􏼁Y,

(8)

where Xih � (1, Xih1, . . . , Xihd) in , and all the fitted values
are showed as the following equation :

􏽢Y � 􏽢Y11, . . . 􏽢Y1T, 􏽢Y21, . . . 􏽢Y2T, . . . 􏽢YnT􏼐 􏼑
T

� LY, (9)

where L is an nT × nT order matrix and L is also called a
pseudohat matrix [14]:

L �

X11 Id+1, 0d+1, 0d+1, 0d+1( 􏼁 XT u1, v1, t1( 􏼁W u1, v1, t1( 􏼁X u1, v1, t1( 􏼁􏼂 􏼃
− 1

XT u1, v1, t1( 􏼁W u1, v1, t1( 􏼁

⋮

XnT Id+1, 0d+1, 0d+1, 0d+1( 􏼁 XT un, vn, tT( 􏼁W un, vn, tT( 􏼁X un, vn, tT( 􏼁􏼂 􏼃
− 1

XT un, vn, tT( 􏼁W un, vn, tT( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

-eGaussian kernel function is used to define the space-
time weights of the regression coefficient fitting [9], and its
expression is shown as the following equation:

wih um, vm, tp􏼐 􏼑 � exp −
ui − um( 􏼁

2
+ vi − vm( 􏼁

2h2
1

2
⎧⎨

⎩

⎫⎬

⎭

· exp −
th − tp􏼐 􏼑

2

2h2
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(11)

where h1 and h2, respectively, represent the optimal space
windowwidth parameters and the optimal time windowwidth
parameters. As the GTWR model defines the space-time

distance, the definition of time and space weights will in-
troduce two window width parameters of time and space
[7, 15] which should be determined in modelling. We gen-
eralized the crossvalidation (CV) method to determine the
optimal window width parameters in time and space
[9, 14, 16]. -e CV expression is shown as the following
equation:

CV h1, h2( 􏼁 �
1

nT
􏽘

n

i�1
􏽘

T

h�1
Yih − 􏽢Y− ih h1, h2( 􏼁􏼐 􏼑

2
. (12)

For Lih(h1, h2), the fitting value of the ih-th point is
obtained by removing the observation information of the ih-
th point under the given space-time windowwidth h1 and h2,
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and the minimum value of CV is the best parameter of the
space-time window width. If the smoothness of coefficient
function varies greatly, the variable window width method
should be used to improve the fitting accuracy [17, 18].

2.2. Statistical Tests ofGTWR. Statistical test is an important
issue for GTWR. However, there is no comprehensive and
complete model test method for GTWR. In this paper, a
complete set of GTWR model test methods is proposed
based on the existing research results [8, 19, 20], including
spatiotemporal global nonstationarity test, temporal global
nonstationarity test, spatial global nonstationarity test,
regression coefficient function temporal nonstationarity
test, and regression coefficient function spatial non-
stationarity test.

(1) Spatiotemporal global nonstationarity test:

H0: Y � β0 + β1X1 + · · · + βdXd + ε,

H1: Y � β0(u, v, t) + β1(u, v, t)X1 + · · ·

+ βd(u, v, t)Xd + ε.

(13)

-e original hypothesis H0 is a multiple linear re-
gression, that is, the regression model has a spatio-
temporal stationarity. It is tested by constructing M
statistic, and then the p value p0 of the test is calculated
according to the exact or approximate calculation
formula of the quadratic distribution of the normal
variables [14, 21]. -e expression of M is shown as
follows:

M �
YT(I − H)Y − YT(I − L)T(I − L)Y

YT(I − L)T(I − L)Y
, (14)

where H � X(XTX)− 1XT.
(2) Temporal global nonstationarity test:

H0: Y � β0(u, v) + β1(u, v)X1 + · · · + βd(u, v)Xd + ε,

H1: Y � β0(u, v, t) + β1(u, v, t)X1 + · · ·

+ βd(u, v, t)Xd + ε.
(15)

-e original hypothesis H0 is the GWR model, i.e., the
hypothesis model has temporal stationarity and spatial

nonstationarity. Based on the theory of Brunsdon’s
construction of test statistic using the sum of squared
residuals [22], the statistic F1 is constructed and its
expression is shown as follows:

F1 �
YTRLY( 􏼁 − YTRSY( 􏼁

tr RL − RS( 􏼁
􏼢 􏼣

YTRSY

tr RS( 􏼁
􏼢 􏼣

− 1

∼
tr2 RL − RS( 􏼁

tr RL − RS( 􏼁
2

􏽨 􏽩
,
tr2 RS( 􏼁

tr R2
S( 􏼁

⎛⎝ ⎞⎠,

(16)

where RL and RS, respectively, represent the pseu-
dohat matrix of the GWR model and the GTWR
model.

(3) Spatial global nonstationarity test:

H0: Y � β0(t) + β1(t)X1 + · · · + βd(t)Xd + ε,

H1: Y � β0(u, v, t) + β1(u, v, t)X1 + · · · +

βd(u, v, t)Xd + ε.
(17)

-e original hypothesis H0 is a TWRmodel, which
assumes that the model has temporal non-
stationarity and spatial stationarity and constructs
the F2 statistics as the temporal global non-
stationarity test. -e F2 expression is the same as
equation (16), and RL is a pseudohat matrix of the
TWR model.

(4) Temporal nonstationarity test of regression coeffi-
cient function:
After completing the global nonstationarity test, it is
necessary to test the spatiotemporal nonstationarity
of each coefficient function.

H0: βk(u, v, t) � βk(u, v),

H1: βk(u, v, t)≠ βk(u, v).
(18)

-e original hypothesis H0 assumes that the k-th
(k � 0, 1, . . . , d) regression coefficient function has
time-stationarity. First, define βk(u, v, t) � BkY and
let βk(u, v, t) � (βk(u1, v1, t1), . . . , βk(un, vn, tT))T,
then Bk is

Bk �

eT
k+1 Id+1, 0d+1, 0d+1, 0d+1( 􏼁 XT u1, v1, t1( 􏼁W u1, v1, t1( 􏼁X u1, v1, t1( 􏼁􏼂 􏼃

− 1
XT u1, v1, t1( 􏼁W u1, v1, t1( 􏼁

⋮

eT
k+1 Id+1, 0d+1, 0d+1, 0d+1( 􏼁 XT un, vn, tT( 􏼁W un, vn, tT( 􏼁X un, vn, tT( 􏼁􏼂 􏼃

− 1
XT un, vn, tT( 􏼁W un, vn, tT( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)
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-en, the statistical T1k is constructed for testing (20),
and the expression of T1k is as follows:

T1k �
YT BT

kΓBk( 􏼁Y

YT(I − L)T(I − L)Y
. (20)

In equation (20), Γ � diag((IT − (1/T)JT), . . . , (IT −

(1/T)JT))nT×nT is a block diagonal matrix, and its
subblock matrix is IT − (1/T)JT, JT is a T-order
square matrix in which all elements are 1 and IT is
the T-order identity matrix. -en, the p value p0 of
the test is determined according to the exact or
approximate calculation formula of the quadratic
distribution of the normal variable [21].

(5) Spatial nonstationarity test of regression coefficient
function:

H0: βk(u, v, t) � βk(t),

H1: βk(u, v, t)≠ βk(t).
(21)

-e original hypothesis H0 assumes that the k-th re-
gression coefficient function has spatial stationarity. -e
expression of the statistic is the same as the temporal
nonstationarity test of the regression coefficient function. At
this time, the Γ in equation (20) is diag((IT − (1/n)Jn), . . . ,

(In − (1/n)Jn))nT×nT and the test is completed by con-
structing the statistic T2k.

Given a significant level of α � 0.05, the above five
hypothesis tests were tested separately. If some regression

coefficients in the above tests are spatiotemporal stationary,
a mixed geographically and temporally weighted regression
model needs to be established [23].

2.3. Spatial and Temporal Prediction. Since the regression
coefficients in the GTWR model are all implicit function re-
lations, it is difficult to get the display expression of the model.
When the model is applied, the regression coefficient value of
the predicted point should be calculated according to the
coefficient function [24]. -e calculation steps are as follows:
First, the space-time weight matrix W(uj, vj, tk) and the
matrix X(um, vm, tp) of the predicted point (uj, vj, tk) are
calculated according to equation (6). -en, the regression
coefficient βk(uj, vj, tk)(k � 0, 1, . . . , d) of the predicted point
is obtained by equation (7). When predicting, the predicted
value of the predicted point is obtained by substituting the
calculated regression coefficient into equation (22). In equation
equation (22), Xjk is the independent variable observation
vector of the point to be predicted (uj, vj, tk):

􏽢Yjk � Xjk, 0d+1, 0d+1, 0d+1􏼐 􏼑

· X
T

uj, vj, tk􏼐 􏼑W uj, vj, tk􏼐 􏼑X uj, vj, tk􏼐 􏼑􏽨 􏽩
− 1

· X
T

uj, vj, tk􏼐 􏼑W uj, vj, tk􏼐 􏼑Y.

(22)

3. Spatiotemporal Deformation Model of Dam
Based on GTWR

3.1. Data Source. -e experimental data are from the
monitoring system of the Wuqiangxi Dam. -e Wuqiangxi
Dam is located above the Yuan River in the Yuanling County
of Hunan Province.-e dam is a concrete gravity damwith a
maximum dam height of 85.83m. -e normal water level is
108m, with a total storage capacity of 4.29×109m3.-e dam
is equipped with automatic monitoring systems such as lead
lines, inverted plumbs, static level, seepage monitoring,
buoyancy monitoring, and water level measurements. -is
paper refers to some points on one of the lead lines on the
Wuqiangxi Dam (EX2-10∼EX2-21). -e distribution of the
measurement points on the dam is shown in Figure 1; the
points EX2-10 and EX2-16 do not participate in modelling
and are used as two spatial prediction points, and then a total
of 10 points are involved in the modelling. -e coordinates
of points EX2-10 to EX2-21 are shown in Table 1. -e data

Figure 1: Distribution of measuring points on the lead lines of the Wuqiangxi Dam.

Table 1: Coordinates of points EX2-10 to EX2-21 (unit: m).

Site Position
EX2-10 22.5
EX2-11 38
EX2-12 59.5
EX2-13 84.1
EX2-14 108.6
EX2-15 133.1
EX2-16 140.1
EX2-17 157.6
EX2-18 183.1
EX2-19 207.6
EX2-20 232.1
EX2-21 256.6
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collection time was 2005-04-27∼2008-01-29, and the sam-
pling interval was 1 day. A total of 1000 days of data
were involved in the modelling. -e sampling value of 2008-
01-22∼2008-01-29 was used as the prediction comparison
data.

3.2.Model Establishment. Figure 2 is a flow chart of the dam
GTWR deformation modelling, and then the GTWR model
of the selected modelling point is built according to the flow
chart.

In order to compare the GTWR model, GTWR and
TWR modelling were done using the same data.

3.2.1. Data Preprocessing. -e horizontal displacement
observation of the monitoring points uses 3 times the error
method for gross error elimination. Lagrange interpolation
is used to interpolate the missing item data.

3.2.2. GTWR and TWR Model Fitting. -e dependent
variable is the displacement of monitoring sites, and the
independent variables are water level, rainfall, and tem-
perature. To model the selected 1000 days sampling data, the
optimum window width parameters of TWR and GTWR
models are first determined according to the CV criterion.
-e experimental analysis shows that the smooth parameter
values of the model are all greater than 1, and the best
window width h is needed in a large range, which is not only
time-consuming, but also difficult to determine the search
interval of h. In order to improve the search efficiency, the
inverse number transformation method is used to search the
optimal window width, that is, to make λ � 1/h, then search
λ as a pseudowindow width parameter, and the range of λ is
between 0 and 1, which greatly improves the search effi-
ciency. Since the GTWR model is an overall model of
multiple monitoring points, there is only one pair of optimal
spatiotemporal window width parameters. -e CV distri-
bution and the optimal window width value are shown in

Figure 3.-e TWR is a single-point model, and the optimum
window width parameter for each monitoring point must be
determined separately. -e distribution of its CV value and
the optimum window width for each point are shown in
Figure 4.

In Figures 3 and 4, B-h represents the optimal window
width, and the position of the optimal window width in the
CV distribution is indicated by the red ∗ symbol.

-e optimal window width parameters of each model
were used for model fitting, and the fitting precision and
residual difference of GTWR and TWR models at each
modelling point were obtained, respectively, as shown in
Table 2 and Figure 5. Table 3 shows the comparison of
overall fitting precision of the model. In Tables 2 and 3, the
root mean square error (RMS) of the GTWR model is
smaller than the TWR model and the fitting correlation
coefficient (R2) is larger. It can be concluded that the GTWR
fitting result is evidently better than that of the TWR model.

3.2.3. GTWRModel Statistical Test. Given a significant level
of α � 0.05, the five-step hypothesis test is performed on the
GTWR model according to the contents of Section 2.2.
Table 4 shows the spatiotemporal global nonstationarity
statistical test, the temporal global nonstationarity statistical
test, and the spatial global nonstationarity statistical test.
Table 5 shows the temporal nonstationarity statistical test
and the spatial nonstationarity statistical test of the re-
gression coefficients. From these tables, it can be concluded
that the p value of each test of the model is less than 0.05,
which indicates that both the model and the regression
coefficient function are spatiotemporal nonstationarity,
statistically demonstrating that the spatiotemporal obser-
vation sequence of the dam is suitable for establishing the
GTWR model.

3.2.4. Comparison of Temporal Prediction Accuracy between
GTWR and TWR Models. -e temporal prediction was
carried out for the 10 points involved in the modelling, and

Multipoint displacement
sequence preprocessing 

Determine the optimal spatiotemporal
window width parameter

Calculating spatiotemporal weights

Model test (spatiotemporal 
nonstationarity)

Spatial and temporal prediction

Removing gross errors and trend
interpolation 

CV principle

Gaussian kernel function

Five-step hypothesis test

Figure 2: Dam of the GTWR deformation modelling flow chart.
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Figure 3: CV value distribution of the GTWR model.
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Figure 4: CV value distribution of the TWR model at each modelling point.

Table 2: Comparison of fitting accuracy of each modelling point.

Model GTWR TWR
Site RMS (mm) R2 RMS (mm) R2

EX2-11 0.07 0.998 0.29 0.984
EX2-12 0.08 0.992 0.33 0.984
EX2-13 0.08 0.997 0.33 0.983
EX2-14 0.09 0.996 0.31 0.984
EX2-15 0.07 0.999 0.26 0.984
EX2-17 0.06 0.999 0.24 0.984
EX2-18 0.08 0.995 0.29 0.984
EX2-19 0.08 0.997 0.26 0.987
EX2-20 0.08 0.998 0.27 0.983
EX2-21 0.08 0.998 0.26 0.985
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the displacement of monitoring points was predicted 8 days
later. It was shown that the RMS of the overall temporal
prediction residuals of GTWR and TWR models was
0.44mm and 0.81mm, and the GTWR model improves the
overall temporal prediction accuracy by 43.6% compared
with the TWR model in Table 6. -e displacement pre-
dicted values, predicted residuals, and the RMS of the
predicted residuals of the GTWR and TWR models at each

modelling point are shown in Figures 6 and 7 and Table 6,
respectively. It can be seen from Figure 6 that the predicted
value of GTWR is closer to the true value than that of the
TWR model. As can be seen from Table 6, except for the
points EX2-11 and EX2-17, the GTWR model at all points
is smaller than the predicted residual RMS of the TWR
model and the temporal prediction accuracy of the GTWR
model of these modelling points is improved by 27.6%∼
68.3 compared with the TWR model. -e prediction ac-
curacy of the GTWRmodel at EX2-11 and EX2-17 points is
lower than that of the TWRmodel, which may be caused by
the end effect of the spatiotemporal model. It can also be
seen from the prediction residual diagram that the am-
plitude of the predicted residual fluctuation around 0 of the
GTWRmodel is smaller than that of the TWRmodel, and it
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Figure 5: Comparison of residuals of the fitting points of each modelling point.

Table 3: Comparison of overall fitting accuracy of GTWR and
TWR models.

Model GTWR TWR
RMS (mm) 0.08 0.28
R2 0.997 0.989

Table 4: Global spatiotemporal nonstationarity test of the GTWR
model.

Spatial-temporal Temporal Spatial
p value 0 0 0

Table 5: Spatiotemporal nonstationarity test of regression coeffi-
cient function of the GTWR model.

Coefficient β0(u, v, t) β1(u, v, t) β2(u, v, t) β3(u, v, t)

Temporal 3.85 × 10− 61 7.49 × 10− 8 1.44 × 10− 43 2.10 × 10− 14

Spatial 2.66 × 10− 33 0.030 1.84 × 10− 46 1.68 × 10− 15

Table 6: Comparison of RMS (mm) of temporal prediction re-
siduals at each modelling point.

Site GTWR TWR Improvement (%)
EX2-11 0.35 0.32 − 9.4
EX2-12 0.19 0.60 68.3
EX2-13 0.21 0.62 66.1
EX2-14 0.23 0.61 62.3
EX2-15 0.21 0.29 27.6
EX2-17 0.56 0.23 − 143.4
EX2-18 0.51 1.11 54.1
EX2-19 0.51 1.08 52.8
EX2-20 0.56 1.16 51.7
EX2-21 0.72 0.99 27.3
Overall 0.44 0.78 43.6
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can also be concluded that the temporal prediction accu-
racy of the GTWR model is higher than that of the TWR
model.

3.2.5. Temporal and Spatial Prediction of GTWR Model for
Unknown Points in Space. -e GTWR model considers the
spatiotemporal correlation, and not only it can make the
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Figure 6: GTWR and TWR time predictions for each modelling point.
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Figure 7: GTWR and TWR temporal prediction residuals for each modelling point.
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temporal prediction, but also can do the spatial prediction.
However, the TWR model only considers the temporal
correlation and cannot carry on the spatial prediction. We
select the points EX2-10 and EX2-16 which are nonpar-
ticipating modelling points for spatial prediction. First,
spatial prediction is performed on these two points that are
not involved in modelling, and the prediction result is
shown in Figure 8. -e point EX2-16 is located in the
middle of the modelling point group, and the point EX2-10
is located at the edge of the modelling point group, so the
EX2-16 is more spatially correlated than the point EX2-10.
From Figure 9, the point EX2-10 has a small RMS and small
residual amplitude, which indicates that the point EX2-16
has higher spatial prediction accuracy than EX2-10. -en,
the temporal prediction of these two unknown points is
carried out, and the displacement of the measuring points
is predicted for the next 8 days. -e prediction result is
shown in Figure 9 and the accuracy statistics in Table 7.
From the precision statistics in Tables 6 and 7, it can be
found that the temporal prediction accuracy of the un-
known points is comparable to that of the known mod-
elling points, which shows that the spatial correlation of
these measuring points is relatively strong. Compared
with the TWR model, the GTWR model not only has

higher temporal prediction accuracy, but also can take
into account the spatial prediction for unknown points.

4. Conclusion

-e GTWR model considers the spatiotemporal non-
stationarity and the spatiotemporal correlation of defor-
mation monitoring data. -e spatial correlation between the
modelling points, all of them constitute a whole model, can
reflect the overall deformation trend and deformation law of
the deformation body. -is model can predict any point of
the deformation body in time and space, avoiding the re-
dundancy of the model and having higher prediction ac-
curacy in deformation modelling. -ese features have
important significance in both deformation modelling and
forecasting. When the GTWR model is built, it needs to be
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Table 7: Statistical values for temporal prediction accuracy at
points EX2-10 and EX2-16.

Site Minimum residual
(mm)

Maximum residual
(mm)

Residual RMS
(mm)

EX2-10 − 0.16 0.43 0.31
EX2-16 − 0.23 0.47 0.28
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tested comprehensively. If the test is not passed, the mixed
geographically and temporally weighted regressionmodel can
be considered.-e next step is to establish the spatiotemporal
deformation model by using the mixed geographically and
temporally weighted regression as shown in this paper.
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