1,170 research outputs found

    Cyclic redundancy check-based detection algorithms for automatic identification system signals received by satellite.

    Get PDF
    This paper addresses the problem of demodulating signals transmitted in the automatic identification system. The main characteristics of such signals consist of two points: (i) they are modulated using a trellis-coded modulation, more precisely a Gaussian minimum shift keying modulation; and (ii) they are submitted to a bit stuffing procedure, which makes more difficult the detection of the transmitted information bits. This paper presents several demodulation algorithms developed in different contexts: mono-user and multi-user transmissions, and known/unknown phase shift. The proposed receiver uses the cyclic redundancy check (CRC) present in the automatic identification system signals for error correction and not for error detection only. By using this CRC, a particular Viterbi algorithm, on the basis of a so-called extended trellis, is developed. This trellis is defined by extended states composed of a trellis code state and a CRC state. Moreover, specific conditional transitions are defined to take into account the possible presence of stuffing bits. The algorithms proposed in the multi-user scenario present a small increase of computation complexity with respect to the mono-user algorithms. Some performance results are presented for several scenarios in the context of the automatic identification system and compared with those of existing techniques developed in similar scenarios

    A virtual MIMO dual-hop architecture based on hybrid spatial modulation

    Get PDF
    International audienceIn this paper, we propose a novel Virtual Multiple-Input-Multiple-Output (VMIMO) architecture based on the concept of Spatial Modulation (SM). Using a dual-hop and Decode-and-Forward protocol, we form a distributed system, called Dual-Hop Hybrid SM (DH-HSM). DH-HSM conveys information from a Source Node (SN) to a Destination Node (DN) via multiple Relay Nodes (RNs). The spatial position of the RNs is exploited for transferring information in addition to, or even without, a conventional symbol. In order to increase the performance of our architecture, while keeping the complexity of the RNs and DN low, we employ linear precoding using Channel State Information (CSI) at the SN. In this way, we form a Receive-Spatial Modulation (R-SM) pattern from the SN to the RNs, which is able to employ a centralized coordinated or a distributed uncoordinated detection algorithm at the RNs. In addition, we focus on the SN and propose two regularized linear precoding methods that employ realistic Imperfect Channel State Information at the Transmitter. The power of each precoder is analyzed theoretically. Using the Bit Error Rate (BER) metric, we evaluate our architecture against the following benchmark systems: 1) single relay; 2) best relay selection; 3) distributed Space Time Block Coding (STBC) VMIMO scheme; and 4) the direct communication link. We show that DH-HSM is able to achieve significant Signal-to-Noise Ratio (SNR) gains, which can be as high as 10.5 dB for a very large scale system setup. In order to verify our simulation results, we provide an analytical framework for the evaluation of the Average Bit Error Probability (ABEP)

    Coherent versus non-coherent decode-and-forward relaying aided cooperative space-time shift keying

    No full text
    Motivated by the recent concept of Space-Time Shift Keying (STSK), we propose a novel cooperative STSK family, which is capable of achieving a flexible rate-diversity tradeoff, in the context of cooperative space-time transmissions. More specifically, we first propose a Coherent cooperative STSK (CSTSK) scheme, where each Relay Node (RN) activates Decode-and-Forward (DF) transmissions, depending on the success or failure of Cyclic Redundancy Checking (CRC). We invoke a bitto- STSK mapping rule, where according to the input bits, one of the Q pre-assigned dispersion vectors is activated to implicitly convey log2(Q) bits, which are transmitted in combination with the classic log2(L)-bit modulated symbol. Additionally, we introduce a beneficial dispersion vector design, which enables us to dispense with symbol-level Inter-Relay Synchronization (IRS). Furthermore, the Destination Node (DN) is capable of jointly detecting the signals received from the source-destination and relay-destination links, using a low-complexity single-stream-based Maximum Likelihood (ML) detector, which is an explicit benefit of our Inter-Element Interference (IEI)-free system model. More importantly, as a benefit of its design flexibility, our cooperative CSTSK arrangement enables us to adapt the number of the RNs, the transmission rate as well as the achievable diversity order. Moreover, we also propose a Differentially-encoded cooperative STSK (DSTSK) arrangement, which dispenses with CSI estimation at any of the nodes, while retaining the fundamental benefits of the cooperative CSTSK scheme

    New challenges in wireless and free space optical communications

    Get PDF
    AbstractThis manuscript presents a survey on new challenges in wireless communication systems and discusses recent approaches to address some recently raised problems by the wireless community. At first a historical background is briefly introduced. Challenges based on modern and real life applications are then described. Up to date research fields to solve limitations of existing systems and emerging new technologies are discussed. Theoretical and experimental results based on several research projects or studies are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly introduced

    Power-efficient space shift keying transmission via semidefinite programming

    Get PDF
    Space shift keying (SSK) transmission is a low-complexity complement to spatial modulation (SM) that solely relies on a spatial-constellation diagram for conveying information. The achievable performance of SSK is determined by the channel conditions, which in turn define the minimum Euclidean distance (MED) of the symbols in the received SSK constellation. In this contribution we concentrate on improving the power efficiency of SSK transmission via symbol pre-scaling. Specifically, we pose a pair of related optimization problems for a) enhancing the MED at reception while satisfying a given power constraint at the transmitter, and b) reducing the transmission power required for achieving a given MED. The resultant optimization problems are NP-hard, hence they are subsequently reformulated and solved via semidefinite programming. The results presented demonstrate that the proposed pre-scaling strategies are capable of enhancing the attainable performance of conventional SSK, while simultaneously extending its applicability and reducing the complexity of the existing pre-scaling schemes

    Bandwidth efficient spatial modulation by signalling in the power domain

    Get PDF
    We explore a bandwidth efficient transmission scheme that amalgamates multiple-input-multiple-output spatial multiplexing (SMX) with receive antenna based spatial modulation (RSM). The RSM here is applied to the combined spatial and power-level domain, not by activating and de-activating the receive antennas, but rather by choosing between two power levels {ÎĄÎč,ÎĄ2} for the received symbols in these antennas, such that all receive antennas are active and SMX can still be accommodated. This allows for the coexistence of RSM with SMX and the results show an increased bandwidth efficiency for the proposed scheme compared to both SMX and RSM. We further carry out a mathematical analysis to optimize the ratio between Pi and P2 for attaining the minimum error rates. Our analytical and simulation results demonstrate significant bandwidth efficiency gains for the proposed scheme compared to conventional SMX and RSM

    A scalable performance–complexity tradeoff for constellation randomization in spatial modulation

    Get PDF
    It is widely recognised that traditional single RFchain aided spatial modulation (SM) does not offer any transmit diversity gain. As a remedy, constellation randomization (CR), relying on transmit pre-scaling (TPS), has been shown to provide transmit diversity for single RF-chain aided SM. In this paper we propose a low-complexity approach to SM with the aid of constellation randomization (SM-CR) that considerably improves the transmit diversity gain of SM at a reduced computational burden compared to conventional SM-CR. While conventional SM-CR performs a full search amongst a set of candidate TPS factors in order to achieve the maximum minimum Euclidean distance (MED) in the received SM constellation, here we propose a thresholding approach, where instead of the maximum MED the TPS aims to satisfy a specific MED threshold. This technique offers a significant complexity reduction with respect to the full maximization of SM-CR, since the search for TPS is terminated once a TPS set is found that satisfies the MED threshold. Our analysis and results demonstrate that a scalable trade-off can be achieved between transmit diversity and complexity by appropriately selecting the MED threshold, where a significant complexity reduction is attained, while achieving a beneficial transmit diversity gain for the single-RF SM
    • 

    corecore