General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

UNIVERSITY OF MARYLAND COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

(CODE)
(ACCESSION NUMBER)
(PAGES 648
(CODE)
(NASA CR OR TMX OR AD NUMBER)
(CATEGORY)

Technical Report TR-159

June 1971

OUTLINE, BIBLIOGRAPHY, AND KWIC INDEX
ON MECHANICAL THEOREM PROVING
AND ITS APPLICATIONS

by

Gordon J. VanderBrug Daniel H. Fishman Jack Minker

This work was supported by the National Aeronautics and Space Administration Grant NGR-21-002-270, and by the National Bureau of Standards Contract No. CST-821-5. Computer time for this work was supported by the National Aeronautics and Space Administration Grant NGL-21-002-008.

ABSTRACT

In the last decade much work has been done in both the formalization of theorem proving procedures and the development of theorem proving programs. In addition, the general logical inference capability of a theorem prover has been applied to such areas as: question-answering systems, problemsolving systems, proving theorems in abstract mathematical systems, proving the correctness of programs, writing programs, and robot technology.

いくとうとなってきているとなっているよう

In this paper we outline the significant achievements in mechanical theorem proving applications. These achievements range from foundational work in the 1920's and 1930's to current efforts. A comprehensive bibliography and KWIC index on this subject is then presented.

INTRODUCTION

The purpose of this paper is to make available to the researcher in artificial intelligence a comprehensive bibliography on mechanical theorem proving and its applications. The material cited varies from abstract mathematical foundations to practical applications. To assist in the use of this bibliography, several key papers in this field are noted briefly in the following summary account of its development.

The attempt to find mechanical proofs of theorems dates back to the work of Leibniz in the seventeenth century. However, it was not until 1929 and 1930 when Godel, Herbrand, and Skolem wrote fundamental papers in mathematical logic, that the foundations were laid for mechanical theorem proving methods. Godel (1930) showed that the theorems of the first-order predicate calculus (the formulas deducible from the axioms) are precisely the formulas of the first-order predicate calculus which are valid (the formulas which are true under all interpretations). The work in the modern approach to mechanical theorem proving is an outgrowth of an important paper written by Herbrand (1930). From this developed a proof procedure that attempts to find an interpretation over a general domain, called the "Herbrand Universe", that makes a certain formula false. If the alleged theorem is a theorem, then no such interpretation exists, and the process will halt after a finite number of steps. If the formula is not a theorem, then there is no guarantee that the procedure will terminate. In an important paper, Church (1936) proved that there is no general algorithm to determine if a given formula in the first-order predicate calculus is a theorem. The significance of Church's theorem for mechanical theorem proving is that the best one can expect to develop for the first-order predicate calculus is a proof procedure, rather than a general decision procedure. Hence, a reasonable

direction to proceed in developing an effective mechanical theorem prover is to improve and refine the Herbrand approach.

The impetus for work in mechanical theorem proving was renewed in the late 1950's. Much of this impetus came from the technological advancement of high-speed computers. At that time, work was started on mechanizing the concept of a proof in axiomatic systems other than the first-order predicate calculus. The approach employed was primarily the use of heuristic techniques. In 1957, Newell, Shaw, and Simon wrote a program to prove theorems in propositional calculus. Their program begins with the axioms of this system, and uses the rules of inference to make logical deductions. The paper by Newell, Shaw, and Simon is a landmark in heuristic programming. Wang (1960) showed that the same problem could be handled by mechanized proof procedures which use far less machine time and guarantee that a proof will be found for any provable proposition. In 1960, Gelernter wrote a program based on heuristic techniques to prove theorems in geometry.

Efforts in the first-order predicate calculus also continued in the late 1950's, since it was realized that successful theorem proving programs in this axiomatic system would form a basis for obtaining mechanical proofs of theorems in other areas of mathematics and related disciplines. Some proof procedures for the first-order predicate calculus, such as those proposed by Wang (1960A), and by Popplestone (1967), are based on natural deduction systems. These procedures search for a proof by means of a tree or "semantic tableau." Most proof procedures are based on Herbrand's results, and are algorithms, which when applied to a valid formula will terminate and yield a proof of the validity of the formula. However, for formulas which are not valid, in general, the computation will continue indefinitely. These procedures attempt to demonstrate that a formula is valid by showing that its negation is inconsistent, that is,

formula by "refuting" its negation, and therefore, are called refutation produces. Refutation procedures accept formulas in the first-order predicate calculus only in a special notation. The foundations for this notation were given by Skolem (1928). Gilmore (1960) developed an implementation of the cerbrand approach. Davis and Putnam (1960) showed how one can improve on the Gilmore program. Chinlund, et al, (1964), also developed an implementation that involved the Herbrand expansion explicitly. Prawitz (1960) in an important paper was the first to suggest a more efficient way of examining the elements of the "Herbrand Base."

The current work in formal theorem proving derives from the landmark paper J. A. Robinson (1965), who developed a machine-oriented logic for the firstorder predicate calculus that involves only one rule of inference, commonly referred to as the Robinson Resolution Principle. The discovery of this principle was marked by the publication of an abstract by J. A. Robinson (1963A). The rule of inference prohibits the generation of unnecessary instances of formulas, a phenomenon which plagued earlier theorem provers. The development of the Robinson Resolution Principle has resulted in considerable literature on strategies that a resolution-based theorem prover can employ. Some methods of restricting resolution are: unit preference and set of support strategies due to Wos, Carson, G. Robinson (1964, 1965); hyper-resolution and the semantic tree method of J. A. Robinson (1965, 1965A); the renaming method of Meltzer (1966) to use P1-deduction described by J. A. Robinson (1965); the maximal clash method and the semantic resolution method of Slagle (1967); linear resolution due to Loveland (1968); resolution with merging due to Andrews (1968); the ancestry filter method of Luckham (1968); first-literal resolution due to Kowalski and Hayes (1969); and the method of eliminating subsumed clauses

11

discussed by J. A. Robinson (1965), and by Loveland (1968). Meltzer and Kowalski (1970A) have reported work in formalizing the concept of the efficiency of a proof procedure (which is defined as an inference mechanism and a search strategy), and have pointed out the important difference between the simplicity of a proof and the ease of finding it. A new technique for establishing the completeness of resolution-based deductive systems for first-order logic has been given by Anderson and Bledsoe (1970A). Yates, Raphael and Hart (1970) have introduced a new representation, termed "resolution graphs", for deductions in first-order logic. Resolution graphs provide a basis for proving the completeness of a proof strategy that combines the set of support, resolution with merging, linear format and Loveland's subsumption conditions.

The equality relation in the first-order predicate calculus has been troublesome to deal with. Wos and G. Robinson (1968) have proposed an inference system based on an inference rule called paramodulation to handle the equality relation. Darlington (1968) used a single axiom in second-order logic to handle equality substitutions. J. A. Robinson (1968) used a generalized resolution principle with built-in equality. To achieve "larger" inference steps, Meltzer (1970) has suggested the use of "macro" predicates, and in the same paper reported on an extension of theorem proving programs which results in the ability to do induction. Some initial efforts have been directed toward obtaining proof procedures for higher-order calculi. This work is report in Gould (1966), and J. A. Robinson (1969, 1970). A good discussion of the use of calculi to formalize concepts like situations, future operators, actions, and strategies has been written by McCarthy and Hayes (1969).

There have been a number of applications of theorem proving methods. One of the early and most successful theorem proving programs that used a refutation procedure was written by Wos, G. Robinson, and Carson (1964) at Argonne

H

National Laboratory. The program uses the resolution principle, and has been successful in proving theorems in abstract algebra. Guard et al., (1969) have reported that an open problem in modular lattice theory has been solved by use of an interactive theorem proving program. Allen and Luckham (1970) are also implementing an interactive theorem prover.

N

0

8

Green and Raphael (1967, 1968, 1969, 1969A, 1969B) were the first to demonstrate that theorem proving techniques based on the resolution principle could be applied to the design of question-answering and problem sovling systems. They showed that the set of facts necessary for answering questions (solving problems) can be viewed as axioms, and the query (or problem to be solved) can be viewed as the theorem to be proved. They also developed an answer extraction process so that a question-answering system using theorem proving techniques could give more than a "yes" or "no" response to a query. Luckham and Nilsson (1970) developed more general techniques for extracting information from resolution proof trees. Darlington (1969, 1969A) has also reported work in the applications of theorem proving techniques to question-answering systems. He has shown how one may implement counting (1969A) in the first-order predicate calculus, and has developed some strategies for information retrieval problems.

Work on the use of theorem proving techniques to prove the correctness of programs has been reported by Manna (1968, 1969, 1969A), by Manna and McCarthy (1970A), and by Manna and Pnueli (1970B). Waldinger (1969), Waldinger and Lee (1969A), Green (1969, 1969B), and Manna and Waldinger (1970) are experimenting with theorem proving techniques to construct programs automatically. Lee (1967) and Slagle (1969) have reported work on consequence finding. The application of theorem proving to robots is being pursued at Stanford Research Institute and the University of Edinburgh, and is reported on by Coles (1969), Raphael

(1968), Nilsson (1969A), and Burstall (1970).

F

The technology of mechanical theorem proving has developed rapidly since J. A. Robinson's landmark paper, and there is no one source that the reader can go to for a unified treatment of the subject. J. A. Robinson has written several excellent survey articles (1967, 1970). A significant textbook by Nilsson (1971), entitled "Problem Solving Methods in Artificial Intelligence", gives an excellent account of theorem proving based on the Robinson Resolution Principle, and its application to problem solving in artificial intelligence.

The remainder of this paper is subdivided into two parts. The first part is a comprehensive bibliography on mechanical theorem proving and its applications. The bibliography is sequenced according to a code which is generally an abbreviation of the first author's last name and the year of publication. Following the bibliography is a Key Word In Context (KWIC) index which serves as a subject catalog. The index contains, in alphabetical order, all of the key words in all of the titles in the bibliography. Each of the key words appears together with the rest of the title in which it occurs and the corresponding sequence code. The sequence code can be used to look up the complete citation in the bibliography.

Wherever complete citations were not available, the best available information is given. The language of the paper is the same as the language of the title. We apologize to authors who have written relevant papers that have not been included in the KWIC index. We plan to maintain the bibliography, and to distribute it to interested individuals periodically. Suggestions for corrections, additions, and improvements to make the index of greater utility to researchers will be welcome. Researchers are invited to send their papers to the authors so that they may include their work in subsequent revisions of the index.

We appreciate the assistance of B. Raphael of Stanford Research Institute and R. Lee and C. L. Chang of the National Institutes of Health who generously made available to us their private bibliographies. We also appreciate the support and encouragement of S. Rosenfeld of the National Aeronautics and Space Administration.

H

SORTEC BIBLIOGRAPHY

ACKERMAN, R.
INTRODUCTION TO MANY VALUED LOGIC.=
DCVER, N. Y., 1967.

ACKERW-54 ACKERMANN, W.

SOLVABLE CASES OF THE DECISION PROBLEM.

IN: PROUMER, BETH, AND HEYTING (EDS.). STUDIES IN LOGIC
AND THE FOUNDATIONS OF MATHEMATICS, NORTH-HOLLAND, 1954.

ALLENJ-70 ALLEN, J. AND D. LUCKHAM.

AN INTERACTIVE THECREM-PROVING PROGRAM.

INTERIZER, U., AND D. MICHIE (EDS.), MACMINE

INTELLIGENCE 5, AM. ELSEVIER, NEW YORK, N.Y., 1970, 321-336.

AWARES-62

AMAREL, S.

AN APPPOACH TO PROBLEM-SOLVING BY COMPUTER.

= FINAL REP. AFCPL-62-367, PT. 2, AIR FORCE CAMBRIDGE RES.

LAB., CAMBRICCE, MASS., MAY 1962.

AMAREL, S.

AN APPROACH TO HEURISTIC PROBLEM SOLVING AND THEOREM-PROVING IN PROPOSITIONAL CALCULUS.

IN: HART, J. F., AND S. TAKASU, (EDS.). SYSTEMS AND COMPUTER SCIENCE, U. OF TORONTO. PR. 1967.

AMAREL, S.

REPRESENTATIONS OF PROBLEMS OF REASONING ABOUT ACTIONS.

IN: MICHIE, D. (ED.). MACHINE INTELLIGENCE 3.

EDINBURGH U. PRESS, 1968, 131-171.

ANDERSON, R.

COMPLETENESS RESULTS FOR E-RESOLUTION.

= AFIPS COMP. PROC., VOL. 36, 1970 SUCC, AFIPS PRESS,

NONTVALE, N.J., 1970, 653-656

ANDERR-70A ANDERSON, R., AND W.W. BLEDSOE.

A LINEAR FORMAT FOR RESOLUTION WITH MERGING AND A NEW TECHNIQUE FOR ESTABLISHING COMPLETENESS. =

J. ACM 17, 3(JULY 1970), 525-534.

ANDREPB68 ANDREWS, P.B.

RESOLUTION WITH MERGING. =

J.ACM 15, 3(JULY 1968), 367~381.

ANDREPBGBA ANDREWS, P. B.

ON SIMPLIFYING THE MATRIX OF A WFF. =

J. SYMBOLIC LOGIC 33(1968), 180-192.

ANDREPB70 ANDREWS, P. B.

RESQLUTION IN TYPE THEORY.

=REPORT 70-27, DEPT. OF MATH, CARNEGIE-WELLON UNIV., JULY
1970.

ASHCRE-71 ASHCROFT. E., AND Z. MANNA.
FORMALIZATION OF PROPERTIES OF PARALLEL PROGRAMS.

=IN: MELTZER, B. AND D. MICHIE (EDS.), MACHINE INTELLIGENCE 6, EDINBURGH U. PRESS, 1971, 17-42.

- BACKEP-63 BACKER, P., AND D. SAYRE.
 THE REDUCED MODEL FOR SATISFIABILITY FOR TWO DECIDABLE
 CLASSES OF FORMULAE IN THE PREDICATE CALCULUS. =
 IBM RESEARCH REPORT, RC 1083, 1963.
- BENNEJH63 BENNETT, J.H., W.B. EASTON, J.R. GUARD, AND T.H. WOTT, JR.
 INTRODUCTION TO SEMI-AUTOMATED MATHEMATICS.

 = AFCRL 63-180, AIR FORCE CAMBRIDGE RESEARCH LAB.,
 CAMBRIDGE, MASS. APRIL 1963.
- SENNEJH64

 BENNETT, J.H., W.B. EASTON, J.R. GUARD, AND T.H. MOTT, JR.
 TOWARD SEMI_AUTOMATED MATHEMATICS: THE LANGUAGE AND LOGIC
 OF SAM III.

 SCI. REP. NO. 2, AFCRL 64-562, AIR FORCE CAMBRIDGE RES.
 LAB., CAMBRIDGE, MASS., MAY 1964.
- BENNEUH64A BENNETT, J.H., W.B. EASTON, AND J.R. GUARD, ET AL.

 SFMI-AUTOMATED MATHEMATICS: SAM IV.

 SCI. REP. NO. 3, AFCKL 64-827, AIR FORCE CAMBRIDGE RES.

 LAB., CAMBRIDGE, MASS., OCT. 1964.
- BENNETT, J.H., W.B. EASTON, J.R. GUARD, AND L.G. SETTLE.

 CRT-AIDED SEMI-AUTOMATED MATHEMATICS.

 FINAL REPORT, AFORL 67-017, AIR FORCE CAMBRIDGE RES. LAB.,

 CAMBRIDGE, MASS., JAN. 1967.
- BETH-EW63 BETH, E. W.

 OBSERVATIONS CONCERNING COMPUTING, DEDUCTION AND HEURISTICS.

 IN: BRAFFORT, P., AND D. HIRSHBERG. COMPUTER PROGRAMMING
 AND FORMAL SYSTEMS. NORTH HOLLAND, 1963, 21-32.
- BETH-E-62 BETH, E.

 FORMAL METHODS. =

 REIDEL, DORDRECHT, 1962.
- BING-K-69 BING, KURT.

 NATURAL DEDUCTION WITH FEW RESTRICTIONS ON VARIABLES. =

 INF. SCIENCES 1, 4(OCT, 1969), 381-402. (CR 18,921)
- BLACKF-64

 BLACK, F.

 A DEDUC(IVE QUESTION-ANSWERING SYSTEM.

 IN: MINSKY, M. (ED.). SEMANTIC INFORMATION PROCESSING,

 MIT PRESS, 1968, 354-403 (AUTHOR'S PH.D THESIS, 1964).
- BLEDSOE, W. W.
 SPLITTING AND REDUCTION HEURISTICS IN AUTOMATIC THEOREM
 PROVING.=
 A. I. JOURNAL, MARCH 1971.
- BLEDSWW71A BLEDSOE, W. W. R. S. BOYER, AND W. H. HENNEMAN.

 COMPUTER PROOF OF LIMIT THEOREMS. =

 PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).
- BRICEC-71 BRICE, C., AND J. DERKSEN.

A HEURISTICALLY GUIDED EQUALITY RULE IN A RESOLUTION THEOREM PROVER.

= TECH. NOTE 45, A. I. GROUP, STANFORD RESEARCH INST., MENLO PARK, CALIF., 1971.

BROWN, T. C.

RESOLUTION WITH COVERING STRATEGIES AND EQUALITY THEORY. =

CALIF, INSTITUTE OF TECHNOLOGY, CALIF., (1968).

BUCHIJR58 BUCHI, J. R.
TURING MACHINES AND THE ENTSCHEIDUNGS-PROPLEM. =
MATHEMATISCHE ANNALEN, 148(1958), 201-213.

BURSTRM68

BURSTALL, R. W.
A SCHEME FOR INDEXING AND RETRIEVING CLAUSES FOR A
RESOLUTION THEOREM-PROVER.

= MIP-R-45, DEPT. OF MACHINE INTELLIGENCE AND PERCEPTION,
UNIV. OF EDINBURGH, EDINBURGH, SCOTLAND, 1968.

BURSTRM69 BURSTALL, R. M.

PROVING PROPERTIES OF PROGRAMS BY STRUCTURAL INDUCTION. =

CCMP. J. 12, 1, 41-48.

BURSTRM70

BURSTALL, R. V.

FORMALISING SEMANTICS OF FIRST CRDER LOGIC IN FIRST ORDER LOGIC, AND APPLICATION TO PLANNING FOR ROPOTS.

= MIP-R-73, DEPT. OF MACHINE INTELLIGENCE AND PERCEPTION, UNIV. OF EDINPURGH, ECINBURGH, SCOTLAND, MARCH 1970.

BURSTRM70A BURSTALL, R. W.

FORMAL DESCRIPTION OF PROGRAM STRUCTURE AND SEMANTICS
IN FIRST-ORDER LOGIC.

IN: MELTZER, B. AND MICHIE, D. (EDS.). MACHINE
INTELLIGENCE 5, EDINBURGH U. PRESS, 1970, 79-98.

CANTRRG69

CANTRARELLA, R. G.

EFFICIENT MAXIMAL SEMANTIC RESOLUTION PROOFS BASED UPON BINARY SEMANTIC TREES.

TR-69-3, ELECTRICAL ENGINEERING DEPT., SYRACUSE UNIV., SYRACUSE, N. Y., JUNE, 1969.

CHANGCC58 CHANG, C. C.

ALGEBRAIC ANALYSIS OF MANY VALUED LOGICS.=

TRANS, OF THE AMER. MATH. SPC. 88, 1958, 467-490,

CHANGCL70 CHANG, C. L. AND R. C. T. LEE.

NOTES ON THEOREM-PROVING.

= DIV. OF COMPUTER RES. AND TECH., NATIONAL INSTITUTES OF HEALTH, BETHESDA, MD., 1970. (UNPUBLISHED).

CHANGCL70A CHANG, C.L.

THE UNIT PROOF AND THE INPUT PROOF IN THEOREM PROVING.=

J. ACM 17, 4(OCT. 1970), 698-707.

CHANGCL70B CHANG, C. L.

RENAMBLE PARAMODULATION FOR AUTOMATIC THEOREM-PROVING
WITH EQUALITY. =

A. I. JOUR. 1, 4(DEC. 1970), 247-256.

我我们我就是我们的人,我们也是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们

CHANGEL71 CHANG.C.L., AND J. R. SLAGLE.

COMPLETENESS OF LINEAR REFUTATION FOR THEORIES WITH

EQUALITY.=

J. ACM 18, 1(JAN. 1971), 126-136.

CHANGEL71A CHANG, C. L.

THEOPEM PROVING WITH VARIABLE-CONSTRAINED RESOLUTION.

= DIV. OF COMP. RES. AND TECH., N. I. H., BETHESDA, MD.,

1971.

CHINLTU64 CHINLUND, T. J., M. DAVIS, P. G. HINMAN, AND D. MCILROY.
THEOREM-PROVING BY MATCHING. =
BELL LABORATORIES, SPRING 1964.

CHURCA-36 CHURCH, A.

A NOTE ON THE ENTSCHEIUUNGSPROBLEM. =

J. SYMBOLIC LOGIC 1 (1936), 40-41.

CHURCA-41 CHURCH, A.

THE CALCULI OF LAMEDA-CONVERSION. = PRINCETON UNIV. PRESS, 1941.

CHURCA-65 CHURCH, A.

AN UNSCLVABLE PROPLEM OF ELEMENTARY NUMBER THEORY.

IN: DAVIS, M. THE UNDECIDABLE, RAVEN PRESS, HEWLETT,

N.Y., 1965, 88-107.

COHEN, J., AND A. RUBIN.

AN INTERACTIVE SYSTEM FOR PROVING THEOREMS IN THE PREDICATE CALCULUS.=

SECOND SYM. ON SYMBOLIC AND ALGEBRAIC MANIPULATION, 1971.

CCOK-SA71 COOK, S. A.

THE COMPLEXITY OF THEOREM-PROVING PROCEDURES.

= THIRD ANNUAL ACM SYMP. ON THEORY OF COMPUTING, SHAKER
HEIGHTS, OHIO, MAY 3-5, 1971.

COOPEDC66 COOPER, D.C.

THEOREM PROVING IN COMPUTERS.

= IN: FOX, L. (ED.), AUVANCES IN PROGRAMMING AND NONNUMERICAL COMPUTATION, PERGAMMON PRESS, 1966.

CCOPEDC71 COOPER, D. C.

PROGRAMS FOR MECHANICAL PROGRAM VERIFICATION.

=IN: MELTZER, B. AND D. MICHIE (FUS.). MACHINE INTELLIGENCE

6, EUINBURGH U. PRESS, 1971, 43-62.

CCOPEWS64 COOPER, W.S.

FACT RETRIEVAL AND DEDUCTIVE QUESTION-ANSWERING INFORMATION RETRIEVAL SYSTEMS. =

J. ACM 11, 2(APR. 1964), 117-137.

A STATE OF THE PROPERTY OF THE PARTY.

Chaigw-57 Craig, w.
Linear reasoning. A New Form of the Herbrand-Gentzen Theorem. =

J. SYMBOLIC LOGIC 22(1957), 250-268.

والمرابي والمرابطة والأواران أطرأ فالموجودة الأواران والمجاورة والمعارض المحاربين

CRAIGW-57A CRAIG, W.

THREE USES OF THE HERBRAND-GENTZEN THEOREM RELATING MODEL
THEORY TO PROOF THEORY. =

J. SYMBOLIC LOGIC 22(1957), 269-285.

CARLIJL62 DARLINGTON, J.L.

A COMIT PROGRAM FOR THE DAVIS-PUTNAM ALGORITHM.

= RES. LAB. ELECTRON., MECH. TRANSL. GRP.,

MIT, CAMBRIDGE, MASSACHUSSETTS, MAY 1962.

CARLIJL64 DARLINGTON, J.L.

TRANSLATING ORDINARY LANGUAGE INTO SYMBOLIC LOGIC. =

MAC-M-149, M.I.T., CAMBRIDGE, MASS., MARCH 1964.

DARLINGTON, J.L.

MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS EXPRESSED

IN ENGLISH, =

MECH. TRANS. 8, JUNE 1965, 41-67.

DARLIJL68

DARLINGTON, J.L.

SOME THEOREM-PROVING STRATEGIES BASED ON THE RESOLUTION PRINCIPLE.

= IN: DALE, E., AND D. MICHIE (EDS.). MACHINE INTELLIGENCE 2, AMERICAN ELSEVIER, NEW YORK, 1968, 57-71.

DARLIJL68A DARLINGTON, J.L.

AUTOMATIC THEOREM PROVING WITH EQUALITY SUBSTITUTIONS AND MATHEMATICAL INDUCTION.

= IN: MICHIE, D. (ED.). MACHINE INTELLIGENCE 3, AMERICAN ELSEVIER, NEW YORK, 1968, 113-127.

DARLINGTON, J.L.

THEOREM PROVING AND INFORMATION RETRIEVAL.

IN: MELTZER, B. AND U. MICHIE (ECS.). MACHINE

INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 173-181. (CR18465)

DARLIJL69A DARLINGTON, J.L.

THEOREM PROVERS AS QUESTION ANSWERERS.

= ABSTRACT IN: WALKER AND NORTON (EDS.). PROC. INTIL JOINT CONF. ON A. I., WASHINGTON, D. C., MAY 1969, 317.

DARLIJL71 DARLINGTON, J. L.

A PARTIAL MECHANIZATION OF SECOND-ORDER LOGIC.

=IN: MELTZER, B. AND D. MICHIE (EDS.), MACHINE INTELLIGENCE

6. EDINBURGH U. PRESS, 1971, 91-100.

CAVISM-60 DAVIS, M., AND H. PUTNAM.

A COMPUTING PROCEDURE FOR QUANTIFICATION THEORY. =

J. ACM 7, 3(JULY 1960), 201-215.

CAVISM-62 DAVIS, M., G. LOGEMANN, AND D. LOVELAND.

A MACHINE FROGRAM FOR THEOREM-PROVING. =

COMM. ACM 5, 7(JULY 1962), 394-397.

DAVISM-63 DAVIS. M.

ELIMINATING THE IRRELEVANT FROM MECHANICAL PROOFS. = PRCC. OF SYMPOSIA IN APPL. MATH., 15 (1963), 15-30.

mineral contract the second representation of the second of the second of the second

CAVISM-65 DAVIS, M.

THE UNCECIDABLE. =

RAVEN PRESS, HEWLETT, N.Y., 1965.

CAVYDGV67 DAVYDOV, G. V.

A PROOF METHOD FOR THE CLASSICAL PREDICATE CALCULUS.

=IN: ZAPISKI NAUCHNYH SEMINAROV LOMI, 4, (1967), 8-17.

(TRANSLATED).

DAVYDGV69 DAVYDOV, MASLOV, MINTS, OREVKOV, AND SLISENKO.
A COMPLTER ALGORITHM FOR ESTABLISHING DEDUCTIBILITY, BASED
ON INVERSE WETHOD.=
IN: ZAPISKI NAUCHNYH SEMINAVOR LOMI, 16, (1969), 8-19.

DIPAORA69 DIPAOLA, R.A.

THE RECURSIVE UNSCLVABILITY OF THE DECISION PROBLEM FOR THE CLASS OF DEFINITE FORMULAS. =

J. ACM 16, 2(APRIL 1969), 324-327.

DIPAORA71 DIPAOLA, R. A.

THE RELATIONAL DATA FILE AND THE DECISION PROBLEM FOR CLASSES OF PROPER FORMULAS.

IN: MINKER, J. AND RUSENFELD, S. (EDS.). PROC. OF SYMP.

ON J. S. AND R., U. OF MD., APRIL, 1971, 95-104.

DIXONJK70 DIXON, JOHN K.

AN IMPROVED METHOD FOR SOLVING DEDUCTIVE PROBLEMS ON A COMPUTER BY COMPILED AXIOMS. = PH.U., THESIS, COMPUTER SCIENCE, UNIV. OF CALIF., SEPT.1970.

DIXONJK71 DIXON, JOHN K.

THE SPECIALIZEH: A METHOD OF AUTOMATICALLY WRITING COMPUTER PROGRAMS.

= HEURISTICS LAB., DIV. OF COMP. RES. AND TECH., N. I. H., BETHESDA, MD., 1971.

ORELEB-52 DREHEN, B.

ON THE COMPLETENESS OF QUANTIFICATION THEORY. = PROC. NAT'L ACADEMY SCIENCES, 38(1952), 1047-1052.

CREBEB-63 DREBEN, B., AND R. GOLDBERG.

ON THE DECISION PROBLEM OF THE FIRST ORDER PREDICATE CALCULUS: THE CLASSICAL CASES AND SOLVABLE SURANYI SUBCASES. =

IHM RESEARCH REPORT, RC -892, 1963.

DUNHAW, B., R. FRIDSAL, AND G. SWAPD.

A NON-HELRISTIC PROGRAM FOR PROVING ELEMENTARY LOGICAL THEOREMS.

= PROC. OF THE INT'L. CONF. ON INF. PROCESSING.

UNESCC, PARIS, 1959, 282-287.

CUNHAB-61 DUNHAM, B., R. FRIDSHAL, AND J. H. NORTH. EXPLORATORY WATHEMATICS BY MACHINE.

=PROC. SYM. DECISION AND INFORMATION PROCESSES, MACMILLAN, N. Y., 1961.

CUNHAB-62 DUNHAW, 8., AND J. H. NORTH.
THEOREM TESTING BY COMPUTER.
= SYMPOSIUM ON THE MATHEMATICAL THEORY OF MACHINES.
BROOKLY: POLYTECHNIC INSTITUTE, 1962, 172-177.

ELLIORW65 ELLIOTT, R.W.

A MODEL FOR A FACT RETRIEVAL SYSTEM.

= PH.D. THESIS, TNN-42, COMPUTATION CENTER,
UNIV. OF TEXAS, AUSTIN, TEXAS, MAY 1965.

FIKESR-71 FIKES, R. E., AND N. J. NILSSON.
STRIPS: A NEW APPROACH TO THE APPLICATION OF THEOREM
PROVING TO PROBLEM SOLVING. =
PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).

FISHMOH70 FISHMAN, C.H.

THE APPLICATION OF THEOREM-PROVING TECHNIQUES TO GUESTION-ANSWERING SYSTEMS.

= SCHOLARLY PAPER 8, COMPUTER SCIENCE CENTER.

UNIV. OF MARYLAND, COLLEGE PARK, MD., MAY 1970.

FRIEDJ-63 FRIEDMAN, J.

A SEMI-DECISION PROCEDURE FOR THE FUNCTIONAL CALCULUS. =

J. ACM 10, 1(JAN, 1963), 1-24.

FHIED-63A FRIEDMAN, J.

COMPUTER PROGRAM FOR A SOLVABLE CASE OF DECISION PROBLEM. =

J. ACM 10, 1963, 348-357.

FRIEDJ-65 FRIEDMAN, J.

COMPUTER REALIZATION OF A DECISION PROCEDURE IN LOGIC.

= PROC. IFIP CONGRESS, SPARTAN BCOKS, WASHINGTON, D. C.,

1965, 327-328.

GARVETD69 GARVEY, T.D.

USERS GUIDE TO GA 3.5 QUESTION-ANSWERING SYSTEM.

= TECH. NOTE 15, ARTIFICIAL INTELLIGENCE GROUP, STANFORD
RESEARCH INST., MENLO PARK, CALIF., DEC. 1969.

GELERNTER, H., J. R. HANSEN, AND D. W. LOVELAND.

EMPIRICAL EXPLORATIONS OF THE GEOMETRY THEOREM MACHINE. =

PROC. WESTERN J.C.C. 17(1960), 143-147.

GELERH-63 GELERNTER, H.

REALIZATION OF A GEOMETRY-THEOREM-PROVING MACHINE.

IN: FEIGENBAUM, E. A. AND FELDMAN, J., (EDS.). COMPUTERS

AND THOUGHT, MCGRAW-HILL, NEW YORK, 134-152.

GILMOPC59 GILMORE, P.C.

A PROGRAM FOR THE PRODUCTION FROM AXIOMS OF PROOFS FOR THEOREMS DERIVABLE WITHIN THE FIRST ORDER PREDICATE CALCULUS = PROC. OF THE INTIL, CONF. ON INF. PROCESSING.

UNESCO, PARIS, 1959, 265-273.

```
GILMOPC60
             GILMORE, P.C.
                A PROOF METHOD FOR QUANTIFICATION THEORY. =
                     IEM J. RES. DEVELOP. 4 (1960), 28-35.
 GODELK-36
             GCDEL, K.
               UBER DIE LANGE VON BEWEISEN. =
                    ERGEBNISSE EINES MATH. KOLL. , VOL. 7(1936), PP.23-24
GODELK-67
            GODEL K.
                THE COMPLETENESS OF THE AXIOMS OF THE FUNCTIONAL CALCULUS
                OF LOGIC.
               = IN: VAN HEIJENOORT, J. FROM FREGE TO GODEL: A SOURCE BOOK
                    IN MATHEMATICAL LOGIC, HARVARD, 1967, 582-591.
GCDELK-67A GODEL, K.
               ON FORMALLY UNDECTDABLE PROPOSITIONS OF PRINCIPIA
               MATHEMATICA AND RELATED SYSTEMS.
               = IN: VAN HEIJENOORT, J. FROM FREGE TO GODEL: A SOURCE BOOK
                    IN MATHEMATICAL LOGIC, HARVARD, 1967, 592-617.
60LUTJJ69
            GOLOTA, JA. JA.
               NETS OF MARKS AND DEDUCIBILITY IN INTUITIONISTIC
               PROPOSITIONAL CALCULUS.=
                    IN: ZAPISKI NAUCHNYH SEMINAROV LOMI, 16, 28-43, 1969.
GOULDWE66
            GOULD, W. E.
               A MATCHING PROCEDURE FOR OMEGA-CRDER LOGIC.
               = SCI. REP. 4, APPLIED LOGIC CORP., PRINCETON, N. J.,
                    OCTOBER 1966. (AD-646560).
GHEENCC67
            GREEN C. C. AND H. RAPHAEL.
               RESEARCH ON INTELLIGENT QUESTION ANSWERING SYSTEMS.
               = SCIENTIFIC REPORT 1, CONTRACT AF 19(628)-5919, SRI
                    PROJ. 4641, SRI, MENLO PARK, CALIF., (MAY 1967).
GREENCC68
            GREEN, C.C., AND H. RAPHAEL.
               THE USE OF THEOREM PROVING TECHNIQUES
               IN QUESTION ANSWERING SYSTEMS.
               = PROC. - 1968 ACM NATIONAL CONF., BRANDON/SYSTEMS PRESS,
                    PRINCETON, N.J., 1968, 169-181.
GREENCC69
               THE APPLICATION OF THEOREM-PROVING TO QUESTION-ANSWERING
               SYSTEMS.
               = PH.D. THESIS, AI MEMO-96, DEPT. OF COMPUTER SCIENCE,
                    STANFORD UNIV., STANFORD, CALIF., JUNE 1969. (AD-696394)
GREENCC69A GREEN, C. C.
               THEOREM-PROVING BY RESOLUTION AS A BASIS FOR
               QUESTION-ANSWERING SYSTEMS.
              = IN: MELTZER, B. AND U. MICHIE (EDS.). MACHINE
                    INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 183-205. (CR18534)
```

GHEENCC69B GREEN, C.C.

APPLICATION OF THECREM-PROVING TO PROBLEM-SOLVING.

IN: WALKER AND NORTON (ECS.). PROC. INT.L. JOINT CONF. ON
A. I., WASHINGTON, D. C. (MAY 1969), 219-239.

GLANDUNG4 GUARD, J.R.

AUTOMATED LOGIC FOR SEMI-AUTOMATED MATHEMATICS.

= SCI. REP, NO. 1, AFCRL 64-411, AIR FORCE CAMBRIDGE RES.

LAB., CAMBRIDGE, MASS., MARCH 1964.

GUARDJR69 GUARD, J.R., F.C. OGLESHY, J.H. BENNETT, AND L.G. SETTLE.

SEMI-AUTOMATED MATHEMATICS. =

J. ACM 16, 1(JAN. 1969), 49-62.

GUANDURTO GUARD, J. R.

THE AREITRARILY-LARGE ENTITIES IN MAN-MACHINE MATHEMATICS.

IN: MESAROVIC, D. MIHAULG AND R. B. MANERUI (EDS.). FORMAL

SYSTEMS AND NONNUMERICAL PROBLEM SOLVING BY COMPUTERS, 1970.

MART-TP65 HART, T. P.

A USEFUL ALGEBRAIC PROPERTY OF ROBINSON'S UNIFICATION ALGORITHM.

A. I. MENO 91, ARTIFICIAL INTELLIGENCE PROJECT.

M. I. T., CAMBRIDGE, MASS., 1965.

HAYESPJ69 HAYES, P.J.

A MACHINE ORIENTED FORMULATION OF THE EXTENDED FUNCTIONAL CALCULLS.

= AI-MEMO-86, COMPUTER SCIENCE DEPT., STANFORD UNIV., STANFORD, CALIF., 1969. (AD-691788)

HAYESPJ71 HAYES, P. J.

A LOGIC OF ACTIONS.

=IN: MFLTZER, B. AND D. MICHIE (EDS.). MACHINE INTELLIGENCE

6. EDINBURGH U. PRESS, 1971, 495-520.

HENKIL-50 HENKIN, L.

COMPLETENESS IN THE THEORY OF TYPES.=

J. ASSOC. FOR SYMBOLIC LOGIC, 1950.

HENSCLJ68 HENSCHEN, L. J.

SOME NEW RESULTS ON RESOLUTION IN AUTOMATED THEOREM PROVING.

=REPORT NO. 261, MA THESIS, DEPT. COMPUTER SCIENCE, UNIV.

OF ILL., MAY 1968.

HENSCLJ69

HENSCHEN, L. J.

RESOLUTION, MERGING, SET OF SUPPORT AND TAUTOLOGIES.

=FILE NO. 817, DEPT. OF COMPUTER SCIENCE, UNIV. OF ILL.,

DEC. 16, 1969.

HERBRAND, J.

INVESTIGATIONS IN PROOF THEORY.

IN: VAN HEIJENOORT, J. FROM PREGE TO GODEL: A SOURCE BOOK
IN MATHEMATICAL LOGIC, HARVARD UNIV. PRESS, 1967, 525-581.

HEWITC-69 HEWITT, C.

PLANNER: A LANGUAGE FOR PROVING THEOREMS IN ROPOTS.

= IN: WALKER AND NORTON (EDS.). PROC. INT L. JOINT CONF. ON
A. I., WASHINGTON, D. C. (MAY 1969), 295-301.

HEWIT-C71 HEWITT, C.
MATCHLESS A PATTERN DIRECTED LANGUAGE FOR THE THEOREM

```
PROVING FORWALISM PLANNER. = PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).
```

HEWIT-C71A HEWITT, C.

PROCEDURAL EMBEDDING IN PLANNER. =

PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).

HINTIJ-65 HINTIKKA, J.

TOWARDS A THEORY OF INDUCTIVE GENERALIZATION.

=IN: PROC. 1964 INT+L. CONGRESS FOR LOGIC, METHODOLOGY, AND
PHILOSOPHY OF SCIENCE, BAR-HILLEL, Y., (ED.), AMSTERDAM, 1965

#INTKJ-66 HINTIKKA, J., AND HILPINEN, R.

KNOWLEDGE, ACCEPTANCE AND INDUCTIVE LOGIC.

=IN: ASPECTS OF INDUCTIVE LOGIC, HINTIKKA, J., AND P. SUPPES

(EDS), NORTH-HOLLAND PUBL. CO., AMSTERDAM, 1966, 1-20.

HCDES. L.

SOLVING PROBLEMS BY FORMULA MANIFULATION IN LOGIC AND
LINEAR INEQUALITIES.=

PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).

HUNT-EB65 HUNT, E. H., J. MARIN, AND P.J. STORE.
EXPERIMENTS IN INDUCTION.=
ACADEMIC PRESS, NEW YORK, 1966.

KAHR-AS62 KAHR, A. S., E. F. MCORE, AND H. WANG.
ENTSCHEIDUNGS-PROBLEM REDUCED TO THE AEA CASE. =
PROC. NATIONAL ACADEMY SCI, 48(1962), 365-377.

KALLIB-65 KALLICK, H.

THEOREM-PROVING BY COMPUTER, =

IIT RES. INST., CHICAGO, ILL., JAN. 1965. (AD 611 815)

KALLIB-66 KALLICK, H.

THEOREM-PROVING BY COMPUTER. =

IIT RES. INST., CHICAGO, ILL., APRIL 1966. (AD 628 319)

KALLIB-68 KALLICK, E.

PROOF PROCECURES AND DECISION PROCEDURES BASED ON THE RESOLUTION WETHOD.=

Ph.D. NORTHWESTERN UNIV., AUG. 1968.

KALLIU-68A KALLICK, U.

A DECISION PROCEDURE BASED ON THE RESOLUTION METHOD. = PROC. IFIP CONGRESS, 1968.

KANGES-57 KANGER, S.

A NOTE ON GUANTIFICATION AND MODALITIES. = THEORIA 23:1957), 133-134.

KANGES-63 KANGER, S.

A SIMPLIFIED PROOF METHOD FOR ELEMENTARY LOGIC.

IN: EMAFFORT, P., AND D. HIRSCHUERG (EDS.). COMPUTER

PROGRAMMING AND FORMAL SYSTEMS, AMSTERDAM, 1963, 87-94.

KEMENJG53 KEMENY, J. G.

THE USE OF SIMPLICITY IN INDUCTION. = PHIL. REVIEW 62. (1933). 391-408.

KIEBUR-69
KIEBURTZ, R., AND D. LUCKHAM.

COMPATIBILITY OF REFINEMENTS OF THE RESOLUTION PRINCIPLE. =

A. I. GROUP, STANFORD UNIV., STANFORD, CALIF., IN PRESS.

KING-J-69 KING, J.

A PROGRAM VERIFIER. =

PH.D. THESIS, CARNEGIE-MELLON U., PITTSBURGH, PA., 1969.

KING-J-70 KING, J. AND R. W. FLOYD.

AN INTERPRETATION ORIENTED THEOREM PROVER OVER INTEGERS.

IN: SECOND ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING,

NORTHAMPTON, MASS., (MAY 1970), 169-179.

KLINGRE69 KLING, R. E.

THEOREM PROVING BY ANALOGY WITH APPLICATIONS TO RESOLUTION LOGIC.

= PH.D THESIS, STANFORD U., STANFORD CALIF., (IN PREPARATION).

KLINGRE71 KLING, R. E.

A PARADIGM FOR REASONING BY ANALOGY.=

PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).

KCWALR-68 KQWALSKI, R.

THE CASE FOR USING EQUALITY AXIOMS IN AUTOMATIC DEMONSTRATION.

= PAPER PRESENTED AT SYMPOSIUM ON AUTOMATIC DEMONSTRATION, PARIS, FRANCF, DECEMBER 1968.

KOWALR-68A KOWALSKI, R.

AN EXPOSITION OF PARAMODULATION WITH REFINEMENTS. =

U. OF EDINBURGH, EDINBURGH, SCOTLAND, OCTOBER, 1968.

KOWALR-69 KOWALSKI, R. AND P.J. HAYES.

SEMANTIC TREES IN AUTOMATIC THEOREM-PROVING.

IN: MELTZER, B. AND U. MICHIE (EDS.). MACHINE

INTELLIGENCE 4. AM. ELSEVIER, N.Y., 1969, 87-101. (CR 18000)

KCWALR-70 KOWALSKI, R.

SEARCH STRATEGIES FOR THEOREM-PROVING.

IN: MELTZER, R., AND D. MICHIE (EDS.). MACMINE

INTELLIGENCE 5, AM. ELSEVIER, NEW YORK, N.Y., 1970, 181-200.

KOWALR-70A KOWALSKI, R.

STUDIES IN THE COMPLETENESS AND EFFICIENCY OF
THEOREM-PROVING BY RESOLUTION. =
PH.D. THESIS. U. OF ECINBURGH, APRIL, 1970.

KCWALR-70B KOWALSKI, R.

THE CASE FOR USING EQUALITY AXIOMS IN AUTOMATIC DEMONSTRATION.

= SYMP. ON AUTOMATIC DEMONSTRATION, (LECTURE NOTES IN MATHEMATICS, VOL. 125), SPRINGER-VERLAG, N.Y.,1970, 112-127.

KGWALR-70C KOWALSKI, R., AND D. KUEHNER.
LINEAR RESOLUTION WITH SELECTION FUNCTION.

=MEMO 34, METATMEMATICS UNIT, U. OF EDINBURGH,
EDINBURGH, OCT., 1970.

KRIPKS-63 KRIPKE, S.

SEMANTICAL CONSIDERATIONS ON MODAL LOGIC. =

ACTA PHILOSOPHICA FENNICA 16(1963), 83-94.

KMIPKS-63A KRIPKE, S.

SEMANTICAL ANALYSIS OF MODAL LOGIC I.

= ZEITSCHRIFT FUR WATH. LOGIK UND GRUNULAGEN DER MATHEMATIK
9(1963), 67-96.

KUEMNDG71

KUEMNER, D. G.
A NOTE ON THE RELATION BETWEEN RESOLUTION AND MASLOV'S
INVERSE METHOD.

=IN: MELTZER, U. AND D. MICHIE (EDs.), MACHINE INTELLIGENCE
6, EDINBURGH U. PRESS, 1971, 73-76.

KUHNSJI-71 KUHNS, J. L.

QUANTIFICATION IN QUERY SYSTEMS.

= IN: MINKER, J. AND ROSENFELD, S. (EDS.). PROC. OF SYMP.

ON I. S. AND R., U. OF MD., APRIL, 1971, 81-93.

LANDIPJ64 LANDIN, P. J.

THE MECHANICAL EVALUATION OF EXPRESSIONS.=

CCMP. J., VOL. 6, 1964, 308-320.

LEDERJ-67 LEDERRERG, J. AND E. A. FEIGENBAUM.

MECHANIZATION OF INDUCTIVE INFERENCE IN ORGANIC CHEMISTRY.

A. I. MENO NO. 54, STANFORD UNIV., PALO ALTO, CALIF.,

ALG., 1967.

LEE--RC67 LEE, R. C. T.

A COMPLETENESS THEOREM AND A COMPUTER PROGRAM FOR FINDING THEOREMS DERIVABLE FROM GIVEN AXIONS. =
PH.D DISS., U. OF CALIF., PERKELEY, CALIF., 1967.

LEE--RC70 LEE, R. C. T., ANU C. L. CHANG.

SOME PROPERTIES OF FUZZY LOGIC.=
DIV. OF COMP. RES. AND TECH., N. I. H., BETHESDA, MD., 1970.

LEE--RC71 LEE, RICHARD C. T.

FUZZY LOGIC AND THE RESOLUTION PRINCIPLE.=

PROC. 2ND INTIL. JOINT CONF. ON A.I., LONDON, SEPT. 1971.

LOVELDW68 LOVELAND, D.W.

WECHANICAL THEOREM-PROVING BY MCCEL ELIMINATION. =

J. ACM 15, 2(APRIL 1968), 236-251. (CR 15,548)

LCVELDW68A LOVELAND, D. W.

A LINEAR FORMAT FOR RESOLUTION.

= IRIA SYMP, ON AUTOMATIC DEMONSTRATION.

VERSAILLES, FRANCE, DECEMBER 1968.

LCVELDW69 LOVELAND, D.W.

THEOREM-PROVERS COMBINING MODEL ELIMINATION AND RESOLUTION.

= IN: MELTZER, R. AND U. MICHTE (ECS.). MACHINE
INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 73-86. (CR 18,821)

LCVELDW69A LCVELAND, D.W.

A SIMPLIFIED FORMAT FOR THE MODEL ELIMINATION
THEOREM-PROVING PROCEDURE. =
J. ACM 16, 3(JULY 1969), 349-363. (CR 19,586)

LOVELAND, D. W.

SOME LINEAR HERBRAND PROOF PROCEDURES: AN ANALYSIS. =

CARNEGIE-MELLON UNIV., PITTSBURGH, PA., 1971.

LOWENL-67 LOWENHEIM, L.

ON POSSIBILITIES IN THE CALCULUS OF RELATIVES.

= IN: VAN HEIJENOORT, J. FROM FREGE TO GODEL: A SOURCE
BOOK IN MATHEMATICAL LOGIC, HARVARD, 1967, 228-251.

LUCKHD-67 LUCKHAM, D.

THE RESOLUTION PRINCIPLE IN THEOREM-PROVING.

= IN: COLLINS, N.L., AND C. MICHIE (EDS.). MACHINE
INTELLIGENCE 1, AM. ELSEVIER, NEW YORK, N.Y., 1967, 47-61.

LUCKHD-68 LUCKHAM, D.

SOME TREE-PARING STRATEGIES IN THEOREM PROVING.

IN: MICHIE, D. (ED.). MACHINE INTELLIGENCE 3, AMERICAN ELSEVIER, NEW YORK, 1968, 95-112.

LUCKHD-88A LUCKHAM,D.

THE ANCESTRY FILTER METHOD IN AUTOMATIC DEMONSTRATION.

= A. I. PROJECT MEMO, STANFORD UNIV. STANFORD, CALIF.,

DECEMBER 1968.

LUCKHD-69 LUCKHAM, D.

REFINEMENT THEOREMS IN RESOLUTION THEORY.

= A. I. MENO 81, A. I. PROJECT, STANFORD UNIV.,

STANFORD, CALIF., 1969.

LUCKHD-70 LUCKHAM, D., AND N. J. NILSSON.

EXTRACTING INFORMATION FROM RESOLUTION PROOF TREES.

= TECH, NOTE 32, A. I. GROUP, STANFORD RESEARCH INST.,

MENLO PARK, CALIF., 1969.

LUCKHD-70A LUCKHAM, D.

REFINEMENTS IN RESOLUTION THEORY.

= PROC. I.R.I.A. SYMPOSIUM ON AUTOMATIC DEMONSTRATION.

SPRINGER VERLAG, 1970, 163-190.

MANNAZ-68 MANNA, Z.

THE COPRECTNESS OF NON-DETERMINISTIC PROGRAMS.

= AI NEMO-95, DEPT. OF COMP. SCI., STANFORD UNIV.,

STANFORD, CALIF., AUGUST 1968.

PROPERTIES OF PROGRAMS AND THE FIRST-ORDER PREDICATE CALCULUS. =

J. ACM 16, 2(APRIL 1969), 244-255. (CR 19,289)

WANNAZ-69A MANNA, Z.

THE CORRECTNESS OF PROGRAMS.

= J. OF COMPUTER AND SYSTEM SCIENCES, VOL. 3, NO. 2, 1969, 119-127.

MANNA, Z. AND R. J. WALDINGER.

TOWARDS AUTOMATIC PROGRAM SYNTHESIS.

STANFORD ARTIFICIAL INTELLIGENCE PROJECT MEMO AIN-127,
STANFORD U., MENLO PARK, CALIF., (JULY 1970).

WANNAZ-70A MANNA, Z. AND J. MCCARTHY.

PROPERTIES OF PROGRAMS AND PARTIAL FUNCTION LOGIC.

IN: MELTZER B. AND MICHIE D. (EDs.). MACHINE
INTELLIGENCE 5, EDINBURGH U. PRESS, 1970, 27-37.

MANNAZ-70B MANNA, Z. AND A. PNUELI.

FORMALIZATION OF PROPERTIES OF FUNCTIONAL PROGRAMS. =

J. ACM 17, 2(APRIL 1970), 555-569.

MASLOV, S. JU.

AN INVERSE WETHOD OF ESTABLISHING DEDUCIBILITY IN

CLASSICAL PREDICATE CALCULUS.=

IN: DOKL. AKAD. NAUK SSSR, 159, 17-20, 1964.

MASLOSJO6

MASLOV, S. JU.

APPLICATION OF THE INVERSE METHOD OF ESTABLISHING DEDUCIBIL—

ITY TO THE THEORY OF DECIDABLE FRAGMENTS OF CLASSICAL

PREDICATE CALCULUS.=

IN: OCKL. AKAD. NAUK SSSR, 171, 1966, 1282-5 (TRANSLATED).

MASLOSJ67 MASLOV, S. JU.

AN INVERSE METHOD OF ESTABLISHING DEDUCTIBILITY FOR NONPRENEX FORMULAS OF THE PREDICATE CALCULUS.=
IN: DOKL. AKAD. NAUK SSSR, 172, 22-5, 1967 (TRANSLATED).

MASLOSJ68 MASLOV, S. JU.

THE INVERSE METHOD OF ESTABLISHING DEDUCTBILITY FOR LOGICAL CALCULI.=

TRUDY MATEMAT. INST. AN SSSR, 98, (1968), 26-87.

MASLOSJ69 MASLOV, S. JU.

A CONNECTION BETWEEN TACTICS OF THE RESOLUTION AND INVERSE METHODS. =

ZAPISKI NAUCHNYH SEMINAROV LONI, 16, (1969), 137-146.

MASLOSJ71 MASLOV, S. JU.

PROOF-SEARCH STRATEGIES FOR METHODS OF THE RESOLUTION TYPE.

=IN: MELTZER B. AND D. MICHIE (EDS.), MACHINE INTELLIGENCE

6, EDINBURGH U. PRESS, 1971, 77-90.

MCCARJ-63 MCCARTHY, J.

PREDICATE CALCULUS WITH 'UNDEFINED' AS A TRUTH-VALUE.

= MEMO 1: STANFORD A. I. PROJECT, STANFORD UNIV.,

STANFORD CALIF., 1963.

MCCARJ-64 MCCARTHY, J.
A TOUGH NUT FOR PROOF PROCEDURES.

= A. I. MENC, STANFORD A. I. PROJECT, STANFORD UNIV., STANFORD, CALIF., 1964.

MCCARTHY, J.

PROGRAMS WITH COMMON SENSE.

IN: MINSKY, M. (ED.). SEMANTIC INFORMATION PROCESSING.

MIT PRESS, CAMBRIDGE, MASS., 1968, 403-418. (CR 19,225)

MCCARJ-69 MCCARTHY, J., AND P. HAYES.

SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTIFICIAL INTELLIGENCE.

= MEMO 73, STANFORD A. I. PROJECT, STANFORD UNIV., STANFORD, CALIF., 1969.

MELTZB-65 MELTZER, B.
THEOREM PROVING FOR COMPUTERS.
=MEMO 24, METAMATHEMATICS UNIT, U. OF EDINBURGH,
EDINBURGH, 1965.

MELTZER, B.

THEOREM-PROVING FOR COMPUTERS: SOME RESULTS ON RESOLUTION AND RENAMING. =

COMPUTER J. 8, (JAN. 1966), 341-343.

MELTZER, B.

SOME RECENT DEVELOPMENTS IN COMPLETE STRATEGIES FOR THEOREM-PROVING BY COMPUTER.

MEMO 16, METAMATHEMATICS UNIT, U. OF EDINBURGH, ECINBURGH, 1966.

LOGIC AND THE FORMALIZATION OF MATHEMATICS.=
SCIENCE PROGRESS, VOL. 55, OXFORD, 1967, PP. 583-595.

MELTZB-67A MELTZER, H.

MATHEMATICS, LOGIC AND UNDECIDABILITY.

MEMO 9, METAMATHEMATICS UNIT, U. OF EDINBURGH,
EDINBURGH, 1967.

MELTZB-68 MELTZER, P.

SOME NOTES ON RESOLUTION STRATEGIES.

IN: MICHIE, U. (ED.). MACHINE INTELLIGENCE 3,

AMERICAN ELSEVIER, NEW YORK, N.Y., 1968, 71-75.

MELTZB-68A MELTZER, P.

A NEW LOCK AT MATHEMATICS AND ITS MECHANIZATION.

IN: MICHIE, D. (ED.). MACHINE INTELLIGENCE 3,

AMERICAN ELSEVIER, NEW YORK, 1968, 63-70.

MELTZB-69 MELTZER, P.

THE USE OF SYMBOLIC LOGIC IN PROVING MATHEMATICAL THEOREMS
BY MEANS OF A DIGITAL COMPUTER.

=FOUNDATIONS OF MATHEMATICS, J. J. BULLOFF, T. C. HOLYOKE,
S. W. HAHN, (EDS.), SPRINGER-VERLAG, NEW YORK, 1969, 39-45.

MELTZB-70 MELTZER, P.
POWER AMPLIFICATION FOR THEOREM-PROVERS.

= IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE INTELLIGENCE 5. AM. ELSEVIER, NEW YORK, N.Y., 1970, 165-176.

PELTZE-71 MELTZER, B.

PROLEGOMENA TO A THEORY OF EFFICIENCY OF PROOF PROCEDURES.

=IN: FINULER AND MELTZER (EDS.). ARTIFICIAL INTELLIGENCE

AND HEURISTIC PROGRAMMING, ECINBURGH UNIV. PRESS, 1971.

THE LOGIC THEORIST IN LISP.=
INT'L, J. COMPUTER MATH. 2, APRIL 1968, PP. 111-122.

MINKEJ-70 MINKER, J., AND J. SAPLE.
RELATIONAL DATA SYSTEM STUDY.
= FINAL REPORT AUER-1776-TR-1, AUERBACH CORP., PHILADELPHIA,
PA., JULY 1970, (ALSO RADC-TR-70-180). (AD 720-263)

MORRIS, J. B.

E-RESCLUTION: EXTENSION OF RESOLUTION TO INCLUDE THE EQUALITY RELATION

IN: WALKER AND NORTON (EDS.). PROC. INT'L. JOINT CONF. ON A. I., WASHINGTON, D. C. (MAY 1969), 287-294.

NERODA-62 NERODE, A., R. M. SMULLYAN, AND E. W. BETH.
THE FOUNDATIONS OF MATHEMATICS: A STUDY IN THE
PHILOSCPHY OF SCIENCE. =
J. SYMBOLIC LOGIC 27 (1962), 73-75.

NEWELA-56 NEWELL, A., J. C. SHAW, AND H. A. SIMON.

THE LOGIC THEORY MACHINE. =

IRE TRANSACTIONS ON INFO THEORY, 17-2(3), 1956, 61-79.

NEWELL, A., J. SHAW, AND H. SIMON.

EMPIRICAL EXPLORATIONS OF THE LOGIC THEORY MACHINE.

IN: FEIGENBAUM, F., AND J. FELDMAN (EDS.). COMPUTERS

AND THOUGHT, MCGRAW-HILL, N.Y., 1963, 109-133.

NEWELA-65 NEWELL, A. AND G. ERNST.

THE SEARCH FOR GENERALITY.

= PROC. IFIP CONGRESS 1965, VOL. 1, SPARTAN BOOKS.

WASHINGTON, D.C., 1965, 17-24.

NILSSNJ69 NILSSON, N.J.

PREDICATE CALCULUS THEOREM PROVING. =

STANFORD RESEARCH INST.: MENLO PARK, CALIF., 1969.

NILSSNJ69A NILSSON, N.J.

A MOBILE AUTOMATON: AN APPLICATION OF ARTIFICIAL
INTELLIGENCE TECHNIQUES.

= IN: WALKER AND NORTON (EDS.). PROC. INT'L. JOINT CONF. ON
A. I., WASHINGTON, D. C. (MAY 1969), 509-516.

NILSSNJ71 NILSSON, N. J.
PROBLEM-SOLVING METHODS IN ARTIFICIAL INTELLIGENCE. =
MCGRAW-HILL BOOK CO., NEW YORK, 1971.

NCRTOLM69 NORTON, L.M.

ADEPT - A HEURISTIC PROGRAM FOR PROVING THEOREMS OF GROUP THEORY. = PH.D. THESIS, MIT, CAMBRIDGE, MASS., 1969. (CR 18,636)

NORTOLM71 NORTON, LEWIS P.

EXPERIMENTS WITH A HEURISTIC THEOREM-PROVING PROGRAM FOR PREDICATE CALCULUS WITH EQUALITY.

=HEURISTICS LAB., DIV. OF COMP. RES. AND TECH..

N. I. H., BETHESDA, MD., 1971.

CREVKOP65 OREVKOV V. P.

A DECIDABLE FRAGMENT OF CLASSICAL PREDICATE CALCULUS
WITH FUNCTIONAL SYMBOLS.=

II. SYMP. PO KIBERNET. THESES, P. 176 TEILISI, 1965.

OREVKOP68 OREVKOV, V. P.
TWO UNDECIDABLE FRAGMENTS OF CLASSICAL PREDICATE CALCULUS.=
ZAPISKI NAUCHNYH SEMINAROV LOMI, 8, (1968), 202-210.

Owen-RH68

Owen, R. H.

Some experiments with a computer realization of a theorem-proving method.

Dept. of machine intelligence and perception, u. of edinburgh, res. mem. No. Mip-R-43, (Nov. 1968).

PARK-D-70 PARK, D.

FIXPOINT INDUCTION AND PROCES OF PROGRAM PROPERTIES.

= IN: MELTZER, B. AND MICHIE, D. (EDS.). MACHINE
INTELLIGENCE 5, EDINBURGH U. PRESS, 1970, 59-78.

PITRAJ-65 PITRAT, J.

REALIZATION OF A PROGRAM WHICH CHOOSES THE THEOREMS
IT PROVES.
= PROC. IFIP CONGRESS, SPARTAN ROOKS, WASHINGTON, D. C.,
1965, 324-325.

PITRAJ-66 PITRAT, J.

REALISATION DE PROGRAMMES DE DEMONSTRATION DE THEOREMS
UTILISANT DES METHODES HEURISTIQUES. =

PH.D. THESIS, UNIV. OF PARIS, 1966.

PLOTKGD70 PLOTKIN, G. D.

LATTICE THEORETIC PROPERTIES OF SUPSUMPTION.

= MEMO. MIP-R-77, DEPT. OF MACHINE INTELLIGENCE AND
PERCEPTION, UNIV. OF EDINBURGH, JUNE, 1970.

PLOTKGD70A PLOTKIN, G. D.

A NOTE ON INDUCTIVE GENERALISATION.

IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE
INTELLIGENCE 5, EDINBURGH UNIV. PRESS, 1970, 153-163.

PLOTKGO71 PLOTKIN, G.D.

A FURTHER NOTE ON INDUCTIVE GENERALIZATION.

=IN: MELTZER, B. AND D. MICHIE (EDS.), MACHINE INTELLIGENCE

6, EDINBURGH U. PRESS, 1971, 101-126.

PCPPLRJ67 POPPLESTONE . R.J.

BETH-TREE METHODS IN AUTOMATIC THEOREM-PROVING. = IN: MICHIE, D. (ED.). MACHINE INTELLIGENCE 1, AMERICAN ELSEVIER, NEW YORK, N.Y., 1967, 31-46.

POPPLRJ68 POPPLESTONE, R. J.

SOME COMMENTS ON R. M. BURSTALL'S MEMORANDUM MIP-R-45.

= DEPT. OF MACHINE INTELLIGENCE AND PERCEPTION, U. OF
ECINBURGH, RES. MEM. NO. MIP-R-46, (DEC. 1968).

PCPPLRJ70 POPPLESTONE, R. J.

EXPERIMENTS WITH AUTOMATIC INDUCTION.

=IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE
INTELLIGENCE 5, AM. ELSEVIER, N.Y., 1970, 203-206.

PRAWID-60 PRAWITZ, C., H. PRAWITZ, AND N. VOGHERA.

A MECHANICAL PROCE PROCEDURE AND ITS REALIZATION IN AN ELECTRONIC COMPUTER. =

J. ACM 7, 2(APRIL 1960), 102-128

PRAWID-60A PRAWITZ, D.

AN IMPROVED PROOF PROCEDURE. = THECRIA 26 (1960), 102-139.

PRAWID-67 PRAWITZ, C.

COMPLETENESS AND HAUPTSATZ FOR SECOND ORDER LOGIC. =
THEORIA 33(1967), 246-254.

PRAWID-68 PRAWITZ, C.

HAUPTSATZ FCR HIGHER ORDER LOGIC.=

J. OF SYMBOLIC LOGIC, VOL. 33, 1968, 452-457.

PRAWID-69 PRAWITZ, D.

ADVANCES AND PROBLEMS IN MECHANICAL PROOF PROCEDURE.

IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE

INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 59-70.

QUINEWV55 QUINE, W.V.O.

A PROOF PROCEDURE FOR QUANTIFICATION THEORY. =

J. SYMB. LOGIC 20 (1955), 141-149.

GUINLJR68 QUINLAN, J.R., AND E.B. HUNT.

A FORMAL DEDUCTIVE PROBLEM-SOLVING SYSTEM. =

J. ACM 15, 4(OCT. 1968), 625-646.

RAPHAB-64

RAPHAEL, E.

A COMPUTER PROGRAM WHICH 'UNDERSTANDS.'

= AFIPS CONF. PROC., VOL. 26, FJCC, 1964, SPARTAN PRESS,
BALTIMORE, MARYLAND, 1964, 577-589.

RAPHAB-64A RAPHAEL, H.

SIR: A COMPUTER PROGRAM FOR SEMANTIC INFORMATION RETRIEVAL.

= PH.D. THESIS, MATHEMATICS DEPT., MIT,

CAMBRIDGE, MASS., 1964.

RAPHAB-68 RAPHAEL, B.

PROGRAMMING A ROBOT.

= PROC. FOURTH IFIP CONGRESS, NO. HOLLAND PUBL. CO.,

AMSTERCAM, 1968, H135-139.

RAPHAB-69 RAPHAEL, B.

SOME RESULTS ABOUT PROOF BY RESOLUTION. =
SIGART NEWSLETTER, NO. 14 (FEB. 1969), 22-25.

RAPHAB-70 RAPHAEL, E.

THE FRAME PROBLEM IN PROBLEM-SOLVING SYSTEMS.

TECH. NOTE 33, A. I. GROUP, STANFORD RESEARCH INST.,

MENLO PARK, CALIF., JUNE 1970.

RAPHAB-71 RAPHAEL, B.

ROBOT SYSTEMS AND RELATED PROBLEMS.

=IN: FINULER AND MELTZER (EDS.). ARTIFICIAL INTELLIGENCE

AND HEURISTIC PROGRAMMING, EDINBURGH UNIV. PRESS, 1971.

REITER-70 REITER, R.

THE PREDICATE ELIMINATION STRATEGY IN THEORE - PROVING.

IN: SECOND ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING,

NORTHAMPTON, MASS., MAY 1970, 180-183.

REITER-70A REITER, R.

TWO RESULTS ON ORDERING FOR RESOLUTION WITH MERGING AND LINEAR FORMAT.

= T. R., DEPT. OF COMPUTER SCIENCE, UNIV. OF BRITISH CCLUMBIA, VANCOUVER, B. C., CANADA, JULY, 1970.

REYNOUCH REYNOLDS, J. C.

A GENERALIZED RESOLUTION PRINCIPLE BASED UPON CONTEXT-FREE GRAMMARS. =

PROC. IFIP CONGRESS, 1968, APPLICATIONS 3, BOOKLET H, 10-14.

REYNOJC70 REYNOLDS, J. C.

TRANSFORMATIONAL SYSTEMS AND THE ALGEBRAIC STRUCTURE OF ATOMIC FORMULAS.

= IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE INTELLIGENCE 5, EDINBURGH UNIV. PRESS, 1970, 135-152.

PROBINSON, A.

PROVING THEOREMS, AS DONE BY MAN, MACHINE AND LOGICIAN.

= PROCEEDINGS OF 1957 SUMMER SCHOOL IN LOGIC,

CORNELL, ITHACA, N.Y., 1957.

RCBINGA64 ROBINSON, G. A., L. T. WOS, AND D. F. CARSON.

SOME THEOREM-PROVING STRATEGIES AND THEIR IMPLEMENTATIONS. =

AMD TECH. MEMO. NO. 72, ARGCNNE NAT. LABORATORY, 1964.

RCBINGA69 ROBINSON, G. AND L. WOS.

PARAMOPULATION AND THEOREM-PROVING IN FIRST-ORDER THEORIES
WITH EQUALITY.

IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE
INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 135-150. (CR18223)

RCBINGA69A ROBINSON, G. A., AND L. WOS.

COMPLETENESS OF PARAMOUULATION.

= ASS. FOR SYMBOLIC LOGIC, SPRING 1968 MEETING, ABSTRACT IN:

J. SYMBOLIC LOGIC 34 (1969), 159-160.

RCBINJA61 ROBINSON, J.A.

A GENERAL THEOREM-PROVING PROGRAM FOR THE IBM 704. =

ARGONNE NAT. LAB. REPT. 6447, NOVEMPER 1961.

RCBINJA63 ROBINSON, J.A.

A MACHINE-CRIENTED FIRST-ORDER LOGIC. =

J. SYMB. LOGIC 28, (1963), P302, (ABSTRACT).

RCBINJA63A ROBINSON, J.A.
THEOREM-PROVING ON THE COMPUTER. =
J. ACM 10, 2(APRIL 1963), 163-174.

ROBINJA64 ROBINSON, J. A.
ON AUTOMATIC DEDUCTION. =
RICE UNIV. STUDIES 50(1964), 69-89.

ROBINJA65 ROBINSON, J.A.

A MACHINE ORIENTED LOGIC BASED ON THE RESOLUTION PRINCIPLE.=

J. ACM 12, 1(JAN. 1965), 23-41.

RCBINJA65A ROBINSON, J.A.

AUTOMATIC DEDUCTION WITH HYPER-RESOLUTION. =

INT. J. COMPUT. MATH. 1(1965), 227-234.

ROBINJA67 ROBINSON, J.A.

A REVIEW OF AUTOMATIC THEOREM PROVING.

= PROC. OF SYMPOSIA IN APPLIED MATH., VOL XIX,

AM. MATH. SOC., PHOVIDENCE, R.I., 1967, 1-18.

RCBINJA67B ROBINSON, J. A.

HEURISTIC AND COMPLETE PROCESSES IN THE MECHANIZATION
OF THEOREM_PROVING.

= SYSTEMS AND COMPUTER SCIENCE, U. OF TORONTO PRESS
(1967) 116-124.

ROWANJAGE ROBINSON, J.A.

THE GENERALIZED RESOLUTION PRINCIPLE.

IN: MICHIE, D. (ED.). MACHINE INTELLIGENCE 3,

AM. ELSEVIER, NEW YORK, N.Y., 1968, 77-93.

ROBINJA68A ROBINSON, J. A.

NEW DIPECTIONS IN MECHANICAL THEOREM PROVING. = PROC. IFIP CONGRESS, 1968, 206-210.

RCBINJA69 ROBINSON, J.A.

MECHANIZING HIGHER-ORDER LOGIC.

IN: MELTZER, B. AND U. MICHIE (ED5.). MACHINE

INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 151-170. (CR18014)

RCBINJA70 ROBINSON, J.A.

A NOTE ON MECHANIZING HIGHER ORDER LOGIC.

IN: MELTZER, R., AND D. MICHIE (EDS.). MACHINE

INTELLIGENCE 5, AM. ELSEVIFR, NEW YORK, N.Y., 1970, 123-133.

RCBINJA70A ROBINSON, J. A.

AN OVERVIEW OF MECHANICAL THEOREM PROVING.

= IN: R. BANERJI, AND M. MESAROVIC (EDS.). THEORETICAL

APPROACHES TO NON-NUMERICAL PROBLEM SOLVING N.Y. 1970 2-20.

ROBINJA71 ROBINSON, J. A.

COMPUTATIONAL LOGIC: THE UNIFICATION COMPUTATION.

=IN: MELTZER, B. AND D. MICHIE (EDS.), MACHINE INTELLIGENCE

6, EDINBURGH U. PRESS, 1971, 63-72.

RCBINJA71A ROBINSON, J. A.
BUILDING DEDUCTION MACHINES.

=IN: FINULER AND MELTZER (EDS.). ARTIFICIAL INTELLIGENCE
AND HEURISTIC PROGRAMMING, EDINBURGH UNIV. PRESS, 1971.

RCSSEJB52 ROSSER, J. B., AND A. R. TURQUETTE.

MANY-VALUED LOGIC.=

NCRTH-HOLLAND, AMSTERDAM, 1952.

SANDEEJ69 SANDEWALL, E. J.

A PROPERTY-LIST REPRESENTATION FOR CERTAIN FORMULAS IN PREDICATE CALCULUS.

= REPORT NR 18, UPPSALA U. COMPUTER SCIENCES DEPT., UPPSALA, SWEDEN (JAN. 1969).

SCHONM-67 SCHONFINKEL, N.

ON THE BUILDING BLCCKS OF MATHEMATICAL LOGIC.

= IN: VAN HEIJENCORT, J. FROM FREGE TO GODEL: A SOURCE
BCOK IN MATHEMATICAL LOGIC, HARVARD, 1967, 355-366.

SIBERE69 SIBERT, E.E., JR.

A MACHINE-ORIENTED LOGIC INCORPORATING THE EQUALITY RELATION.

IN: MELTZER, B. AND D. MICHIE (EDS.). MACHINE INTELLIGENCE 4, AM. ELSEVIER, N.Y., 1969, 103-133. (CR19054)

SIKLOL-71 SIKLOSSY L., AND V. MARINOV.

HEURISTIC SEARCH VS. EXHAUSTIVE SEARCH.=

PROC. INT'L. JOINT CONF. ON A. I., LONDON, (SEPTEMBER 1971).

SKOLEMT-67 SKOLEM, T.

ON MATHEMATICAL LOGIC.

= IN: VAN HEIJENCORT, J. FROM FREGE TO GODEL: A SOURCE
BOOK IN MATHEMATICAL LOGIC, HARVARD, 1967, 508-524.

SKOLET-67 SKOLEM. T.

LOGICO-COMPINATIONAL INVESTIGATIONS IN THE SATISFIABILITY
OR PROVABILITY OF MATHEMATICAL PROPOSITIONS: A SIMPLIFIED
PROOF OF A THEOREM BY L. LOWENHEIM, GENERALIZ. THEOREM. =
IN: VAN HEIJENOORT, J., FROM FREGE TO GCCEL, 1967, 252-263.

SLAGLJR65 SLAGLE, J.R.

EXPERIMENTS WITH A DEDUCTIVE QUESTION-ANSWERING PROGRAM. = CCMM. ACM 8, 12(DEC. 1965), 792-798.

SLAGLURGSA SLAGLE, J.R.

A PROPOSED PREFERENCE STRATEGY USING SUFFICIENCY-RESOLUTION
FOR ANSWERING QUESTIONS.

= UCRL-14361, LAWRENCE RADIATION LABORATORIES,
BERKELEY, CALIF., 1965.

SLAGLUR65B SLAGLE, J. R.

A MULTIPURPOSE, THEOREM PROVING, HEURISTIC PROGRAM
THAT LEARNS.

= PROC. IFIP CONGRESS, SPARTAN RCOKS, WASHINGTON, D. C.,
1965, 323-324.

SLAGLUR67 SLAGLE, J.R.

AUTOMATIC THEOREM PROVING WITH RENAMABLE AND SEMANTIC RESOLUTION. =

J. ACM 14, 4(CCT. 1967), 687-697.

SLAGLJR68 SLAGLE, J. R. AND P. BURSKY.

EXPERIMENTS WITH A MULTIPURPOSE, THEOREM-PROVING

HEURISTIC PROGRAM. =

J. ACM 15, 1(JAN. 1968), 85-99.

SLAGLURG9 SLAGLE, J. R., C. L. CHANG, AND R. C. T. LEE.

COMPLETENESS THEOREMS FOR SEMANTIC RESOLUTION IN

CONSEQUENCE-FINDING.

IN: WALKER AND NORTON (EDS.). PROC. INT'L. JOINT CONF. ON

A. I., WASHINGTON, D. C. (MAY 1969), 281-286.

SLAGLJR70 SLAGLE, J.R.

INTERPOLATION THEOREMS FOR RESOLUTION IN LOWER PREDICATE
CALCULUS. =
J. ACM 17, 3(JULY 1970), 535-542.

SLAGLUR71A SLAGLE, J. R. AND C. A. KONIVER.

FINDING RESOLUTION PROOFS AND USING DUPLICATE GOALS
IN AND/OR TREES.=

TO APPEAR IN INFORMATION SCIENCE.

SLAGLJR718 SLAGLE, J. R. AND C. FARRELL.

EXPERIMENTS IN AUTOMATIC LEARNING FOR A MULTIPURPOSE HEURISTIC PROGRAM.=

COMM. ACM 14, 12(FE8. 1971), 91-99.

SLAGLURTIC SLAGLE, J. R.

ARTIFICIAL INTELLIGENCE: THE HEURISTIC PROGRAMMING APPROACH. =

MCGRAW-HILL BOOK CO., NEW YORK, 1971.

SMULLEM63 SMULLYAN, R. W.

A UNIFYING PRINCIPLE IN QUANTIFICATION THEORY.

= PROC. OF THE NATIONAL ACADEMY OF SCIENCES, VOL. 49,

1963, 828-832.

TAKAHA-67 TAKAHASHI, MOTO-O.

A PROOF OF CUT-ELIMINATION IN SIMPLE TYPE THEORY.

= TOUR. OF THE MATHEMATICAL SOCIETY OF JAPAN, VOL. 19, 1967,
399-410.

TRAVILGE4 TRAVIS, L.G.

EXPERIMENTS WITH A THEOREM UTILIZING PROGRAM.

= AFIPS CONF. PROC., VOL. 25. 1964 SUCC, SPARTAN BOOKS,

BALTIMORE, MD., 1964, 339-358.

VANDERGJ71 VANDERBRUG, G.J., D.H. FISHMAN, AND J. MINKER.

OUTLINE, BIBLIOGRAPHY, AND KAIC INCEX ON MECHANICAL
THEOREM PROVING AND ITS APPLICATIONS.

= TR-159, COMPUTER SCIENCE CENTER, UNIV. OF MARYLAND,
COLLEGE PARK, MD., JUNE 1971.

VANHEJ-67 VAN HEIJENOORT, J.

FROM FREGE TO GODEL: A SOURCE BOOK IN MATHEMATICAL LOGIC. =
HARVARD UNIV. PRESS, 1967.

WALDINGER, R.J.

CONSTRUCTING PROGRAMS AUTOMATICALLY USING THEOREM PROVING.

= PH.D. THESIS, AFOSR-69-2922TR, COMP. SCIENCE DEPT.,

CARNEGIE-MELLON UNIV., PITTSBURGH, PA., MAY 1969. (AD-697041.)

PROW: A STEP TOWARD AUTOMATIC PROGRAM WRITING.

IN: MALKER AND NORTON (ECS.). PROC. INT'L. JOINT CONF. ON
A. I., WASHINGTON, D. C. (MAY 1969), 241-252.

THE AXIONATIZATION OF ARITHMETIC. = J. SYMBOLIC LOGIC 22, 1957.

TOWARDS MECHANICAL MATHEMATICS. = IPM J. RES. DEVELOP. 4 (1960). 2-22.

PROVING THEOREMS BY PATTERN RECOGNITION, I. = COMM. ACM 3, (1960), 220-234.

PROVING THEOREMS BY PATTERN RECOGNITION, II. = BELL SYSTEM TECH. J. 40 (1961), 1-41.

DOMINGES AND THE AEA CASE OF THE DECISION PROBLEM.

SYMPOSIUM ON MATHEMATICAL THEORY OF MACHINES,

BROOKLYN POLYTECHNIC INSTITUTE, 1962, 23-55.

THE MECHANIZATION OF MATHEMATICAL ARGUMENTS.

IN: PROC. OF SYMPOSIA IN APPL. MATH., VOL. XV,

A. MATH. SOC., PROVIDENCE, R.I., 1963.

MANG-H-63A WANG, H.

MECHANICAL MATHEMATICS AND INFERENTIAL ANALYSIS.

= IN: ERAFFORT, P., AND D. HIRSCHBERG, COMPUTER

PROGRAMMING AND FORMAL SYSTEMS, 1963, NORTH HOLLAND, 1-20.

FORMALIZATION AND AUTOMATIC THEOREM-PROVING. = PROC. OF IFIP CONGRESS 1965, 1, 51-58

MANG-H-65A WANG, H.
GAMES, LOGIC, AND COMPUTERS.=

SCIENTIFIC AMERICAN, (NOV. 1965), 98-107.

WANG-H-67 WANG, H.

REMARKS ON WACHINES, SETS, AND THE DECISION PROBLEM.

= IN: J. CROSSLEY AND M. DUMMET. FORMAL SYSTEMS AND

HECURSIVE FUNCTIONS, NORTH-HOLLAND, 1967, 304-320.

#QODMGH71 WOODMANSEE, G.H.

A DEFINITIONALLY EXTENDIBLE TYPE-LOGIC FOR MECHANICAL THEOREM PROVING.

TR-121, COMPUTER SCIENCE DEPT., UNIV OF WISCONSIN, MACISON, WISC., MARCH 1971.

WOS-LT64 WOS, L, T., G. A. ROBINSON, AND D. F. CARSON.

SOME THEOREM PHOVING STRATEGIES AND THEIR IMPLEMENTATION.

= ARGONNE NAT'L LABORATORY, TECHNICAL MEMO. NO. 72,

ARGONNE, ILLINOIS, 1964.

WOS-LTG4 WOS, L.T., D.F. CARSON, AND G.A. ROBINSON.

THE UNIT PREFERENCE STRATEGY IN THEOREM PROVING. =

PROC. FUCC, THOMPSON BOOK CO., NEW YORK, 1964, 615-621.

WOS--LT65 WOS, L.T., D.F. CARSON, AND G.A. RCBINSON. .

EFFICIENCY AND COMPLETENESS OF THE SET OF SUPPORT STRATEGY
IN THEOREM PROVING. =

J. ACM 12, 4(OCT. 1965), 536-541.

MGS--LT65A MOS, L. T., G. ROBINSON, AND D. F. CARSON
AUTOMATIC GENERATION OF PROOFS IN THE LANGUAGE
OF MATHEMATICS.
= PROC. IFIP CONGRESS, SPARTAN PCOKS, WASHINGTON, D. C.,
1965, 325-326.

WOS-LT67 WOS, L. T., G. ROBINSON, D. CARSON, AND L. SHALLA.

THE CONCEPT OF DEMCDULATION IN THEOREM-PROVING. =

J. ACM 14, 4(OCT. 1967), 698-704.

MOS--LT68 WOS. L. T., AND G. RCRINSON.

PARAMODULATION AND SET OF SUPPORT.

= PROC. IRIA SYMPOSIUM ON AUTOMATIC DEMONSTRATION.

VERSAILLES, FRANCE, GECEMBER 1968.

WOS--LT68A WOS, L. T., AND G. ROPINSON
THE MAXIMAL MODEL THEOREM.

= ABSTRACT, SPKING 1968 MEETING OF ASSOCIATION FOR
SYMBOLIC LOGIC. TO APPEAR IN J. OF SYMBOLIC LOGIC.

YATESR-70 YATES, R., B. RAPHAEL, AND T. HART.
RESOLUTION GRAPHS. =
A. I. JOUR. 1, 4(DEC. 1970), 257-289.

ZAMOVNK69

ZAMOV, N. K., AND V. I. SHARONOV.

ON A CLASS OF STRATEGIES WHICH CAN BE USED TO ESTABLISH

DECIDABLITY BY THE RESOLUTION PRINCIPLE.

=ISSLED, PO KONSTRUKTIVNOYE MATEMATIKYE I MATEMATICHESKOIE

LOGIKYE 3,16(1969),54-64,NAT LEND LIBR BOSTON SPA,YORKSHIRE.

```
****KWIC INDEX****
                  KNOWLEDGE.
                                ACCEPTANCE
                                                   AND INDUCTIVE LOGIC. =
HINTKJ-66
HAYESPJ71
                  A LOGIC OF
                                 ACTIONS
AMARES-68
              EASONING ABOUT
                                 ACTIONS
                                                    EREPRESENTATIONS OF PROPLEMS OF P
NORTOLN69
                                ADEPT
                                                   - A HEURISTIC PROGRAM FOR PROVING THEOREMS OF GROUP THEORY. =
PRANID-69
                                ADVANCES
                                                   AND PROBLEMS IN MECHANICAL PROOF PROCEDURE. =
MANG-H-62
              MINOES AND THE
                                AEA
                                                   CASE OF THE DECISION PROPLEM. =DO
KAHR-4562
              REDUCEC TO THE
                                AEA
                                                   CASE. =ENTSCHEIDUNGS-PROBLEM
              YSTEMS AND THE
REYNOJC70
                                ALGEHRAIC
                                                   STRUCTURE OF ATOMIC FORMULAS. =TRANSFORMATIONAL S
HART-TP65
                                ALGEURAIC
                                                   PROPERTY OF ROBINSON'S UNIFICATION ALGORITHM. =
                    A USEFUL
CHANGCC58
                                ALGEERAIC
                                                   ANALYSIS OF MANY VALUED LOGICS .=
HART-TP65
              FICATION
                                ALGORITHM
                                                    =A USEFUL ALGEBRAIC PROPERTY OF ROBINSON'S UNI
CAHLIJL62
              E DAVIS-PUTNAM
                                ALGORITHM
                                                    =A COMIT PROGRAM FOR TH
CAVYDGV69
                  A COMPUTER
                                ALGORITHM
                                                   FOR ESTABLISHING DEDUCTIBILITY, BASED ON INVERSE METHOD.=
MELTZ8-70
                       POWER
                                AMPLIFICATION
                                                   FOR THEOMEN-PROVERS. =
KLINGRE71
              R REASONING BY
                                ANALOGY
                                                   EA PARADIGM FO
KLINGRE69
              REM PROVING BY
                                ANALOGY
                                                   WITH APPLICATIONS TO RESCLUTION LOGIC. =THEO
MANG-H-63A
              ND INFERENTIAL
                                ANALYSIS
                                                    =MECHANICAL MATHEMATICS A
LOVELUW71
              PROCEDURES: AN
                                ANALYSIS
                                                    =SOME LINEAR HERRRAND PROOF
KRIPKS-63A
                  SEMANTICAL
                                ANALYSIS
                                                   OF MODAL LOGIC I. =
                   ALGEBRAIC
CHANGCC58
                                ANALYSIS
                                                   OF MANY VALUED LOGICS .=
LUCKHD-68A
                         THE
                                ANCESTRY
                                                   FILTER METHOD IN AUTOMATIC DEMONSTRATION. =
SLAGLJR71A
              ALS
                          IN
                                AND/CR
                                                   TREES.=FINDING RESOLUTION PROOFS AND USING DUPLICATE GO
              RS AS GUESTION
CARLIJL69A
                                ANSWERERS
                                                    =THECREM PROVE
SLAGLJR65A
              RESOLUTION FOR
                                ANSWERING
                                                   QUESTIONS. = A PROPOSED PREFERENCE STRATEGY USING SUFFICIENCY-
GREENCC67
              IGENT GUESTION
                                ANSWERING
                                                   SYSTEMS. = RESEARCH ON INTELL
NILSSNJ69A
               AUTOMATON: AN
                                APPLICATION.
                                                   OF ARTIFICIAL INTELLIGENCE TECHNIQUES. = A MOBILE
SREENCC698
                                APPLICATION
                                                   OF THEOREM-PROVING TO PROBLEM-SOLVING. =
FISHNOH70
                                APPLICATION
                                                   OF THEOREM-PROVING TECHNIQUES TO QUESTION-ANSWERING SYSTEMS. =
                         THE
                                                   OF THE INVERSE METHOD OF ESTABLISHING DEDUCTBIL-ITY TO THE THEORY OF DECIDABLE
MASLUSJ66
                                APPLICATION
                                                   OF THEOREM-PROVING TO QUESTION-ANSWERING SYSTEMS. =
GREENCC69
                                APPLICATION
FIKESH-71
              PPROACH TO THE
                                APPLICATION
                                                   OF THEOREM PROVING TO PROBLEM SCLVING. =STRIPS: A NEW A
              & LCGIC. AND
BURSTRM70
                                APPLICATION
                                                   TO PLANNING FOR ROBOTS. =FORMALISTING SEMANTICS OF FIRST ORDER LOGIC IN FIRST O
VANDERGJ71
              ROVING AND ITS
                                APPLICATIONS
                                                    =OUTLINE, BIBLIOGRAPHY, AND KWIC INDEX ON MECHANICAL THEOREM P
KLINGRE69
              Y PNALCGY WITH
                                APPLICATIONS
                                                   TO RESCLUTION LOGIC. =THFOREM PROVING B
SLAGLJR71_
              P- NG
                                APPROACH
                                                    =ARTIFICIAL INTELLIGENCE: THE HEURISTIC PROGRA
                                                   TO THE APPLICATION OF THEOREM PROVING TO PROBLEM SOLVING. =
FIKESR-71
               STRIPS: A NEW
                                APPROACH
                                                   TO HEURISTIC PROBLEM SOLVING AND THEOREM-PROVING IN PROPOSITIONAL CALCULUS. =
AMARES-67
                                APPRUACH
                          AN
ANARES-62
                          AN
                                APPROACH
                                                   TO PROPLEM-SOLVING BY COMPUTER. =
GUARUJA70
                         THE
                                ARHITRARILY-LARGE ENTITIES IN MAN-MACHINE MATHEMATICS. =
              F MATHEMATICAL
MANG-H-63
                                ARGUMENTS
                                                    =THE MECHANIZATION O
CARLIJL65
              ROVING LOGICAL
                                ARGUMENTS
                                                   EXPRESSED IN ENGLISH. = MACHINE METHODS FOR P
MANG-H-57
              OMATIZATION OF
                                ARITHMETIC
                                                    =THE AXI
NILSSNJ71
              ING WETHODS IN
                                ARTIFICIAL
                                                   INTELLIGENCE. =PROBLEM-SOLV
SLAGLJH71C
                                ARTIFICIAL
                                                   INTELLIGENCE: THE HEURISTIC PROGRAMMING APPROACH. =
NILSSNJ69A
              APPLICATION OF
                                ARTIFICIAL
                                                    INTELLIGENCE TECHNIQUES. = A MOBILE AUTOMATON: AN
NCCARJ-69
              NT CF
                                ARTIFICIAL
                                                   INTELLIGENCE. = SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOI
REYNOJC70
              RUCTURE OF
                                ATOMIC
                                                   FORMULAS. =TRANSFORMATIONAL SYSTEMS AND THE ALGEBRAIC ST
                                AUTOMATED
GUARDUR64
                                                   LOGIC FOR SEMI-AUTOMATED MATHEMATICS. =
               RESOLUTION IN
HENSCLJ68
                                AUTOMATED
                                                   THEOREM PROVING .= SOME NEW RESULTS ON
ROUINJA65A
                                                   DEDUCTION WITH HYPER-RESCLUTION. =
                                AUTOMATIC
                                AUTOMATIC
SLAGLJR67
                                                   THEOREM PROVING WITH RENAMABLE AND SEMANTIC RESOLUTION. =
ROBINJA67
                 A REVIEW OF
                                AUTOMATIC
                                                   THEOREM PROVING. =
ROBINJA64
                                AUTOMATIC
                                                   DEDUCTION. =
POPPLRJ67
              REE METHODS IN
                                AUTOMATIC
                                                   THEOREM-PROVING. =BETH-T
FOPPLRJ70
              PERIMENTS WITH
                                AUTOMATIC
                                                   INDUCTION. =EX
```

LEARNING FOR A MULTIPURPOSE HEURISTIC PROGRAM.=EXPERI

SLAGLJR71B

EXPERIMENTS IN

AUTOMATIC

```
MANG-H-65
              MALIZATION AND
                                 AUTOMATIC
                                                   THEOREM-PROVING. =FCR
WALDIRJ69A
               A STEP TOWARD
                                 AUTOMATIC
                                                   PROGRAM WRITING. =PROW:
WOS--L165A
                                 AUTOMATIC
                                                   GENERATION OF PROOFS IN THE LANGUAGE OF MATHEMATICS. =
                                                    DEMONSTRATION. =THE CASE FOR USING EQUA
KOWALR-68
              LITY AXICMS IN
                                 AUTOMATIC
MANNAZ-70
                     TOWARDS
                                 AUTOMATIC
                                                   PRUGRAM SYNTHESIS. =
LUCKHD-68A
              LTER METHOD IN
                                 AUTOMATIC
                                                   DEMONSTRATION. =THE ANCESTRY FI
                                                    DEMONSTRATION. =THE CASE FOR USING FOUN
KOWALR-708
              LITY AXIOMS IN
                                 AUTOMATIC
KOWALR-69
              ANTIC TREES IN
                                 AUTOMATIC
                                                   THEOREM-PROVING. =SEM
                                                   THEOREM PROVING WITH EQUALITY SUBSTITUTIONS AND MATHEMATICAL INDUCTION. =
CARLIJL68A
                                 AUTOMATIC
                                                   THEOREM-PROVING WITH EQUALITY. =PENAMABLE PARA
CHANGCL 70B
              MODULATION FOR
                                AUTOMATIC
                                                   THEOREM PROVING .= SPLITTING AND RECUCTION
               HEURISTICS IN
                                 AUTOMATIC
ELEDSWW71
                                 AUTOMATICALLY
WALCIRJ69
              CTING PROGRAMS
                                                   USING THEOREM PROVING. = CONSTRU
DIXONJK71
              R: A METHOD OF
                                 AUTOMATICALLY
                                                   WRITING COMPUTER PROGRAMS. = THE SPECIALIZE
                    A MOBILE
                                                    AN APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES. =
NILSSNJ69A
                                 AUTOMATON
                                                   OF APITHMETIC. =
WANG-H-57
                         THE
                                AXIOMATIZATION
              BLE FROM GIVEN
                                                    =A COMPLETENESS THEOREM AND A COMPUTER PROGRAM FOR FINDING THEOREMS DERIVA
LEE--RC67
                                 AXIOMS
                                                   OF PROOFS FOR THEOREMS DERIVABLE WITHIN THE FIRST ORDER PREDICATE CALCULUS =A
GILMOPC59
              RODUCTION FROM
                                 AXIOMS
KOWALR-708
                                AXIOMS
                                                   IN AUTOMATIC DEMONSTRATION. = THE CASE FOR
              USING EQUALITY
                                                    =AN IMPROVED METHOD FOR SOLVING DEDUCTIVE PROBLEMS ON A COMPUT
CIXONJK70
              ER BY COMPILED
                                 AXIOMS
GOUELK-67
              ETENESS OF THE
                                                   OF THE FUNCTIONAL CALCULUS OF LOGIC. =THE COMPL
                                 AXIOMS
                                                   IN AUTOMATIC DEMONSTRATION. =THE CASE FOR
KOWALK-68
              USING EQUALITY
                                 AXIONS
POPPLRJ67
                                PETH-TREF
                                                   METHORS IN AUTOMATIC THEOREM-PROVING. =
GOUELK-36
               DIE LANGE VON
                                PEWEISEN.
                                                    AND KWIC INDEX ON MECHANICAL THEOREM PROVING AND ITS APPLICATIONS. =
VANCERGJ71
                                BIBLIOGRAPHY
                    CUTLINE,
CANTERG69
              BASED UPON
                                BINARY
                                                   SEMANTIC TREES. = EFFICIENT MAXIMAL SEMANTIC RESOLUTION PROOFS
SCHONM-67
                                                   OF MATHEMATICAL LOGIC. =0
              N THE BUILDING
                                PLOCKS
                                BUILDING
                                                   BLOCKS OF MATHEMATICAL LOGIC. =
SCHONM-67
                      ON THE
HOUINJA71A
                                 RUILDING
                                                   DEDUCTION MACHINES. =
                                                   MEMORANDUM MIP-R-45. =SOME COM
POPPLRJ68
              MENTS CN R. M.
                                BURSTALL .S
                                                   THE INVERSE METHOD OF ESTABLISHING DEDUCIPILI
                                CALCULI
MASLOSJ68
              TY FOR LOGICAL
CHURCA-41
                          THE
                                CALCULI
                                                   OF LAMEDA-CONVERSION. =
                                                    =A PROPERTY-LIST REPRESENTATION FOR CERTAIN FORMULAS IN
SANDEEJ69
                   PREDICATE
                                CALCULUS
              ICAL PREDICATE
                                CALCULUS
                                                   TWO UNDECIDABLE FRAGMENTS OF CLASS
CREVKVP68
                                                   WITH EQUALITY. = EXPEPIMENTS WITH A HEURISTIC THEOREM-PROVING PROGRAM FO
                   PREDICATE
                                CALCULUS
NORTOLM71
CREVKVP65
              ICAL PREDICATE
                                CALCULUS
                                                    WITH FUNCTIONAL SYMBOLS. = A DECIDABLE FRAGMENT OF CLASS
                                                   " =INTERPOLATION THEOPENS FOR RESCLUTION IN LOWE
              R PREDICATE
                                CALCULUS
SLAGLJR70
                                                   =AN INVERSE METHOD OF ESTABLISHING DEDUCTBILILY IN CLASS
MASLOSJ64
              ICAL PREDICATE
                                CALCULUS
GILMOPC59
              RDER PREDICATE
                                CALCULUS
                                                   =A PROGRAM FOR THE PRODUCTION FROM AXIOMS OF PROOFS FOR THEOREMS DERIVABLE WIT
FRIEDJ-63
              THE FUNCTIONAL
                                CALCULUS
                                                    =A SEMI-DECISION PROCEDURE FOR
MASLOSJ67
               THE PREDICATE
                                CALCULUS
                                                   EAN INVERSE METHOD OF ESTABLISHING DEDUCTIBILITY FOR NONPRENEX FORMULAS OF
GOLOTJJ69
               PROPOSITIONAL
                                CALCULUS
                                                   ENETS OF MARKS AND DEDUCTBILITY IN INTUITIONISTIC
GODELK-67
              THE FUNCTIONAL
                                CALCULUS
                                                    OF LOGIC. THE COMPLETENESS OF THE AXIOMS OF
HAYESPJ69
                                CALCULUS
                                                    =A MACHINE ORIENTED FORMULATION OF THE EXTENDE
              D FUNCTIONAL
                                                   THEOREM PROVING. =
NILSSNJ69
                                CALCULUS
                   PREDICATE
                                                   WITH 'UNUEFINED' AS ' TRUTH-VALUE. =
MCCARJ-63
                   PREDICATE
                                CALCULUS
                                                    SPROPERTIES OF PROGRAMS AND THE FIRST-OPDER
WANNAZ-69
                   PREUICATE
                                CALCULUS
                                                    THE CLASSICAL CASES AND SOLVARLE SURANYI SUBCASES. SON THE DECISION PROBLEM O
CHEBEB-63
              EDICATE
                                CALCULUS
                                                   EAPPLICATION OF THE INVERSE WETHOR OF ESTABLISHING DEDUCTBIL-ITY TO THE THEORY
MASLOSJ66
                   PREDICATE
                                CALCULUS
              ILITIES IN THE
                                CALCULUS
                                                   OF RELATIVES. = ON POSSIB
LOWENL-67
                                                   =AN INTERACTIVE SYSTEM FOR PROVING THEOREMS IN
COHENJ-70
               THE PPEUICATE
                                CALCULUS
                                                    THE REDUCED MODEL FOR SATISFIABILITY FOR TWO DECIDABLE CLASSES OF FORMULAE I
               THE PREDICATE
                                CALCULUS
BACKEP-63
                                                    =A PROOF METHOD FOR THE CLASS
CAVYDGV67
              ICAL PREDICATE
                                CALCULUS
AMARES-67
                                CALCULUS
                                                    =AN APPROACH TO HEURISTIC PROFILEM SOLVING AND THEOREM-PROVING IN
               PROPOSITIONAL
                                                   AND SOLVABLE SURANYI SUBCASES. SON THE DECISION PROBLEM OF THE FIRST ORDER PRE
CRESEB-63
               THE CLASSICAL
                                CASES
                                                   OF THE DECISION PROBLEM. =
ACKERW-54
                    SOLVABLE
                                CASES
                                CHEMISTRY
                                                    =MECHANIZATION OF INDUCTIVE INFERE
LEUERJ-67
              NCE IN ORGANIC
                                                   THE THEOREMS IT PROVES, = REALIZATION OF A
PITRAJ-65
               PROGRAM WHICH
                                CHOOSES
```

```
ZAPOVNK69
                        ON A
                                CLASS
                                                   OF STRATEGIES WHICH CAN BE USED TO ESTABLISH DECIDABILITY BY THE RESOLUTION BR
DIPAORA69
              EM FOR
                         THE
                                CLASS
                                                   OF DEFINITE FORMULAS. THE RECURSIVE UNSOLVABILITY OF THE DECISION PROBL
              DECIDABLE
BACKEP-63
                                 CLASSES
                                                   OF FORMULAE IN THE PREDICATE CALCULUS. = THE REDUCED MODEL FOR SATISFIABILITY F
CIPAORA71
              BLEM FCR
                                 CLASSES
                                                   OF PROPER FORMULAS. THE RELATIONAL DATA FILE AND THE DECISION PRO
CREVKYP65
              LE FRAGMENT OF
                                CLASSICAL
                                                   PREDICATE CALCULUS WITH FUNCTIONAL SYMBOLS .= A DECIDAB
CREVK VP68
              E FRAGMENTS OF
                                CLASSICAL
                                                   PREDICATE CALCULUS.=TWO UNDECIDARL
               CALCULUS: THE
CHEBEB-63
                                CLASSICAL
                                                   CASES AND SOLVABLE SURANYI SUBCASES. =ON THE DECISION PROBLEM OF THE FIRST ORD
WASLOSJ66
              E FRAGMENTS OF
                                CLASSICAL
                                                    PREDICATE CALCULUS. = APPLICATION OF THE INVERSE METHOD OF ESTABLISHING DEDUCIB
MASLOSJ64
                                                   PREDICATE CALCULUS. = AN INVERSE METHOD OF ESTABLISHING DEDUCIBILIL
              Y IN
                                CLASSICAL
CAVYDGV67
              METHOD FOR THE
                                CLASSICAL
                                                   PREDICATE CALCULUS. =A PROOF
                                CLAUSES
BURSTRM68
              AND RETRIEVING
                                                   FOR A RESOLUTION THEOREM-PROVER, =A SCHEME FOR INDEXING
LOVELD#69
              HEOREM-PHOVERS
                                COMBINING
                                                   MODEL ELIMINATION AND RESOLUTION. =T
CARLIJL62
                                COMIT
                                                   PROGRAM FOR THE DAVIS-PUTNAM ALGORITHM. =
POPPLRJ68
                        SOME
                                COMMENTS
                                                   ON R. M. BURSTALL'S MEMORANDUM MIP-R-45. =
               PROGRAMS WITH
MCCARJ-68
                                COMMON
KIEBUR-69
                                COMPATIBILITY
                                                   OF REFINEMENTS OF THE RESOLUTION PRINCIPLE. =
DIXONJK70
                 COMPUTER BY
                                COMPILED
                                                   AXIOMS. =AN IMPROVED METHOD FOR SOLVING DEDUCTIVE PROBLEMS ON A
ROBINJA678
               HEURISTIC AND
                                COMPLETE
                                                   PROCESSES IN THE MECHANIZATION OF THEOREM-PROVING. =
PELTZB-66A
              VELOPMENTS IN
                                COMPLETE
                                                   STRATEGIES FOR THEOREM-PROVING BY COMPUTER. - SOME RECENT DE
PRAWIU-67
                                COMPLETENESS
                                                   AND HAUPTSATZ FOR SECOND ORDER LOGIC. =
SLAGLJR69
                                COMPLETENESS
                                                   THEOREMS FOR SEMANTIC RESOLUTION IN CONSEQUENCE-FINDING. =
MOS--LT65
              FFICIENCY AND
                                COMPLETENESS
                                                   OF THE SET OF SUPPORT STRATEGY IN THEOREM PROVING. =E
ROBINGA69A
                                COMPLETENESS
                                                   OF PARAMODULATION. =
KONALR-70A
              STUDIES IN THE
                                                   AND EFFICIENCY OF THEOREM-PROVING BY RESOLUTION. =STUDIE
                                COMPLETENESS
LEE--RC67
                                                   THEOREM AND A COMPUTER PROGRAM FOR FINDING THEOREMS DERIVABLE FROM GIVEN AXIOM
                                COMPLETENESS
GOUELK-67
                         THE
                                COMPLETENESS
                                                   OF THE AXIOMS OF THE FUNCTIONAL CALCULUS OF LOGIC. =
HENKIL-50
                                COMPLETENESS
                                                   IN THE THEORY OF TYPES .=
CREBEB-52
                      ON THE
                                COMPLETENESS
                                                   OF QUANTIFICATION THEORY. =
                                                   RESULTS FOR E-RESOLUTION. =
ANUERR-70
                                 COMPLETENESS
ANDERR-70A
              R ESTABLISHING
                                                    =A LINEAR FORMAT FOR RESOLUTION WITH MERGING AND A NEW TECHNIQUE FO
                                COMPLETENESS
CHANGCL71
                                 COMPLETENESS
                                                   OF LINEAR REFUTATION FOR THEORIES WITH EQUALITY .=
                                                   OF THEOREM-PROVING PROCEDURES. =
COOK-SA71
                                COMPLEXITY
HOBINJA71
              HE UNIFICATION
                                COMPUTATION
                                                    =COMPUTATIONAL LOGIC: T
HOBINJA71
                                COMPUTATIONAL
                                                   LOGIC: THE UNIFICATION COMPUTATION. =
MOS--LT67
                         THE
                                CONCEPT
                                                   OF DEMODULATION IN THEOREM-PROVING. =
                OBSERVATIONS
BETH-EW63
                                CONCERNING
                                                   COMPUTING, DEDUCTION AND HEURISTICS .=
                                                   BETWEEN TACTICS OF THE RESOLUTION AND INVERSE METHODS. =
MASLOSJ69
                                CONNECTION
SLAGLJR69
              N IN
                                CONSEQUENCE-FINDING. = COMPLETENESS THEOREMS FOR SEMANTIC RESCLUTIO
KRIPKS-63
                  SEMANTICAL
                                CONSIDERATIONS
                                                   ON MODAL LOGIC. =
MALCIRJ69
                                CONSTRUCTING
                                                   PROGRAMS AUTOMATICALLY USING THECREM PROVING. =
REYNOJC68
              PLE BASEU LPON
                                CONTEXT-FREE
                                                    GRAMMARS. =A GENERALIZED RESOLUTION PRINCI
MANNAZ-69A
                         THE
                                CORRECTNESS
                                                   OF PROGRAMS. =
                         THE
MANNAZ-68
                                COPRECTNESS
                                                   OF NON-DETERMINISTIC PROGRAMS. =
              ESOLUTION WITH
BROWNTC68
                                COVERING
                                                   STRATEGIES AND EQUALITY THEORY. =R
BENNEJH67
                                                   SEMI-AUTOMATED MATHEMATICS. =
                                CRT-AIDED
TAKAHM-67
                  A PROOF OF
                                CUT-ELIMINATION
                                                   IN SIMPLE TYPE THEORY. =
              ROGRAM FOR THE
CARLIJL62
                                CAVIS-PUTNAM
                                                   ALGORITHM. =A COMIT P
                                                   BY THE RESOLUTION PRINCIPLE. =ON A CLASS OF STRATEGIES WHICH CAN BE USED TO
ZAMOVNK69
               ESTABL ISH
                                DECIDABILITY
CREVKVP65
                                DECIDABLE
                                                   FRAGMENT OF CLASSICAL PREDICATE CALCULUS WITH FUNCTIONAL SYMBOLS.=
MASLOSJ66
               THE THEORY OF
                                DECIDABLE
                                                   FRAGMENTS OF CLASSICAL PREDICATE CALCULUS.=APPLICATION OF THE INVERSE METHOD O
BACKEP-63
              BILITY FOR THO
                                CECTUABLE
                                                    CLASSES OF FORMULAE IN THE PREDICATE CALCULUS. =THE REDUCED MODEL FOR SATISFI
               SETS, AND THE
MANG-H-67
                                DECISION
                                                   PROBLEM. = REMARKS ON MACHINES.
MANG-H-62
              EA CASE OF THE
                                DECISION
                                                   PROBLEM. = DOMINOES AND THE A
FRIEDJ-65
              ALIZATION OF A
                                DECISION
                                                   PROCECURE IN LOGIC. =COMPUTER RE
              LVABLE CASE OF
FRIEDJ-63A
                                CECISION
                                                   PROBLEM. = COMPUTER PROGRAM FOR A 50
KALLIB-68
              PROCEDURES AND
                                DECISION
                                                   PROCEDURES BASED ON THE RESOLUTION METHOD.=PROOF
KALLIB-68A
                                DECISION
                                                   PROCEDURE BASED ON THE RESOLUTION METHOD. =
```

```
ACKERW-54
              E CASES OF THE
                                 CECISION
                                                   PROBLEM. =SOLVABL
CIPAORA69
              ABILITY OF THE
                                 DECISION
                                                   PROBLEM FOR THE CLASS OF DEFINITE FORMULAS. = THE RECURSIVE UNSOLV
CIPAORA71
              A FILE AND THE
                                 DECISION
                                                   PROBLEM FOR CLASSES OF PROPER FORMULAS. = THE RELATIONAL DAT
CREBER-63
                      ON THE
                                 CECISION
                                                   PROBLEM OF THE FIRST ORDER PREDICATE CALCULUS: THE CLASSICAL CASES AND SOLVABL
              F ESTAPLISHING
                                                   IN CLASSICAL PREDICATE CALCULUS .= AN INVERSE METHOD O
MASLOSJ64
                                 DEDUCIBLI ILY
              F ESTABLISHING
                                                   FOR LOGICAL CALCULI .= THE INVERSE METHOD O
WASLOSJ68
                                 DEDUCIBILITY
GCLOTJJ69
              S OF MARKS AND
                                CEDUCIBILITY
                                                   IN INTUITIONISTIC PROPOSITIONAL CALCULUS. = NET
                                                   TO THE THEORY OF DECIDABLE FRAGMENTS OF CLASSICAL PREDICATE CALCULUS. = APPLICAT
MASLUSJ66
              F ESTAPLISHING
                                 DEDUCIBIL -ITY
              F ESTABLISHING
                                                   FOR NONPRENEX FORMULAS OF THE PREDICATE CALCULUS .= AN INVERSE METHOU O
WASLOSJ67
                                 DEDUCTIBILITY
CAVYDGV69
              R ESTAPLISHING
                                 DEDUCTIBILITY
                                                    BASED ON INVERSE METHOD .= A COMPUTER ALGORITHM FO
HOBINJA64
                ON AUTOMATIC
                                DEDUCTION
                                                   WITH HYPER-RESOLUTION. =
ROBINJA65A
                   AUTOMATIC
                                 DEDUCTION
ROBINJA71A
                    BUILDING
                                DEDUCTION
                                                   MACHINES. =
BETH-EN63
              ING COMPUTING.
                                CEDUCTION
                                                   AND HEURISTICS .= ORSERVATIONS CONCERN
BING-K-69
                     NATURAL
                                DEUUCTION
                                                   WITH FEW RESTRICTIONS ON VARIABLES. =
GUINLJR68
                    A FORMAL
                                CEDUCTIVE
                                                   PROBLEM-SOLVING SYSTEM. =
SLAGLJR65
                                DEDUCTIVE
              RIMENTS WITH A
                                                   QUESTION-ANSWERING PROGRAM. =EXPE
BLACKF-64
                                CEDUCTIVE
                                                   QUESTION-ANSWERING SYSTEM. =
CIXONJK70
              OD FOR SOLVING
                                                   PROBLEMS ON A COMPUTER BY COMPILED AXIOMS. = AN IMPROVED METH
                                DEDUCTIVE
COOPEWS64
               RETRIEVAL AND
                                DEDUCTIVE
                                                   QUESTION-ANSWERING INFORMATION RETRIEVAL SYSTEMS. =FACT
CIPAORA69
                                                   FORMULAS. = THE RECURSIVE UNSOLVAPILITY OF THE DECISION PROBLEM FOR
                THE CLASS OF
                                CEFINITE
WOODMGH71
                                DEFINITIONALLY
                                                   EXTENCIBLE TYPE-LOGIC FOR MECHANICAL THEOREM PROVING. =
#05--LT67
              THE CONCEPT OF
                                DEMOCULATION
                                                   IN THECREM-PROVING. =THE CO
               PROGRAMMES DE
                                                   DE THEOREMS UTILISANT DES METHODES HEURISTIQUES. EMEALISATION DE
PITRAJ-66
                                DEMONSTRATION
LUCKHD-68A
              D IN AUTOMATIC
                                                    =THE ANCESTRY FILTER METHO
                                DEMONSTRATION
KOWALR-68
              IC
                                DEMONSTRATION
                                                    THE CASE FOR USING EQUALITY AXTOMS IN AUTOMAT
KOWALR-70B
              IC
                                REMONSTRATION
                                                    =THE CASE FOR USING EQUALITY AXIONS IN AUTOMAT
                    THEOREMS
                                                   FROM GIVEN AXIONS. =A COMPLETENESS THEOREM AND A COMPUTER PROGRAM FOR FIND
LEE--RC67
                                DERIVABLE
                                                   WITHIN THE FIRST ORDER PREDICATE CALCULUS =A PROGRAM FOR THE PRODUCTION FROM A
GILMOPC59
                    THEOREMS
                                CEPIVABLE
                                                   OF PROGRAM STRUCTURE AND SEMANTICS IN FIRST-ORDER LOGIC. =
BURSTRM70A
                      FORMAL
                                DESCRIPTION
                                                   IN COMPLETE STRATEGIES FOR THEOREM-PROVING BY COMPUTER. =
MELTZ8-66A
                 SOME RECENT
                                 DEVELOPMENTS
                                                   COMPLITER. = THE USE OF SYMBOLIC LOGIC IN PROVING MATHEMATICAL THEOREMS
MELTZB-69
               BY MEANS OF A
                                 DIGITAL
HEWIT-C71
              LESS A PATTERN
                                DIPECTED
                                                   LANGUAGE FOR THE THEOREM PROVING FORMALISM PLANNER. =MATCH
                                                    IN MECHANICAL THEOREM PROVING. =
ROBINJA68A
                         NEW
                                DIRECTIONS
                                                   AND THE AEA CASE OF THE DECISION PROPLEM. =
WANG-H-62
                                 COMINOES
SLAGLJR71A
              DOFS AND USING
                                DUPLICATE
                                                   GOALS IN AND/OR TREES .= FINDING RESOLUTION PR
WOS--L165
                                FFFICIENCY
                                                   AND COMPLETENESS OF THE SET OF SUPPORT STRATEGY IN THEOREM PROVING. =
WELTZ8-71
              TO A THEORY OF
                                EFFICIENCY
                                                   OF PROCE PROCEDURES. =PROLEGOMENA
KOWALK-70A
              MPLETENESS AND
                                EFFICIENCY
                                                   OF THEOREM-PROVING BY RESOLUTION. =STUDIES IN THE CO
CANTRRG69
                                                   MAXIMAL SEMANTIC RESOLUTION PROOFS BASED UPON BINARY SEMANTIC TREES. =
                                EFFICIENT
PHANID-60
              ION IN AN
                                ELECTRONIC
                                                   COMPUTER. =A MECHANICAL PROOF PROCEDURE AND ITS REALIZAT
              OOF METHOU FOR
KANGES-63
                                ELEMENTARY
                                                   LOGIC. =A SIMPLIFIED PR
              BLE PROBLEM OF
CHURCA-65
                                ELEMENTARY
                                                   NUMBER THECRY. = AN UNSOLVA
CLAHAB-59
              AM FOR PROVING
                                ELEMENTARY
                                                   LOGICAL THEOREMS. =A NON-HEURISTIC PROGR
CAVISM-63
                                                   THE IRRELEVANT FROM MECHANICAL PROOFS. =
                                ELIMINATING
REITER-70
               THE PREDICATE
                                ELIMINATION
                                                   STRATEGY IN THEOREM-PROVING. 2
LOVELDW68
              DVING BY MODEL
                                ELIMINATION
                                                    =MECHANICAL THEOREM-PR
                                                    THEOREM-FROVING PROCEDURE. =A SIMPLIFIED FORMAT
LOVELDW69A
               FOR THE MCDEL
                                ELIMINATION
LOVELUW69
              OMBINING MODEL
                                                   AND RESOLUTION. =THEOREM-PROVERS C
                                ELIMINATION
HEWIT-C71A
                  PROCEDURAL
                                 EMPEUDING
                                                   IN PLANNER. =
                                                   EXPLORATIONS OF THE LOGIC THEORY MACHINE. =
NEWELA-63
                                 EMPIRICAL
GELERH-60
                                 EMPIRICAL
                                                   EXPLORATIONS OF THE GEONFTRY THEOREM MACHINE. =
CARLIJL65
                                                    =MACHINE METHODS FOR PROVING LOGICAL ARGUMENTS EX
              PRESSED
                          IN
                                 ENGLISH
                                                   IN MAN-MACHINE MATHEMATICS. =THE ARB
GUARDJR70
              ITRARILY-LARGE
                                 ENTITIES
                A NOTE ON THE
CHURCA-36
                                ENTSCHEIDUNGSPROPLEM. =
                                 ENTSCHEIDUNGS-PROBLEM REDUCED TO THE AEA CASE. =
KAHR-A562
BUCHIJR58
              CHINES AND THE
                                 ENTSCHEIDUNGS-PROBLEM. =TURING MA
```

```
ROBINGA69
              THEORIES WITH
                                EQUALITY
                                                    =PARAMODULATION AND THEOREM-PROVING IN FIRST-ORDER
              OPPORATING THE
SIBEREE69
                                EQUALITY
                                                    RELATION. = A MACHINE-ORJENTED LOGIC INC
NCRTOLM71
               CALCULUS .ITH
                                 E GUALITY
                                                    =EXPERIMENTS WITH A HEURISTIC THEOREM-DROWING PROGRAM FOR PREDICATE
MORRIJBA9
              UDE THE
                                 EQUALITY
                                                   RELATION =E-PESOLUTION: FXTENSION OF RESOLUTION TO INCL
KOWALR-70B
              CASE FOR USING
                                FQUALITY
                                                   AXIOMS IN AUTOMATIC DEMONSTRATION. =THE
              CASE FCR USING
KOWALR-68
                                 EQUALITY
                                                   AXIOMS IN AUTOMATIC DEMONSTRATION. =THE
BROWNTC68
              STRATEGIES AND
                                 EQUALITY
                                                   THEORY. = RESOLUTION WITH COVERING
BRICEC-71
              TICALLY GUIDED
                                EQUALITY
                                                   RULE IN A RESOLUTION THEOREM PROVER. = A HELRIS
CHANGCL71
                                EQUALITY
                                                   =COMPLETENESS OF LINEAR REFUTATION FOR THEORIE
              S WITH
CHANGCL 70B
              VING
                        WITH
                                EQUALITY
                                                    =RENAMABLE PARAMODULATION FOR AUTOMATIC THEOREM-PRO
              M PROVING WITH
                                                   SUBSTITUTIONS AND MATHEMATICAL INDUCTION. = AUTOMATIC THEORE
CARLIJL68A
                                 EQUALITY
ZAMOUNK69
              CAN BE USED TO
                                                    DECICABILITY BY THE RESOLUTION PRINCIPLE. =ON A CLASS OF STRATEGIES WHICH
                                ESTABLISH
MASLOSJ68
              ERSE METHOD OF
                                 ESTAULISHING
                                                   DEDUCIBILITY FOR LOGICAL CALCULI.=THE INV
WASLOSJ64
              ERSE METHOD OF
                                ESTABLISHING
                                                   DEDUCTBILITY IN CLASSICAL PREDICATE CALCULUS. = AN INV
WASLOSJ66
                                ESTABLISHING
                                                   DEBUGGBIL-ITY TO THE THEORY OF DECIDABLE FRAGMENTS OF CLASSICAL PREDICATE CALC
              ERSE WETHOD OF
WASLOSJ67
              ERSE METHOD OF
                                ESTABLISHING
                                                   DEDUCTIBILITY FOR NONPRENEX FORMULAS OF THE PREDICATE CALCULUS .= AN INV
CAVYDGV69
               ALGORITHM FOR
                                 ESTABLISHING
                                                   DEDUCTIBILITY, BASED ON INVERSE METHOD .= A COMPUTER
                                                   COMPLETENESS. = A LINEAR FORMAT FOR RESCLUTION WITH MERGING AND A NEW
ANUERR-70A
               TECHNIQUE FOR
                                 ESTAHLISHING
LANDIPJ64
              THE MECHANICAL
                                EVALUATION
                                                   OF EXPRESSIONS .= THE ME
SIKLOL-71
              TIC SEARCH VS.
                                EXHAUSTIVE
                                                   SEARCH .= HEURIS
SLAGLJR71B
                                                   IN AUTOMATIC LEARNING FOR A MULTIPURPOSE HEURISTIC PROGRAM.=
                                 EXPERIMENTS
SLAGLJR68
                                 EXPERIMENTS
                                                   WITH A MULTIPURPOSE, THEOREM-PROVING HEURISTIC PROGRAM. =
POPPLRJ70
                                 EXPERIMENTS
                                                   WITH AUTOMATIC INDUCTION. =
SLAGLJR65
                                                   WITH A DECUCTIVE QUESTION-ANSWERING PROGRAM. =
                                 EXPERIMENTS
TRAVILG64
                                 EXPERIMENTS
                                                   WITH A THEOREM UTILIZING PROGRAM. =
CHEN-RH68
                        SOME
                                                   WITH A COMPUTER REALIZATION OF A THEOREM-PROVING METHOD. =
                                 EXPERIMENTS
HUNT-EB65
                                 EXPERIMENTS
                                                   IN INDUCTION .=
NORTOLM71
                                                   WITH A HEURISTIC THEOPEN-PROVING PROGRAM FOR PREDICATE CALCULUS WITH EQUALITY.
                                 EXPERIMENTS
                   EMPIRICAL
NEWELA-63
                                 EXPLORATIONS
                                                   OF THE LOGIC THEORY MACHINE. =
                   EMPIRICAL
GELERH-60
                                 EXPLORATIONS
                                                   OF THE GEOMETRY THEOREM MACHINE. =
DUNHAB-61
                                EXPLORATORY
                                                   MATHEMATICS BY MACHINE. =
                                                   OF PARAMODULATION WITH REFINEMENTS. =
KOWALR-68A
                                EXPOSITION
CARLIJL65
              ICAL ARGUMENTS
                                EXPRESSED
                                                    IN ENGLISH. =MACHINE METHODS FOR PROVING LOG
LANCIPJ64
               EVALUATION OF
                                 EXPRESSIONS
                                                   THE MECHANICAL
                                 EXTENDED
HAYESPJ69
              ULATION OF THE
                                                   FUNCTIONAL CALCULUS. = A MACHINE CRIENTED FORM
WOODMGH71
              DEFINITIONALLY
                                EXTENDIBLE
                                                   TYPE-LOGIC FOR MECHANICAL THEOREM PROVING. =A
MCHRIJB69
               E-RESCLUTION:
                                EXTENSION
                                                   OF RESOLUTION TO INCLUDE THE EQUALITY RELATION =
                                EXTRACTING
                                                   INFORMATION FROM PESOLUTION PROCF TREES. =
LUCKHU-70
MORRIJB69
                                 E-PESOLUTION
                                                    EXTENSION OF RESOLUTION TO INCLUDE THE EQUALITY RELATION =
ANUERR-70
              SS RESULTS FOR
                                                    =COMPLETENE
                                F-RESOLUTION
ELLICHW65
               A MODEL FOR A
                                FACT
                                                   RETRIEVAL SYSTEM. =
COOPEWS64
                                FACT
                                                   RETRIEVAL AND DEDUCTIVE QUESTION-ANSWERING INFORMATION RETRIEVAL SYSTEMS. =
                                                   AND THE DECISION PROPLEM FOR CLASSES OF PROPER FORMULAS. =THE R
CIPAORA71
              ELATIONAL DATA
                                FILE
LUCKHO-68A
                THE ANCESTRY
                                FILTER
                                                   METHOD IN AUTOMATIC DEMONSTRATION. =
SLAGLJR71A
                                FINDING
                                                   RESOLUTION PROOFS AND USING DUPLICATE GOALS IN AND/OR TREES.=
LEE--RC67
              ER PROGRAM FOR
                                FINDING
                                                    THEORENS DEPLYARLE FROM GIVEN AXIOMS. = A COMPLETENESS THEOREM AND A COMPUT
HOBINGA69
              REM-PROVING IN
                                FIRST-ORCER
                                                   THEORIES WITH EQUALITY. =PARAMODULATION AND THEO
ROBINJA63
              CHINE-ORIENTED
                                FIRST-ORDER
                                                   LOGIC. =A MA
NANNAZ-69
              OGRAMS AND THE
                                FIRST-ORDER
                                                    PREDICATE CALCULUS. =PROPERTIES OF PR
                                                   LOGIC. = FORMAL DESCRIPTION OF PROGRAM STRUCTURE AND SEMA
BURSTRM70A
                          IN
              NTICS
                                FIRST-ORCER
PARK-D-70
                                FIXPUINT
                                                   INDUCTION AND PROOFS OF PROGRAM PROPERTIES. =
CHAIGW-57
              ASONING. A NEW
                                 FORM
                                                   OF THE HERBRAND-GENTZEN THEOREM. =LINEAR RE
                                 FORMAL
GUINLJR68
                                                   DEDUCTIVE PROBLEM-SOLVING SYSTEM. =
BURSTRM70A
                                 FCRMAL
                                                   DESCRIPTION OF PROGRAM STRUCTURE AND SEMANTICS IN FIRST-ORDER LOGIC. =
BE1H-E-62
                                 FORMAL
                                                   METHODS. =
BURSTRM70
                                 FORMALISING
                                                   SEMANTICS OF FIRST ORDER LOGIC IN FIRST ORDER LOGIC, AND APPLICATION TO PLANNI
                     PROVING
                                 FORMALISM
                                                   PLANNER. =MATCHLESS A PATTERN DIRECTED LANGUAGE FOR THE THEOREM
HEWIT-C71
```

```
MANG-H-65
                                 FORMALIZATION
                                                   AND AUTOMATIC THEOREM-PROVING. =
                                                   OF MATHEMATICS .=
               LOGIC AND THE
WELTZB-67
                                 FORMALIZATION
MANNAZ-70B
                                 FORMALIZATION
                                                   OF PROPERTIES OF FUNCTIONAL PROGRAMS. =
ASHCHE-71
                                 FORMALIZATION
                                                   OF PROPERTIES OF PARALLEL PROGRAMS. =
GUDELK-67A
                                                   UNDECICABLE PROPOSITIONS OF PRINCIPIA MATHEMATICA AND RELATED SYSTEMS. =
                                 FORMALLY
                          NO
REITER-70A
              AND
                      LINFAR
                                 FORMAT
                                                    =TWO RESULTS ON OPDERING FOR RESOLUTION WITH MERGING
LOVEL DW68A
                    A LINEAR
                                 FORMAT
                                                   FOR RESOLUTION. =
LOVEI DW69A
                A SIMPLIFTED
                                 FORMAT
                                                   FOR THE MCDEL ELIMINATION THEOREM-PROVING PROCEDURE. =
ANUERR-70A
                    A LINEAR
                                 FORMAT
                                                   FOR RESOLUTION WITH WERGING AND A NEW TECHNIQUE FOR ESTABLISHING COMPLETENESS,
HODESL-71
              NG PROPLEMS BY
                                 FORMULA
                                                   MANIPULATION IN LOGIC AND LINEAR INEQUALITIES.=SOLVI
                  CLASSES OF
BACKEP-63
                                 FORMULAE
                                                   IN THE PREDICATE CALCULUS. = THE RECUCED MODEL FOR SATISFIABILITY FOR TWO DECID
REYNOJC70
                      ATCMIC
                                 FORMULAS
                                                    =TRANSFORMATIONAL SYSTEMS AND THE ALGEBRAIC STRUCTURE
SANCEEJ69
              ON FOR CERTAIN
                                 FORMULAS
                                                   IN PREDICATE CALCILUS. = A PROPERTY-LIST REPRESENTATI
                   NCNPRENEX
                                                   OF THE PREDICATE CALCULUS. = AN INVERSE METHOD OF ESTABLISHING DEDUCTIBILITY FOR
MASLOSJ67
                                 FORMULAS
DIPACRA69
              SS OF CEFINITE
                                 FORMULAS
                                                    =THE REGURSIVE UNSCLVABILITY OF THE DECISION PROBLEM FOR THE CLA
DIPAGRA71
              SSES OF PROPER
                                                    =THE RELATIONAL DATA FILE AND THE DECISION PROBLEM FOR CLA
                                 FORMULAS
                                                   OF THE EXTENDED FUNCTIONAL CALCULUS. =A MA
HAYESPJ69
              CHINE ORIENTED
                                 FORMULATION
NERODA-62
                                FOUNDATIONS
                                                   OF MATHEMATICS. A STUDY IN THE PHILOSOPHY OF SCIENCE. =
                 A DECIDABLE
CREVK VP65
                                                   OF CLASSICAL PREDICATE CALCULUS WITH FUNCTIONAL SYMBOLS .=
                                 FRAGMENT
CREVKVP68
              WO UNDECIDABLE
                                FRAGMENTS
                                                   OF CLASSICAL PREDICATE CALCULUS.=T
MASLOSJ66
              Y OF DECIDABLE
                                FRAGMENTS
                                                   OF CLASSICAL PREDICATE CALCULUS .= APPLICATION OF THE INVERSE METHOD OF ESTABLIS
HAPHAB-70
                         THE
                                FRAME
                                                   PROBLEM IN PROBLEM-SOLVING SYSTEMS. =
VANHEJ-67
                        FROM
                                 FREGE
                                                   TO GODEL: A SOURCE BOOK IN MATHEMATICAL LOGIC. =
MANNAZ-70A
              MS AND PARTIAL
                                 FUNCTION
                                                   LOGIC. =PROPERTIES OF PROGRA
KOWALR-70C
              WITH SELECTION
                                 FUNCTION
                                                    =LINEAR RESOLUTION
               AXIONS OF THE
GOUELK-67
                                 FUNCTIONAL
                                                   CALCULUS OF LOGIC. = THE COMPLETENESS OF THE
MANNAZ-70B
               PROPERTIES OF
                                 FUNCTIONAL
                                                   PROGRAMS. = FORMALIZATION OF
HAYESPJ69
              F THE EXTENDED
                                                    CALCULUS. = A MACHINE ORIENTED FORMULATION O
                                 FUNCTIONAL
                                 FUNCTIONAL
CREVKVP65
                        WITH
                                                   SYMBOLS.=A DECIDABLE FRAGMENT OF CLASSICAL PREDICATE CALCUL
FRIEDJ-63
              CEDURE FOR THE
                                 FUNCTIONAL
                                                   CALCULUS. = A SEMI-DECISION PRO
LEL--RC70
               PROPERTIES OF
                                 FUZZY
                                                   LOGIC. = SCME
LEE--RC71
                                 FUZZY
                                                   LOGIC AND THE RESOLUTION PRINCIPLE .=
WANG-H-65A
                                 GAMES
                                                    LOGIC. AND COMPUTERS .=
HOBINJA61
                                 GENERAL
                                                   THEOREN-PROVING PROGRAM FOR THE IBM 704. =
PLCTKGD70A
              E ON INDUCTIVE
                                 GENERALISATION
                                                    =A NOT
NEWELA-65
              THE SEARCH FOR
                                 GENERALITY
                                                    =THE SE
SKCLET-67
               L. LOWENHEIM.
                                 GENERALIZ
                                                    THEOREM. = LOGICO-COMPINATIONAL INVESTIGATIONS IN THE SATISFIABILITY OR PROVAB
FINTIJ-65
              Y OF INDUCTIVE
                                GENERALIZATION
                                                    =TOWARDS A THEOR
FLOTKGD71
              E ON INDUCTIVE
                                                    =A FURTHER NOT
                                GENERALIZATION
ROBINJA68
                         THE
                                GENERALIZED
                                                   RESOLUTION PRINCIPLE. =
REYNOJC68
                                GENERALIZED
                                                   RESOLUTION PRINCIPLE BASED UPON CONTEXT-FREE GRAMMARS. =
NUS--LT65A
                   AUTOMATIC
                                CENERATION
                                                   OF PROCES IN THE LANGUAGE OF MATHEMATICS. =
GELERH-60
              RATIONS OF THE
                                GEOMETRY
                                                   THEOREM MACHINE. = EMPIRICAL EXPLO
              EALIZATION OF A
GELERH-63
                                GEOMETRY-THEOREM-PROVING MACHINE. =R
SLAGLJK71A
              SING DUPLICATE
                                GOALS
                                                    IN AND/CR TREES .= FINDING RESOLUTION PROOFS AND U
VANHEJ-67
               FROM FREGE TO
                                                    A SOURCE BOOK IN MATHEMATICAL LOGIC. =
                                 GODEL
REYNOJC68
               CONTEXT-FREE
                                 GRAMMARS
                                                    =A GENERALIZED RESOLUTION PRINCIPLE BASED UPON
YATESR-70
                  RESOLUTION
                                 GRAPHS
NORTOLM69
              EMS OF
                                 GROUP
                                                   THEORY. = ACEPT - A HEURISTIC PROGRAM FOR PROVING THEOR
GARVETU69
                       USERS
                                 CUIDE
                                                   TO QA 3.5 QUESTION-ANSWERING SYSTEM. =
               HEURISTICALLY
BRICEC-71
                                 GUIDED
                                                   EGUALITY RULF IN A RESOLUTION THEOREM PROVER. =A
FRAWID-67
              MPLETENESS AND
                                 HAUPTSATZ
                                                   FOR SECOND ORDER LOGIC. =CO
PRANID-68
                                 HAUPTSAT2
                                                    FOR HIGHER ORDER LOGIC .=
LOVEL DW71
                 SOME LINEAR
                                 HERBHAND
                                                   PROOF PROCEDURES: AN ANALYSIS. =
              EW FORM OF THE
CRAIGW-57
                                HERBRAND-GENTZEN
                                                    THEOREM. =LINEAR PEASONING. A N
              EE USES OF THE
CRAIGW-57A
                                HERBRAND-GENTZEN
                                                   THEOREM RELATING MODEL THEORY TO PROOF THEORY. =THR
SLAGLJR71B
              PURPOSE
                                HEURISTIC
                                                   PROGRAM. = EXPERIMENTS IN AUTOMATIC LEARNING FOR A MULTI
```

with the second of the second

```
ELLIGENCE: THE
                                 HEURISTIC
SLAGLJR71C
                                                   PROGRAMMING APPROACH. =ARTIFICIAL INT
SLAGL JR65B
              EOREM PROVING.
                                 HEURISTIC
                                                   PROGRAM THAT LEARNS. = A MULTIPURPOSE. TH
SLAGL JR68
               ING
                                 HEURISTIC
                                                   PROGRAM. = EXPERIMENTS WITH A MULTIPURPOSE, THEOREM-PROV
HOBINJA67B
                                 HEURISTIC
                                                    AND COMPLETE PROCESSES IN THE MECHANIZATION OF THEOREM-PROVING. =
SIKLOL-71
                                                   SEARCH VS. EXHAUSTIVE SEARCH .=
                                 HEUR1571C
                    ADEPT - A
                                                   PROGRAM FOR PROVING THEOREMS OF GROUP THEORY. =
NORTOLM69
                                 HEURISTIC
NORTOLM71
              RIMENTS WITH A
                                                   THEOREM-PROVING PROGRAM FOR PREDICATE CALCULUS WITH EQUALITY. =EXPE
                                 PEURISTIC
AMARES-67
              AN APPROACH TO
                                 HEURISTIC
                                                   PROBLEM SOLVING AND THEOREM-PROVING IN PROPOSITIONAL CALCULUS. = AN APP
BRICEC-71
                                 HEURISTICALLY
                                                   GUIDED EGUALITY RULE IN A RESOLUTION THEOREM PROVER. =
BLEDSWW71
               AND REDUCTION
                                 HEURISTICS
                                                   IN AUTOMATIC THECREM PROVING .= SPI ITTING
BETH-EW63
               DEDUCTION AND
                                 HEURISTICS
                                                   =OBSERVATIONS CONCERNING COMPUTING,
PITRAJ-66
              T DES METHODES
                                 HEURISTIQUES
                                                    =REALISATION DE PROGRAMMES DE DEMONSTRATION DE THEOREMS UTILISAN
ROBINJA70
              ON MECHANIZING
                                                   ORUER LOGIC. =A NOTE
                                 HIGHER
PRAWID-68
              HAUPTSATZ FOR
                                 HIGHER
                                                   ORUER LOGIC. = HAUPTS
ROBINJA69
                 MECHANIZING
                                 HIGHER-ORDER
                                                   LOGIC. =
ROBINJA65A
              DEDUCTION WITH
                                                    =AUTOMATIC
                                 HYPER-RESOLUTION
105--LT64
              GIES AND THEIR
                                 IMPLEMENTATION
                                                    =SOME THECREM PROVING STRATE
ROBINGA64
              GIES AND THEIR
                                 IMPLEMENTATIONS
                                                    =SOME THEOREM-PROVING STRATE
FRANIO-60A
                                 IMPROVED
                                                   PROOF PROCEDURE. =
C1X0NJK70
                                 INPROVED
                                                    METHOD FOR SOLVING DEDUCTIVE PROPLEMS ON A COMPUTER BY COMPILED AXIOMS. =
                           AN
SIBEREE69
              ORIENTED LOGIC
                                 INCORPORATING
                                                   THE EQUALITY RELATION. = A MACHINE-
VANCERGJ71
              APHY. AND KWIC
                                 INDEX
                                                   ON MECHANICAL THEOREM PROVING AND ITS APPLICATIONS. =OUTLINE, BIBLIOGR
                A SCHEME FOR
                                 INDEXING
BURSTRM68
                                                   AND RETRIEVING CLAUSES FOR A RESOLUTION THEOREM-PROVER. =
POPPLRJ70
              WITH AUTOMATIC
                                 INDUCTION
                                                    =EXPERIMENTS
KEMENJG53
               SIMPLICITY IN
                                 INDUCTION
                                                   =THE USE OF
PARK-D-70
                     FIXPOINT
                                 INDUCTION
                                                    AND PROOFS OF PROGRAM PROPERTIES. =
HUNT-EB65
              EXPERIMENTS IN
                                 INDUCTION
                                                    =EXPFRI
CARLIJL68A
                MATHEMATICAL
                                 INDUCTION
                                                    =AUTOMATIC THEOREM PROVING WITH EQUALITY SUBSTITUTIONS AND
BURSTRM69
               BY STRUCTURAL
                                 INDUCTION
                                                    =PROVING PROPERTIES OF PROGRAMS
PLOTK GD70A
                    A NOTE ON
                                 INDUCTIVE
                                                    GENERALISATION. =
LEDEHJ-67
              CHANIZATION OF
                                 INDUCTIVE
                                                    INFERENCE IN ORGANIC CHEMISTRY. =ME
HINTIJ-65
              US A THEORY OF
                                 INDUCTIVE
                                                   GENERALIZATION . = TOWAR
PLOTKGU71
              URTHER NOTE ON
                                 INDUCTIVE
                                                   GENERALIZATION. =A F
HINTKJ-66
              ACCEPTANCE AND
                                 INDUCTIVE
                                                   LOGIC. =KNUWLEDGE,
HOUESL-71
                      LINEAR
                                 INEQUALITIES
                                                   SOLVING PROPLEMS BY FORMULA MANIPULATION IN LOGIC AN
              N OF INDUCTIVE
LEUERJ-67
                                 INFERENCE
                                                   IN ORGANIC CHEMISTRY. =MECHANIZATIO
MANG-H-63A
              ATHEMATICS AND
                                 INFERENTIAL
                                                   ANALYSIS. =MECHANICAL W
HAPHAB-64A
              M FOR SEMANTIC
                                 INFORMATION
                                                   RETRIEVAL. =SIR: A COMPUTER PROGRA
LUCKHD-70
                  EXTRACTING
                                 INFORMATION
                                                   FROM RESOLUTION PROOF TREES. =
CARLIJL69
              EM PROVING AND
                                 INFORMATION
                                                   RETRIEVAL. =THEOR
                                                   RETRIEVAL SYSTEMS. =FACT RETRIEVAL AND DEDUCTIVE GUESTION-ANSWERI
COUPEWS64
              NG
                                 INFORMATION
CHANGCL70A
               PROOF AND THE
                                 INPUT
                                                   PROOF IN THEOREM PROVING .= THE UNIT
              EM PROVER OVER
KING-J-70
                                 INTEGERS
                                                    =AN INTERPRETATION ORIENTED THECR
SLAGLJR71C
                  ARTIFICIAL
                                 INTELLIGENCE
                                                    THE HEURISTIC PROGRAMMING APPROACH. =
NILSSNJ69A
              IAL
                                 INTELLIGENCE
                                                   TECHNIQUES. = A MOBILE AUTOMATON: AN APPLICATION OF ARTIFIC
MCCARJ-69
                  ARTIFICIAL
                                                    -SOME PHILOSOPHICAL PROPLEMS FROM THE STANDPOINT OF
                                 INTELLIGENCE
NILSSNJ71
               IN ARTIFICIAL
                                 INTELLIGENCE
                                                    =PROPLEM-SOLVING METHODS
GREENCC67
                 RESEARCH ON
                                 INTELLIGENT
                                                   QUESTION ANSWERING SYSTEMS. =
COMENJ-70
                                 INTERACTIVE
                                                   SYSTEM FOR PROVING THEOREMS IN THE PREDICATE CALCULUS .=
ALLENJ-70
                                 INTERACTIVE
                                                   THEOREM-PROVING PROGRAM. =
SLAGLJK70
                                 INTERPOLATION
                                                   THEOPENS FOR RESOLUTION IN LOWER PREDICATE CALCULUS. =
KING-J-70
                                 INTERPRETATION
                                                   ORIENTED THEOREM PROVER OVER INTEGERS. =
ACKERR-67
                                 INTRODUCTION
                                                   TO MANY VALUED LOGIC .=
BENNEJH63
                                 INTRODUCTION
                                                   TO SEMI-AUTOMATED MATHEMATICS. =
GOLOTJJ69
              EDUCIBILITY IN
                                 INTUITIONISTIC
                                                    PROPOSITIONAL CALCULUS .= NETS OF MARKS AND D
MASLOSJ67
                           AN
                                 INVERSE
                                                   METHOD OF ESTABLISHING DEDUCTIBILITY FOR NONPRENEX FORMULAS OF THE PREDICATE C
MASLOSJ69
              N AND
                                 INVERSE
                                                   METHODS. = A CONNECTION BETWEEN TACTICS OF THE RESOLUTIO
```

```
WETHOD OF FSTABLISHING DEDUCTBILILY IN CLASSICAL PREDICATE CALCULUS.=
WASLOSJ64
                                 INVERSE
                           AN
               MASLOV'S
                                                    METHOD. =A NOTE ON THE RELATION RETWEEN RESOLUTION AND
KUEHNDG71
                                 INVERSE
                                                    METHOD OF ESTABLISHING DEDUCIBIL-ITY TO THE THEORY OF CECIDABLE FRAGMENTS OF C
MASLOSJ66
              ICATION OF THE
                                 INVERSE
MASLOSJ68
                          THE
                                 INVERSE
                                                    METHOD OF ESTABLISHING DEDUCIBILITY FOR LOGICAL CALCULI .=
              ITY, BASED ON
                                                    METHOC .= A COMPUTER ALGORITHM FOR ESTABLISHING DEDUCTIBIL
CAVYDGV69
                                 INVERSE
                                                    IN THE SATISFIABILITY OR PROVABILITY OF MATHEMATICAL PROPOSITIONS: A SIMPLIFIE
SKOLET-67
              -COMBINATIONAL
                                 INVESTIGATIONS
HEHBHJ-67
                                 INVESTIGATIONS
                                                    IN PROOF THEORY. =
                                                    FROM MECHANICAL PROOFS. =E
CAVISM-63
              LIMINATING THE
                                 IRHELEVANT
HINTKJ-66
                                 KNOWLEDGE
                                                     ACCEPTANCE AND INDUCTIVE LOGIC. =
              LIOGRAPHY, AND
                                 KwIC
                                                    INDEX ON MECHANICAL THEOREM PROVING AND ITS APPLICATIONS. =OUTLINE, BIB
VANCERGJ71
CHURCA-41
              THE CALCULI OF
                                 LAMBUA-CONVERSION
                                                    =THE CA
GOUELK-36
                    LUER DIE
                                 LANGE
                                                    VON BEWEISEN. =
                                                    OF MATHEMATICS. = AUTOMATIC GENERATION OF
WOS--LT65A
               PROOFS IN THE
                                 LANGUAGE
                                                    FOR PROVING THEOREMS IN ROBOTS. =
HEWITC-69
                  PLANNER: A
                                 LANGUAGE
                                 LANGUAGE
                                                    FOR THE THEOREM PROVING FORMALISM PLANNER. =MATCHLESS A PA
FEWIT-C71
              TTERN DIRECTED
CARLIJL64
              ATING ORUINARY
                                 LANGUAGE
                                                    INTO SYMHOLIC LOGIC. =TRANSL
                                 LANGUAGE
                                                    AND LOGIC OF SAN III. = TOWARD SEMI-AUTOMATED MA
BENNEJH64
              THEMATICS: THE
                                                    THEORETIC PROPERTIES OF SUBSUMPTION. =
FLOTKGD70
                                 LATTICE
              S IN AUTOMATIC
                                 LEARNING
                                                    FOR A MULTIPURPOSE HEURISTIC PROGRAM .= EXPERIMENT
SLAGLJR71B
                                 LEARNS
                                                    =A MULTIPURPOSE, THEOREM PROVING, HEURISTIC PROGPAN
SLAGLJR658
BLEDSWW71A
              PUTER PROOF OF
                                 LIMIT
                                                    THEOREMS. =COM
KOWALK-70C
                                 LINEAR
                                                    RESOLUTION WITH SELECTION FUNCTION. =
              ERGING AND
                                                    FORMAT. = TWO RESULTS ON ORDERING FOR RESOLUTION WITH M
REITER-70A
                                 LINEAR
LOVELDW68A
                                 LINEAR
                                                    FORMAT FOR RESOLUTION. =
LOVELDW71
                        SOME
                                 LINEAR
                                                    MERBRAND PROOF PROCEDURES: AN ANALYSIS. =
                                                    INEQUALITIES .= SOLVING PROBLEMS BY FORMULA MANIPULATION IN L
              OGIC AND
HOUESL-71
                                 LINEAR
                                                    FORMAT FOR RESOLUTION WITH MERGING AND A NEW TECHNIQUE FOR ESTABLISHING COMPLE
ANUERR-70A
                                 LINEAR
                                                    REASONING. A NEW FORM OF THE HERPRAND-GENTZEN THEOREM. =
CHAIGH-57
                                 LINEAR
CHANGCL71
              OMPLETENESS OF
                                 LINEAR
                                                    REFUTATION FOR THEORIFS WITH EQUALITY .= C
WILLSR-68
              IC THECRIST IN
                                 LISP
                                                    THE LOG
                                                     AND COMPUTERS .=
MANG-H-65A
                       GANES.
                                 LOGIC
               COMPUTATIONAL
                                                     THE UNIFICATION COMPUTATION. =
ROBINJA71
                                 LOGIC
ROBINJA65
              CHINE CRIENTED
                                 LOGIC
                                                    BASED ON THE RESOLUTION PRINCIPLE .= A MA
ROSSEJB52
                 MANY-VALUED
                                 LOGIC
              N MATHEMATICAL
                                                     =0
SKOLEMT-67
                                 LOGIC
VANHEJ-67
              N MATHEMATICAL
                                 LOGIC
                                                     =FROM FREGE TO GODEL: A SOURCE BOOK I
ROBINJA70
              G HIGHER ORDER
                                 LOGIC
                                                     =A NOTE ON MECHANIZIN
SCHONN-67
              F MATHEMATICAL
                                 LOGIC
                                                     ON THE BUILDING PLOCKS O
SIBEREE69
              CHINE-CRIENTED
                                 LOGIC
                                                    INCORPORATING THE EQUALITY RELATION. =A MA
ROBINJA69
              G HIGHER-ORCER
                                 LOGIC
                                                    =MECHANIZIN
KLINGRE69
                  RESOLUTION
                                 LOGIC
                                                    -THEOREM PROVING BY ANALOGY WITH APPLICATIONS TO
MILLSH-68
                          THE
                                 LOGIC
                                                    THEORIST IN LISP .=
LEE--RC71
                       FUZZY
                                 LOGIC
                                                    AND THE RESOLUTION PRINCIPLE .=
NEWELA-63
              RATIONS OF THE
                                 LOGIC
                                                    THEORY MACHINE. = EMPIRICAL EXPLO
PRAWID-68
              R HIGHER ORDER
                                 LOGIC
                                                    =HAUPTSATZ FO
                                                    =SEMANTICAL CONSIDERA
KHIPKS-63
              TIONS CN MODAL
                                 LOGIC
KRIPKS-63A
              LYSIS CF MODAL
                                 LOGIC
                                                    I. =SEMANTICAL ANA
MANNAZ-70A
              RTIAL FUNCTION
                                 LOGIC
                                                    =PROPERTIES OF PROGRAMS AND PA
NEWELA-56
                          THE
                                 LOGIC
                                                    THEORY NACHINE . =
GUARDJR64
                    AUTOMATED
                                 LOGIC
                                                    FOR SEMI-AUTOMATED MATHEMATICS. =
MELTZB-67A
                MATHEMATICS.
                                 LOGIC
                                                    AND UNCECIDABILITY. =
HINTKJ-66
               AND INDUCTIVE
                                 LOGIC
                                                    =KNOWLEUGE. ACCEPTANCE
KANGES-63
              FOR ELEMENTARY
                                 LOGIC
                                                    =A SIMPLIFIED PROOF METHOD
WELTZB-67
                                 LOGIC
                                                    AND THE FORMALIZATION OF MATHEMATICS .=
HOUESL-71
              ANIPULATION IN
                                 LOGIC
                                                    AND LINEAR INEQUALITIES .= SOLVING PROPLEMS BY FORMULA M
HAYESPJ71
                                 LOGIC
                                                    OF ACTIONS. =
ROBINJA63
              ED FIRST-ORDER
                                 LOGIC
                                                    =A MACHINE-ORIENT
```

```
LEE--RC70
              RTIES OF FUZZY
                                LOGIC
                                                   SCOME PROPE
                                                   IN PROVING MATHEMATICAL THEOREMS BY MEANS OF A DIGITAL COMPUTER. =THE U
WELT/8-69
              SE OF SYMBOLIC
                                LOGIC
              R SECOND ORDER
                                LOGIC
                                                    =COMPLETENESS AND HAUPTSATZ FO
FRANID-67
EL.RSTRM70
              OF FIRST ORCER
                                LOGIC
                                                   IN FIRST ORDER LOGIC. AND APPLICATION TO PLANNING FOR ROBOTS. =FORMALISING SEM
                                                    AND APPLICATION TO PLANNING FOR ROBOTS. = FORMALISING SEMANTICS OF FIRST ORDER
EURSTRN70
               FIRST ORDER
                                LOGIC
                                                    =FORMAL DESCRIPTION OF PROGRAM STRUCTURE AND SEMANTICS
ELRSTRN70A
              IN FIRST-CHOER
                                LOGIC
              N PROCEDURE IN
FRIEDJ-65
                                LOGIC
                                                    =COMPUTER REALIZATION OF A DECISIO
GUULDWE66
              OR OMEGA-ORCER
                                LOGIC
                                                    =A MATCHING PROCEDUPE F
CARLIJL64
               INTO SYMBOLIC
                                LOGIC
                                                    =TRANSLATING ORDINARY LANGUAGE
CARLIJL71
              F SECOND-ORDER
                                LOGIC
                                                    =A PARTIAL MECHANIZATION O
GOUELK-67
               CALCULUS OF
                                LOGIC
                                                    =THE COMPLETENESS OF THE AXIONS OF THE FUNCTIONAL
ACKERR-67
              TO MANY VALUED
                                LOGIC
                                                   =INTRODUCTION
              E LANGUAGE AND
                                                    OF SAN III. = TOWARD SENT-AUTOMATEC MATHEMATICS: TH
BENNEJH64
                                LOGIC
MASLOSJ68
              DUCIBILITY FOR
                                LOGICAL
                                                   CALCULI. THE INVERSE METHOD OF ESTABLISHING DE
CUNHAY-59
              ING ELEMENTARY
                                LOGICAL
                                                    THEOREMS. = A NON-HEURISTIC PROGRAM FOR PROV
              DS FOR PROVING
CARLIJL65
                                LOGICAL
                                                   ARGUMENTS EXPRESSED IN ENGLISH. =MACHINE METHO
HCHINA-57
              N. MACHINE AND
                                LOGICIAN
                                                    =PROVING THEOREMS, AS DONE BY WA
SKOLET-67
                                LOGICO-COMBINATIONAL INVESTIGATIONS IN THE SATISFIABILITY OF PROVABILITY OF MATHEMATICAL PROPOSI
CHANGCC58
              OF MANY VALUED
                                LOGICS
                                                   =ALGEBRAIC ANALYSIS
SKOLET-67
               THEOREM BY L.
                                LOWENHEIM
                                                    GENFRALIZ. THEOREM. =LOGICO-COMPINATIONAL INVESTIGATIONS IN THE SATISFIABILIT
SLAGLJH70
               RESOLLTION IN
                                LOWER
                                                   PREDICATE CALCULUS. = INTERPOLATION THEOREMS FOR
              E LOGIC THEORY
                                MACHINE
NEWELA-56
                                                    =TH
ROBINA-57
              5 DONE BY MAN.
                                MACHINE
                                                   AND LOGICIAN. =PROVING THEOREMS. A
HAYESPJ69
                                MACHINE
                                                   ORIENTED FORMULATION OF THE EXTENDED FUNCTIONAL CALCULUS. =
NEWELA-63
              E LOGIC THEORY
                                MACHINE
                                                    =EMPIRICAL EXPLOPATIONS OF TH
ROUINJA65
                                MACHINE
                                                   ORIENTED LOGIC BASED ON THE RESOLUTION PRINCIPLE.=
GELEHH-63
              HECREM-PROVING
                                MACHINE
                                                    =REALIZATION OF A GEOMETRY-T
CUNHAB-61
              MATHEMATICS BY
                                MACHINE
                                                    EEXPL CRATCRY
CAHLIJL65
                                MACHINE
                                                   METHODS FOR PROVING LOGICAL ARGUMENTS EXPRESSED IN ENGLISH. =
GELERH-60
              OMETRY THEOREM
                                MACHINE
                                                    -EMPIRICAL EXPLORATIONS OF THE GE
CAVISM-62
                                MACHINE
                                                   PROGRAM FOR THEOREM-PROVING. =
                  REMARKS ON
*ANG-H-67
                                MACHINES
                                                    SETS. AND THE DECISION PROBLEM. =
              DING DEDUCTION
HOUINJA71A
                                MACHINES
                                                    =BUIL
BUCHIJH58
                      TURING
                                MACHINES
                                                   AND THE ENTSCHEIDUNGS-PROBLEM. =
SIEELEE69
                                MACHINE-ORIENTED
                                                   LOGIC INCORPORATING THE EQUALITY RELATION. =
HCBINJA63
                                MACHINE-CRIENTED
                                                   FIRST-CRUER LOGIC. =
RCHINA-57
              MS. AS DONE BY
                                MAN
                                                    MACHINE AND LOGICIAN. =PROVING THEORE
              EMS BY FORMILLA
HODESL-71
                                MANIPULATION
                                                   IN LOGIC AND LINEAR INFQUALITIES .= SOLVING PROBL
ACKERR-67
              NTRODUCTION TO
                                MANY
                                                   VALUED LOGIC.=I
CHANGCC58
              IC ANALYSIS OF
                                MANY
                                                   VALUED LOGICS .= ALGEBRA
HOSSEJB52
                                MANY-VALUED
                                                   LOGIC.=
GLARDJR70
              GE ENTITIES IN
                                MAN-MACHINE
                                                   MATHEMATICS. = THE ARRITRARILY-LAR
GOLOTJJ69
                     NETS OF
                                MARKS
                                                   AND DECUCIBILITY IN INTUITIONISTIC PROPOSITIONAL CALCULUS.=
KLEHNDG71
              RESOLUTION AND
                                MASLOV'S
                                                    INVERSE METHOD. = A NOTE ON THE RELATION BETWEEN
GOULDWE66
                                MATCHING
                                                   PROCECURE FOR OMEGA-ORDER LOGIC. =
CHINLTJ64
              REM-PROVING BY
                                MATCHING
                                                    =THEC
HEWIT-C71
                                                   A PATTERN DIRECTED LANGUAGE FOR THE THEOREM PROVING FORMALISM PLANNER. =
                                MATCHLESS
GCCELK-67A
              IPIA
                                MATHEMATICA
                                                   AND PELATED SYSTEMS. FOR FORMALLY UNDECIDABLE PROPOSITIONS OF PRINC
              PROVABILITY CF
                                                   PROPOSITIONS: A SIMPLIFIED PROOF OF A THEOREM BY L. LOWENHEIM. GENERALIZ. THEO
SKCLET-67
                                MATHEMATICAL
VANHEJ-67
                                MATHEMATICAL
              SOURCE BOOK IN
                                                   LOGIC. =FROM FREGE TO GODEL: A
MANG-H-63
              CHANIZATION OF
                                MATHEMATICAL
                                                   ARGUMENTS. =THE ME
                                                   LOGIC. =
SKOLEMT-67
                                MATHEMATICAL
                                                   LOGIC. =CN THE BUIL
SCHONM-67
              DING BLOCKS OF
                                MATHEMATICAL
              GIC IN PROVING
MELTZH-69
                                MATHEMATICAL
                                                   THEORENS BY WEARS OF A DIGITAL COMPUTER. = THE USE OF SYMBOLIC LO
CAHLIJL68A
              ITUTIONS AND
                                MATHEMATICAL
                                                   INDUCTION. = AUTOMATIC THEOREM PROVING WITH EQUALITY SUBST
WOS--LT65A
                                MATHEMATICS
                                                    =AUTOMATIC GENERATION OF PROOFS IN THE LANGUAGE
WANG-H-60
              RDS MECHANICAL
                                MATHEMATICS
                                                    =TOWA
```

```
AND INFERENTIAL ANALYSIS. =
                  MECHANICAL
                                 MATHEMATICS
MANG-H-63A
              RMALIZATION OF
WELTZU-67
                                 W. THEMATICS
                                                   =LOGIC AND THE FO
WELTZB-67A
                                 NATHEMATICS
                                                    LOGIC AND UNDECIDABILITY. =
               A NEW LOOK AT
                                 MATHEMATICS
                                                   AND ITS MECHANIZATION. =
WELTZB-68A
                                                    A STUDY IN THE PHILOSOPHY OF SCIENCE. =THE
NEHODA-62
              FOUNDATIONS OF
                                 MATHEMATICS
CUNHAH-61
                 EXPLORATORY
                                 MATHEMATICS
                                                   BY MACHINE. =
GUARDJH69
              SEMI-AL TOMATED
                                 MATHEMATICS
                                                    =SEMI-A
GUARDJR64
              SEMI-ALTCMATED
                                 MATHEMATICS
                                                    =AUTOMATED LOGIC FOR
                                                    THE LANGUAGE AND LOGIC OF SAM III. = TOWARD
BENNEJH64
              SEMI-ALTOMATED
                                 MATHEMATICS
                                 MATHEMATICS
                                                    =INTRODUCTION TO
BENNEJH63
              SEMI-AUTOMATED
                                                    THE ARBITRARILY-LARGE ENTITIES
GLARDJR70
              IN MAN-MACHINE
                                 MATHEMATICS
BENNEJH67
              SEMI-ALTOMATED
                                 MATHEMATICS
                                                    =CRT_AIUED
                                                    SAM IV. =SEMI-A
BENNEJH64A
              SEMI-AUTOMATED
                                 MATHEMATICS
ANUREPH68A
              IMPLIFYING THE
                                 MATRIX
                                                   OF A WFF. =ON S
                                 MAXINAL
                                                   MODEL THEOREM. =
105--LT68A
                         THE
                                                   SEMANTIC RESOLUTION PROOFS BASED UPON BINARY SEMANTIC TREES. =
                   EFFICIENT
CANTHRG69
                                 MAXIMAL
                                                   MATHEMATICS AND INFEPENTIAL ANALYSIS. =
MANG-H-63A
                                 MECHANICAL
MANG-H-60
                     TOWARDS
                                 MECHANICAL
                                                   MATHEMATICS. =
                                                    THEOPEN PROVING AND ITS APPLICATIONS. = CUTLINE, BIBLICGRAPHY, AND
               KWIC INDEX ON
VANDERGJ71
                                 MECHANICAL
              AN OVERVIEW OF
                                 MECHANICAL
                                                   THEOREM PROVING. =AN OVE
RCBINJA70A
*CCDMGH71
              TYPE-LCGIC FOR
                                 MECHANICAL
                                                    THEOREM PROVING. =A DEFINITIONALLY EXTENDIBLE
PRAWID-69
              ND PROPLEMS IN
                                                   PROOF PROCEDURE. =ADVANCES A
                                 MECHANICAL
                                                   PROOF PROCEDURE AND ITS REALIZATION IN AN ELECTRONIC COMPUTER. =
FRAWID-60
                                 MECHANICAL
LOVELUM68
                                 MECHANICAL
                                                   THEOREM-PROVING BY MODEL ELIMINATION. =
              DIRECTIONS IN
                                 MECHANICAL
                                                   THEOREM PROVING. =NEW
ROBINJA68A
                                 MECHANICAL
                                                   EVALUATION OF EXPRESSIONS .=
LANCIPJ64
                         THE
CCOPEDC71
                PROGRAMS FOR
                                 MECHANICAL
                                                   PROGRAM VERIFICATION. =
                                                   PROOFS, =ELIMINATING THE I
CAVISM-63
              RRELEVANT FROM
                                 MECHANICAL
MANG-H-63
                         THE
                                 MECHANIZATION
                                                   OF MATHEMATICAL APGUMENTS. =
              OCESSES IN THE
                                                    OF THECKEM-PROVING. =HEURISTIC AND COMPLETE PR
RCHINJA67B
                                 MECHANIZATION
                                                   OF INCUCTIVE INFERENCE IN ORGANIC CHEMISTRY. =
LEUERJ-67
                                 MECHANIZATION
                                                    =A NEW LOCK AT MATHE
WELTZ8-68A
              MATICS AND ITS
                                 MECHANIZATION
                                                   OF SECONU-ORUER LOGIC. =
CARLIJL71
                   A PARTIAL
                                 MECHANIZATION
                                 MECHANIZING
                                                   HIGHER-OPDER LOGIC. =
ROBINJA69
HOBINJA70
                   A NOTE ON
                                 MECHANIZING
                                                   HIGHER OPDER LOGIC. =
                                                   AND LINEAR FORMAT. =TWO RESULTS ON OPDERING FOR R
REITER-70A
              ESOLUTION WITH
                                 MERGING
                                                    SET OF SUPPORT AND TAUTCLOGIES. =
HENSCLJ69
                 RESCLUTION,
                                 MERGING
ANUREPE68
              ESOLUTION WITH
                                 MERGING
                                                   AND A NEW TECHNIQUE FOR FSTABLISHING COMPLETENESS. =A LINEAR FORMAT FOR R
ALUERR-70A
              ESCLUTION WITH
                                 MERGING
                                                   =PROOF PROCEDURES AND DECISION PROCEDURES BASED ON THE
KALLIB-68
                  RESOLUTION
                                 METHOD
NASLOSJ67
                  AN INVERSE
                                 METHOD
                                                   OF ESTABLISHING DEPUCTIBILITY FOR NONPRENEX FORMULAS OF THE PREDICATE CALCULUS
                                                   OF ESTABLISHING DEDUCIBIL-ITY TO THE THEORY OF DECIDABLE FRAGMENTS OF CLASSICA
MASLOSJ66
              OF THE INVERSE
                                 METHOD
              NCESTRY FILTER
                                                   IN AUTOMATIC DEMONSTRATION. =THE A
LUCKHD-68A
                                 METHOD
MASLOSJ68
                 THE INVERSE
                                 METHOD
                                                   OF ESTABLISHING DEDUCTBILITY FOR LOGICAL CALCULI.=
KANGES-63
              MPLIFIED PROOF
                                 METHOD
                                                   FOR FLEWENTARY LOGIC. =A SI
KUEHNUG71
                     INVERSE
                                 METHOD
                                                    =A NOTE ON THE RELATION BETWEEN RESCLUTION AND MASLOV
CKEN-RH68
              HEOREM-PROVING
                                 METHOD
                                                    -SOME EXPERIMENTS WITH A COMPUTER REALIZATION OF A T
                                 METHOD
                                                   OF ESTABLISHING DEDUCTBILILY IN CLASSICAL PREDICATE CALCULUS.=
WASLOSJ64
                  AN INVERSE
KALLIB-68A
              THE PESCLUTION
                                 METHOD
                                                    =A DECISION PROCEDURE BASED ON
                                                   =A COMPUTER ALGORITHM FOR ESTAPLISHING DEDUCTIBILITY. BAS
CAVYDGV69
              ED ON INVERSE
                                 METHOD
CAVYLGV67
                     A PRCOF
                                                   FOR THE CLASSICAL PREDICATE CALCULUS. =
                                 METHOD
CIXONJK70
                 AN IMPROVED
                                 METHOD
                                                   FOR SCLVING DECUCTIVE PROBLEMS ON A COMPUTER BY COMPILED AYLOMS. =
              SPECIALIZER: A
                                                   OF AUTCMATICALLY WRITING COMPUTER PROGRAMS. = THE
CIXONJK71
                                 METHOD
GILMOPC60
                     A PROOF
                                                   FOR QUANTIFICATION THEORY. =
                                 METHOD
                                                   HEURISTIQUES. = REALISATION DE PROGRAMMES DE DEMONSTRATION DE THEOREMS
FITRAJ-66
               UTILISANT DES
                                 METHODES
MASLOSJ71
              STRATEGIES FOR
                                                   OF THE RESOLUTION TYPE. =PROOF-SEARCH
                                 METHODS
MASLOSJ69
                     INVERSE
                                 METHODS
                                                    =A CONNECTION BETWEEN TACTICS OF THE RESOLUTION AND
```

```
POPPLRJ67
                   BETH-TREE
                                 METHODS
                                                   IN AUTOMATIC THEOREM-PROVING. =
NILSSNJ71
                                 METHODS
              RCPLEM-SOLVING
                                                   IN APTIFICIAL INTELLIGENCE. =P
CAHLIJL65
                     MACHINE
                                 METHODS
                                                   FOR PROVING LOGICAL ARGUMENTS EXPRESSED IN ENGLISH. =
                      FORNAL
                                 METHODS
BETH-E-62
                                 MOBILE
                                                   AUTOMATCH: AN APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNIQUES. =
NILSSNJ69A
              SIDERATIONS ON
                                 MCDAL
KRIPKS-63
                                                   LOGIC. =SEMANTICAL CON
KRIPKS-63A
              AL ANALYSIS OF
                                 MODAL
                                                   LOGIC I. =SEMANTIC
KANGES-57
              TIFICATION AND
                                 MOUALITIES
                                                    =A NOTE ON GUAN
                 THE MAXINAL
                                 MODEL
#05--LT68A
                                                   THEOREM. =
              FORMAT FOR THE
LOVELUM69A
                                 MODEL
                                                   ELIMINATION THEOREM-PROVING PROCEDURE. = A SIMPLIFIED
              VERS COMBINING
                                 MOUEL
LOVEL DW69
                                                   ELIMINATION AND RESOLUTION. =THEOREM-PRO
LOVEL DW68
              REM-PROVING BY
                                 MODEL
                                                   ELIMINATION. = WECHANICAL THEO
ELLICRW65
                                 MODEL
                                                   FOR A FACT RETRIEVAL SYSTEM. =
HACKEP-63
                 THE REDICED
                                 MODEL
                                                   FOR SATISFIABILITY FOR TWO DECIDABLE CLASSES OF FORMULAE IN THE PREDICATE CALC
CHAIGW-57A
              EOREM PELATING
                                 MODEL
                                                    THEORY TO PROCE THEORY. =THREE USES OF THE HERBRAND-GENTZEN TH
                                 MULT I PURPOSE
                                                    THEOREM PROVING, HEURISTIC PROGRAM THAT LEARNS. =
SLAGLJH65B
              RIMENTS WITH A
                                 MULTIPURPOSE
                                                    THEOREM-PPOVING HEUPISTIC PROGRAM. =EXPE
SLAGLJR68
SLAGLJR71B
              LEARNING FOR A
                                 MULTIPURPOSE
                                                    HEURISTIC PROGRAM. = EXPERIMENTS IN AUTOMATIC
BING-K-69
                                 NATURAL
                                                   DEDUCTION WITH FEW RESTRICTIONS ON VARIABLES. =
GOLO1JJ69
                                                   OF MARKS AND DEDUCTRILITY IN INTUITIONISTIC PROPOSITIONAL CALCULUS.=
                                 NETS
                                 NONPRENEX
                                                   FORMULAS OF THE PREDICATE CALCULUS. = AN INVERSE METHOD OF ESTABLISHING DEDUCTIB
NASLOSJ67
              TY FOR
MANNAZ-68
              CORRECTNESS OF
                                 NON-DETERMINISTIC PROGRAMS. =THE
CUNHAB-59
                                 NON-HEURISTIC
                                                   PROGRAM FOR PROVING FLEWENTARY LOGICAL THEOREMS. =
               OF ELEMENTARY
                                 NUMBER
CHURCA-65
                                                   THEORY. = AN UNSOLVABLE PROBLEM
MCCARJ-64
                                                   FOR PROOF PROCEDURES. =
                     A TCUGH
                                 NUT
                                 COSERVATIONS
                                                   CONCERNING COMPUTING, DEDUCTION AND HEURISTICS .=
BETH-EN63
               PROCECURE FOR
                                 ONEGA-ORCER
                                                   LOGIC. = A MATCHING
GOULDWE66
ROBINJA70
              ANIZING HIGHER
                                 CRDER
                                                   LOGIC. =A NOTE ON MECH
              ATZ FOR SECOND
                                 ORDER
                                                   LOGIC. = COMPLETENESS AND HAUPTS
PRAWID-67
              TZ FOR HIGHER
                                 ORDER
                                                   LOGIC .= HAUPTSA
FRANID-68
                                                    LOGIC, AND APPLICATION TO PLANNING FOR ROBOTS. =FORMALISING SEMANTICS OF FIRS
BLRSTRM70
              LOGIC IN FIRST
                                 CRUER
                                                   LOGIC IN FIRST CROER LOGIC. AND APPLICATION TO PLANNING FOR ROBOTS. =FORMALISI
              NTICS CF FIRST
                                 CHUER
ELRSTRN70
CREBEB-63
              M OF THE FIRST
                                 CRDEK
                                                   PREDICATE CALCILUS: THE CLASSICAL CASES AND SOLVABLE SURANYI SUBCASES. =ON THE
GILMOPC59
              THIN THE FIRST
                                 CRDER
                                                   PREDICATE CALCULUS =A PROGRAM FOR THE PRODUCTION FROM AXIOMS OF PROOFS FOR THE
                                 CRUERING
                                                   FOR RESOLUTION WITH MERGING AND LINEAR FORMAT. =TWO RE
REITER-70A
              TWO PESULTS CN
                 TRANSLATING
                                 CRDINARY
                                                   LANGUAGE INTO SYMHOLIC LOGIC. =
CAHLIJL64
                                                   CHEMISTRY. EMECHANIZATION OF INDUCTIV
LEUEHJ-67
              E INFERENCE IN
                                 ORGANIC
                                 CRIENTED
                                                   THEOREM PROVER OVER INTEGERS. =AN
KING-J-70
              INTERPRETATION
                   A MACHINE
RCUINJA65
                                 ORIENTED
                                                   LOGIC BASED ON THE RESCLUTION PRINCIPLE .=
HAYESPJ69
                   A MACHINE
                                 ORIENTED
                                                   FORMULATION OF THE EXTENDED FUNCTIONAL CALCULUS. =
                                                    RIBLICGRAPHY. AND KWIC INDEX ON MECHANICAL THEOREM PROVING AND ITS APPLICATIO
VANCERGU71
                                 CUTLINE
ROBINJATOA
                           AN
                                 OVERVIEW
                                                   OF MECHANICAL THEOREM PROVING. =
                                                   FOR REASONING BY ANALOGY .=
KL!NGRE71
                                 PARAUIGM
                                                   PROGRAMS. = FCRWALIZATION OF
ASHCHE-71
               PROPERTIES OF
                                 PAPALLEL
405--LT68
                                 PARAMODUL ATTON
                                                   AND SET OF SUPPORT: =
                                 PARAMODULATION
                                                   AND THEOREM-PROVING IN FIRST-ORDER THEORIES WITH EQUALITY. =
ROBINGA69
              OMPLETENESS OF
RCHINGA69A
                                 PARAMODULATION
                                                    =C
KOWALK-68A
                                                   WITH REFINEMENTS. =AN
               EXPOSITION OF
                                 PARAMODUL ATION
                   RENAMABLE
                                 PARAMODULATION
CHANGCL 70B
                                                   FOR AUTOMATIC THEOPEM-PROVING WITH EQUALITY. =
              F PROGRAMS AND
                                 PARTIAL
MANNAZ-70A
                                                   FUNCTION LOGIC. =PROPERTIES O
CARLIJL71
                                 PARTIAL
                                                   MECHANIZATION OF SECOND-ORDER LOGIC. =
MANG-H-60A
              NG THEOREMS BY
                                 PATTERN
                                                   RECOGNITION. I. =PROVI
MANG-H-51
              NG THECHEMS BY
                                 PATTERN
                                                   RECOGNITION. II. =PRCVI
                 MATCHLESS A
                                                   DIRECTED LANGUAGE FOR THE THEOREM PROVING FORMALISM PLANNER. =
HENIT-C71
                                 PATTERN
MCCARJ-69
                                 PHILOSOPHICAL
                                                   PROBLEMS FROM THE STANDPOINT OF ARTIFICIAL INTELLIGENCE. =
                        SOME
                                 PHILOSOPHY
                                                   OF SCIENCE. = THE FOUNDATIONS OF MATHEMATICS, A STUDY IN TH
AERODA-62
HEWIT-C71
              VING FORMALISM
                                 PLANNER
                                                    =MATCHLESS A PATTERN DIRECTED LANGUAGE FOR THE THEOREM PRO
```

```
=PROCECURA
HEWIT-C71A
              L EMBECDING IN
                                 PLANNER
                                 PL ANNER
                                                    A LANGUAGE FOR PROVING THEOREMS IN ROBOTS. =
PEWITC-69
                                                   FOR POHOTS. FERNALISING SEMANTICS OF FIRST ORDER LOGIC IN FIRST ORDER LOGIC.
              APPLICATION TO
                                 PLANNING
EL RSTRM70
                                                   IN THE CALCULUS OF RELATIVES. =
                                 POSSIBILITIES
LUNENL-67
                                                   AMPLIFICATION FOR THEOREM-PROVERS. =
WELTZB-70
                                 POWER
                                                    CALCULUS. = INTERPOLATION THEOREMS FOR RESCL
                                 PREDICATE
SLAGLJR70
              UTION IN LOWER
                                 PREDICATE.
                                                   CALCULUS. =PROPERTIES OF PROGRAMS AND THE FIRST-ORDER
MAANAZ-69
                                                   CALCULUS .= TWO UNDECIDABLE FRAGMENT
CREVK VP68
              S OF CLASSICAL
                                 PREDICATE
                                                   CALCULUS .= APPLICATION OF THE INVERSE METHOD OF ESTABLISHING DEDUCTBIL-ITY TO T
                                 PREDICATE
MASLOSJ66
              LASSICAL
                                                   CALCULUS WITH EQUALITY. = EXPERIMENTS WITH A HEUPISTIC THEOREM-PROVING
                                 PREDICATE
NCKTOLM71
              PROGRAM FOR
                                                   CALCULUS THEOREM PROVING =
NILSSNJ69
                                 PREDICATE
                                                   ELIMINATION STRATEGY IN THEOREM-PROVING. =
                                 PREDICATE
REITER-70
                                                   CALCULUS. = A PROPERTY-LIST REPRESENTATION FOR CERTAIN FO
                                 PREDICATE
SANCEEJ69
              RMULAS IN
                                                   CALCULUS WITH FUNCTIONAL SYMHOLS .= A DECIDABLE FRAGMEN
CREVKVP65
              T OF CLASSICAL
                                 PREDICATE
                                                   CALCULUS WITH 'UNDEFINED' AS A TRUTH-VALUE. =
                                 PREDICATE
MCCARJ-63
                                                   CALCULUS .= AN INVERSE METHOD OF ESTABLISHING DEDUCIBILILY IN
                                 PREDICATE
MASLOSJ64
                   CLASSICAL
                                                   CALCHLUS .= AN INVERSE METHOD OF ESTABLISHING DEDUCTIBILITY FOR NONPRENEX F
              ORNULAS OF THE
                                 PHEDICATE
NASLOSJ67
                                                    CALCULUS: THE CLASSICAL CASES AND SOLVABLE SURANY! SUBCASES. = ON THE DECISION
CHEPEB-63
              HE FIRST ORDER
                                 PREDICATE
                                                   CALCULUS .= AN INTERACTIVE SYSTEM FOR PROVING T
              HECREMS IN THE
                                 PREDICATE
CUMENJ-70
                                                   CALCULUS. =A PROOF METHOD FOR
CAVYLGV67
               THE CLASSICAL
                                 FREDICATE
                                                   CALCULUS =A PROGRAM FOR THE PRODUCTION FROM AXIOMS OF PROOFS FOR THEOREMS DERI
GILNOPC59
              HE FIRST ORDER
                                 PREDICATE
                                                   CALCULUS. = THE REDUCED MODEL FOR SATISFIABILITY FOR TWO DECIDABLE CLASSES OF F
              ORMULAE IN THE
BACKEP-63
                                 PRFDICATE
                                                   STRATEGY IN THEOREM PROVING. =
405--LT64
                    THE LINIT
                                 PREFERENCE
                                PREFERENCE
                                                   STRATEGY USING SUFFICIENCY-RESOLUTION FOR ANSWERING QUESTIONS. =
                  A PROPOSED
SLAGLJH65A
              ROPOSITIONS OF
                                 PRINCIPIA
                                                    WATHEMATICA AND RELATED SYSTEMS. SON FORMALLY UNDECIDABLE P
GLDELK-67A
                                                    SON A CLASS OF STRATEGI'S WHICH CAN BE USED TO ESTABLISH DECIDABILITY BY
ZAMOVNK69
              THE RESOLUTION
                                 PRINCIPLE
                                 PRINCIPLE
                                                   IN GUANTIFICATION THEORY. =
SMULLHN63
                  A UNIFYING
                                 PRINCIPLE
                                                    =COMPATIBILITY OF REFINEMENTS OF
KIEPUR-69
              THE RESOLUTION
                                 PRINCIPLE
                                                    -THE GENERALI
              ZED RESOLUTION
RCBINJA68
                                 PHINCIPLE
                                                   IN THEOREM-PROVING. =THE PE
LUCKHO-67
              THE RESOLUTION
                                 PRINCIPLE
                                                   BASED UPON CONTEXT-FREE GRAMMARS. =A GENERALI
HE YNOJCSB
              ZED RESOLUTION
                                                   =A MACHINE ORIENTED LOGIC BASED ON
                                 PRINCIPLE
              THE RESCLUTION
HOUILJA65
                                 PRINCIPLE
                                                   =FUZZY LOGIC AND
LEE--RC71
              THE RESOLUTION
                                                    -SOME THEOREM-PROVING STRATEGIES BASED ON THE
                                 PRINCIPLE
CARLIJL68
              RESOLUTION
              U THE CECISION
                                 PHOBLEM
                                                    EKEMARKS ON MACHINES, SETS, AN
AANG-H-67
              F THE CECISION
                                 PROBLEM
                                                    =UOMINOES AND THE AFA CASE C
WANG-H-62
                                 PHOBLEM
                                                   IN PROBLEM-SCLVING SYSTEMS. =
RAFHAB-70
                   THE FRAME
                                                   SOLVING. =STRIPS: A NEW APPROACH TO THE APPLICATION OF THEOREM
FIKESH-71
                  PRCVING TO
                                 PROBLEM
              SE OF DECISION
                                 PROBLEM
                                                    =COMPUTER PROGRAM FOR A SOLVABLE CA
FRIEDJ-63A
CHURCA-65
               AN UNSOLVABLE
                                 PROPLEM
                                                   OF ELEMENTARY NUMBER THEORY. =
                                                   FOR CLASSES OF PROPER FORMULAS. = THE RELATIONAL DATA FILE AN
DIPACHA71
              D THE CECISION
                                 PROBLEM
                                                   OF THE FIRST ORDER PREDICATE CALCULUS: THE CLASSICAL CASES AND SOLVABLE SURANY
                                 PROBLEM
CREPEB-63
              N THE CECISION
CIPACHA69
              F THE CECISION
                                 PHOBLEM
                                                   FOR THE CLASS OF DEFINITE FORMULAS. =THE RECURSIVE UNSCLVABILITY O
ACKERM-54
              F THE DECISION
                                 PROBLEM
                                                    =SOLVABLE CASES O
                                                   SOLVING AND THEOPEM-PROVING IN PROPOSITIONAL CALCULUS. =AN APPROAC
AMARES-67
              H TO HEURISTIC
                                 PROBLEM
               PHILOSOPHICAL
                                 PROBLEMS
                                                   FROM THE STANDPOINT OF ARTIFICIAL INTELLIGENCE. =SOME
NCCAHJ-69
                                 PROBLEMS
                                                   IN MECHANICAL PROOF PROCEDURE. =
FRANIU-69
                ADVANCES AND
RAPHAB-71
              MS AND RELATED
                                 PROBLEMS
                                                    =ROPOT SYSTE
                                                   OF REASONING ABOUT ACTIONS. =REPR
AMARES-68
              ESENTATIONS OF
                                 PROBLEMS
                                                   ON A COMPUTER BY COMPILED AXIOMS. =AN IMPROVED METHOD FOR SOL
CIXONJK70
              VING DEDUCTIVE
                                 PROBLEMS
                     SOLVING
                                 PHOHLEMS
                                                   BY FORMULA MANIPULATION IN LOGIC AND LINEAR INEQUALITIES.=
HOUESL-71
GUINLJR68
              RMAL DEDUCTIVE
                                 PROBLEM-SOLVING
                                                   SYSTEM. =A FO
                                                   SYSTEMS. =THE FR
HAPHAB-70
              AME PROBLEM IN
                                 PROBLEM-SOLVING
                                 PROBLEM-SOLVING
                                                   METHODS IN ARTIFICIAL INTELLIGENCE. =
NILSSHJ71
              REM-PROVING TO
                                 PROBLEM-SOLVING
                                                    =APPLICATION OF THEO
GREENCC69B
AMARES-62
              AN APPROACH TO
                                 PROBLEM-SOLVING
                                                   BY COMPUTER. =4N APP
                                 PROCEDURAL
                                                   EMBEDDING IN PLANNER. =
HEWIT-C71A
```

```
PRAWID-60A
              IMPROVED PROOF
                                 PROCEDURE
                                                    =AN
PRANID-69
                                                    =ADVANCES AND PROBLEMS IN ME
              CHANICAL PROCF
                                 PROCEDURE
                                                    BASED ON THE RESOLUTION METHOD, =
KALLIU-68A
                  A PECISION
                                 PROCEDURE
LOVEL DW69A
              HEOREN-PROVING
                                 PROCEDURE
                                                    EA SIMPLIFIED FORMAT FOR THE MODEL ELIMINATION T'
                                                    AND ITS REALIZATION IN AN ELECTRONIC COMPUTER. =A PE
PRANTU-60
              CHANICAL PROOF
                                 PROCEDURE
GUINEWV55
                      A PROCE
                                 PROCEDURE
                                                   FOR CUANTIFICATION THEORY. =
FRIEDJ-63
               SEMI-DECISION
                                 PROCEDURE
                                                   FOR THE FUNCTIONAL CALCULUS. =A
                                                   FOR OMEGA-ORDER LOGIC. =
GOULDWE66
                   A NATCHING
                                 PROCEDURE
                                                    IN LOGIC. = COMPUTER PEALIZATION
FHIEDJ-65
               OF A CECISION
                                 PROCEDURE
                 A CCMPUTING
CAVISM-60
                                 PROCEDURE
                                                   FOR QUANTIFICATION THEORY. =
LOVELUE71
              HERBPAND PROOF
                                 PROCEDURES
                                                    AN ANALYSIS. =SCME LINEAR
                                                     =PROLEGOVENA TO A THEORY OF EFFIC
WELT28-71
              IENCY OF PROOF
                                 PROCEDURES
                                                    AND DECISION PROCEDURES BASED ON THE RESOLUTION METHOD.=
KALL 18-68
                        PROCE
                                 PROCEDURES
                                                    =A TOUGH
MCCARJ-64
               NUT FCR PROCF
                                 PROCEDURES
                                                   BASED ON THE RESOLUTION METHOD. = PROOF PROCEDURE
KALLIB-68
              S AND DECISION
                                 PROCEDURES
CCOK-SA71
              HEOREM-PROVING
                                 PROCEDURES
                                                    "THE COMPLEXITY OF T
                                                    IN THE MECHANIZATION OF THEOREM-PPOVING. =HEURISTI
ADBIN JA67B
              C AND COMPLETE
                                 PROCESSES
                                                   FROM AXICMS OF PROOFS FOR THEOREMS DERIVABLE WITHIN THE FIRST ORDER PREDICATE
GILMOPC59
              ROGRAM FOR THE
                                 PRODUCTION
SLAGLJR719
                   HEURISTIC
                                 PROGRAM
                                                   EEXPERIMENTS IN AUTOMATIC LEARNING FOR A MULTIPURPOSE
              WARD AUTOMATIC
WALDIRJ69A
                                 PROGRAM
                                                   WRITING. =PROW: A STEP TO
              OREM UTILIZING
                                 PROGRAM
                                                    =EXPERIMENTS WITH A THE
TRAVILG64
SLAGLJR658
              ING. HEURISTIC
                                 PROGRAM
                                                    THAT LEARNS. = A MULTIPURPOSE, THEOREM PROV
HAPPAB-64
                   A COMPLITER
                                 PROGRAM
                                                   WHICH 'UNCERSTANDS. ' =
PAHK-0-70
               AND PPOOFS OF
                                 PHOGHAM
                                                   PROPERTIES. =FIXPOINT INDUCTION
FITRAJ-65
              ALIZATION OF A
                                 PROGRAM
                                                    WHICH CHOOSES THE THEOREMS IT PROVES. =RE
                                                   FOR PREDICATE CALCULUS WITH EQUALITY. =EXPERIMENTS WITH A HEURISTIC T
NCHTOLM71
              HEOREN-PROVING
                                 PHOGHAM
NURTOLNEY
               - A HEURISTIC
                                 PROGRAM
                                                   FUR PROVING THEOREMS OF GROUP THEORY. =ADEPT
RAPHAB-64A
              IR: A COMPLTER
                                 PROGRAM
                                                   FOR SEMANTIC INFORMATION RETRIEVAL. =5
KING-J-69
                                 PROGRAM
                                                    VERIFIER. =
                                 PHOGRAM
SLAGLJH68
                    HEURISTIC
                                                    EXPERIMENTS WITH A MULTIPURPOSE, THEOREM-PROVING
HCBINJA61
              HEOREM-PROVING
                                 PROGRAM
                                                   FOR THE IBM 704. =A GENERAL T
SLAGLUR65
              TION-ANSWERING
                                 PROGHAM
                                                    EXPERIMENTS WITH A DEDUCTIVE GUES
MANNAZ-70
              ARDS AUTOMATIC
                                 PROGRAM
                                                    SYNTHESIS. =TOW
              AND A COMPLTER
                                                   FOR FINDING THEOREMS DERIVABLE FROM GIVEN AXIOMS, =A COMPLETENESS THEOREM
LEE--HC67
                                 PHOGRAM
COOPEDC71
              FOR MECHANICAL
                                 PROGRAM
                                                    VERIFICATION. =PROGRAMS
                                 PHOGPAM
GILMOPC59
                                                   FOR THE PRODUCTION FROM AYIONS OF PROOFS FOR THEOREMS DERIVABLE WITHIN THE FIR
CARLIJL62
                      A CONIT
                                 PROGHAM
                                                   FOR THE UAVIS-PUTNAM ALGORITHM. =
              DESCRIPTION OF
BURSTRM70A
                                 PROGRAM
                                                   STRUCTURE AND SEMANTICS IN FIRST-ORDER LOGIC. =FCRMAL
CAVISM-62
                                                   FOR THEOREM-PROVING. =
                    A MACHINE
                                 PROGRAM
                    COMPLITER
FRIEDJ-63A
                                 PROGRAM
                                                   FOR A SCLVABLE CASE OF DECISION PROBLEM. =
              HEOREM-PROVING
ALLENJ-70
                                 PROGRAM
                                                    =AN INTERACTIVE T
DLNHAU-59
               NON-HEUPISTIC
                                 PROGRAM
                                                   FOR PROVING E ENENTARY LOGICAL THEOREMS. =A
                                                   DE DEMONSTRATION DE THEOREMS UTILISANT DES METHODES HEURISTIQUES. =REALIS
PITRAJ-66
              REALISATION DE
                                 PROGRAMMES
SLAGLJH71C
               THE HEURISTIC
                                 PROGRAMMING
                                                    APPROACH. = ARTIFICTAL INTELLIGENCE:
RAPHAB-68
                                 PROGRAMMING
                                                    A ROBOT. =
WALDIRJ69
                CONSTRUCTING
                                 PROGRAMS
                                                    AUTOMATICALLY USING THEOREM PROVING. =
MANNAZ-69A
              CORRECTNESS OF
                                 PROGRAMS
                                                    =THE
NCCARJ-68
                                 PROGHAMS
                                                    WITH COMMON SENSE, =
               PROPERTIES OF
MANNAZ-70A
                                 PHOGRAMS
                                                    AND PARTIAL FUNCTION LOGIC. =
MANNAZ-70B
               OF FUNCTIONAL
                                 PROGHAMS
                                                    =FOPMALIZATION OF PROPERTIES
MANNAZ-69
               PROPERTIES OF
                                 PHOGHAMS
                                                   AND THE FIRST-ORDER PREDICATE CALCULUS. =
NANNAZ-68
              -DETERMINISTIC
                                 PHOGHAMS
                                                    =THE CORRECTNESS OF NON
CIXCNJK71
              ITING COMPLTER
                                 PROGRAMS
                                                    = THE SPECIALIZER: A METHOD OF AUTOMATICALLY WR
              ES OF PARALLEL
ASHCRE-71
                                 PROGRAMS
                                                    =FORMALIZATION OF PROPERTI
BUKSTRN69
               PROPERTIES OF
                                 PROGRAMS
                                                   BY STRUCTURAL INDUCTION. = PROVING
COCPEDC71
                                 PROGRAMS
                                                   FOR MECHANICAL PROGRAM VERIFICATION. =
WELTZ8-71
                                 PROLEGOMENA
                                                   TO A THEORY OF EFFICIENCY OF PROOF PROCEDURES. =
```

```
TOUGH NUT FOR
                                 PROOF
                                                   PROCECURES. =A
MCCARJ-64
                                 PROOF
                                                   PROCECURE. =ADVANCES AND PROBLEMS
               IN MECHANICAL
PRAWID-69
TAKAHM-67
                                 PROOF
                                                   OF CUT-ELIMINATION IN SIMPLE TYPE THEORY. =
                                                   PROCEDURE AND ITS REALIZATION IN AN FLECTRONIC COMPUTER. =
PRAWID-60
                A MECHANICAL
                                 PHOOF
                                                   PROCECURE FOR QUANTIFICATION THECRY. =
GUINEWV55
                                 PROOF
                                                   OF A THEOREM BY L. LOWENHEIM, GENERALIZ. THEOREM. =LOGICO-COMBINATIONAL INVEST
              A SIMPLIFIED
SKOLET-67
                                 PROOF
FRAWID-60A
                 AN IMPROVED
                                 PROOF
                                                   PRUCECURE. =
                                                   PROCECURES. = PROLEGOMENA TO A THEORY OF
MELTZ8-71
               EFFICIENCY OF
                                 PROOF
                                                   PROCEDURES: AN ANALYSIS. = SOME L
LOVELDW71
              INEAR HERBRAND
                                 PROOF
                                                   TREES. = EXTRACTING INFORMATION F
LUCKHD-70
              ROM RESOLUTION
                                 PROJE
                                FROOF
                                                   BY RESOLUTION. =SOME
HAPHAB-69
               RESULTS ABOUT
                                                   THEORY. =THREE USES OF THE HERBRAND-GENTZEN THEOREM RELATING MOD
CHAIGW-57A
              EL THECRY TO
                                 PROOF
                                                   PROCECURES AND DECISION PROCEDURES BASED ON THE RESOLUTION METHOD.=
                                 PROOF
KALLIB-68
HERERJ-67
              ESTIGATIONS IN
                                 PROOF
                                                   THEORY. = INV
                                                   AND THE INPUT PROOF IN THEOREM PROVING .=
CHANGCL70A
                    THE UNIT
                                 PROOF
                A SIMPLIFIED
                                                   METHOD FOR ELEMENTARY LOGIC. =
KANGES-63
                                 PROOF
               AND THE INPUT
                                PROOF
                                                   IN THECREM PROVING .= THE UNIT PROOF
CHANGCL70A
GILMOPC60
                                PROOF
                                                   METHOD FOR QUANTIFICATION THEORY. =
                                PROOF
                                                   METHOD FOR THE CLASSICAL PREDICATE CALCULUS. =
CAVYDGV67
                    COMPUTER
                                PROOF
                                                   OF LIMIT THEOREMS. =
BLEDSWW71A
                                                   IN THE LANGUAGE OF MATHEMATICS. =AUTOMATIC
               GENERATION OF
                                 PROOFS
405--LT65A
                                                   AND USING CUPLICATE GOALS IN AND/OR TREES.=FIND
              ING RESOLUTION
                                PROOFS
SLAGLJR71A
                                PROOFS
                                                   OF PROGRAM PROPERTIES. =FIXPOINT
FARK-0-70
               INDUCTION AND
                                                   FOR THEOREMS DERIVABLE WITHIN THE FIRST ORCER PREDICATE CALCULUS =A PROGRAM FO
GILMOPC59
              FROM AXIOMS OF
                                 PROOFS
                                 PROOFS
                                                    -ELIMINATING THE IRRELEVANT F
CAVISM-63
              ROM MECHANICAL
CANTRRG69
              TIC PESOLUTION
                                PROOFS
                                                   HASED UPON BINARY SEMANTIC TREFS. = EFFICIENT MAXIMAL SEMAN
                                 PROOF-SEARCH
                                                   STRATEGIES FOR METHODS OF THE RESOLUTION TYPE. =
MASLOSJ71
                                                   FORMULAS. = THE RELATIONAL DATA FILE AND THE DECISION PROBLEM FOR
DIPAORA71
                  CLASSES OF
                                PROPER
              RMALIZATION OF
                                 PROPERTIES
                                                   OF FUNCTIONAL PROGRAMS. =FO
MANNAZ-708
                                 PROPERTIES
                                                   OF SUBSUMPTION. =LAT
PLOTK GD70
              TICE THEORETIC
              OFS OF PROGRAM
                                 PROPERTIES
                                                    =FIXPOINT INDUCTION AND PRO
PARK-D-70
                                                   OF PROGRAMS AND THE FIRST-ORDER PREDICATE CALCULUS. =
MANNAZ-69
                                 PROPERTIES
                                                   OF PROGRAMS AND PARTIAL FUNCTION LOGIC. =
                                 PROPERTIES
MANNAZ-70A
LEE--HC70
                                 PROPERTIES
                                                   OF FUZZY LOGIC.=
                        SOME
                                                   OF PARALLEL PROGRAMS. =FO
ASHCRE-71
              RMALIZATION OF
                                 PROPERTIES
BUYSTRN69
                     PROVING
                                PROPERTIES
                                                   OF PROGRAMS BY STRUCTURAL INDUCTION. =
                                                   OF ROBINSON'S UNIFICATION ALGORITHM. = A US
HANT-TP65
              EFUL ALGEBRAIC
                                PROPERTY
SANCEEJ69
                                                   REPRESENTATION FOR CERTAIN FORMULAS IN PREDICATE CALCULUS. =
                                FROPERTY-LIST
                                                   PREFERENCE STRATEGY USING SUFFICIENCY_RFSOLUTION FOR ANSWERING QUESTIONS. =
SLAGLJR65A
                                PROPOSED
AMARES-67
              REM-PROVING IN
                                PROPOSITIONAL
                                                   CALCULUS. = AN APPROACH TO HEURISTIC PROBLEM SOLVING AND THEO
                                PROPOSITIONAL
                                                   CALCULUS. = NETS OF MARKS AND DEDUCTBILITY IN INTUITIONIS
GULOTJJ69
              TIC
                                                    A SIMPLIFIED PROOF OF A THEOREM BY L. LOWENHEIM, GENERALIZ. THEOREM. =LOGICO-
SKOLET-67
              F MATHEMATICAL
                                PROPOSITIONS
GODELK-67A
              LY UNDECTOABLE
                                PROPOSITIONS
                                                   OF PRINCIPIA MATHEMATICA AND RELATED SYSTEMS. = ON FORMAL
                                                   OF MATHEMATICAL PROPOSITIONS: A SIMPLIFIED PROOF OF A THEOREM BY L. LOWENHEIM.
SKCLET-67
              FIABILITY
                                PROVABILITY
KING-J-70
              IENTED THECREM
                                PROVER
                                                   OVER INTEGERS. = AN INTERPRETATION OR
ERICEC-71
                     THECREM
                                PROVER
                                                    =A HFURISTICALLY GUIDED EQUALITY RULE IN A RESOLUTION
CARLIJL69A
                     THECREM
                                PROVERS
                                                   AS QUESTION ANSWERERS. =
                                                    EREALIZATION OF A PROGRAM WHICH CHOOSES THE THEOR
              ENS
                                PROVES
PITRAJ-65
                          IT
WANG-H-61
                                 PROVING
                                                   THEOREMS BY PATTERN RECOGNITION. II. =
                                                    = THE UNIT PREFERENCE STRAT
#05--LT64
              EGY IN THECREM
                                PHOVING
405--LT64
                SOME THECKEM
                                 PROVING
                                                   STRATEGIES AND THEIR IMPLEMENTATION. =
                                                    =A DEFINITIONALLY EXTENDIBLE TYPE-LOGIC FOR MECHANICAL
                     THEOREM
                                 PROVING
WOCCNGH71
              EGY IN THECREM
                                                    EEFFICIENCY AND COMPLETENESS OF THE SET OF SUPPORT STRAT
                                 PROVING
NOS--L165
                                                    HEURISTIC PROGRAM THAT LEARNS. = A MULTIPU
SLAGLJR65B
              RPOSE, THECREM
                                 PROVING
              IC PROGRAM FOR
                                 PROVING
                                                   THEOREMS OF GROUP THEORY. =ADEPT - A HEURIST
NORTOLM69
NILSSNJ69
              LCULUS THECKEM
                                 PROVING
                                                    =PREDICATE CA
WALDIRJ69
               USING THECREM
                                 PROVING
                                                    =CONSTRUCTING PROGRAMS AUTOMATICALLY
```

```
ROBINJA70A
              ANICAL THEOREM
                                PROVING
                                                    =AN OVERVIEW OF MECH
                                PROVING
                                                   THEOREMS, AS DONE BY MAN, MACHINE AND LOGICIAN. =
ROBINA-57
              IES IN THEOREM
LUCKHO-68
                                PROVING.
                                                    -SOME THEE-PARING STRATEG
WELTZE-65
                     THECREM
                                PROVING
                                                   FOR COMPUTERS. =
ROBINJA67
              OMATIC THEOREM
                                PROVING.
                                                    =A REVIEW OF AUT
                                                   AND ITS APPLICATIONS. SOUTLINE, PTULIOGRAPHY, AND KWIC INDEX ON MECHANICAL
                     THEOREM
                                PROVING
VANDERGJ71
                                                   MATHENATICAL THEOREMS BY MEANS OF A DIGITAL COMPUTER. = THE USE OF SYM
              BOLIC LOGIC IN
                                PROVING
MELT/8-69
              OMATIC THECREM
                                                   WITH RENAMABLE AND SEMANTIC RESOLUTION. =AUT
SLAGLJH67
                                PHOVING
              ANICAL THEOREM
                                                    ENEW DIRECTIONS IN MECH
RCHINJA68A
                                PROVING
                                PRCVING
MANG-H-60A
                                                   THEOREMS BY PATTERN RECOGNITION. I. =
KLINGRE69
                     THECREM
                                PROVING
                                                   BY ANALOGY WITH APPLICATIONS TO RESOLUTION LOGIC. =
CAHLIJL69
                     THEOREM
                                PHOVING
                                                   AND INFORMATION RETRIEVAL. =
                                                   WITH EQUALITY SUBSTITUTIONS AND MATHEMATICAL INDUCTION. = AUT
CARLIJL68A
              OMATIC THEOREM
                                PROVING
CARLIJL65
              NE METHOUS FOR
                                PHOVING
                                                   LOGICAL ARGUMENTS EXPRESSED IN ENGLISH. =MACHI
                                                   THEOREMS IN THE PREDICATE CALCULUS. = AN INTERACT
COMENJ-70
              IVE SYSTEM FOR
                                PROVING
COOPEDC66
                     THEOREM
                                PROVING
                                                   IN COMPUTERS. =
CHANGCL70A
              OOF IN THECKEM
                                PROVING
                                                   THE UNIT PROOF AND THE INPUT PR
                                                   WITH VARIABLE-CONSTRAINED RESOLUTION. =
CHANGCL71A
                     THEOREM
                                PROVING
              THEOREM
                                                   TO PROBLEM SOLVING. =STRIPS: A NEW APPROACH TO THE APPLICATION OF
FIKESR-71
                                PROVING
BURSTRM69
                                PROVING
                                                   PROPERTIES OF PROGRAMS BY STRUCTURAL INDUCTION. =
BLEDSWW71
              IC THECKEM
                                PROVING
                                                   ESPLITTING AND REDUCTION HEURISTICS IN AUTCMAT
CUNHAR-59
              IC PROGRAM FOR
                                PRCVING
                                                   ELEMENTARY LOGICAL THEOREMS. =A NON-HEURIST
HENSCLJ68
              OMATED THEOREM
                                PROVING
                                                   SOME NEW RESULTS ON RESOLUTION IN AUT
GREENCCAB
              USE OF THEOREM
                                                   TECHNIQUES IN QUESTION-ANSWERING SYSTEMS. =THE
                                PROVING
HEWITC-69
              A LANGLAGE FOR
                                PROVING
                                                   THEOREMS IN ROPOTS. =PLANNER:
                                PROVING
                                                   FORMALISM PLANNER. =MATCHLESS A PATTERN DIRECTED LANGUAGE FOR THE
HEWIT-C71
               THEOREM
                                                    A STEP TOWARD AUTOMATIC PROGRAM WRITING. =
WALDIRJ69A
                                PROW
GARVETD69
              USERS GUIDE TO
                                                   3.5 GUESTION-ANSWERING SYSTEM. =USERS
SMULLRM63
              G PRINCIPLE IN
                                GUANTIFICATION
                                                   THEORY. = A UNIFYIN
KUHNSUL71
                                GUANTIFICATION
                                                   IN GUERY SYSTEMS. =
GUINEWV55
               PROCEDURE FOR
                                GUANTIFICATION
                                                   THEORY. =A PROOF
KANGES-57
                   A NOTE ON
                                QUANTIFICATION
                                                   AND MCCALITIES. =
GILMOPC60
              OOF METHOD FOR
                                CUANTIFICATION
                                                   THEORY. =A PR
              OMPLETENESS OF
                                                   THEORY. =ON THE C
CREBEB-52
                                QUANTIFICATION
CAVISM-60
               PROCECURE FOR
                                QUANTIFICATION
                                                   THEORY. =A COMPUTING
KUHNSJL71
              NTIFICATION IN
                                GUERY
                                                   SYSTEMS. =QUA
              ON INTELLIGENT
                                                   ANSWERING SYSTEMS. = RESEARCH
GREENCC67
                                GUESTION
CARLIJL69A
              REM PROVERS AS
                                GLESTION
                                                   ANSWERERS. =THEO
SLAGLUR65A
               FOR ANSWERING
                                CHESTIONS
                                                    =A PROPOSED PREFERENCE STRATEGY USING SUFFICIENCY-RESOLUTION
SLAGLJR65
              ITH A CEDUCTIVE
                                CUESTION-ANSWERING PROGRAM. =EXPERIMENTS W
                                QUESTION-ANSWERING SYSTEMS. = THEOREM-PROVING BY RESOLUTION AS A BASIS FOR
GREENCC69A
                  A DEDUCTIVE
BLACKF-64
                                QUESTION-ANSWERING SYSTEM. =
FISHMUH70
                                QUESTION-ANSWERING SYSTEMS. = THE APPLICATION OF THEOREM-PROVING TECHNIQUE
              S TO
GREENCC69
              OREM-PROVING TO
                                GLESTION-ANSHERING SYSTEMS. THE APPLICATION OF THE
GAHVETD69
              GUIDE TO GA 3.5
                                QUESTION-ANSWERING SYSTEM. =USERS
              L AND DEDUCTIVE
COOPEWS64
                                QUESTION-ANSWERING INFORMATION RETRIEVAL SYSTEMS. =FACT RETRIEVA
GREENCC68
                                QUESTION-ANSWERING SYSTEMS. THE USE OF THEOREM PROVING TECHNIQUES
PITRAJ-66
                                                   DE PROGRAMMES DE DEMONSTRATION DE THEOPENS UTILISANT DES METHODES HEURISTIQUES
                                REAL 1SATION
                                                   OF A THECREM-PROVING METHOD. =SOME EXPERIMENTS W
CHEN-RH68
              ITH A COMPLITER
                                REALIZATION
                                REALIZATION
PRAWID-60
              CEDURE AND ITS
                                                   IN AN ELECTRONIC COMPUTER. = A MECHANICAL PROOF PRO
FITRAJ-65
                                                   OF A PROGRAM WHICH CHOCSES THE THEOREMS IT PROVES. =
                                REALIZATION
GELERH-63
                                REALIZATION
                                                   OF A GEOMETRY-THEOREM-PROVING MACHINE. =
FRIEDJ-65
                    COMPLITER
                                REALIZATION
                                                   OF A CECISION PROCEDURE IN LOGIC. =
AMARES-68
              OF PROBLEMS OF
                                                   ABOUT ACTIONS. = REPRESENTATIONS
                                REASONING
KLINGRE?1
              A PARADIGM FCR
                                REASONING
                                                   BY ANALOGY .= A PARA
CRAIGW-57
                                REASONING
                                                    A NEW FORM OF THE HERBRAND-GENTZEN THEOREM. =
                      LINEAR
                                                   DEVELOPMENTS IN COMPLETE STRATEGIES FOR THEOREM-PROVING BY COMPUTER. =
NELTZ8-66A
                                RECENT
                        SOME
```

```
ENS BY PATTERN
MANG-H-60A
                                 RECOGNITION
                                                    I. =PROVING THEOR
WANG-H-61
              EMS BY PATTERN
                                 RECOGNITION
                                                    II. =PROVING THEOR
                                                   UNSCLVABILITY OF THE DECISION PROBLEM FOR THE CLASS OF DEFINITE FORMULAS. =
CIPAORA69
                                 PECURSIVE
BACKEP-63
                          THE
                                 REDUCED
                                                   MODEL FOR SATISFIABILITY FOR TWO DECIDABLE CLASSES OF FORMULAE IN THE PREDICAT
              IDUNGS-PROBLEM
                                 REDUCED
                                                   TO THE ALA CASE. =ENTSCHE
KAHR-AS62
BLECSWW71
               SPLITTING AND
                                 REDUCTION
                                                   HEURISTICS IN AUTOMATIC THEOREM PROVING.=
                                                   THEOPENS IN RESOLUTION THEORY. =
LUCKHD-69
                                 PEFINEMENT
                                                   IN RESCLUTION THEORY. =
LUCKHD-70A
                                 REFINEMENTS
              ODULATION WITH
                                 REFINEMENTS
KOWALR-68A
                                                    =AN EXPOSITION OF PARAM
KILBUR-69
              MPATIBILITY OF
                                 REFINEMENTS
                                                   OF THE RESOLUTION PRINCIPLE. =CO
                                                   FOR THECRIES WITH EQUALITY .= COMPLETE
                                 REFUTATION
CHANGCL71
              NESS OF LINEAR
                                                    =E-RESOLUTION: EXTENSION OF RESOLUTION TO INCLUDE THE
MORRIJB69
                    EGUALITY
                                 RELATION
               A NOTE ON THE
                                 RELATION
                                                   BETWEEN RESOLUTION AND MASLOV'S INVERSE METHOD. =
KUEHNDG71
                                 RELATION
                                                    =A MACHINE-ORIENTED LOGIC INCORPORATING THE EQ
SIBEPEE69
              UALITY
                                                   DATA SYSTEM STUDY. =
WINKEJ-70
                                 RELATIONAL
                                                   DATA FILE AND THE DECISION PROPLEM FOR CLASSES OF PROPER FORMULAS. =
CIPAORA71
                         THE
                                 RELATIONAL
              HE CALCULUS OF
                                                    =ON POSSIPILITIES IN T
                                 RELATIVES
LOWENL-67
                                                   ON MACHINES, SETS, AND THE DECISION PROBLEM. =
AANG-H-67
                                 REMARKS
SLAGLJR67
              M PROVING WITH
                                 RENAMABLE
                                                   AND SEMANTIC RESOLUTION. = AUTOMATIC THEORE
                                                   PARAMODULATION FOR AUTOMATIC THEOREM-PROVING WITH EQUALITY. =
CHANGCL 70B
                                 RENAMABLE
                                 RENAVING
                                                    =THEOREM-PROVING FOR COMPUTERS: SOME RESULTS ON RE
WELTZB-66
              SOLUTION AND
SANCLEJ69
               PROPERTY-LIST
                                 PEPRESENTATION
                                                   FOR CERTAIN FORMULAS IN PREDICATE CALCULUS. =A
                                                   OF PROBLEMS OF REASONING ABOUT ACTIONS. =
ANARES-68
                                 REPRESENTATIONS
                                                   ON INTELLIGENT QUESTION ANSWERING SYSTEMS. =
GFEELCC67
                                 RESEARCH
                                                   PRINCIPLE. =ON A CLASS OF STRATEGIES WHICH CAN BE USED TO ESTABLISH DECID
ZAMOUNKA9
              ABILITY BY THE
                                 RESOLUTION
YATESR-70
                                 PESOLUTION
                                                   GRAPHS. =
ROBINJA68
              HE GENERALIZED
                                 RESOLUTION
                                                   PRINCIPLE. =T
LOVELDW68A
              EAR FORMAT FOR
                                 RESOLUTION
                                                    =A LIN
                                                   IN LOWER PREDICATE CALCULUS. = INTERPOLATIO
SLAGLJH70
              N THEOREMS FOR
                                 RESOLUTION
                                                   TO INCLUDE THE EQUALITY RELATION = E-RESOLUTION
MOHRIJE69
              : EXTENSION OF
                                 RESOLUTION
LUCKHD-69
              NT THECREMS IN
                                 RESOLUTION
                                                   THEORY. = REFINEME
                                 RESOLUTION
                                                   PRINCIPLE IN THECREM-PROVING. =
LUCKHD-67
                          THE
                                                   STRATEGIES. =
WELTZB-68
               SOME NOTES ON
                                 RESOLUTION
NELTZB-66
              OME RESULTS ON
                                 RESOLUTION
                                                    AND RENAMING. =THEOREM-PROVING FOR COMPUTERS: S
              REFINEMENTS IN
                                                   THEORY. = REFINE
LUCKHO-70A
                                 RESOLUTION
                                                    =THEOREM-PROVERS COMPINING MODEL E
LOVELDW69
              LIMINATION AND
                                 RESOLUTION
              SEMANTIC
                                 RESOLUTION
                                                    =AUTCMATIC THEOREM PROVING WITH RENAMABLE AND
SLAGLJR67
                     FINDING
                                                   PROOFS AND USING DUPLICATE GOALS IN AND/OR TREES.=
SLAGLJR71A
                                 RESOLUTION
ROBINJA65
              C HASEU ON THE
                                 RESOLUTION
                                                   PRINCIPLE .= A MACHINE ORIENTED LOST
SLAGLJR69
              S FOR SEMANTIC
                                 RESOLUTION
                                                   IN CONSEGUENCE-FINDING, "COMPLETENESS THEOREM
NASLOSJ71
              METHODS OF THE
                                                   TYPE. =PROOF. SEARCH STRATEGIES FOR
                                 RESOLUTION
MASLOSJ69
              TACTICS OF THE
                                 RESOLUTION
                                                   AND INVERSE METHODS. =A CONNECTION RETWEEN
REITER-70A
              N ORDERING FOR
                                 PESOLUTION
                                                   WITH MERGING AND LINEAR FORMAT. TWO RESULTS O
RAPHAB-69
              ABOUT PROUF BY
                                 RESOLUTION
                                                    =50ME RESULTS
LUCKHU-70
              FORMATION FROM
                                                   PRUOF TREES. = EXTRACTING IN
                                 RESOLUTION
LEE--RC71
               LOGIC AND THE
                                                   PRINCIPLE .= FUZZY
                                 RESOLUTION
REYNGJC68
               A GENERALIZED
                                 RESOLUTION
                                                   PRINCIPLE PASED UPON CONTEXT-FREE GRAMMARS. =
KIEBUR-69
              NEMENTS OF THE
                                                   PRINCIPLE. = COMPATIBILITY OF REFI
                                 RESOLUTION.
CANTHRG69
              XIMAL SEMANTIC
                                 RESOLUTION
                                                   PROOFS BASED UPON BINAPY SEMANTIC TREES. = EFFICIENT MA
KALLIH-68A
              E BASED ON THE
                                 RESOLUTION
                                                   METHOD. = A DECISION PROCEDUR
KLEHNUG71
              LATION BETWEEN
                                 RESOLUTION
                                                   AND MASLOV'S INVERSE METHOD. TA NOTE ON THE RE
CHANGCL71A
              LE-CONSTRAINED
                                 RESOLUTION
                                                    =THECREM PROVING LITH VARIAB
                                                    MERGING. SET OF SUPPORT AND TAUTOLOGIES. =
HENSCLU69
                                 RESOLUTION
KL INGRE69
                                 PESOLUTION
                                                   LOGIC. =THEOREM PROVING BY ANALOGY WITH APPLICATIONS
              S BASED ON THE
                                                    PRINCIPLE. = SOME THEOREM-PROVING STRATFGIE
CARLIJL68
                                 RESOLUTION
KOWALR-70C
                      LINEAR
                                 RESOLUTION
                                                   WITH SELECTION FUNCTION. =
                                                   WITH MERGING AND A NEW TECHNIQUE FOR ESTABLISHING COMPLETENESS. =A LIN
ANDERR-70A
              EAR FORMAT FOR
                                 RESOLUTION
```

```
ANUREPH70
                                 RESOLUTION
                                                    IN TYPE THEORY. =
                                                   WITH MERGING. =
ANDREPB68
                                 RESOLUTION
KALL 18-68
              D ON THE
                                 RESOLUTION
                                                    METHOD .= PROOF PROCEDURES AND DECISION PROCEDURES BASE
                                                    AS A BASIS FOR QUESTION-ANSWERING SYSTEMS. =THEO
GHEENCC69A
              REM-PROVING BY
                                 RESOLUTION
FENSCLJ68
              NEW RESULTS ON
                                 RESOLUTION
                                                    IN AUTOMATED THEOREM PROVING .= SOME
BRICEC-71
              LITY RULE IN A
                                 RESOLUTION
                                                    THEOREM PROVER. = A HEURISTICALLY GUIDED EQUA
              REM-PROVING BY
                                                    -STUDIES IN THE COMPLETENESS AND EFFICIENCY OF THEO
KUWALR-70A
                                 RESOLUTION
                                                    WITH COVERING STRATEGIES AND EQUALITY THEORY. =
EROWNTC68
                                 RESOLUTION
BURSTRME8
              FOR A
                                 RESOLUTION
                                                    THEOREM-PROVER. =A SCHENE FOR INDEXING AND RETRIEVING CLAUSES
BING-K-69
              CTION WITH FEW
                                 RESTRICTIONS
                                                    ON VARIABLES. =NATURAL DEDU
              OMPUTERS: SOME
                                                    ON RESCLUTION AND RENAMING. =THEOREM-PROVING FOR C
MELTZB-66
                                 RESULTS
RAPHAB-69
                         SOME
                                 RESULTS
                                                    ABOUT PROOF BY RESOLUTION. =
REITER-70A
                                 RESULTS
                                                    ON ORCERING FOR RESOLUTION WITH MERGING AND LINEAR FORMAT. =
                          TWO
                                                    ON RESOLUTION IN AUTOMATED THEOREM PROVING .=
                    SOME NEW
HENSCLJ68
                                 RESULTS
                                                   FOR E-RESCLUTION. =
ANUERR-70
                COMPLETENESS
                                 RESULTS
НАРНАВ-64А
              IC INFCRMATION
                                 RETRIEVAL
                                                    =SIR: A COMPUTER PROGRAM FOR SEMANT
ELL IORW65
              DEL FOR A FACT
                                 RETRIEVAL
                                                    SYSTEN. =A MO
              NO INFCRMATION
CARLIJL69
                                 RETRIEVAL
                                                    =THECREM PROVING A
CCOPEWS64
                 INFCRMATION
                                                    SYSTEMS. =FACT RETRIEVAL AND DEDUCTIVE QUESTION-ANSWERING
                                 RETRIEVAL
COOPE WS64
                         FACT
                                 RETRIEVAL
                                                    AND DECUCTIVE QUESTION-ANSWERING INFORMATION RETRIEVAL SYSTEMS. =
HILKSTRM68
              R INDEXING AND
                                 RETRIEVING
                                                    CLAUSES FOR A RESOLUTION THEOREM-PROVER. =A SCHEME FO
                                                    OF AUTOMATIC THEOREM PROVING. =
ROBINJA67
                                 REVIEW
              IC PROPERTY OF
HART-TP65
                                 ROBINSON . S
                                                    UNIFICATION ALGORITHM. = A USEFUL ALGEBRA
HAPHAB-71
                                 ROBOT
                                                    SYSTEMS AND RELATED PROBLEMS. =
HAPHAB-68
               PROGRAMMING A
                                 TCHOR
HENITC-69
                                 ROBOTS
                                                    =PLANNER: A LANGUAGE FOR PROVI
              NG THECREMS IN
                                                    =FORMALISING SEMANTICS OF FIRST ORDER LOGIC IN FIRST ORDER LOGIC, AND APPLICA
B, RSTRM70
              O PLANNING FOR
                                 ROPOTS
BRICEC-71
              UIDED EQUALITY
                                                    IN A RESCLUTION THEOREM PROVER. = A HEURISTICALLY G
                                 RULE
BENNE JHE 4A
              D MATHEMATICS:
                                 SAM
                                                    IV. =SEMI-AUTOVATE
                                                    III. =TCWARD SEMI-AUTOMATED MATHEMATICS: THE LANGUAGE
BENNEJH64
              AND LOGIC
                                 SAM
                                                    OR PROVABILITY OF MATHEMATICAL PROPOSITIONS: A SIMPLIFIED PROOF OF A THEOREM
                                 SATISFIABILITY
SKOLET-67
              GATIONS IN THE
              UCED MODEL FOR
                                                    FOR TWO DECIDABLE CLASSES OF FORMULAE IN THE PREDICATE CALCULUS. =THE RED
HACKEP-63
                                 SATISFIABILITY
                                                   FOR INCEXING AND PETPIEVING CLAUSES FOR A RESOLUTION THEOREM-PROVER. =
BURSTRN68
                                 SCHEME
NEHODA-62
               PHILOSOPHY OF
                                 SCIENCE
                                                    =THE FOUNDATIONS OF MATHEMATICS. A STUDY IN THE
NEWELA-65
                                 SEARCH
                                                    FOR GENERALITY . =
SIKLOL-71
              VS. EXHAUSTIVE
                                 SEARCH
                                                    =HEUPISTIC SEARCH
                                                    VS. FXHAUSTIVE SEARCH .=
SIKLCL-71
                   HEURISTIC
                                 SEARCH
KOWALR-70
                                 SEARCH
                                                    STRATEGIES FOR THEOREM-PROVING. =
CARLIJL71
              CHANIZATION OF
                                 SECOND-ORDER
                                                   LOGIC. = A PAPTIAL ME
KOWALR-70C
              ESCLUTION WITH
                                 SELECTION
                                                   FUNCTION. =LINEAR P
               RENAMABLE AND
SLAGLJR67
                                 SEMANTIC
                                                    RESOLUTION. = AUTOMATIC THEOREM PROVING WITH
RAPHAB-64A
              ER PROGRAM FOR
                                 SEMANTIC
                                                    INFOPMATION RETRIEVAL. =SIR: A COMPUT
                                                    RESOLUTION IN CONSEQUENCE-FINDING. =COMPLETENES
SLAGLJR69
              S THEOREMS FOR
                                 SEMANTIC
KOWALR-69
                                 SEMANTIC
                                                    TREES IN AUTOMATIC THEOREM-PROVING. =
              ICIENT MAXIMAL
CANTERG69
                                 SEMANTIC
                                                    RESOLUTION PROOFS BASED UPON BINARY SEMANTIC TREES. = EFF
CANTHRG69
              PON
                      BINARY
                                 SEMANTIC
                                                    TREES. = EFFICIENT MAYIMAL SEMANTIC RESOLUTION PROOFS BASED U
KRIPKS-63
                                 SEMANTICAL
                                                    CONSIDERATIONS ON MODAL LOGIC. =
                                                   ANALYSIS OF MODAL LOGIC I. =
KRIPKS-63A
                                 SEMANTICAL
BLKSTHM70A
               STRUCTURE AND
                                 SEMANTICS
                                                    IN FIRST-CRUER LOGIC. =FORMAL DESCRIPTION OF PROGRAM
                                                    OF FIRST ORDER LOGIC IN FIRST ORDER LOGIC. AND APPLICATION TO PLANNING FOR ROB
ELRSTRM70
                 FORMALISING
                                 SEMANTICS
GUARUJA64
              ATED LCGIC FOR
                                 SEMI-AUTOMATED
                                                   MATHEMATICS. =AUTOM
GUARDJR69
                                 SEMI-AUTOMATED
                                                   MATHEMATICS. =
BENNEJH64A
                                 SEMI-AUTOMATED
                                                   MAIHENATICS: SAM IV. =
BENNEJH63
              NTRODUCTION TO
                                 SEMI-AUTOMATED
                                                   MATHEMATICS. =I
BENNEJH64
                       TOWARD
                                 SEMI-AUTOMATED
                                                   MATHEMATICS: THE LANGUAGE AND LOGIC OF SAM III. =
                                                   MATHEMATICS. =
BENNEJH67
                   CRT-AIDED
                                 SEMI-AUTOMATED
FRIEDJ-63
                                 SEMI-DECISION
                                                   PROCEDURE FOR THE FUNCTIONAL CALCULUS. =
```

```
MCCARJ-68
              MS WITH CONNON
                                 SENSE
                                                    =PROGRA
WC5--LT65
              ETENESS OF THE
                                 SET
                                                   OF SUPPORT STRATEGY IN THEOREM PROVING. = EFFICIENCY AND COMPL
#05--LT68
              MODULATION AND
                                                   OF SUPPORT. =PARA
                                 SET
HENSCLJ69
              TION, MERGING.
                                 SET
                                                   OF SUPPORT AND TAUTOLOGIES. =RESCLU
              S ON MACHINES.
MANG-H-67
                                 SETS
                                                    AND THE DECISION PROBLEM. =REMARK
TAKAHN-67
              ELIMINATION IN
                                 SIMPLE
                                                   TYPE THEORY. =A PROOF OF CUT-
KEMENJG53
                  THE USE OF
                                 SIMPLICITY
                                                   IN INCUCTION .=
SKOLET-67
              ROPOSITIONS: A
                                 SIMPLIFIED
                                                    PROOF OF A THEOREM BY L. LOWENHEIM, GENERALIZ. THEOREM. =LOGICO-COMBINATIONAL
LOVELDW69A
                                 SIMPLIFIFD
                                                   FORMAT FOR THE MODEL ELIMINATION THEOREM-PROVING PROCEDURE. =
KANGES-63
                                                   PROOF METHOD FOR ELEMENTARY LOGIC. =
                                 SIMPLIFIED
ALUREPH68A
                           ON
                                 SIMPLIFYING
                                                   THE MATRIX OF A WFF. =
                                                    A COMPUTER PROGRAM FOR SEMANTIC INFORMATION RETRIEVAL. =
HAPHAB-64A
                                 SIR
              ICAL CASES AND
                                 SOLVABLE
                                                   SURANYI SUBCASES. =ON THE DECISION PROBLEM OF THE FIRST ORDER PREDICATE CALCUL
CHEPEB-63
FRIEDJ-63A
               PROGRAM FOR A
                                 SOLVABLE
                                                   CASE OF DECISION PROBLEM. =COMPLITER
ACKERW-54
                                 SOLVABLE
                                                   CASES OF THE DECISION PROBLEM. =
FIKESH-71
              ING TO PROBLEM
                                 SOLVING
                                                    =STRIPS: A NEW APPROACH TO THE APPLICATION OF THEOREM PROV
HOUESL-71
                                 SOLVING
                                                   PROBLEMS BY FORMULA MANIPULATION IN LOGIC AND LINEAR INEQUALITIES .=
AMARES-67
              RISTIC PROPLEM
                                 SOLVING
                                                   AND THEOREM-PROVING IN PROPOSITIONAL CALCULUS. = AN APPROACH TO HEU
DIXONJK70
              VED METHOD FOR
                                 SOLVING
                                                   DEDUCTIVE PROBLEMS ON A COMPUTER BY COMPILED AXIOMS. = AN IMPRO
VANHEJ-67
              GE TO GOUEL: A
                                 SOURCE
                                                   BOOK IN MATHEMATICAL LOGIC. =FROM FRE
CIXONJK71
                                                    A METHOD OF AUTOMATICALLY WRITING COMPUTER PROGRAMS. =
                         THE
                                 SPECIALIZER
ELECSWA71
                                 SPLITTING
                                                   AND REDUCTION HEUPISTICS IN AUTOMATIC THEOREM PROVING.=
              BLEMS FROM THE
MCCAHJ-69
                                 STANUPOINT
                                                   OF ARTIFICIAL INTELLIGENCE. = SOME PHILOSOPHICAL PRO
                      PROM: A
                                                   TOWARD AUTOMATIC PROGRAM WRITING. =
WALDIRJ69A
                                 STEP
2AMOVNK69
               ON A CLASS OF
                                 STRATEGIES
                                                   WHICH CAN BE USED TO ESTABLISH DECIDABILITY BY THE RESCLUTION PRINCIPLE. =
MELTZB-68
               ON RESCLUTION
                                 STRATEGIES
                                                    =SOME NOTES
              HEOREM PROVING
                                 STRATEGIES
                                                   AND THEIR IMPLEMENTATION. = SOME T
NO5--LT64
              HECREM-PROVING
                                                   AND THEIR IMPLEMENTATIONS. = SOME T
ROBINGA64
                                 STRATEGIES
NELTZB-66A
              S IN COMPLETE
                                 STRATEGIES
                                                   FOR THEOREM-PROVING BY COMPUTER. - SOME RECENT DEVELOPMENT
                PROOF-SEARCH
                                                   FOR METHODS OF THE RESOLUTION TYPE. =
MASLOSJ71
                                 STRATEGIES
               WITH COVERING
                                                   AND EQUALITY THEORY. =RESOLUTION
EROWNTC68
                                 STRATEGIES
KOWALR-70
                       SEARCH
                                 STRAIEGIES
                                                   FOR THEOREM-PROVING. =
LLCKHD-68
              ME TREE-PARING
                                 STRATEGIES
                                                   IN THECREM PROVING. =50
                                                   BASED ON THE RESOLUTION PRINCIPLE. =SOME T
CARLIJL68
              HEOREM-PROVING
                                 STRATEGIES
405--LT64
              NIT PREFERENCE
                                 STRATEGY
                                                   IN THECREM PROVING. =THE U
WUS--LT65
              SET OF SUPPORT
                                 STRATEGY
                                                   IN THEOREM PROVING. = FFFICIENCY AND COMPLETENESS OF THE
SLAGLJR65A
              SED PREFERENCE
                                 STRATEGY
                                                   USING SUFFICIENCY-PESOLUTION FOR ANSWERING GUESTIONS. =A PROPO
REITER-70
              TE ELIMINATION
                                 STRATEGY
                                                   IN THECREM-PROVING. THE PREDICA
FIKESH-71
                                 STRIPS
                                                    A NEW APPROACH TO THE APPLICATION OF THEOREM PROVING TO PROBLEM SOLVING. =
              OF PROGRAMS BY
BUKSTRM69
                                 STRUCTURAL
                                                   INDUCTION. =PROVING PROPERTIES
REYNOJC70
               THE ALGEBRAIC
                                 STRUCTURE
                                                   OF ATCMIC FORMILAS. =TRANSFORMATIONAL SYSTEMS AND
                                STRUCTURE
BLRSTRN70A
              IUN OF PROGRAM
                                                   AND SEMANTICS IN FIRST-CROER LOGIC. =FORMAL DESCRIPT
KCWALR-70A
                                 STUDIES
                                                   IN THE COMPLETENESS AND EFFICIENCY OF THEOREM-PROVING BY RESOLUTION. =
              AL DATA SYSTEM
MINKEJ-70
                                 STUDY
                                                    =RELATION
NEHODA-62
              MATHEMATICS, A
                                                   IN THE PHILOSOPHY OF SCIENCE. = THE FOUNDATIONS OF
                                 STUDY
CREEEEH-63
              RANYI
                                 SUPCASES
                                                    =ON THE DECISION PROBLEM OF THE FIRST ORDER PREDICATE CALCULUS: THE CLASSICAL
CARLIJL68A
               WITH EQUALITY
                                 SUBSTITUTIONS
                                                   AND MATHEMATICAL INDUCTION. = AUTOMATIC THEOREM PROVING
FLOTE GO70
               PROPERTIES OF
                                 SUHSUMPTION
                                                    ELATTICE THEORETIC
SLAGLJH65A
               STRATEGY USING
                                 SUFFICIENCY-MESOLUTION FOR ANSWERING QUESTIONS. = A PROPOSED PREFERENCE
               OF THE SET OF
                                                   STHATEGY IN THEOREM PROVING. = EFFICIENCY AND COMPLETENESS
NOS--L165
                                 SUPPORT
#05--LT68
              ION AND SET OF
                                 SUPPORT
                                                    =PARAMCULLAT
HENSCLJ69
              ERGING. SET CF
                                 SUPPORT
                                                   AND TAUTCLOGIES. = PESOLUTION, M
                                                    SURCASES. = CN THE DECISION PROBLEM OF THE FIRST ORDER PREDICATE CALCULUS: THE
CHEBEB-63
              S AND SOLVABLE
                                 SUPANYI
MELTZB-69
                  THE USE OF
                                 SYMBOLIC
                                                   LOGIC IN PROVING MATHEMATICAL THEOREMS BY MEANS OF A DIGITAL COMPUTER. =
CARLIJL64
               LANGUAGE INTO
                                 SYMBOLIC
                                                   LOGIC. =TRANSLATING ORDINARY
CREVK VP65
              ITH FUNCTIONAL
                                 SYMBOLS
                                                   =A DECIDABLE FRAGMENT OF CLASSICAL PREDICATE CALCULUS W
NANNAZ-70
              OMATIC PROGRAM
                                 SYNTHESIS
                                                    =TOWARDS AUT
```

```
OF THE RESOLUTION AND INVERSE METHODS. =A CONN
              ECTION BETWEEN
                                TACTICS
MASLOSJ69
              OF SUPPORT AND
                                 TAUTULOGIES
                                                    =RESOLUTION. MERGING. SET
HENSCLJ69
                                 TECHNIQUE
              ND A LEW
                                                   FOR ESTABLISHING COMPLETENESS. = A LINEAR FORMAT FOR RESOLUTION WITH MERGING A
ALUERR-70A
                INTELLIGENCE
                                                    =A MCHILE AUTOMATON: AN APPLICATION OF ARTIFICIAL
NILSSNJ69A
                                 TECHNIQUES
              HEOREM PROVING
                                                    IN QUESTION-ANSWERING SYSTEMS. = THE USE OF T
GREENCC68
                                 TECHNIQUES
              HECREM-PROVING
                                                   TO QUESTION-ANGWERING SYSTEMS. = THE APPLICATION OF T
FISHMOH70
                                 TECHNIQUES
                                                   BY COMPUTER. =
CUNHAB-62
                     THEOREM
                                 TESTING
                                 THEOREM
                                                   PROVING. = A DEFINITIONALLY EXTENDIBLE TYPE-LOGIC FOR ME
MOCCMGH71
              CHANICAL
              ICATE CALCULUS
                                 THEOREM
                                                   PROVING. =PRED
NILSSNJ69
                                 THEOREM
                                                   PROVING. HEURISTIC PROGRAM THAT LEARNS. =A
SLAGLUR658
               MULTIPURPOSE.
WALDIRJ69
                                 THEOREM
                                                   PROVING. = CONSTRUCTING PROGRAMS AUTOM
              ATICALLY USING
               OF MECHANICAL
                                 THEOREM
                                                   PROVING. = AN OVERVIEW
AOBINJA70A
NOS--LT68A
               MAXIMAL MODEL
                                 THEOREM
                                                    =THE
                                                   PROVING FOR COMPUTERS. =
WELTZB-65
                                 THEOREM
                                 THEOREM
                                                   PROVING. = FFFICIENCY AND COMPLETENESS OF THE SET OF SUPPO
NOS--LT65
              RT STRATEGY IN
                                                   PROVING STRATEGIES AND THEIR IMPLEMENTATION. =
405--LT64
                         SOME
                                 THEOREM
ROBINJA68A
               IN MECHANICAL
                                 THEOREM
                                                   PROVING. = NEW DIRECTIONS
SLAGLJH67
                   AL TOMATIC
                                 THEOREM
                                                   PROVING WITH RENAMBLE AND SEMANTIC RESOLUTION. =
                                                    =LOGICO-COMBINATIONAL INVESTIGATIONS IN THE SATISFIABILITY OF PROVABILITY OF
SKCLET-67
              IM. GENERALIZ.
                                 THEOREM
                                                   PROVING AND ITS APPLICATIONS. = OUTLINE, BIBLIOGRAPHY, AND KWIC INDEX ON MECH
VANCERGJ71
              ANICAL
                                 THEOREM
                                 THEOREM
                                                   UTILIZING PROGRAM. =EXPE
TRAVILG64
              RIMENTS WITH A
              CE STRATEGY IN
                                 THEOREM
                                                   PROVING. = THE UNIT PREFEREN
#05--LT64
SKOLET-67
              D PROOF OF A
                                THEOREM
                                                   BY L. LOWENHEIM, GENEPALIZ. THEOREM. =LOGICO-COMBINATIONAL INVESTIGATIONS IN T
ROBINJA67
              W OF AUTOMATIC
                                 THEOREM
                                                   PROVING. = A PEVIE
                                                   PROVING BY ANALOGY WITH APPLICATIONS TO RESOLUTION LOGIC. =
KLINGRE69
                                 THEOREM
ELECSWW71
              S IN AUTOMATIC
                                 THEOREM
                                                    PROVING .= SPLITTING AND REDUCTION HEURISTIC
                                                   PROVER. = A HEURISTICALLY GUIDED FQUALITY RULE IN A RES
BRICEC-71
              OLUTION
                                 THEOREM
LUCKHD-68
               STRATEGIES IN
                                 THEOREM
                                                   PROVING. = SOME TREE-PARING
GELERH-60
              F THE GEOMETRY
                                 THEOKEM
                                                   MACHINE. = EMPIRICAL EXPLORATIONS O
CUNHAH-62
                                 THEOREM
                                                   TESTING BY COMPUTER. =
                                                   PROVING TECHNIQUES IN QUESTION-ANSWERING SYSTEMS. =
GREENCC68
                  THE USE OF
                                 THEOREM
                                                   AND A COMPUTER PROGRAM FOR FINDING THEOREMS DERIVABLE FROM GIVEN AXIOMS. =A CO
LEE--HC67
              A COMPLETENESS
                                 THEOREM
                                 THEOREM
              APPLICATION OF
                                                    PROVING TO PROBLEM SOLVING. =STRIPS: A NEW APPROACH TO THE
FIKESR-71
CHANGCL70A
              INPUT PROOF IN
                                THEOREM
                                                   PROVING, = THE UNIT PROOF AND THE
                                                   PROVING WITH VARIABLE-CONSTRAINED RESOLUTION. =
CHANGCL71A
                                 THEOREM
                                                   PROVING WITH EQUALITY SUBSTITUTIONS AND MATHEMATICAL INDUCTION. =
CARLIJL68A
                   AUTOMATIC
                                 THEOREM
CARLIJL69
                                 THEOREM
                                                   PROVING AND INFORMATION RETRIEVAL. =
                                 THEOREM
                                                   PROVERS AS QUESTION ANSWERERS. =
CAHLIJL69A
                                                    PROVING FORMALISM PLANNER. =MATCHLESS A PATTERN DIRECTED LA
FEWIT-C71
              NGUAGE FOR THE
                                 THEOREM
COOPEUC66
                                THEOREM
                                                   PROVING IN COMPUTERS. =
                                                   PROVER CVER INTEGFPS. =AN INTERPRET
              ATION CRIENTED
                                THEOREM
KING-J-70
                                                    =LINFAR REASONING. A NEW FORM OF THE HERBRAND-
CHAIGW-57
              GENTZEN
                                 THEOREM
HENSCLJ68
              N IN ALTOMATED
                                 THEOREM
                                                   PROVING .= SOME NEW RESULTS ON RESCLUTIO
                                                   RELATING MODEL THEORY TO PROOF THEORY. =THREE USES OF THE HE
CRAIGW-57A
              RBRAND-GENTZEN
                                 THEOREM
PITRAJ-65
              CH CHOCSES THE
                                 THEOREMS
                                                    IT PROVES. = REALIZATION OF A PROGRAM WHI
SLAGLJR70
               INTERPOLATION
                                THEOREMS
                                                   FOR PESOLUTION IN LOWER PREDICATE CALCULUS. =
                                                    UTILISANT DES METHODES HEURISTIQUES. =REALISATION DE PROGRAMMES DE DE
PITRAJ-66
              MONSTRATION DE
                                 THEOREMS
MANG-H-60A
                     PROVING
                                 THEOREMS
                                                   BY PATTERN RECOGNITION, I. =
                                                    BY MEANS OF A DIGITAL COMPUTER. = THE USE OF SYMBOLIC LOGIC IN PROVIN
NELTZB-69
              G NATHENATICAL
                                 THEOREMS
                     PROVING
WANG-H-61
                                 THEOREMS
                                                   BY PATTERN RECOGNITION, II. =
                COMPLETENESS
                                                   FOR SEMANTIC RESOLUTION IN CONSEQUENCE .- FINDING. =
SLAGLJR69
                                 THEOREMS
              AM FOR PROVING
                                 THEOREMS
                                                   OF GROUP THEORY, =ADEPT - A HEURISTIC PROGR
NORTOLM69
ROBINA-57
                     PROVING
                                 THEOREMS
                                                    AS DONE BY MAN. MACHINE AND LOGICIAN. =
CUHENJ-70
              EM FOR PROVING
                                 THEOREMS
                                                   IN THE PREDICATE CALCULUS. = AN INTERACTIVE SYST
                                                   IN RESCLUTION THEORY. =
LL-XH0-69
                  REFINEMENT
                                 THEOREMS
CUNHAB-59
              Y LOGICAL
                                 THEOREMS
                                                    MA NON-PEURISTIC PROGRAM FOR PROVING ELEMENTAR
              GE FOR PROVING
                                 THEOREMS
HEWITC-69
                                                   IN ROBOTS. =PLANNER: A LANGUA
```

```
DEKLYABLE FROM GIVEN AXIOMS. =A COMPLETENESS THEOREM AND A COMPUTER PROGRAM
               FOR FINDING
                                 THEOREMS
LEE--RC67
              PROOF CF LIMIT
                                                    =COMPUTER
BLEDSWW71A
                                 THEOREMS
                                                    DEKTVABLE WITHIN THE FIRST ORDER PREDICATE CALCULUS =A PROGRAM FOR THE PRODUCT
GILMCPC59
                                 THEOREMS
              ROOFS FCR
BUHSTHM68
                  RESCLUTION
                                 THEOREM-PROVER
                                                    =A SCHEME FOR INDEXING AND RETRIEVING CLAUSES FOR A
WELTZB-70
              LIFICATION FOR
                                 THEOREM-PROVERS
                                                    =POWER AMP
                                 THEOREM-PROVERS
                                                    COMBINING MODEL ELIMINATION AND RESOLUTION. =
LOVELDW69
SLAGLJR68
               MULTIPURPOSE.
                                 THEOREM-PROVING
                                                    HEURISTIC PROGRAM. =EXPERIMENTS WITH A
POPPLRJ67
              S IN AUTOMATIC
                                 THEOREM-PROVING
                                                    =BETH-TREE METHOD
                                                    ON THE COMPUTER. =
HCBINJA63A
                                 THEOREM-PROVING
              ON STRATEGY IN
                                 THEOREM-PROVING
                                                    =THE PREDICATE ELIMINATY
HEITER-70
                                 THEOREM-PROVING
MANG-H-65
               AND ALTOMATIC
                                                    =FORMALIZATION
                                                    =THE CONCEPT OF D
WOS--LT67
              EMODULATION IN
                                 THEOREM-PROVING
                                                   PROGRAM FOR PREDICATE CALCULUS WITH EQUALITY. = EXPERIMENTS WI
NORTOLM71
              TH A HEURISTIC
                                 THEOREM-PROVING
ROBINJAS7B
                                 THEOREM-PROVING
                                                    =HEURISTIC AND COMPLETE PROCESSES IN THE MECHANIZ
              ATION
                                                   FOR COMPUTERS: SOME RESULTS ON RESOLUTION AND RENAMING. =
                                 THEOREM-PROVING
WELTZH-66
ROBINGA69
              MODULATION AND
                                 THEOREM-PROVING
                                                    IN FIRST-OPDER THEORIES WITH EQUALITY. =PARA
                                                   STRATEGIES AND THEIR IMPLEMENTATIONS. =
HOBINGA64
                         SOME
                                 THEOREM-PROVING
                                                   METHOD. =SOME EXPERIMENTS WITH A COMPUTER REALIZATION
CWEN-RH68
                                 THEOREM-PROVING
                   A GENERAL
ROBINJA61
                                 THEOREM-PROVING
                                                   PROGRAM FOR THE IBM 704. =
                                                   BY COMPLITER. - SOME RECENT DEVELOPMENTS IN COMPLETE STRATEG
              IES FOR
WELTZH-66A
                                 THEOREM-PROVING
LOVEL DW68
                  MECHANICAL
                                 THEOREM-PROVING
                                                   BY MOREL ELIMINATION. =
                                                   BY RESCLUTION. =STUDIES IN THE COMPLETENESS AND EFFICIENCY OF
KOWALR-70A
                                 THEOREM-PROVING
                                                    IN PROPOSITIONAL CALCULUS. = AN APPROACH TO HEURISTIC PROBL
AMARES-67
              EM SOLVING AND
                                 THEOREM-PROVING
GREENCC698
              APPLICATION OF
                                 THEOREM-PROVING
                                                   TO PROBLEM-SOLVING. =APPLIC
              AN INTERACTIVE
                                 THEOREM-PROVING
                                                   PROGRAM. =AN INT
ALLENJ-70
LUCKHU-67
              N PRINCIPLE IN
                                 THEOREM-PROVING
                                                    =THE RESOLUTIO
KOWALR-70
              STRATEGIES FOR
                                 THEOREM-PROVING
                                                    =SEARCH
                                                    =A MACHI
DAVISM-62
              NE PROGRAM FOR
                                 THEOREM-PROVING
FISHWDH70
                                 THEOREM-PROVING
                                                    TECHNIQUES TO QUESTION-ANSWERING SYSTEMS. =THE
              APPLICATION OF
CHINLTJ64
                                 THE OHEM-PROVING
                                                    BY MATCHING. =
                    NOTES ON
                                 THEOREM-PROVING
CHANGCL70
                                                    TO QUESTION-ANSWERING SYSTEMS. =THE
              APPLICATION OF
                                 THEOREM-PROVING
GHEENCC69
                                                     WITH EQUALITY. = RENAMABLE PARAMODULATION
CHANGCL 70B
               FOR AUTOMATIC
                                 THE OREM-PROVING
                                                    PROCECURES. =THE
COOK-SA71
               COMPLEXITY OF
                                 THEOREM-PROVING
                                                    =SEMANTIC TREE
KOWALK-69
              S IN AUTOMATIC
                                 THEOREM-PROVING
                                                    PROCECURE. = A SIMPLIFIED FORMAT FOR THE MCCEL ELIMINATION
LOVEL DW69A
                                 THEOREM-PROVING
KALL 18-66
                                 THEOREM-PROVING
                                                    BY COMPUTER. =
KALLIS-65
                                 THEOREM-PROVING
                                                   BY COMPUTER. =
CARLIJL68
                                 THEOREM-PROVING
                                                    STRATEGIES BASED ON THE RESOLUTION PRINCIPLE. =
                         SOME
                                                   BY RESOLUTION AS A RASIS FOR QUESTION-ANSWERING SYSTEMS. =
                                 THEOREM-PROVING
GLEENCC69A
PLOTKGU70
                      LATTICE
                                 THEORETIC
                                                   PROPERTIES OF SUBSUMPTION. =
                                                    WITH EQUALITY, =PARAMODULATION AND THEOREM-PROVING
RCBINGA69
              IN FIRST-ORCER
                                 THEORIES
              REFUTATION FOR
                                                    WITH EQUALITY .= COMPLETENESS OF LINEAR
CHANGEL71
                                 THEORIES
MILLSR-68
                   THE LOGIC
                                 THEORIST
                                                    IN LISP .=
                                                    =A PROOF OF CUT-FLIMINATION
TAKAHM-67
              IN SIMPLE TYPE
                                 THEORY
SMULLRM63
              QUANTIFICATION
                                 THEORY
                                                    =A UNIFYING PRINCIPLE IN
GUINEWV55
              QUANTIFICATION
                                 THEORY
                                                    =A PROOF PROCEDURE FOR
                                                     =ADEPT - A HEURISTIC PROGRAM FOR PROVING THEOREMS OF
NORTOLM69
                        GROUP
                                 THEORY
              OLEGOMENA TO A
                                                    OF EFFICIENCY OF PROOF PROCEDURES. =PR
WELTZ8-71
                                 THEORY
              S OF THE LOGIC
NEBELA-63
                                 THEORY
                                                    MACHINE. = EMPIRICAL EXPLORATION
NEWELA-56
                    THE LOGIC
                                 THEORY
                                                    MACHINE. =
CHURCA-65
              MENTARY NUMBER
                                                    =AN UNSCLVABLE PROBLEM OF ELE
                                 THEORY
              ETENESS IN THE
HENKIL-50
                                 THEORY
                                                    OF TYPES .= COMPL
                   TOWARCS A
HINTIJ-65
                                 THEORY
                                                    OF INCUCTIVE GENERALIZATION. =
                                                    TO PROOF THEORY. =THREE USES OF THE HERBRAND-GENTZEN THEOREM RE
CHAIGW-57A
              LATTING MODEL
                                 THEORY
                                                     =THREE USES OF THE HERBRAND-GENTZEN THEOREM RELATING MODEL T
              HEORY TO PROOF
                                 THEORY
CRAIGH-57A
LUCKHD-70A
               IN RESOLUTION
                                 THEORY
                                                     =KEFINEMENTS
```

```
CAVISM-60
              QUANTIFICATION
                                 THEORY
                                                    =A COMPUTING PROCEDURE FOR
ANURE PB70
              LUTION IN TYPE
                                 THEORY
                                                    =RFS0
MASLOSJ66
              BIL-ITY TO THE
                                 THEORY
                                                    OF DECIDABLE FRAGMENTS OF CLASSICAL PREDICATE CALCULUS.=APPLICATION OF THE INV
GILMOPC60
              QUANTIFICATION
                                 THEORY
                                                    =A PROOF METHOD FOR
HERERJ-67
              TIONS IN PROOF
                                 THEORY
                                                    =INVFSTIGA
LUCKHD-69
               IN RESOLUTION
                                 THEORY
                                                    =REFINEMENT THEOREMS
BRCWNTCAR
              S AND EQUALITY
                                 THEORY
                                                    =RESOLUTION WITH COVERING STRATEGIE
CKEREB-52
              QUANTIFICATION
                                 THEORY
                                                    ON THE COMPLETENESS OF
MCCARJ-64
                                 TOUGH
                                                   NUT FOR PROOF PROCEDURES. =
REYNOJC70
                                 TRANSFORMATIONAL
                                                   SYSTEMS AND THE ALGEBRAIC STRUCTURE OF ATOMIC FORMULAS. =
DARLIJL64
                                                    ORDINARY LANGUAGE INTO SYMBOLIC LOGIC. =
                                 TRANSLATING
SLAGLJR71A
                    IN ANC/OR
                                                   =FINDING RESOLUTION PROOFS AND USING DUPLICATE GOALS
                                 TREES
LUCKHD-70
              SOLUTION PROOF
                                 TREES
                                                    EXTRACTING INFORMATION FROM RE
CANTRRG69
              INARY SEMANTIC
                                 TREES
                                                    ELFFICIENT MAXIMAL SEMANTIC RESOLUTION PROOFS BASED UPON B
                    SEMANTIC
KOWALR-69
                                 TREES
                                                   IN AUTOMATIC THEOREM-PROVING. =
LUCKHD-68
                                 TREE-PARING
                                                  STRATEGIES IN THEOREM PROVING. =
                        SOME
MCCARJ-63
              NDEFINED' AS A
                                 TRUTH-VALUE
                                                    =PRECICATE CALCULUS WITH 'U
BUCHIJR58
                                 TURING
                                                   MACHINES AND THE ENTSCHEIDUNGS-PROBLEM. =
TAKAHM-67
              TICK IN SIMPLE
                                 TYPE
                                                   THEORY. = A PROOF OF CUT-FLIMINA
ANUREPH70
               RESOLUTION IN
                                 TYPE
                                                   THEORY. =
                                 TYPE
MASLOSJ71
              THE PESOLUTION
                                                    =PROOF-SEARCH STRATEGIES FOR METHODS OF
                                 TYPES
HENKIL-50
               THE THEORY OF
                                                   =COMPLETENESS IN
WOODMGH71
              LLY EXTENDIPLE
                                 TYPE-LOGIC
                                                   FOR WECHANICAL THEOREM PROVING. = A DEFINITIONA
WELTZB-67A
              ICS, LOGIC AND
                                 UNDECIDABILITY
                                                    -MATHENAT
CREVA VP68
                          TWO
                                 UNDECICABLE
                                                   FRAGMENTS OF CLASSICAL PREDICATE CALCULUS.=
CAVISM-65
                          THE
                                 UNDECIDARLE
GODELK-67A
                 ON FORMALLY
                                 UNDECIDABLE
                                                   PROPOSITIONS OF PRINCIPIA MATHEMATICA AND RELATED SYSTEMS. =
ROBINJA71
              NAL LOGIC: THE
                                 UNIFICATION
                                                   COMPUTATION. = COMPUTATIO
FART-TP65
               OF ROPINSON'S
                                 UNIFICATION
                                                    ALGORITHM. = A USEFUL ALGEBRAIC PROPERTY
SMULLRN63
                                 UNIFYING
                                                   PRINCIPLE IN QUANTIFICATION THEORY. =
#05--LT64
                          THE
                                 UNIT
                                                   PREFERENCE STRATEGY IN THEOREM PROVING. =
                                 UNIT
                                                   PROOF AND THE INPUT PROOF IN THEOREM PROVING .=
CHANGCL70A
                          THE
CIPAORA69
                                                   OF THE DECISION PROBLEM FOR THE CLASS OF DEFINITE FORMULAS. =
               THE RECURSIVE
                                 UNSOLVABILITY
CHURCA-65
                                 UNSOLVABLE
                                                   PROBLEM OF ELEMENTARY NUMBER THEORY. =
                                                   DES METHODES HEURISTIQUES. =REALISATION DE PROGRAMMES DE DEMONSTRATION DE
PITRAJ-66
               THEOREMS
                                 UTILISANT
THAVILG64
              WITH A THECREM
                                                   PROGRAM. =EXPERIMENTS
                                 UTILIZING
CHANGCC58
              ALYSIS OF WANY
                                 VALUED
                                                   LOGICS .= ALGEHRAIC AN
ACKERS-67
              UCTION TO WANY
                                 VALUED
                                                   LOGIC.=INTROD
BING-K-69
              ESTRICTIONS ON
                                 VARIABLES
                                                    =NATURAL DECUCTION WITH FEW R
CHANGCL71A
              EM PROVING WITH
                                 VARIABLE-CONSTRAINED RESOLUTION. =THEOR
COOPEDC71
              ANICAL PROGRAM
                                 VERIFICATION
                                                    =PROGRAMS FOR MECH
KING-J-69
                   A PROGRAM
                                 VERIFIER
ANUREPHOBA
                                 WEF
              HE MATRIX OF A
                                                    =ON SIMPLIFYING T
WALDIRJ69A
              OMATIC PROGRAM
                                 WRITING
                                                    =PROW: A STEP TOWARD AUT
CIXONJK71
               AUTOMATICALLY
                                 WRITING
                                                   COMPUTER PROGRAMS. = THE SPECIALIZER: A METHOD OF
ROBINJA61
              AM FOR THE IBM
                                 704
                                                    =A GENERAL THEOREM-PROVING PROGR
MCCAHJ-63
               CALCULUS WITH
                                 'UNDEFINED'
                                                   AS A TRUTH-VALUE. EPREDICATE
RAPHAB-64
               PROGRAM WHICH
                                 UNDERSTANDS
                                                    . =A COMPUTER
```