40 research outputs found

    Forward refutation for Gödel-Dummett Logics

    Get PDF
    We propose a refutation calculus to check the unprovability of a formula in Gödel-Dummett logics. From refutations we can directly extract countermodels for unprovable formulas, moreover the calculus is designed so to support a forward proof-search strategy that can be understood as a top-down construction of a model

    Research Perspectives for Logic and Deduction

    Full text link
    The article is meant to be kind of the author's manifesto for the role of logic and deduction within Intellectics. Based on a brief analysis of this role the paper presents a number of proposals for future scientic research along the various di-mensions in the space of logical explorations. These dimensions include the range of possible applications including modelling intelligent behavior, the grounding of logic in some semantic context, the choice of an appropriate logic from the great variety of alternatives, then the choice of an appropriate formal system for repre-senting the chosen logic, and nally the issue of developing the most ecient search strategies. Among the proposals is a conjecture concerning the treatment of cuts in proof search. Often a key advance is a matter of applying a small change to a single formula. Ray Kurzweil [Kur05, p.5]

    Decidability of admissibility:On a problem by friedman and its solution by rybakov

    Get PDF
    Rybakov (1984) proved that the admissible rules of IPC are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility

    Outline bibliography, and KWIC index on mechanical theorem proving and its applications

    Get PDF
    Bibliography and KWIC index on mechanical theorem proving and its application

    Towards Contingent World Descriptions in Description Logics

    Get PDF
    The philosophical, logical, and terminological junctions between Description Logics (DLs) and Modal Logic (ML) are important because they can support the formal analysis of modal notions of ‘possibility’ and ‘necessity’ through the lens of DLs. This paper introduces functional contingents in order to (i) structurally and terminologically analyse ‘functional possibility’ and ‘functional necessity’ in DL world descriptions and (ii) logically and terminologically annotate DL world descriptions based on functional contingents. The most significant contributions of this research are the logical characterisation and terminological analysis of functional contingents in DL world descriptions. The ultimate goal is to investigate how modal operators can – logically and terminologically – be expressed within DL world descriptions

    Towards a logical foundation of randomized computation

    Get PDF
    This dissertation investigates the relations between logic and TCS in the probabilistic setting. It is motivated by two main considerations. On the one hand, since their appearance in the 1960s-1970s, probabilistic models have become increasingly pervasive in several fast-growing areas of CS. On the other, the study and development of (deterministic) computational models has considerably benefitted from the mutual interchanges between logic and CS. Nevertheless, probabilistic computation was only marginally touched by such fruitful interactions. The goal of this thesis is precisely to (start) bring(ing) this gap, by developing logical systems corresponding to specific aspects of randomized computation and, therefore, by generalizing standard achievements to the probabilistic realm. To do so, our key ingredient is the introduction of new, measure-sensitive quantifiers associated with quantitative interpretations. The dissertation is tripartite. In the first part, we focus on the relation between logic and counting complexity classes. We show that, due to our classical counting propositional logic, it is possible to generalize to counting classes, the standard results by Cook and Meyer and Stockmeyer linking propositional logic and the polynomial hierarchy. Indeed, we show that the validity problem for counting-quantified formulae captures the corresponding level in Wagner's hierarchy. In the second part, we consider programming language theory. Type systems for randomized \lambda-calculi, also guaranteeing various forms of termination properties, were introduced in the last decades, but these are not "logically oriented" and no Curry-Howard correspondence is known for them. Following intuitions coming from counting logics, we define the first probabilistic version of the correspondence. Finally, we consider the relationship between arithmetic and computation. We present a quantitative extension of the language of arithmetic able to formalize basic results from probability theory. This language is also our starting point to define randomized bounded theories and, so, to generalize canonical results by Buss
    corecore