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Abstract
We propose a refutation calculus to check the unprovability of a formula in Gödel-Dummett logics. From

refutations we can directly extract countermodels for unprovable formulas, moreover the calculus is

designed so to support a forward proof-search strategy that can be understood as a top-down construction

of a model.

1. Introduction

With the term Gödel-Dummett logics we refer to the family of intermediate logics GD𝑘 seman-

tically characterised by linear Kripke models of height at most 𝑘 and the logic GD characterised

by linear Kripke models. The logics GD𝑘 were originally introduced by Gödel [1] to study

the logics with 𝑘-valued matrices semantics, while GD was introduced by Dummett [2] to

characterize the logic with infinite valued matrix. Gödel-Dummett logics have been extensively

studied for their relations with fuzzy logics [3] and for their computational interpretations [4, 5].

This led to the development of an articulate family of calculi and proof-search strategies for

these logics [6, 5, 7, 8, 9, 10].

In this paper we address the problem of defining a logical calculus oriented to generate

countermodels for invalid formulas for Gödel-Dummett logics; we exploit the approach based

on inverse methods we have developed for Intuitionistic Propositional Logic and the modal

logics K and S4 [11, 12, 8, 13]. The inverse method, introduced by Maslov [14], is a saturation

based theorem proving technique closely related to (hyper)resolution [15]; it relies on a forward

proof-search strategy and can be applied to cut-free calculi enjoying the subformula property.

Given a goal, a set of instances of the rules of the calculus at hand is selected; such specialized

rules are repeatedly applied in the forward direction, starting from the axioms (i.e., the rules

without premises). Proof-search terminates if either the goal is obtained or the set collecting

the proved facts saturates (nothing new can be added). The inverse method has been originally

applied to Classical Logic and successively extended to some non-classical logics [16, 15, 17, 18].

In all of the mentioned papers, the inverse method has been exploited to prove the validity of a

formula in a specific logic. In [12] we launched a new perspective designing a forward calculus

to derive the unprovability of a goal formula in Intuitionistic Propositional Logic and to generate

countermodels for unprovable formulas. Differently from other approaches to countermodel
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construction for non-classical logics [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], where countermodels

are obtained as a byproduct of a failed proof-search in a direct or refutation calculus, we define

refutation calculi directly supporting model extraction and oriented to forward reasoning. Our

approach focuses on countermodel construction; indeed, the rules of the refutation calculus

are inspired by the Kripke semantics of the logic at hand and the forward refutation-search

procedure can be understood as a top-down method to build a countermodel for the given goal

formula. Differently from backward proof-search procedures, forward methods re-use sequents

and do not replicate them, accordingly the generated models contain few duplications and are

in general very concise.

In this paper we present the refutation calculus for Gödel-Dummett logics, we prove its

soundness and completeness and we show how to extract countermodels from its derivations.

2. Preliminaries

Formulas, denoted by uppercase Latin letters, are built from an infinite set of propositional

variables 𝒱 = {𝑝, 𝑞, 𝑝1, 𝑝2, . . . }, the constant ⊥ and the connectives ∧, ∨, ⊃; moreover, ¬𝐴
stands for 𝐴 ⊃ ⊥. Let 𝐺 be a formula; Sf(𝐺) is the set of all subformulas of 𝐺 (including

𝐺 itself). By Sl(𝐺) and Sr(𝐺) we denote the subsets of left and right subformulas of 𝐺
(a.k.a. negative/positive subformulas of 𝐺 [30]). Formally, Sl(𝐺) and Sr(𝐺) are the smallest

subsets of Sf(𝐺) such that:

• 𝐺 ∈ Sr(𝐺);

• 𝐴⊙𝐵 ∈ Sx(𝐺) implies {𝐴,𝐵} ⊆ Sx(𝐺), where ⊙ ∈ {∧,∨} and Sx ∈ {Sl, Sr};

• 𝐴 ⊃ 𝐵 ∈ Sl(𝐺) implies 𝐵 ∈ Sl(𝐺) and 𝐴 ∈ Sr(𝐺);

• 𝐴 ⊃ 𝐵 ∈ Sr(𝐺) implies 𝐵 ∈ Sr(𝐺) and 𝐴 ∈ Sl(𝐺).

For Sx ∈ {Sl, Sr} we set (ℒ⊃
denotes the set of formulas of the kind 𝐴 ⊃ 𝐵):

Sx
At(𝐺) = Sx(𝐺) ∩ 𝒱 Sx

⊃(𝐺) = Sx(𝐺) ∩ ℒ⊃

Sx
At,⊃(𝐺) = Sx

At(𝐺) ∪ Sx
⊃(𝐺) SfAt(𝐺) = Sl

At(𝐺) ∪ Sr
At(𝐺)

A (rooted) Kripke model 𝒦 is a quadruple ⟨𝑊,≤, 𝜌, 𝑉 ⟩ where 𝑊 is a finite and non-empty set

(the set of worlds), ≤ is a reflexive and transitive binary relation over 𝑊 , the world 𝜌 (the root of

𝒦) is the minimum of 𝑊 w.r.t. ≤, and 𝑉 : 𝑊 ↦→ 2𝒱 (the valuation function) is a map obeying

the persistence condition: for every pair of worlds 𝛼 and 𝛽 of 𝒦, 𝛼 ≤ 𝛽 implies 𝑉 (𝛼) ⊆ 𝑉 (𝛽);
the triple ⟨𝑊,≤, 𝜌⟩ is called (Kripke) frame. We write 𝛼 < 𝛽 if 𝛼 ≤ 𝛽 and 𝛼 ̸= 𝛽; moreover,

we write 𝛽 ≥ 𝛼 (𝛽 > 𝛼 resp.) to mean that 𝛼 ≤ 𝛽 (𝛼 < 𝛽 resp.). A world 𝛽 is an immediate
successor of 𝛼 in 𝒦 if 𝛼 < 𝛽 and there is no world 𝛾 such that 𝛼 < 𝛾 < 𝛽.

The valuation 𝑉 is extended into a forcing relation, denoted by ⊩, between worlds of 𝒦 and

formulas as follows:

𝒦, 𝛼 ⊩ 𝑝 iff 𝑝 ∈ 𝑉 (𝛼), ∀𝑝 ∈ 𝒱 𝒦, 𝛼 ⊮ ⊥
𝒦, 𝛼 ⊩ 𝐴 ∧𝐵 iff 𝒦, 𝛼 ⊩ 𝐴 and 𝒦, 𝛼 ⊩ 𝐵 𝒦, 𝛼 ⊩ 𝐴 ∨𝐵 iff 𝒦, 𝛼 ⊩ 𝐴 or 𝒦, 𝛼 ⊩ 𝐵

𝒦, 𝛼 ⊩ 𝐴 ⊃ 𝐵 iff ∀𝛽 ≥ 𝛼, 𝒦, 𝛽 ⊩ 𝐴 implies 𝒦, 𝛽 ⊩ 𝐵.



We sometimes write 𝛼 ⊩ 𝐴 instead of 𝒦, 𝛼 ⊩ 𝐴, leaving understood the model 𝒦 at hand

when it is clear from the context. By 𝛼 ⊩ Γ we mean that 𝛼 ⊩ 𝐴 for every 𝐴 ∈ Γ. A formula

𝐴 is valid in the frame ⟨𝑊,≤, 𝜌⟩ iff for every valuation 𝑉 , 𝜌 ⊩ 𝐴 in the model ⟨𝑊,≤, 𝜌, 𝑉 ⟩.
Propositional Intuitionistic Logic (IPL) is the set of formulas valid in all frames. Accordingly,

if there is a model 𝒦 such that 𝜌 ⊮ 𝐴 (here and below 𝜌 designates the root of 𝒦), then 𝐴 is

not IPL-valid; we call 𝒦 a countermodel for 𝐴. We write Γ ⊩ 𝐴 iff, for every model 𝒦, 𝜌 ⊩ Γ
implies 𝜌 ⊩ 𝐴; thus, 𝐴 is IPL-valid iff ∅ ⊩ 𝐴.

Given a frame ⟨𝑊,≤, 𝜌⟩, the height h(𝛼) of 𝛼 ∈ 𝑊 , is defined as follows:

h(𝛼) =

{︃
0 if 𝛼 is a maximal world of 𝑊 w.r.t. ≤
1 + max{h(𝛽) | 𝛼 < 𝛽 } otherwise

The height of 𝒦, denoted by h(𝒦), is the height of its root.

We say that a Kripke frame ⟨𝑊,≤, 𝜌⟩ is linear iff ≤ is a linear order over 𝑊 ; i.e., for every

pair of worlds 𝛼 and 𝛽, either 𝛼 ≤ 𝛽 or 𝛽 ≤ 𝛼.

Given a formula 𝐺 we say that a Kripke model 𝒦 = ⟨𝑊,≤, 𝜌, 𝑉 ⟩ is 𝐺-separable iff, for every

pair of worlds 𝛼 and 𝛽 in 𝑊 , the following separation property holds:

• if 𝛼 < 𝛽, then there is 𝑝 ∈ Sl
At(𝐺) ∩ Sr

At(𝐺) such that 𝒦, 𝛼 ⊮ 𝑝 and 𝒦, 𝛽 ⊩ 𝑝.

Let Θ be a set of formulas and let us consider the formulas 𝑃 and 𝑁 defined by the following

grammar, where 𝐴 ∈ Θ and 𝐹 is any formula

𝑃 ::= 𝐴 | 𝑃 ∧ 𝑃 | 𝐹 ∨ 𝑃 |𝑃 ∨ 𝐹 | 𝐹 ⊃ 𝑃

𝑁 ::= 𝐴 | 𝑁 ∨𝑁 | 𝐹 ∧𝑁 | 𝑁 ∧ 𝐹

The positive closure of Θ, denoted by 𝒞𝑙+(Θ), is the smallest set containing the formulas 𝑃 ; the

negative closure of Θ, denoted by 𝒞𝑙−(Θ), is the smallest set containing the formulas 𝑁 . The

following properties can be easily proved:

(𝒞𝑙1) If Θ1 ⊆ Θ2, then 𝒞𝑙+(Θ1) ⊆ 𝒞𝑙+(Θ2) and 𝒞𝑙−(Θ1) ⊆ 𝒞𝑙−(Θ2).

(𝒞𝑙2) If 𝒦, 𝛼 ⊩ 𝐴, for every 𝐴 ∈ Θ, and 𝑃 ∈ 𝒞𝑙+(Θ), then 𝒦, 𝛼 ⊩ 𝑃 .

(𝒞𝑙3) If 𝒦, 𝛼 ⊮ 𝐴, for every 𝐴 ∈ Θ, and 𝑁 ∈ 𝒞𝑙−(Θ), then 𝒦, 𝛼 ⊮ 𝑁 .

The logics GD𝑘 and GD

In this paper we consider the Gödel-Dummett logics GD𝑘 (𝑘 ≥ 0) and GD defined as follows

(see [31]):

• GD𝑘 is the set of formulas valid in linear models 𝒦 such that h(𝒦) ≤ 𝑘;

• GD =
⋂︀

𝑘≥0GD𝑘.

We remark that IPL ⊂ GD ⊂ · · · ⊂ GD2 ⊂ GD1 ⊂ GD0 = CPL, where CPL is the set of

classically valid formulas.



3. The GD-refutation calculus

The forward refutation calculus RGD(𝐺) is a calculus to infer the unprovability of a formula

𝐺 (the goal formula) in GD𝑘 and it is designed to support forward refutation-search (for a

presentation of forward calculi we refer to [15]). The calculus acts on RGD(𝐺)-sequents1
having

the form Γ ⇏𝑘 Λ ; Δ where:

• 𝑘 ≥ 0, Γ ⊆ Sl
At,⊃(𝐺), Λ ⊆ Sl

At(𝐺) ∩ Sr
At(𝐺), and Δ ⊆ Sr

At,⊃(𝐺);

• if 𝑘 = 0, then Λ = ∅.

The rank of 𝜎 = Γ ⇏𝑘 Λ ; Δ, denoted by Rn(𝜎), is 𝑘. We will see that, whenever there exists

a refutation 𝒟 of 𝜎 in the calculus RGD(𝐺), from 𝒟 we can extract a model containing a world

𝛼 such that h(𝛼) = 𝑘 and:

• 𝒦, 𝛼 ⊩
⋀︀

Γ and 𝒦, 𝛼 ⊮
⋁︀
Δ; moreover, for every 𝐴 ⊃ 𝐵 ∈ Γ, 𝒦, 𝛼 ⊮ 𝐴;

• if 𝑘 > 0, then Λ is the set of propositional variables forced in the immediate successor of 𝛼
and not in 𝛼.

The rules of RGD(𝐺) are displayed in Fig. 1. We point out that the formulas introduced in the

conclusion of the rules in the left (side of the sequents) must belong to Sl(𝐺) and the formulas

introduced in the right must belong to Sr(𝐺). An RGD(𝐺)-sequent 𝜎 is saturated if none of the

rules 𝐿 ⊃ and 𝑅 ⊃ can be applied to 𝜎. As a consequence of the side condition, the application

of the rule Succ is delayed until a saturated sequent is get. The successor rule Succ moves the

propositional variables in Λ′
from the left side of sequent to the right side; in countermodel

construction, an application of the Succ rule corresponds to a downward expansion of a model,

obtained by adding a new root 𝜌′ below the current root 𝜌; the propositional variables in Λ′
are

forced in 𝜌 and not in 𝜌′. Note that, given a rule and the sequent in the premise, we can build

different instances of the rule according with the non-deterministic choices described in the

side-condition of the rule. E.g., we can generate a different instance of 𝐿 ⊃ having Γ ⇏0 · ; Δ
in the premise, for every 𝐴 ⊃ 𝐵 ∈ Sl(𝐺) such that 𝐴 ⊃ 𝐵 ̸∈ Γ and 𝐴 ∈ 𝒞𝑙−(Δ). This also

holds for the axiom-rule; we get a different axiom for every possible partition (ΓAt,ΔAt) of

SfAt(𝐺). A proof tree of the calculus RGD(𝐺) is a tree having RGD(𝐺)-sequents as nodes and

built according to the rules of RGD(𝐺) (see e.g. [30] for a formal definition). Note that all the

proof trees of RGD(𝐺) are linear. We introduce some definitions:

• 𝒟 is an RGD(𝐺)-refutation of 𝜎 iff 𝒟 is a proof tree of RGD(𝐺) having 𝜎 as root sequent; the

rank of 𝒟 is the rank of 𝜎 (Rn(𝒟) = Rn(𝜎)).

• 𝒟 is an RGD(𝐺)-refutation of 𝐺 iff 𝒟 is an RGD(𝐺)-refutation of Γ ⇏𝑘 Λ ; Δ and 𝐺 ∈
𝒞𝑙−(Δ ∪ Λ).

• ⊢𝑘
𝐺 𝐺 iff there is an FRJ(𝐺)-refutation 𝒟 of 𝐺 such that Rn(𝒟) ≤ 𝑘.

1

In refutation calculi sequents are sometimes called anti-sequents (see,e.g., [27]).



Ax
ΓAt ⇏0 · ; ΔAt,⊥

ΓAt ∪ΔAt = SfAt(𝐺)

ΓAt ∩ΔAt = ∅

Γ ⇏0 · ; Δ
𝐿 ⊃

𝐴 ⊃ 𝐵,Γ ⇏0 · ; Δ
𝐴 ⊃ 𝐵 ̸∈ Γ ∪Δ

𝐴 ∈ 𝒞𝑙−(Δ)

Γ ⇏𝑘 Λ ; Δ
𝐿 ⊃

𝐴 ⊃ 𝐵,Γ ⇏𝑘 Λ ; Δ

𝐴 ⊃ 𝐵 ̸∈ Γ ∪Δ

𝐴 ∈ 𝒞𝑙−(Δ ∪ Λ)

𝐵 ∈ 𝒞𝑙+(Γ ∪ Λ)

Γ ⇏𝑘 Λ ; Δ
𝑅 ⊃

Γ ⇏𝑘 Λ ; Δ, 𝐴 ⊃ 𝐵

𝐴 ⊃ 𝐵 ̸∈ Δ ∪Δ

𝐴 ∈ 𝒞𝑙+(Γ)

𝐵 ∈ 𝒞𝑙−(Δ ∪ Λ)

Γ ⇏𝑘 Λ ; Δ
Succ

Γ ∖ Λ′ ⇏𝑘+1 Λ′ ; Δ,Λ

Γ ⇏𝑘 Λ ; Δ is saturated

∅ ⊂ Λ′ ⊆ Γ ∩ 𝒱

Figure 1: The refutation calculusRGD(𝐺).

Example 1 Let us consider the following formula 𝐺:

𝐺 = 𝐴 ∨ (𝑝 ⊃ 𝑟) ∨𝐵 ∨ (𝐶 ⊃ (𝑝 ∨ ¬𝑝))

𝐴 = ¬(𝑞 ∧ 𝑟) 𝐵 = (¬¬𝑝 ∧ (𝑝 ⊃ 𝑞)) ⊃ 𝑞 𝐶 = 𝐵 ⊃ (¬¬𝑝 ∧ 𝑞)

We search for an RGD(𝐺)-derivation building a database of proved sequents according with the

naive recipe of [15]: we start by inserting all the axioms; then we enter a loop where, at each

iteration, we apply all the possible rules to the sequents collected in previous steps. The loop

ends if either a sequent Γ ⇏𝑘 Λ ; Δ with 𝐺 ∈ 𝒞𝑙−(Δ ∪Λ) is generated or no new sequent can

be added to the database (the database is saturated). Fig. 2 shows the fragment of the database

containing the sequents needed to get the RGD(𝐺)-derivation of 𝐺. In the example, we denote

with 𝜎(𝑗) the sequent at line (𝑗) of Fig. 2. As an example, the sequent 𝜎
(2)

is obtained by applying

the rule 𝑅 ⊃ to the sequent 𝜎
(1)

, i.e,:

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥
𝑅 ⊃

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝

recalling that ¬𝑝 = 𝑝 ⊃ ⊥; note that, 𝑝 ∈ 𝒞𝑙+({𝑝, 𝑞, 𝑟}) and ⊥ ∈ 𝒞𝑙−({⊥}). As for sequent

𝜎
(3)

it is obtained by applying the 𝐿 ⊃ rule to 𝜎
(2)

:

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝
𝐿 ⊃

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝, 𝐴

where 𝐴 = ¬(𝑞 ∧ 𝑟) = (𝑞 ∧ 𝑟) ⊃ ⊥ , note that ⊥ ∈ 𝒞𝑙−({⊥}) and 𝑞 ∧ 𝑟 ∈ 𝒞𝑙+({𝑝, 𝑞, 𝑟}).
Sequent 𝜎

(5)
is obtained applying Succ to 𝜎

(4)
by moving 𝑟 from left to right; similarly, 𝜎

(7)



𝐺 = 𝐴 ∨ (𝑝 ⊃ 𝑟) ∨𝐵 ∨ (𝐶 ⊃ (𝑝 ∨ ¬𝑝))

𝐴 = ¬(𝑞 ∧ 𝑟) 𝐵 = (¬¬𝑝 ∧ (𝑝 ⊃ 𝑞)) ⊃ 𝑞 𝐶 = 𝐵 ⊃ (¬¬𝑝 ∧ 𝑞)

Sl
At(𝐺) = { 𝑝, 𝑞, 𝑟 } Sl

⊃(𝐺) = { 𝐶, ¬¬𝑝, 𝑝 ⊃ 𝑞 }

Sr
At(𝐺) = { 𝑝, 𝑞, 𝑟 } Sr

⊃(𝐺) = {𝐴, 𝑝 ⊃ 𝑟, 𝐵, 𝐶 ⊃ (𝑝 ∨ ¬𝑝), ¬𝑝 }

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥ Ax(1)

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝 𝑅 ⊃ (1)(2)

𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝, 𝐴 𝑅 ⊃ (2)(3)

¬¬𝑝, 𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝, 𝐴 (*) 𝐿 ⊃ (3)(4)

¬¬𝑝, 𝑝, 𝑞 ⇏1 𝑟 ; ⊥, ¬𝑝, 𝐴 Succ (4)(5)

¬¬𝑝, 𝑝, 𝑞 ⇏1 𝑟 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟 (*) 𝑅 ⊃ (5)(6)

¬¬𝑝 ⇏2 𝑝, 𝑞 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟, 𝑟 Succ (6)(7)

𝑝 ⊃ 𝑞, ¬¬𝑝 ⇏2 𝑝, 𝑞 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟, 𝑟 𝐿 ⊃ (7)(8)

𝑝 ⊃ 𝑞, ¬¬𝑝 ⇏2 𝑝, 𝑞 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟, 𝑟, 𝐵 𝑅 ⊃ (8)(9)

𝐶, 𝑝 ⊃ 𝑞, ¬¬𝑝 ⇏2 𝑝, 𝑞 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟, 𝑟, 𝐵 𝐿 ⊃ (9)(10)

𝐶, 𝑝 ⊃ 𝑞, ¬¬𝑝 ⇏2 𝑝, 𝑞 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟, 𝑟, 𝐵, 𝐶 ⊃ (𝑝 ∨ ¬𝑝) (*) 𝑅 ⊃ (10)(11)

Figure 2: Building theRGD(𝐺)-refutation of 𝐺; p-sequents are marked by (*).

is obtained applying Succ to 𝜎
(6)

by moving 𝑝 and 𝑞 from left to right and moving 𝑟 to the

rightmost zone. We have marked with * the premises of Succ that, as we discuss later, play

a role in the construction of the countermodel. Note that sequent 𝜎
(11)

meets the property

𝐺 ∈ 𝒞𝑙−(Δ ∪ Λ). The tree-like structure of the RGD(𝐺)-refutation of 𝐺 is displayed in the left

of Fig. 3. ♢

We introduce the following relations between RGD(𝐺)-sequents:

• 𝜎1
ℛ↦→0 𝜎2 iff ℛ is a rule of RGD(𝐺) having premise 𝜎1 and conclusion 𝜎2;

• 𝜎1 ↦→0 𝜎2 iff there exists a rule ℛ such that 𝜎1
ℛ↦→0 𝜎2;

• 𝜎1
−↦→0 𝜎2 iff there exists a rule ℛ ≠ Succ such that 𝜎1

ℛ↦→0 𝜎2;

• ↦→* (resp.

−↦→*) is the reflexive and transitive closure of ↦→ (resp.

−↦→*).

The following properties can be easily proved (||Θ|| denotes the cardinality of the set Θ)



Lemma 1 Let 𝜎1 = Γ1 ⇏𝑘1 Λ1 ; Δ1 and 𝜎2 = Γ2 ⇏𝑘2 Λ2 ; Δ2 be two RGD(𝐺)-sequents

such that 𝜎1 ↦→* 𝜎2. Then:

(i) 𝑘1 ≤ 𝑘2.

(ii) Γ1 ∩ ℒ⊃ ⊆ Γ2 ∩ ℒ⊃
and Γ2 ∩ 𝒱 ⊆ Γ1. Moreover, if 𝑘1 = 𝑘2 then Γ1 ⊆ Γ2 and

Γ2 ∩ 𝒱 = Γ1 ∩ 𝒱 .

(iii) If 𝑘1 = 𝑘2, then Λ1 = Λ2 and Δ1 ⊆ Δ2. If 𝑘1 < 𝑘2, then Δ1 ∪ Λ1 ⊆ Δ2 and Λ2 ⊆ Γ1.

(iv) 𝑘2 ≤ 𝑘1 + ||Γ1 ∩ 𝒱||.

By Lemma 1, we get:

Proposition 1 The relation ↦→0 on RGD(𝐺)-sequents is terminating.

Proof. Each application of rules 𝐿 ⊃ and 𝑅 ⊃ introduces a new subformula of 𝐺 in the

conclusion, thus

−↦→0 is terminating, Accordingly, an infinite ↦→0-chain starting from Γ ⇏𝑘 Λ ; Δ
should contain infinitely many applications of rule Succ. This is not possible, since every

application of rule Succ increases by 1 the rank of a sequent and, by Lemma 1(iv), the rank of

any sequent in the chain is bounded by 𝑘 + ||Γ ∩ 𝒱||. We conclude that ↦→0 is terminating. □

4. Soundness

Soundness of RGD(𝐺) is stated as follows:

Theorem 1 (Soundness ofRGD(𝐺)) ⊢𝑘
𝐺 𝐺 implies 𝐺 ̸∈ GD𝑘.

To prove this, we show that from an RGD(𝐺)-refutation 𝒟 of 𝐺 we can extract a countermodel

Mod(𝒟) for 𝐺 such that h(Mod(𝒟)) = Rn(𝒟).
Let 𝒟 an RGD(𝐺)-refutation and let 𝜎 be a sequent occurring in 𝒟; 𝜎 is a p-sequent (prime

sequent) iff 𝜎 is saturated or 𝜎 is the root sequent of 𝒟. Let Mod(𝒟) = ⟨P(𝒟), ≤, 𝜌, 𝑉 ⟩
where:

• P(𝒟) is the set of all p-sequents occurring in 𝒟;

• for every 𝜎1, 𝜎2 ∈ P(𝒟), 𝜎1 ≤ 𝜎2 iff 𝜎2 ↦→* 𝜎1;

• 𝜌 is the root of 𝒟;

• 𝑉 maps a p-sequent Γ ⇏𝑘 Λ ; Δ to the set Γ ∩ 𝒱 .

Then, since RGD(𝐺)-refutations are linear, Mod(𝒟) is a linear model; note that, by Lemma1(ii),

𝜎1 ≤ 𝜎2 implies 𝑉 (𝜎1) ⊆ 𝑉 (𝜎2), hence the definition of 𝑉 is sound. We call Mod(𝒟) the

model extracted from 𝒟. For every sequent 𝜎 occurring in 𝒟, let 𝜑(𝜎) be the p-sequent in 𝒟
immediately below 𝜎, namely:

𝜑(𝜎) = 𝜎𝑝 iff 𝜎𝑝 ∈ P(𝒟) and 𝜎
−↦→* 𝜎𝑝

It is easy to check that:



Ax𝜎(1)

𝑅 ⊃𝜎(2)

𝑅 ⊃𝜎(3)

𝐿 ⊃
𝜎*

(4)

Succ𝜎(5)

𝑅 ⊃
𝜎*

(6)

Succ𝜎(7)

𝐿 ⊃𝜎(8)

𝑅 ⊃𝜎(9)

𝐿 ⊃𝜎(10)

𝑅 ⊃
𝜎*

(11)

𝜎(11):

𝜎(6): 𝑝, 𝑞

𝜎(4): 𝑝, 𝑞, 𝑟 sequents labeled by (*) are p-sequents
𝜎(𝑗) refers to the sequent at line (𝑗)

𝜑(𝜎𝑗) =

⎧⎪⎨⎪⎩
𝜎(4) 𝑗 = 1, 2, 3, 4

𝜎(6) 𝑗 = 5, 6

𝜎(11) 𝑗 = 7, 8, 9, 10, 11

Figure 3: The RGD(𝐺)-derivation of 𝐺 and the extracted countermodel.

• p-sequents are fixed points of 𝜑, i.e., 𝜎𝑝 ∈ P(𝒟) implies 𝜑(𝜎𝑝) = 𝜎𝑝;

• 𝜑 is a surjective map from the set of sequents of 𝒟 onto P(𝒟);

• 𝜎1 ↦→* 𝜎2 implies 𝜑(𝜎2) ≤ 𝜑(𝜎1);

• h(𝜑(𝜎)) = Rn(𝜎).

We call 𝜑 the map associated with 𝒟; note that Mod(𝒟) is 𝐺-separable.

Example 2 The model Mod(𝒟𝐺) and the related map 𝜑 are shown in Fig. 3. The bottom world

is the root and 𝜎 < 𝜎′
iff the world 𝜎 is drawn below 𝜎′

. For each 𝜎, we display the set 𝑉 (𝜎).
As an example, 𝑉 (𝜎4) = {𝑝, 𝑞, 𝑟}. It is easy to check that 𝜎

(11)
⊮ 𝐺. ♢

The following lemma is the main step to prove the soundness theorem:

Lemma 2 Let 𝒟 be an RGD(𝐺)-refutation, let Mod(𝒟) be the model extracted from 𝒟 and 𝜑
the map associated with 𝒟. For every sequent 𝜎 = Γ ⇏𝑘 Λ ; Δ occurring in 𝒟, the following

properties hold.

(i) For every 𝐶 ∈ Γ, Mod(𝒟), 𝜑(𝜎) ⊩ 𝐶 . Moreover, if 𝐶 = 𝐴 ⊃ 𝐵, then Mod(𝒟), 𝜑(𝜎) ⊮
𝐴.

(ii) For every 𝐶 ∈ Δ ∪ Λ, Mod(𝒟), 𝜑(𝜎) ⊮ 𝐶 .

Proof. By induction on the height of 𝜎 in𝒟, taking into account the closure properties (𝒞𝑙1)-(𝒞𝑙2)

and Lemma 1. □

Let ⊢𝑘
𝐺 𝐺. Then, there exists an RGD(𝐺)-refutation 𝒟 of 𝜎 = Γ ⇏𝑘′ Λ ; Δ such that 𝑘′ ≤ 𝑘

and 𝐺 ∈ 𝒞𝑙−(Δ ∪ Λ). Let Mod(𝒟) = ⟨𝑃,≤, 𝜌, 𝑉 ⟩ and 𝜑 the associated map. We have

h(Mod(𝒟)) = 𝑘′ ≤ 𝑘 and 𝜑(𝜎) = 𝜌; by Lemma 2(ii), we get Mod(𝒟), 𝜌 ⊮ 𝐶 , for every

𝐶 ∈ Δ ∪ Λ. Since 𝐺 ∈ 𝒞𝑙−(Δ ∪ Λ), by property (𝒞𝑙3) of negative closures Mod(𝒟), 𝜌 ⊮ 𝐺,

hence 𝐺 ̸∈ GD𝑘. This proves the soundness of RGD(𝐺) (Theorem 1).



5. Completeness

We prove the completeness of RGD(𝐺):

Theorem 2 (Completeness ofRGD(𝐺)) 𝐺 ̸∈ GD𝑘 implies ⊢𝑘
𝐺 𝐺.

The proof goes along the following lines. First we show that we can use a 𝐺-separable coun-

termodel of 𝐺 of height 𝑘 to build an RGD(𝐺)-refutation of 𝐺 with rank 𝑘 at most. Then, we

prove that, given a formula 𝐺 ̸∈ GD𝑘, there exists a 𝐺-separable model 𝒦 = ⟨𝐾,≤, 𝜌, 𝑉 ⟩ of

height at most 𝑘 such that 𝒦, 𝜌 ⊮ 𝐺.

The following properties of saturated sequents can be easily proved.

Lemma 3 Let 𝜎 = Γ ⇏𝑘 Λ ; Δ be a saturated RGD(𝐺)-sequent. Then:

(i) If 𝑘 = 0 and 𝐴 ⊃ 𝐵 ∈ Sl(𝐺) and 𝐴 ∈ 𝒞𝑙−(Δ), then 𝐴 ⊃ 𝐵 ∈ Γ.

(ii) If 𝐴 ⊃ 𝐵 ∈ Sl(𝐺) and 𝐴 ∈ 𝒞𝑙−(Δ ∪ Λ) and 𝐵 ∈ 𝒞𝑙+(Γ ∪ Λ), then 𝐴 ⊃ 𝐵 ∈ Γ.

(iii) If 𝐴 ⊃ 𝐵 ∈ Sr(𝐺) and 𝐴 ∈ 𝒞𝑙+(Γ) and 𝐵 ∈ 𝒞𝑙−(Δ ∪ Λ), then 𝐴 ⊃ 𝐵 ∈ Δ.

Lemma 4 For every RGD(𝐺)-sequent 𝜎, there exists a unique saturated RGD(𝐺)-sequent 𝜎′

such that 𝜎
−↦→* 𝜎

′
.

Proof. Let 𝒮𝐺 be the set of all the RGD(𝐺)-sequents and let us consider the Abstract Reduction

System 𝒜𝐺 = ⟨𝒮𝐺,
−↦→⟩ (see e.g. [32]). By Proposition 1, 𝒜𝐺 is terminating; the irreducible

elements of 𝒜𝐺 are the saturated sequents. Moreover, one can easily check that 𝒜𝐺 is locally

confluent; indeed, if 𝜎
−↦→ 𝜎1 and 𝜎

−↦→ 𝜎2, there exists 𝜎′
such that 𝜎1

−↦→ 𝜎′
and 𝜎2

−↦→ 𝜎′
. By

Newman’s Lemma [32], 𝒜𝐺 is confluent, and this proves the assertion. □

Let 𝜎 be an RGD(𝐺)-sequent; by 𝜎*
we denote the unique saturated RGD(𝐺)-sequent such

that 𝜎
−↦→* 𝜎

*
(thus, if 𝜎 is saturated, we have 𝜎* = 𝜎).

Let 𝒦 = ⟨𝑊,≤, 𝜌, 𝑉 ⟩ be a 𝐺-separable model. For every 𝛼 ∈ 𝑊 , we define the saturated

RGD(𝐺)-sequent Sat𝐺(𝛼) associated with 𝛼 by induction on h(𝛼).

• h(𝛼) = 0.

Sat𝐺(𝛼) = ( ΓAt ⇏0 · ; ΔAt⊥ )*
ΓAt = { 𝑝 ∈ Sl

At(𝐺) | 𝒦, 𝛼 ⊩ 𝑝 }
ΔAt = { 𝑝 ∈ Sr

At(𝐺) | 𝒦, 𝛼 ⊮ 𝑝 }

• h(𝛼) > 0.

Let 𝛽 be the immediate successor of 𝛼, let Sat𝐺(𝛽) = Γ ⇏𝑘 Λ ; Δ and let

Λ𝛽 = { 𝑝 ∈ Sl
At(𝐺) ∩ Sr

At(𝐺) | 𝒦, 𝛽 ⊩ 𝑝 and 𝒦, 𝛼 ⊮ 𝑝 }

Note that Λ𝛽 is not empty (indeed, 𝒦 is 𝐺-separable). We set:

Sat𝐺(𝛼) = ( Γ ∖ Λ𝛽 ⇏𝑘+1 Λ𝛽 ; Δ,Λ )*



Example 3 Let 𝐺 be defined as in Ex. 1. Below we display a 𝐺-separable model 𝒦 consisting

of three worlds 𝛼0, 𝛼1, 𝛼2; for each 𝛼𝑗 , the saturated set Sat𝐺(𝛼𝑗) coincides with one of the

saturated sequents occurring in the refutation in Fig. 2.

𝛼2:

𝛼1: 𝑝, 𝑞

𝛼0: 𝑝, 𝑞, 𝑟

Sat𝐺(𝛼0) = ¬¬𝑝, 𝑝, 𝑞, 𝑟 ⇏0 · ; ⊥, ¬𝑝, 𝐴 (𝜎
(4)

)

Sat𝐺(𝛼1) = ¬¬𝑝, 𝑝, 𝑞 ⇏1 𝑟 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟 (𝜎
(6)

)

Sat𝐺(𝛼2) = 𝐶, 𝑝 ⊃ 𝑞, ¬¬𝑝 ⇏2 𝑝, 𝑞 ; ⊥, ¬𝑝, 𝐴, 𝑝 ⊃ 𝑟, 𝑟, 𝐵, 𝐶 ⊃ (𝑝 ∨ ¬𝑝) (𝜎
(11)

)

♢

Lemma 5 Let 𝒦 = ⟨𝑊,≤, 𝜌, 𝑉 ⟩ be a 𝐺-separable model, let 𝛼 ∈ 𝑊 and Sat𝐺(𝛼) = Γ ⇏𝑘

Λ ; Δ. Then:

(i) 𝑘 = h(𝛼).

(ii) If 𝑝 ∈ Sl
At(𝐺) and 𝒦, 𝛼 ⊩ 𝑝, then 𝑝 ∈ Γ.

(iii) If 𝑝 ∈ Sr
At(𝐺) and 𝒦, 𝛼 ⊮ 𝑝, then 𝑝 ∈ Δ ∪ Λ.

(iv) There exists an RGD(𝐺)-refutation of Sat𝐺(𝛼).

(v) If 𝐶 ∈ Sl(𝐺) and 𝒦, 𝛼 ⊩ 𝐶 , then 𝐶 ∈ 𝒞𝑙+(Γ).

(vi) If 𝐶 ∈ Sr(𝐺) and 𝒦, 𝛼 ⊮ 𝐶 , then 𝐶 ∈ 𝒞𝑙−(Δ ∪ Λ).

Proof. Points (i)-(iv) easily follow by induction on h(𝛼). We prove (v) and (vi) by a main

induction hypothesis (IH1) on h(𝛼) and a secondary induction hypothesis (IH2) on |𝐶|. Note

that, by point (i), we have 𝑘 = h(𝛼).

(C1) h(𝛼) = 0.

We have 𝑘 = 0, hence Λ = ∅. Let 𝐶 ∈ Sl(𝐺) such that 𝒦, 𝛼 ⊩ 𝐶; we show 𝐶 ∈ 𝒞𝑙+(Γ).
If 𝐶 ∈ 𝒱 , by point (ii) we get 𝑝 ∈ Γ, hence 𝑝 ∈ 𝒞𝑙+(Γ). Let 𝐶 = 𝐴 ∧ 𝐵. Then, 𝒦, 𝛼 ⊩ 𝐴
and 𝒦, 𝛼 ⊩ 𝐵. By (IH2), we get 𝐴 ∈ 𝒞𝑙+(Γ) and 𝐵 ∈ 𝒞𝑙+(Γ), hence 𝐴 ∧ 𝐵 ∈ 𝒞𝑙+(Γ). The

case 𝐶 = 𝐴 ∨ 𝐵 is similar. Let 𝐶 = 𝐴 ⊃ 𝐵. If 𝒦, 𝛼 ⊩ 𝐵, by (IH2) we get 𝐵 ∈ 𝒞𝑙+(Γ),
hence 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙+(Γ). Let us assume 𝒦, 𝛼 ⊮ 𝐵. Then 𝒦, 𝛼 ⊮ 𝐴 hence, by (IH2), we get

𝐴 ∈ 𝒞𝑙−(Δ). By point Lemma 3(i) it follows that 𝐴 ⊃ 𝐵 ∈ Γ, hence 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙+(Γ). This

concludes the proof of (v).



Let 𝐶 ∈ Sr(𝐺) such that 𝒦, 𝛼 ⊮ 𝐶; we show 𝐶 ∈ 𝒞𝑙−(Δ). If 𝐶 ∈ 𝒱 , by point (iii) we get

𝐶 ∈ Δ, hence 𝐶 ∈ 𝒞𝑙−(Δ). Let 𝐶 = 𝐴 ∧ 𝐵. Then, 𝒦, 𝛼 ⊮ 𝐴 or 𝒦, 𝛼 ⊮ 𝐵. According to the

case, by (IH2) we get 𝐴 ∈ 𝒞𝑙−(Δ) or 𝐵 ∈ 𝒞𝑙−(Δ), hence 𝐴∧𝐵 ∈ 𝒞𝑙−(Δ). The case 𝐶 = 𝐴∨𝐵
is similar. Let 𝐶 = 𝐴 ⊃ 𝐵. We have 𝒦, 𝛼 ⊩ 𝐴 and 𝒦, 𝛼 ⊮ 𝐵. By (IH2), we get 𝐴 ∈ 𝒞𝑙+(Γ)
and 𝐵 ∈ 𝒞𝑙−(Δ). By Lemma 3(iii) it follows that 𝐴 ⊃ 𝐵 ∈ Δ, hence 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙+(Δ). This

concludes the proof of (vi).

(C2) h(𝛼) > 0.

Let 𝛽 be the immediate successor of 𝛼 (thus, h(𝛽) = h(𝛼)− 1) and let:

Sat𝐺(𝛽) = Γ′ ⇏𝑘−1 Λ
′ ; Δ′

Λ𝛽 = { 𝑝 ∈ Sl
At(𝐺) ∩ Sl

At(𝐺) | 𝒦, 𝛽 ⊩ 𝑝 and 𝒦, 𝛼 ⊮ 𝑝 }

We have:

Sat𝐺(𝛼) = ( Γ′ ∖ Λ𝛽 ⇏𝑘 Λ𝛽 ; Δ
′,Λ′ )* Γ′ ∖ Λ𝛽 ⊆ Γ Δ′ ∪ Λ′ ⊆ Δ

Let 𝐶 ∈ Sl(𝐺) such that 𝒦, 𝛼 ⊩ 𝐶; we show 𝐶 ∈ 𝒞𝑙+(Γ). The cases 𝐶 ∈ 𝒱 , 𝐶 = 𝐴 ∧ 𝐵
and 𝐶 = 𝐴 ∨ 𝐵 can be proved as in the case (C1). Let 𝐶 = 𝐴 ⊃ 𝐵. If 𝒦, 𝛼 ⊩ 𝐵 then,

by (IH2), 𝐵 ∈ 𝒞𝑙+(Γ), which implies 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙+(Γ). Let us assume 𝒦, 𝛼 ⊮ 𝐵; we show that

𝐴 ⊃ 𝐵 ∈ Γ. Since 𝛼 < 𝛽, it holds that 𝒦, 𝛽 ⊩ 𝐴 ⊃ 𝐵. By (IH1), 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙+(Γ′), hence

𝐵 ∈ 𝒞𝑙+(Γ′) or 𝐴 ⊃ 𝐵 ∈ Γ′
. In the latter case, since 𝐴 ⊃ 𝐵 ∈ Γ′ ∖ Λ𝛽 and Γ′ ∖ Λ𝛽 ⊆ Γ, we

get 𝐴 ⊃ 𝐵 ∈ Γ. Let us consider the former case (namely, 𝐵 ∈ 𝒞𝑙+(Γ′)). From Γ′ ∖ Λ𝛽 ⊆ Γ,

it follows that Γ′ ⊆ Γ ∪ Λ𝛽 , hence 𝐵 ∈ 𝒞𝑙+(Γ ∪ Λ𝛽). Since 𝒦, 𝛼 ⊩ 𝐴 ⊃ 𝐵 and 𝒦, 𝛼 ⊮ 𝐵, it

holds that 𝒦, 𝛼 ⊮ 𝐴 hence, by (IH2), 𝐴 ∈ 𝒞𝑙−(Δ ∪ Λ). We can apply Lemma 3(ii), and infer

that 𝐴 ⊃ 𝐵 ∈ Γ. Having proved 𝐴 ⊃ 𝐵 ∈ Γ, we get 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙+(Γ), and this concludes the

proof of point (v).

Let 𝐶 ∈ Sr(𝐺) such that 𝒦, 𝛼 ⊮ 𝐶 ; we show 𝐶 ∈ 𝒞𝑙−(Δ∪Λ). The cases 𝐶 ∈ 𝒱 , 𝐶 = 𝐴∧𝐵
and𝐶 = 𝐴∨𝐵 can be proved as in the case (C1). Let𝐶 = 𝐴 ⊃ 𝐵; we show that𝐴 ⊃ 𝐵 ∈ Δ∪Λ.

Since 𝐾,𝛼 ⊮ 𝐴 ⊃ 𝐵, there exists 𝛾 ∈ 𝑊 such that 𝛼 ≤ 𝛾 and 𝒦, 𝛾 ⊩ 𝐴 and 𝒦, 𝛾 ⊮ 𝐵. If

𝛾 = 𝛼, by (IH2) we get 𝐴 ∈ 𝒞𝑙+(Γ) and 𝐵 ∈ 𝒞𝑙−(Δ ∪ Λ). By Lemma 3(iii), it follows that

𝐴 ⊃ 𝐵 ∈ Δ. Let us assume 𝛼 < 𝛾. Then, 𝛽 ≤ 𝛾, hence 𝒦, 𝛽 ⊮ 𝐴 ⊃ 𝐵. By (IH1), we

get 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙−(Δ′ ∪ Λ′), which implies 𝐴 ⊃ 𝐵 ∈ Δ′ ∪ Λ′
. Since Δ′ ∪ Λ′ ⊆ Δ, we get

𝐴 ⊃ 𝐵 ∈ Δ. Having proved that 𝐴 ⊃ 𝐵 ∈ Δ, it follows that 𝐴 ⊃ 𝐵 ∈ 𝒞𝑙−(Δ ∪ Λ), and this

concludes the proof of point (vi). □

To conclude the proof of completeness, we need to prove that:

Lemma 6 If 𝐺 ̸∈ GD𝑘, then there exists a countermodel 𝒦 for 𝐺 such that h(𝒦) ≤ 𝑘 and 𝒦
is 𝐺-separable.

Proof. We give a sketch of the proof. Let us assume 𝐺 ̸∈ GD𝑘. Then, there exists a model

𝒦1 = ⟨𝑊1,≤1, 𝜌1, 𝑉1⟩ such that 𝒦1, 𝜌1 ⊮ 𝐺 and h(𝜌1) ≤ 𝑘. We define the countermodel 𝒦 in

two steps. Firstly, we define the model 𝒦2 obtained from 𝒦1 by adding to each set 𝑉1(𝛼) the



propositional variables in Sl
At(𝐺) ∖ SrAt(𝐺). Secondly, we get 𝒦 by filtrating 𝒦2. The model

𝒦2 = ⟨𝑊2,≤2, 𝜌2, 𝑉2⟩ is defined as follows:

𝑊2 = 𝑊1 ≤2=≤1 𝜌2 = 𝜌1

∀𝛼 ∈ 𝑊1, 𝑉2(𝛼) =
(︁
𝑉1(𝛼) ∪ (SlAt(𝐺) ∖ SrAt(𝐺))

)︁
∖ (SrAt(𝐺) ∖ SlAt(𝐺))

By induction on |𝐶|, we can prove that:

(1) for every 𝛼 ∈ 𝑊1 and 𝐶 ∈ Sl(𝐺), 𝒦1, 𝛼 ⊩ 𝐶 implies 𝒦2, 𝛼 ⊩ 𝐶 ;

(2) for every 𝛼 ∈ 𝑊1 and 𝐶 ∈ Sr(𝐺), 𝒦1, 𝛼 ⊮ 𝐶 implies 𝒦2, 𝛼 ⊮ 𝐶 .

Let us introduce the following relation between worlds of 𝑊2:

𝛼 ∼ 𝛽 iff 𝑉2(𝛼) ∩ SfAt(𝐺) = 𝑉2(𝛽) ∩ SfAt(𝐺)

It is easy to check that:

• ∼ is an equivalence relation;

• If 𝛼 ≤2 𝛽 and 𝛼′ ∼ 𝛼 and 𝛽′ ∼ 𝛽 then 𝛼′ ∼ 𝛽′
or 𝛼′ <2 𝛽

′
.

We turn 𝒦2 into a 𝐺-separable model 𝒦 by collapsing ∼-equivalent worlds. For 𝛼 ∈ 𝑊2, let

[𝛼] denote the equivalence class of 𝛼 (w.r.t. ∼) and let 𝑊 be the quotient of 𝑊2. By the above

properties, the model 𝒦 = ⟨𝑊,≤, 𝜌, 𝑉 ⟩ can be defined as follows:

≤= { ([𝛼], [𝛽]) | 𝛼 ≤2 𝛽 } 𝜌 = [𝜌2]

∀𝛼 ∈ 𝑊2, 𝑉 ([𝛼]) = 𝑉2(𝛼) ∩ SfAt(𝐺)

By induction on |𝐶|, we can prove that:

(3) For every 𝛼 ∈ 𝑊2 and 𝐶 ∈ Sf(𝐺), 𝒦2, 𝛼 ⊩ 𝐶 iff 𝒦, [𝛼] ⊩ 𝐶 .

We show that 𝒦 is 𝐺-separable. Let [𝛼] < [𝛽]. Then, 𝛼 ≤2 𝛽 and 𝛼 ̸∼ 𝛽. Thus, that there exists

𝑝 ∈ 𝑉2(𝛽) ∖ 𝑉2(𝛼), and this implies 𝑝 ∈ Sl(𝐺) ∩ Sr(𝐺). Since 𝒦1, 𝜌1 ⊮ 𝐺 and 𝐺 ∈ Sr(𝐺),
by (2) and (3) we get 𝒦, 𝜌 ⊮ 𝐺, hence 𝒦 is a countermodel for 𝐺. Finally, we observe that

h(𝒦) ≤ h(𝒦2) = h(𝒦1) = 𝑘. □

Let us assume 𝐺 ̸∈ GD𝑘. By Lemma 6, there exists a model 𝒦 = ⟨𝐾,≤, 𝜌, 𝑉 ⟩ such that

𝒦, 𝜌 ⊮ 𝐺, h(𝜌) ≤ 𝑘 and 𝒦 is 𝐺-separable. Let Sat𝐺(𝜌) = Γ ⇏𝑘′ Λ ; Δ. By Lemma 5(i),

𝑘′ = h(𝜌) ≤ 𝑘 and there exists an RGD(𝐺)-refutation of Sat𝐺(𝜌). Since 𝒦, 𝜌 ⊮ 𝐺, by

Lemma 5(vi) we get 𝐺 ∈ 𝒞𝑙−(Δ ∪ Λ). We conclude ⊢𝑘
𝐺 𝐺, and this proves the completeness

theorem. As a corollary, we get

Theorem 3 𝐺 ̸∈ GD iff there exists an RGD(𝐺)-refutation of 𝐺.



6. Conclusions

In this paper we have introduced a forward calculus RGD(𝐺) to derive the non-validity of a

goal formula 𝐺 in Gödel-Dummett logics. From an RGD(𝐺)-refutation of 𝐺 we can extract a

countermodel for 𝐺. As for the proof-search strategy, we have presented the naive forward

strategy of [15], we leave as future work the investigation of clever strategies (e.g., using

subsumption to reduce redundancies as those discussed in [8]) and the implementation of the

calculus exploiting the full-fledged Java Framework JTabWb [33]. The refinement of the forward

proof-search strategy and the implementation are key step to compare our approach with the

ones presented in [34, 9, 10]. We also aim to extend our approach to other intermediate logics.
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