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Decidability of Admissibility∗
On a Problem of Friedman and its Solution by Rybakov

Jeroen P. Goudsmit

July 15, 2021

Abstract

Rybakov (1984a) proved that the admissible rules of IPC are decidable. We
give a proof of the same theorem, using the same core idea, but couched in
the many notions that have been developed in the mean time. In particular,
we illustrate how the argument can be interpreted as using refinements of the
notions of exactness and extendibility.

1 Introduction

Think of your favourite logic. Now, remember the theorems and forget the rules.
Is it possible to reconstruct the rules from this limited information alone? A good
first try would be to consider all rules that yield the same set of theorems.1 This
works out fine if your were thinking of classical propositional logic. Although you
might have been thinking of different rules, you can be sure that they generate the
just described set.

If intuitionistic logic is your logic of choice, this procedure likely left you sorely
disappointed. Indeed, a good deal of the just defined rules will seem unfamiliar,

∗Support by theNetherlands Organisation for Scientific Research under grant 639.032.918 is gratefully
acknowledged. Published as J. P. Goudsmit (2021). “Decidability of Admissibility: On a problem
by Friedman and its solution by Rybakov.” In: The Bulletin of Symbolic Logic 27.1, pp. 1–38. doi:
10.1017/bsl.2020.43

1See Definition 1.1.
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surpassing most of the popular axiomatisations. The rule below is a good exam-
ple: adding this rule to an axiomatisation does not change the set of provable
theorems.

¬χ→ ϕ ∨ ψ/ (¬χ→ ϕ) ∨ (¬χ→ ψ) . (1)
There even is an infinite series of distinct rules present and it would be pretty safe
to wager you were thinking of none of them. In the following, we present a proof
showing that this set of so-called admissible rules, however wild, is decidable.

The admissible rules of a logic are those rules under which the set of its theorems
is closed. They are the valid rules of a logic, defined only in terms of the theorems
present, irrespective of axiomatisation. This in sharp contrast to derivable rules,
those rules where the conclusion can be shown to follow from the assumptions
using the specific rules of inference available. Derived rules are strongly bound
to an axiomatisation, merely present by convention, whereas admissible rules are
true invariants.

Although all derivable rules are admissible rules, the converse need not hold.
Moreover, whereas derivable rules remain admissible — and indeed, derivable —
when adding additional axioms or rules, the same can not be said for admissible
rules in general. This makes the notion of admissibility quite intricate, even in the
case of logics as well-behaved as intuitionistic propositional logic.

In the beginning of the twentieth century, the distinction between admissibility
and derivability was not yet widely perceived. Moh (1957) observed this confu-
sion.2 He noted that, even though a rule might well be admissible, it need not
be a “rule of procedure”; what we now call a derivable rule. Kleene (1952, p. 94)
also made the distinction. He called admissible rules derivable and derivable rules
directly derivable. He noted, as above, that only the latter kind need be preserved
under extensions of the logic. The currently prevalent nomenclature comes from
Lorenzen (1955), who introduced the term “Zulässigkeit”. This was quickly trans-
lated into the now commonly used term “admissibility” by Craig (1957).3 Before
we continue, let us give a formal definition.

1.1 Definition (Admissible Rule)
A rule ϕ/ψ is said to be admissible in a logic Λwhen ⊢Λ σ(ϕ) entails ⊢Λ σ(ψ) for
each substitution σ.
2For more background on the the paper of Moh (1957), we refer to its review by Wang (1960) and the

subsequent paper Wang (1965), which, in turn, was reviewed by Church (1975).
3From here onwards, the term got adopted by the community at large. It already appears in Schütte

(1960, p. 40), who attributes it to Lorenzen. The term “permissible rule” also appears in some of
the earlier works on admissible rules. The definition is identical and appears to originate from
Pogorzelski (1968), where “dopuszczalna” (Polish for admissible) is translated as “permissible”.
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Early on, it was shown that the admissible rules of the classical propositional cal-
culus (CPC) are all derivable, as discussed by Belnap and Thomason (1963) and
Belnap, Leblanc, and Thomason (1963).4 The situation is much more intricate in
the intuitionistic propositional calculus (IPC). Let us give a few examples.

First, let us think back to the example (1) given above. It follows through the work
of Kreisel and Putnam (1957) that this rule is not derivable, yet Harrop (1956)
proved that it is admissible. Recall that the admissibility of a rule need not be
preserved when extending the logic. This rule is special in that regard, as Prucnal
(1979) proved it to be admissible in all axiomatic extensions of IPC.

Note that the above rule can be generalised by replacing ¬χ with an arbitrary
Harrop formula. Minari and Wroński (1988) proved that the resulting rule is ad-
missible in all extensions of IPC. Not all admissible yet underivable rules are ad-
missible in all intermediate logics. Take, for instance, the following rule which
first appeared in the work of Citkin (1977) as a generalisation of a rule by Mints
(1972).

((ϕ→ χ)→ ϕ ∨ ψ) ∨ θ/ ((ϕ→ χ)→ ϕ) ∨ ((ϕ→ χ)→ ψ) ∨ θ

This rule is admissible in IPC, but it is not admissible in the Kreisel–Putnam logic
KP, which is obtained by adding the implication corresponding to (1) as an ax-
iom to IPC.5 However, there are several extensions of IPC in which this rule is
derivable, for instance the Gödel–Dummett logic LC.

The study of admissible rules is related to several fields within mathematical logic.
First, the admissible rules of IPC relate closely to the propositional structure of
Heyting Arithmetic. Through De Jongh’s Theorem, it is known that the propo-
sitional logic of Heyting Arithmetic is equal to IPC. This result has been re-
proven and extended numerous times and appears very robust.6 One may wonder
whether the propositional rules of Heyting arithmetic equal the admissible rules
of IPC. Visser (1999) proved this to indeed be the case.

Second, the admissible rules of IPC are intimately related to the quasi-equations
that hold in the quasi-variety generated by the free Heyting algebras.7 A similar
connection exists between the admissible rules of any algebraizeble logic and the
quasi-variety generated by said logic’s free algebras. Admissible rules correspond,
under this perspective, to the Horn sentences that hold in free algebras.

4Note that the latter makes use of the term “admissible rule” and explicitly attributes it to Lorenzen.
5This immediately follows from Iemhoff (2005, Theorem 5.5) and Citkin (2012, Proposition 1).
6See de Jongh, Verbrugge, and Visser (2011) for recent developments and an overview of the history.
7We refer to Metcalfe and Röthlisberger (2013, Section 2) for definitions of the relevant terminology.
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Finally, let us mention unification theory, in the sense of Siekmann (1989) and
Baader (1992). In unification theory, one is concerned with unifying two expres-
sions within a given language modulo a given theory. One could, for instance, try
to unify an expression in the language of propositional logic to the expression ⊺,
modulo the axioms of IPC. This amounts to finding a substitution, called a “uni-
fier”, that makes a given formula derivable. The problem of finding an algorithm
that can generate the most general unifiers of a given formula modulo IPC was
already posed by G.E. Mints in 1984.8 Ghilardi (1997) illustrated how this syntac-
tic endeavour can be expressed in a more algebraic and categorical manner. Using
this new perspective,9 Ghilardi (1999) solved the unification problem for IPC. This
approach was later adapted by Iemhoff (2001b) to characterise the admissible rules
of IPC.

It is easy to see that a formulaϕ is a theorem of IPC precisely if ⊺/ϕ is an admissible
rule. As such, the study of admissibility encompasses the study of the theorems of
IPC. It is well-known that the set of theorems of IPC is decidable; in fact, Statman
(1979) proved it to be pspace-complete. Recall that admissible rules correspond to
quasi-equations that hold in free Heyting algebras. As such, they form a subtheory
of the first-order theory of Heyting algebras, which Rybakov (1985b) and Idziak
(1989) independently proved to be undecidable. It is thus a natural question to ask
the following, paraphrasing Friedman (1975, Problem 40):

Is there a decision procedure to determine whether a rule ϕ/ψ is ad-
missible in IPC?

An affirmative answer was given by Rybakov (1984a). His method proved ex-
tremely powerful, allowing him to answer analogous questions for numerousmodal
logics. Among those, themodal logics of the finite slice, treated in Rybakov (1984c),
modal logics extending S4.2, treated in Rybakov (1984b), the modal logic Grz of
Grzegorczyk (1964), as treated in Rybakov (1987a,b, 1990b, 1991c), and the prov-
ability logic GL of Löb, treated in Rybakov (1990a, 1991a), deserve special men-
tion. Later, Ghilardi (1999, p. 374) answered Friedman’s question through different
means. Jeřábek (2005, Theorem 4.3) eventually proved that admissibility in IPC is
coNEXP complete.

Besides answering Friedman’s question, Rybakov’s method can also be applied to
tackle many problems related to admissibility, in particular the following four.

8See Ershov and Goncharov (1986, Problem 103).
9The novelty was in using the notion of projectivity to study unification. Similar notions appeared

earlier, such as transparant unification as introduced by Wroński (1995).
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(i) The decidability of the universal theory of free algebras, treated in Rybakov
(1992b, 1996).

(ii) Characterising those extensions of a given logic that inherit all rules, as
covered in Rimatskij and Rybakov (2005), Rutskii and Fedorishin (2002), Ry-
bakov (1993), Rybakov, Gencer, and Oner (1999), and Rybakov and Rimatskij
(2002).

(iii) Describing a set of rules from which all others follow, as discussed in Fe-
dorishin (2007), Rybakov (1985a, 1987a, 1995, 1999, 2001, 2004), Rybakov,
Kiyatkin, and Terziler (1999, 2000), and Rybakov, Terziler, and Rimatskij
(2000).

(iv) Giving a set ofmost general unifiers for a given formula, as treated in Babeny-
shev and Rybakov (2011), Odintsov and Rybakov (2013), and Rybakov (2011,
2013a,b).

In this paper, we describe Rybakov’s solution to Friedman’s problem. His original
solution is expressed in the modal logic S4 and transferred to IPC via the Gödel–
Tarski translation. We present a direct solution, loosely based on the reasoning of
Odintsov and Rybakov (2013).

The proof rests on one central concept, analogous to the notion of the bounded
model property. One of the ways in which one can prove that the set of theorems
of IPC is decidable is by constructing some complexity measure on formulae and
showing that a formula is derivable in IPC if and only if it holds in all models
whose size is bounded in terms of the measure of complexity of said formula.
As a measure, one can take the number of all subformulae of a given formula.
The following is a well-known result due to McKinsey and Tarski (1946, Theorem
1.11).

1.2 Theorem
A formula ϕ is derivable in IPC if and only if it holds in any Kripke model whose
size is exponentially bounded by the number of subformulae of ϕ.

The decidability of the set of theorems of IPC can be derived from the above the-
orem, using the following two observations. First, one can effectively produce all
Kripke models of some bounded size on the basis of this size alone. Second, given
a finite model, it is decidable whether this model satisfies a given formula.

We present a notion of semantics for admissible rules in such a way that the above
reasoning can be applied, mutatis mutandis, to the problem of deciding the set of
admissible rules of IPC. There are three components to this approach: giving the

5



proper notion of semantics, showing that one can effectively produce all finitely
many models of bounded complexity and showing that validity of a formula at a
model is decidable. The first three sections will be devoted to the first problem,
the last section to the second. Once the appropriate notion of semantics is given,
it will be clear that the last matter needs practically no thought. Although the
number of sections might suggest otherwise, the technical difficulties lie mostly
effectively generating all models of a bounded complexity.

Let us briefly go through the plan in some detail, without delving too deeply into
the technicalities. Bear in mind that the plan is aimed at proving the decidability
of the admissible rules of IPC. As argued above, this can be achieved in a natural
manner by finding a suitably refined notion of semantics.

We provide an algorithm to effectively construct a set of Kripke modelsKΣ to each
finite set of formulae Σ, satisfying the following two conditions:

Condition 1 The rule ϕ/ψ is admissible in IPC if and only if it is valid on all
members of KΣ, for any pair of formulae ϕ,ψ ∈ Σ.

Condition 2 The set of models KΣ is finite.

Condition 3 Given a model in KΣ, it is decidable whether a rule is valid on it.

Given a class of models and a notion of validity satisfying the above, the decid-
ability of admissibility in IPC follows quite readily, as spelled out in Theorem 3.3.
Our problem is thus reduced to finding such a class.

In Section 2, we describe, for each set of variables, a Kripke model that is complete
with respect to the formulae using only those variables. This model is known as
the universal model or characterising model and is used extensively in the study
of admissibility.

We define the notion of validity we wish to consider in Section 3 and inspect two
classes of Kripke models that satisfy condition 1. The first class is that of the
so-called exact models, which are, intuitively speaking, images of the universal
model under maps that preserve the validity of all formulae. This class has the
disadvantage of not being intrinsically described, leaving us in need of an effective
definition of membership of this class, as required by condition 2.

Attempting to remedy this we switch to the second class, namely the class of ex-
tendible models. These extendible models satisfy a significant part of the defining
conditions of the universal model. Very roughly speaking, if a non-rooted model
can be embedded into an extendible model, then a one-point extension of said
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model can be embedded, too. When restricting attention to finite extendible mod-
els, condition 3 is clearly satisfied. We indicated that this approach is doomed to
failure, leaving us in need of a more refined notion of semantics.

In Section 4, we refine the notion of exact models to adequately exact models. These
models are, again intuitively speaking, images of universal models under a maps
that preserve the validity of but a fixed and finite set of formulae. In general,
the validity of all formulae is not guaranteed to be preserved. We show that this
notion satisfies both condition 1 and 3. At this point, the difficulty lies in proving
the completeness direction in condition 1, which follows from a standard filtration
argument. This notion, like that of exact models, is not intrinsically defined, which
makes it hard to see whether condition 2 is met.

Finally, in Section 5, we remove this last limitation. We introduce the notion of
adequately extendiblemodels, in analogy to the notion of extendibility of Section 3.
It is easy to see that this notion satisfies both condition 2 and condition 3, yet the
validity of condition 1 is not apparent at all.

We prove that the notions of adequate extendibility and adequate exactness actu-
ally coincide. The one direction, from adequate exactness to adequate extendibil-
ity, is rather straightforward. The other, however, requires considerable work.
We devote a great deal of space to the proof, including many remarks that aim to
aid one’s intuition. After this, all conditions have been met and decidability thus
follows.

The main contribution of this paper is an exposition of Rybakov’s approach to
Friedman’s problem. Rybakov’s approach has proven to be both powerful and of
great applicability and it has given rise to numerous results over the past three
decades. We explain the concepts used in this approach and explain their usage
in one of the most basic settings, that of intuitionistic propositional logic. We
claim no originality in the results presented here; instead we offer originality in
presentation. The purpose of this exercise is to clarify and celebrate a central result
in the study of admissibility, in the hope that connecting it to known concepts in
novel ways will lead to alternative avenues of generalisation.

2 Universal Model

The purpose of this section is to give a description of the structure of the Lin-
denbaum algebra of IPC in a language with finitely many variables, which corre-
sponds to the free Heyting algebra on a finite number of generators. We describe,
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given a finite set of variables, the so-called universal model alluded to in the title
of this section. This is an image-finite Kripke model whose definable upsets corre-
spond to the elements of a free Heyting algebra. This model is surprisingly man-
ageable and plays a crucial role in our search for semantics of admissible rules.

Before we continue with the technical contents of this section, let us, for but a
moment, reflect upon the history of the universal model. Its origins lie in the
work of Rieger (1949), and, independently in that of Nishimura (1960), who gave
a full description of the free Heyting algebra on one generator. Urquhart (1973)
was the first to give a description of the free Heyting algebra on an arbitrary finite
number of generators.

Closure algebras stand to the modal logic S4 as Heyting algebras stand to IPC.
The structure of the free closure algebra remained mysterious for quite some time.
Indeed, when Horn (1978) described the structure of the Lindenbaum algebras for
S5, he stated: “The free closure algebra with one generator is already so compli-
cated that its structure is unknown.” Blok (1977) wrote, in a paper on the structure
of the open elements in free closure algebras: “[…] even a description of the free
object on one generator seems to be beyond reach, as yet.” An answer was even-
tually given by Shehtman (1978), who built on the work of Esakia and Grigolia
(1975). An independent description was given, later, by Bellissima (1985).

These types of models have been used extensively in the study of admissibility.
Rieger and Nishimura’s description of the free Heyting algebra on one generator
was used by de Jongh (1982) to study the admissible rules of IPC in one variable.
Most famously, Rybakov (1984a) used descriptions of free Heyting algebras and
free closure algebras to prove the decidability of admissibility in IPC.

Over time, many descriptions of free Heyting algebras have arisen. The following
is not an exhaustive enumeration of the literature; undoubtably, many works are
omitted. Although the descriptions are similar — they are, after all, concernedwith
the same object — they each have their own flavour. In particular, one can discern
the approach taken by de Jongh (1968), Urquhart (1973), Rybakov (1984a), and
Bellissima (1986). The approach taken by de Jongh (1968) is reflected in the work of
Bezhanishvili (2006) and de Jongh and Yang (2011). Hendriks (1996, Section 2.5) is
similar in background, but his construction proceeds via the the notion of semantic
types. The description of Rybakov (1984a) is used by Gencer (2002) and Odintsov
and Rybakov (2013), to name but a few. Finally, the method of Bellissima (1986)
is employed by Darnière and Junker (2010) and Elageili and Truss (2012). The
description given here will most closely resemble that of Bezhanishvili (2006).
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Before we proceed to describe the universal model, we first give some basic defi-
nitions. The logics under consideration are propositional in nature. Given a fixed
set of variables X , we define the set of formulae by the following grammar:

L(X) ∶∶=X ∣ ⊺ ∣ � ∣ L(X) ∨L(X) ∣ L(X) ∧L(X) ∣ L(X)→ L(X).

We write ¬ϕ as an abbreviation for ϕ → � and ϕ ≡ ψ denotes (ϕ → ψ) ∧ (ψ →
ϕ). Semantics will be given by Kripke models for intuitionistic logic. Motivation
and further background can be found in the text books by Blackburn, Rijke, and
Venema (2001), Chagrov and Zakharyaschev (1997), and Troelstra and van Dalen
(1988).

2.1 Definition (Kripke model)
A Kripke model consists of a partial order P , called the underlying Kripke frame,
and a monotonic function v ∶ P → P (X), called the valuation. We inductively
define when a formula χ ∈ L(X) holds at a world p ∈ P , denoted v, p ⊩ χ, as
follows.

v, p ⊩ ⊺ ∶= true
v, p ⊩ � ∶= false
v, p ⊩ x ∶= p ∈ v(x) for variables x ∈X
v, p ⊩ ϕ ∧ ψ ∶= p ⊩ ϕ and p ⊩ ψ
v, p ⊩ ϕ ∨ ψ ∶= p ⊩ ψ or p ⊩ ψ
v, p ⊩ ϕ→ ψ ∶= for all q ≥ p, q ⊩ ϕ implies q ⊩ ψ

In the above, we used X to denote the set of propositional variables. This is not
common practise, but the deviation is neither without precedent nor without pur-
pose. Precedent can be found in Ghilardi (1999), whose notation we follow. The
purpose, or point, is that we want to maintain a close analogy to Universal Al-
gebra, where one would consider algebras generated by a set. By analogy, the
variables are the generators and are chosen from a set X .

We need to fix a bit more notation. We reserve v and u for names of Kripke models
and we use P and Q as names of Kripke frames. An arbitrary subset of a Kripke
frame will be denoted by W or S. For convenience, we use the corresponding
lower-case letters to denote elements of these sets.

A subset W ⊆ P such that the inequality w ≤ p entails p ∈ W for all w ∈ W and
p ∈ P is said to be an upset. Given an arbitrary subset W ⊆ P , one can consider
the upset generated byW and the strict upset generated byW , defined respectively
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as follows:

↑W ∶= {p ∈ P ∣ there is a w ∈W such that w ≤ p} ,
↥W ∶= {p ∈ P ∣ there is a w ∈W such that w < p} .

IfW ⊆ P is an anti-chain, observe that ↥W = ↑W −W . Whenever an upset U is
equal to the upset generated by a singleton set, we say that U is a principal upset.
We simply write ↑p to mean ↑{p} and we similarly write ↥p for ↥{p}. WhenU ⊆ P
is an upset, then one can consider the restriction v ↾ U ∶ U → P (X). The resulting
model is said to be a generated submodel of v.

The natural type of maps to consider between partial orders are monotonic func-
tions. The sole difference between a Kripke frame and a partial order is that maps
of Kripke frames f ∶ P → Q are monotonic maps satisfying ↑f(p) ⊆ f(↑p) for all
p ∈ P . When v ∶ P → P (X) and u ∶ Q → P (X) are Kripke models, then f is a
map of Kripke models if it is a map between the underlying frames, and in addition,
it satisfies v = u ○ f . Such a map is often referred to as a bounded morphism or
p-morphism.

Given a model v ∶ P → P (X) and a formula ϕ ∈ L(X), we write

⟦ϕ⟧v ∶= {p ∈ P ∣ v, p ⊩ ϕ} .

This set is an upset and it is called the upset defined by ϕ. Note that whenever ϕ
and ψ are equivalent, then ⟦ϕ⟧v = ⟦ψ⟧v . Upsets of this form play a large role in
the following, hence Definition 2.2 below.

2.2 Definition (Definable)
Let v ∶ P → P (X) be a Kripke model. An upset U ⊆ P is said to be definable
when there exists a formula ϕ such that U = ⟦ϕ⟧v . The formula ϕ is said to be a
defining formula of U and is denoted by def U .10

Suppose one is given a map of Kripke frames f ∶ P → Q. Whenever we have
valuations on both frames, v ∶ P → P (X) and u ∶ Q→ P (Y ) say, one can wonder
whether the pre-image of a definable upset in u under the map f is definable in v
as well. If this is the case, then we say that f is a definable map f ∶ v → u. Clearly,
for this condition to hold it is both necessary and sufficient that the pre-image of
⟦y⟧u is definable for every y ∈ Y .
10Note that def U by no means uniquely defines a formula inL(X). Indeed, if ψ ∈ L(X) is such that
v ⊩ ϕ ≡ ψ then ϕ would be just as good a candidate for def U as ψ. We make sure to only use the
notation “def −” when this difference is immaterial. Although it introduces some ambiguity, the
convenience this affords us compensates this by a decent margin.
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Recall that a Heyting algebra A is a bounded distributive lattice, endowed with a
binary operation⇒ satisfying the equations

(a⇒ b) ∧ a = a ∧ b,
(a⇒ b) ∧ b = b,
a⇒ (b ∧ c) = (a⇒ b) ∧ (a⇒ c),

a⇒ a = 1.

(2)

Alternatively, A is a partial order, that, when considered as a category, is cartesian
closed. The order ≤ on A is determined by a ≤ b iff a ∧ b = a. In this reading, the
operations ∧, ∨ and⇒ naturally correspond to taking the product, coproduct and
exponent respectively.

Maps between Heyting algebras are maps of bounded distributive lattices that re-
spect the operation⇒. In symbols, a map between Heyting algebras f ∶ A→B is
a map of bounded distributed lattices, satisfying the following for all a, b ∈ A.

f(a⇒ b) = f(a)⇒ f(b) (3)

Through de Jongh and Troelstra (1966), it is known that there is an equivalence
between the categories of finite Heyting algebras and their maps and the category
of finite Kripke frames and their maps. As per this equivalence, a finite Kripke
frame corresponds to the partial order of its upsets and this partial order can be
endowed with a Heyting algebra structure in a unique manner. In the following,
we describe a slightly different connection.

Given a model v ∶ P → P (X), one can consider defs(v), the set of its definable
upsets. It is an easy matter to verify that this partial order is a bounded distributive
lattice, that is to say, it has all finite products and co-products when seen as a
category. The operation⇒ can be defined as:

U ⇒ V = {p ∈ P ∣ q ∈ U implies q ∈ V for all q ≥ p }
= ⟦def U → def V ⟧v.

It is a simple exercise to verify that the equalities of (2) in fact hold. Moreover,
a definable map of Kripke frames f ∶ v → u yields a map between the associated
Heyting algebras defs(u) and defs(v). Indeed, when we define:

defs(f) ∶ defs(u)→ defs(v) , U ↦ f−1(U),

it is easy to verify that the equation (3) is satisfied.

We now have the language to more formally express the purpose of this section.
Per finite set X , we seek an image-finite model such that its Heyting algebra of
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definable upsets equals the free Heyting algebra generated by X . This model is
known as the universal model on X .

The key concept in the description of the universal model is that of a cover. In-
tuitively, a subset of a partial order covers an element in the same partial order
if the upsets they both generate differ at most in this latter element. An example
would be the set of immediate successors of a given node, which cover said node.
The definition below is taken from Ghilardi (2004).

2.3 Definition (Cover)
Let P be a Kripke frame, letW ⊆ P be an arbitrary subset, and let p ∈ P be a point.
We say that W covers p, denoted W κ p, whenever the following equivalence
holds:

p ≤ q iff p = q or q ∈ ↑W (4)

Note that ∅ κ p precisely if p is maximal. The notion of a cover is not strict, in
the sense that W κ p can hold even if p ∈ W . In fact, we always have {p} κ p.
This in contrast to the notion of a total cover, as employed by Grigolia (1995) and
Bezhanishvili (2006). Using our definition, W is a total cover of p if W κ p and
p /∈W . Jeřábek (2005) would call p a tight predecessor ofW in precisely the same
situation. Were the model to be the canonical model, then Iemhoff (2001a) would
use the same term.

The following lemma motivates the importance of this notion. Roughly speaking,
any map of Kripke frames must preserve covers. The converse need not always
hold, but whenever the domain is image finite, it surely does. We omit its proof,
as the argument is fairly straightforward.

2.4 Lemma (Ghilardi, 2004, Lemma 3)
Let P and Q be Kripke frames, and let f ∶ P → Q be a monotonic map. Suppose
that P is image finite. Now, f is a map of Kripke frames if and only if for all finite
W ⊆ P and p ∈ P we know thatW κ p implies f(W ) κ f(p).

It is well-known that IPC has the finite model property; a formula is a theorem of
IPC precisely if it holds in all finite, rooted models. Picture a model on a fixed set
of variables and assume that it contains a copy of every finite, rootedmodel on that
very set of variables. This model must, by the finite model property, be complete
with respect to all formulae on said variables. Each element of the free Heyting
algebra generated by the fixed set of variables defines an upset in this model and
two distinct elements yield distinct upsets by this model’s completeness.
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The above reasoning suggests to define the universal model as being a particular
model that contains a copy of each finite, rooted model. Indeed, as can be seen in
Corollary 2.9, this is sufficient to prove that its definable upsets correspond in a
one-to-one fashion to the elements of a free Heyting algebra. This is precisely the
approach we take. First, in Definition 2.5 we give a property which Theorem 2.6
will show to ensure the above described situation. Second, in Corollary 2.7, we
observe that there is only one image-finite model with this property up to isomor-
phism. This leads to Definition 2.8.

2.5 Definition (Universality)
A model v ∶ P → P (X) is said to be universal if for all finite anti-chains W ⊆ P
and all Y ⊆X with Y ⊆ v(w) for all w ∈W , there exists a unique p ∈ P such that
v(p) = Y andW κ p.

2.6 Theorem
Let X be a finite set of variables and let u ∶ Q → P (X) be universal. For any
image-finite model v ∶ P → P (X) there exists a unique map of Kripke models
f ∶ v → u.

Proof. We prove the first statement with the proviso that v is finite, from whence
the image-finite case is immediate. Indeed, existence of such a map in the image-
finite case follows from taking the union of all such maps in the finite, rooted case.
This map is well-defined and unique, anything else would contradict the unicity
in the finite, rooted case.

We proceed by induction on the number of elements in P . In the base case, we
know P to be empty and so the desired surely holds. Now, suppose we know the
desired for all finite rooted models v where P is of size at most n. Write p for the
root of P and consider the upset U = ↥p. Induction ensures yields a map Kripke
models fk ∶ (v ↾ (↑k)) → u per k ∈ U . We know that the desired f ∶ v → U(X)
must satisfy f ↾ (↑k) = fk for all k ∈ U .

Consider the function defined by fU = ⋃k∈U fk ∶ (v ↾ U) → u. This function is
well-defined due to the uniqueness that is ensured by induction. Moreover, it is
a map of Kripke models. We see that V = fU(U) is an upset and note that there
must be a finite anti-chainW ⊆ V such that ↑W = V . Hence, there exists a unique
q ∈ U(X) such that bothW κ q and u(q) = v(p). It is clear that V κ q holds. By
Lemma 2.4, we know that the map f ought to send p to q. Define f = fU ∪ ⟨p, q⟩
and the desired follows.
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2.7 Corollary
Up to isomorphism of Kripke models, there is at most one image-finite model on
any given finite set of variables that is universal.

Proof. Suppose v ∶ P → P (X) and u ∶ Q → P (X) are both universal. Through
Theorem 2.6, there are maps of Kripke models f ∶ v → u and g ∶ u → v. The same
theorem ensures that f ○ g = idu and g ○ f = idv , proving the desired.

2.8 Definition (Universal Model)
The universal model onX , denoted u ∶ U(X)→ P (X), is the unique image-finite
model on X that is universal.

Intuitively, one starts with an empty model and iteratively adds points such that
to each finite subset and to each set of variables that holds at this subset one has
some point covered by this subset, at which precisely these variables hold. This
yields a sequence of Kripke models un ∶ Pn → P (X), such that

u = ⋃
n∈N

un, U(X) = ⋃
n∈N

Pn.

At the zeroth stage, we consider an empty Kripke model. Hence u0 is the unique
function P0 = ∅ → P (X). The only anti-chain in P0 thus is ∅. One would
have to expand P0 into P1 to accommodate more points and one would extend
the valuation u0 appropriately into u1. There would be points pY ∈ P1 per Y ⊆X
satisfying ∅ κ pY and u1(pY ) = Y . This means that the universal model must
have a maximal point per subset of X .

After the (n + 1)th stage, one inspects each subset W ⊆ Pn+1. If W would be
contained within Pn and one would add a new point p into Pn+2 such thatW κ p,
then the uniqueness demanded by universality would be broken. Indeed, a point
q satisfying W κ q with un+1(q) = un+2(q) already exists, as it was added in a
previous step. One thus only considers setsW where the intersection with Pn+1−
Pn is non-empty. Moreover, if W would be the singleton set {p} and one would
add a point such that W κ q and un+2(q) = un+1(p), then uniqueness would be
violated, too. Indeed,W κ p also holds and so the point q would be superfluous.

The model described by Definition 2.8 is the union of all the models obtained from
the above construction. Although we do not consider the concrete details of the
above construction in the following, let us spend a few words on the attention we
paid to avoiding violating the uniqueness demanded by universality.

In Corollary 2.9, we prove that any two distinct points can be discerned by their
theories. Consider a generic Kripke model v ∶ P → P (X) and suppose that there
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are points p, q ∈ p such that v(p) = v(q) holds, and bothW κ p andW κ q hold
for a given anti-chainW ⊆ P . There exists an obvious map of Kripke models from
v to the model where p and q are conflated, proving that one could not possibly
discern between these points through their theories.

This idea goes back to de Jongh and Troelstra (1966, Definition 4.4). In the case
where p and q are comparable, they called the resulting map of Kripke models
an α-reduction. If p and q are incomparable, then the resulting map is said to
be a β-reduction. Similar maps are considered by Anderson (1969, Section 4),
respectively called operation 1 and operation 2.11 Bellissima (1986), too, considers
this and speaks of α-degenerate and α-duplicate points respectively. These same
notions occur in Odintsov and Rybakov (2013, p. 773), under the names duplicates
and twins respectively. Note that the precautions taken against constructing two
points covered by the same set, in our loose description of the construction of
U(X) above, correspond respectively to preventing the creation of duplicates and
twins. For a more extensive treatment of this topic we refer to Goudsmit (2018).

2.9 Corollary
LetX be a finite set of variables. TheHeyting algebra of definable upset of the uni-
versal model u ∶ U(X) → P (X) is isomorphic to free Heyting algebra generated
by X via the mappings

⟦−⟧u ∶ F(X)→ defs(U(X)) and def (−) ∶ defs(U(X))→ F(X).

Proof. It is easy to verify that both functions, as mentioned in the theorem, are
maps of Heyting algebras. Let us argue that these maps are mutually inverse. The
one direction is straightforward enough. Indeed, ⟦def U⟧u = U follows immedi-
ately when writing out the definitions.

We focus on the other direction. Know that def ⟦ϕ⟧u is a formula ψ such that
⟦ϕ⟧u = ⟦ψ⟧u. We wish to show that ϕ = ψ holds in F(X), that is to say, that
⊢IPC ϕ ≡ ψ. We reason by contradiction and assume, without loss of generality,
that ϕ /⊢IPC ψ. By the finite model property, this gives us a finite, rooted Kripke
model v ∶ P → P (X) such that v ⊩ ϕ and v /⊩ ψ. Through Theorem 2.6 we
know there to be a map of Kripke models f ∶ v → u. Consequently, f(p) ⊩ ϕ yet
f(p) /⊩ ψ. This shows that f(p) ∈ ⟦ϕ⟧u and f(p) /∈ ⟦ψ⟧u, proving ⟦ϕ⟧u /= ⟦ψ⟧u as
desired.

Naturally, the above has been proven many times over. See Chagrov and Za-
kharyaschev (1997, Theorem 8.86) and Shehtman (1978, Theorem 6) for modal
11This similarity was already noted by Troelstra in his review (MR0248004) of this paper.
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counterparts of the above theorem. A proof in the intuitionistic case can be found
in Urquhart (1973, Theorem 3), Bellissima (1986, Corollary 2.5), and Bezhanishvili
(2006, Theorem 3.2.20).

The following Corollary 2.10 is an immediate consequence of Corollary 2.9. This,
too, has been proven many times in the past. We point to Rybakov (1997, Theo-
rem 3.3.6) in particular. The first appearance of a statement of this nature in the
literature on admissibility appears to be Rybakov (1984a, Theorem 2), concerning
the modal logic S4.

2.10 Corollary
For each finite X and each ϕ ∈ L(X) one has u ⊩ ϕ if and only if ⊢IPC ϕ, where
u ∶ U(X)→ P (X).

The universal model is such that the order between elements is expressible in terms
of formulae. On an intuitive level, this is what Theorem 2.12 aims to show. This
observation will play a crucial role in our later arguments about the universal
model. In particular, this observation entails that, when seen as a general frame,
the universal model is refined in the sense of Jeřábek (2009). We choose to include
this definition, instead of the more general notion of being refined, as the extra
information encapsulated in being order-defined will be crucial in the proof of
Theorem 5.5.

2.11 Definition (Order-defined)
A model is said to be order-defined when all principle upsets and complements of
principle downsets are definable.

2.12 Theorem
Let X be a finite set of variables. Now, u ∶ U(X)→ P (X) is order-defined.

Proof. We will show, using well-founded induction, that the following equiva-
lences hold for any p ∈ U(X). Each atomic part of the right-hand side of these
equivalences corresponds to an upset and each of these upsets are definable, be it
by induction or on their own right.12 For convenience, we writeW for the set of
immediate successors of p and remark thatW κ p.

p ≤ q iff v(p) ⊆ v(q) and (5)
for all k ≥ q, if v(p) ⊂ v(k) or k /≤ w for some w ∈W
then k ∈ ↑W .

q /≤ p iff for all k ≥ q, if k ∈ ↑p then k ∈ ↑W (6)
12Note that the finiteness ofX is crucial to the definability of v(p) ⊆ v(q) and v(p) ⊂ v(q).

16



Let us first focus on (5). The implication from left to right is immediate. From right
to left, suppose that p /≤ q yet the right-hand side does hold. Suppose that q /≤ w
for some w ∈W . This immediately entails that q ∈ ↑w ⊇ ↑p, a contradiction.

We may thus assume that q is the maximal node such thatW ⊆ ↑q. The right-hand
side of (5) still holds for q, as it is upwards closed. We will prove thatW κ q and
v(q) = v(p), proving p = q by the definition of U(X), quod non.

To this end, take k ∈ U(X) to be such that q < k. By maximality, we know that
W /⊆ ↑q. It now follows through (5) that k ∈ ↑W , which shows thatW κ q.

Let us now prove that v(p) = v(q). We know that v(p) ⊆ v(q), so we need but
exclude v(p) ⊂ v(q). If this were the case, then q ∈ ↑W ⊆ ↑p, a contradiction. This
finishes the proof of (5). As the equivalence (6) is clear, we are done.

2.13 Lemma
Let X be a finite set of variables and let v ∶ P → P (X) be an image-finite, order-
defined model. There exists an upset U ⊆ U(X) such that v and u ↾ U are iso-
morphic as Kripke models.

Proof. ByTheorem 2.6, we know of a unique map of Kripke models f ∶ v → U(X).
We first show that f is injective. Indeed, suppose p1, p2 ∈ P are given such that
f(p1) = f(p2). Note that ↑p1 is definable in v. We observe that v, p1 ⊩ def ↑p1
and hence u, f(p1) ⊩ def ↑p1, leading to v, p2 ⊩ def ↑p1. We can thus conclude
p1 ≤ p2 and the converse holds for a similar reason. This proves p1 = p2, as desired.

To finish the argument, we define U ∶= f(P ). The existence of a map of Kripke
models g ∶ (u ↾ U)→ v satisfying f ○ g = idv and g ○ f = idu readily follows.

Recall that we defined the universal model to be the least model satisfying certain
properties. We might as well replace these properties by the statement that the
model be complete with respect to all formulae in L(X), that is to say, U(X) is
the least Kripke model v ∶ P → P (X) such that

v ⊩ χ if and only if ⊢IPC χ for all χ ∈ L(X). (7)

From Corollary 2.9 it is clear that the universal model satisfies (7). One can readily
prove that it is the smallest such model through (6). Indeed, suppose there is
a proper generated submodel v ∶= u ↾ U ∶ U → P (X) satisfying (7), where
U ⊂ U(X) is some upset. This must mean that there is a point p ∈ U(X) such
that p /∈ P . By (6) we know of a formula ϕ ∈ L(X) such that U(X) , q ⊩ ϕ if
and only if q /≤ p. If there is a q ∈ U such that u, q /⊩ ϕ, then q ≤ p and p ∈ U , a
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contradiction. Hence we know that v ⊩ ϕ and u /⊩ ϕ. By (7) this yields ⊢IPC ϕ and
/⊢IPC ϕ, a clear contradiction.

Some authors introduce the universal model in this manner. An example is Ry-
bakov (1984c), whose n-characterising model essentially amounts to a model that
satisfies (7) for some set of variables X with ∣X ∣ = n. Both approaches can be
taken for many logics. For intermediate logics, they coincide whenever the logic
at hand has the finite model property. We will work with the definition as given
above, as the abundance of covers plays a crucial rule in the following.

3 Semantics for Rules

In this section, we explore potential notions of semantics for admissible rules.
Our first description is extrinsic and our second more intrinsic in nature. Neither
meet all the requirements as mentioned in the introduction, yet they do provide
motivation for the more sophisticated notion we consider in the next section. As
argued in the introduction, our search for semantics amounts to providing an algo-
rithm that generates a class of Kripke models out of a set of formulae that satisfies
three particular conditions. Before we proceed any further, let us formalise these
desiderata. To this end, we define what we mean when we say that a rule is valid
on a model. Moreover, we define a convenient property of sets of formulae. Using
these two definitions, we give a more precise formulation of the desiderata on our
notion of semantics and provide a proof of decidability under the assumption that
said conditions can be met.

3.1 Definition (Valid)
Let v ∶ P → P (X) be a model and let ϕ,ψ ∈ L(X) be formulae. We say that the
rule ϕ/ψ is valid on v whenever v ⊩ ϕ implies v ⊩ ψ.

3.2 Definition (Adequate Set)
A set of formulae Σ ⊆ L(X) is said to be adequate precisely if it is closed under
taking subformulae, that is:

for all ϕ,ψ ∈ L(X) and ⊕ = ∧,∨,→, ϕ⊕ ψ ∈ Σ implies ϕ,ψ ∈ Σ

The set of subformulae of a formula ϕ is denoted Sub (ϕ) and it is the smallest
adequate set containing ϕ.
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3.3 Theorem
Suppose that there exists an algorithm that produces a set of Kripke models KΣ

whenever one inputs a finite adequate set of formulae Σ ⊆ L(X) subject to the
following conditions.

Condition 1 The rule ϕ/ψ is admissible in IPC if and only if it is valid on all
members of KΣ, for any pair of formulae ϕ,ψ ∈ Σ.

Condition 2 The set of models KΣ is finite.

Condition 3 Given a model in KΣ, it is decidable whether a rule is valid on it.

Now, the set of admissible rules for IPC is decidable.

Proof. We provide an algorithm that decides whether a given rule is decidable. On
input ϕ/ψ we construct the adequate set Σ ∶= Sub (ϕ) ∪ Sub (ψ). By assumption,
we can effectively produce a class of Kripke models KΣ satisfying the three con-
ditions above. Verify whether v ⊩ ϕ implies v ⊩ ψ for all v ∈ KΣ. The rule is
admissible precisely if the above holds, due to Condition 1. Condition 2 ensures
that we can effectively run through all models in K and Condition 3 guarantees
we can effectively test validity. This proves the desired.

Recall that the validity at a universal model corresponds to derivability in IPC,
as expressed in Corollary 2.10. Because admissible rules are concerned with a
connection between the derivability in IPC of two formulae, it makes sense to use
universal models as a notion of semantics. A first approximation would be the
following characterisation of admissibility, using formulae ϕ,ψ ∈ L(X):

A rule ϕ/ψ ∈ is admissible iff for all substitutions σ ∶ L(X)→ L(Y )
u ⊩ σ(ϕ) implies u ⊩ σ(ϕ) for u ∶ U(Y )→ P (Y ).

(9)

Although the above is completely true, it is also completely unsatisfactory. More-
over, Theorem 3.3 is even applicable, as the above equivalence does not fit the
notion of validity of Definition 3.1. The idea, however, is close to the desired, so
let us improve from here. We aim to define a kind of model that encompasses the
right-hand side of (9). To this end, we employ the notion of definable maps of
Kripke frames, as described earlier.

3.4 Definition (Exact Model)
Let v ∶ P → P (X) be a model. We say that v is exact whenever there is a surjec-
tive, definable map f ∶ u → v, where u ∶ U(Y ) → P (Y ) is the universal model on
some finite set of variables Y .
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The above definition is adopted from Bezhanishvili and de Jongh (2012, Corollary
4.6), based on exact formulae. We do not go into the details of exact formulae,
sufficed to say that a formula is exact whenever the upset it defines in the universal
model gives rise to an exact model in our sense above. Such exact formulae derive
from de Jongh (1982) and this notion was further developed by de Jongh and Visser
(1996, Section 2).

Note that the Kripke frame U(Y ) is image-finite and being image-finite is pre-
served by surjective, monotonic maps. Consequently, all exact models are image-
finite. In particular, this means that rooted exact models are necessarily finite.

3.5 Example
Consider the setting where X = {x} and think of the model v ∶ P → P (X) as
depicted on the right-hand side of Fig. 1. The required definable map of Kripke
frames f ∶ U(X)→ v is depicted by the dashed lines, whose behaviour is partially
described by Lemma 2.4. Observe that the following equalities hold. Definability
already follows from the first equation, the other two are given for reference.

f−1 (⟦x⟧v) = ⟦¬¬x⟧u
f−1 (⟦¬x⟧v) = ⟦¬¬¬x⟧u = ⟦¬x⟧u

f−1 (⟦¬¬x→ x⟧v) = ⟦¬¬¬¬x→ ¬¬x⟧u = ⟦⊺⟧u

An exhaustive list of exact models on one variables is not very long. Indeed, up to
isomorphism it is given by the upsets in U(X) defined by one of the formulae ⊺,
x, ¬x, ¬¬x and ¬¬x→ x. For more details on this and for a complete description
of all finite exact models, we refer to Arevadze (2001). An exhaustive characteri-
sation of exact models in two variables is much harder to give, for this we refer to
Bezhanishvili and de Jongh (2012, Theorem 5.21).

Exact models are our first attempt at defining semantics for admissible rules. We
claim that the assignment which maps Σ ⊆ L(X) to the set of all exact models
on X satisfies at least the first condition of Theorem 3.3. This is what we prove
in Theorem 3.6 below. Descriptions like this occur elsewhere in the literature, the
following is comparable in nature to Rybakov (1997, Theorem 3.3.10) and Iemhoff
(2001b, Corollary 3.15).

3.6 Theorem (Soundness and Completeness for Exact Models)
The following are equivalent for each pair of formulae ϕ,ψ ∈ L(X):

(i) the rule ϕ/ψ is admissible;

(ii) the rule ϕ/ψ is valid on every exact model v ∶ P → P (X).
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Figure 1: An example of an exact model, together with a definable, surjective map
of Kripke frames from the universal model.

The implication from (i) to (ii) corresponds to soundness of admissibility with re-
spect to exact models and its converse, naturally, corresponds to completeness.
We first provide a little bit of machinery, of which the theorem is but a simple
corollary.

3.7 Lemma
Let v ∶ P → P (X) be an exact model. There exists a finite set of variables Y and
a substitution σ ∶ L(X)→ L(Y ) such that:

⊢IPC σ(χ) iff v ⊩ χ for all χ ∈ L(X). (10)

Proof. Because v is exact, we know there to be a finite set of variablesX together
with a surjective, definablemap of Kripke frames f ∶ u→ vwhere u is the universal
model u ∶ U(Y )→ P (Y ). Define the substitution

σ ∶ L(X)→ L(Y ), x↦ def f−1 (⟦x⟧v) .

We claim that the following equivalence holds. Fromhere, (10) follows fromCorol-
lary 2.10 and the surjectivity of f .

p ⊩ σ(χ) if and only if f(p) ⊩ χ (11)

We prove (11) by structural induction along χ. In the atomic case, the desired
follows directly from the definitions. The conjunctive and disjunctive cases can
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immediately be seen to hold through induction. We treat the implicative case
χ = ϕ → ψ in some detail. Observe that p ⊩ σ(χ) precisely if for all q ≥ p we
have that q ⊩ σ(ϕ) implies q ⊩ σ(ψ). By induction, we know this to mean that
for each q ≥ p we have that f(q) ⊩ ϕ implies f(q) ⊩ ψ. This is equivalent to
f(p) ⊩ ϕ→ ψ, as f is a map of Kripke frames, proving the desired.

3.8 Lemma (Ghilardi, 1999, Proposition 2)
Let σ ∶ L(Y ) → L(X) be a substitution and let v ∶ P → P (X) be a model. There
is a model σ∗(v) ∶ P → P (Y ) such that the identity function idP ∶ P → P is a
definable map v → σ∗(v) satisfying:

v, p ⊩ σ(χ) iff σ∗(v), f(p) ⊩ χ for all χ ∈ L(Y ) and p ∈ P . (12)

Proof. We define the valuation σ∗(v) as

σ∗(v)(p) = {y ∈ Y ∣ v ⊩ σ(y)} .

One can prove the validity of (12) by structural induction along χ, the atomic case
holds by definition.

Proof of Theorem 3.6. Suppose (i) holds and suppose that v ∶ P → P (X) is an exact
model. Consider the substitution σ as ensured by Lemma 3.7, satisfying (10). If
v ⊩ ϕ then ⊢IPC σ(ϕ) by (10). By the admissibility of ϕ/χ, we know this to entail
⊢IPC σ(ψ). Hence (10) ensures v ⊩ ψ to hold. This proves (ii), as desired.

Conversely, suppose (i) does not hold. This gives a substitution σ ∶ L(X) →
L(Y ) such that ⊢IPC σ(ϕ) and /⊢IPC σ(ψ). Now, consider the universal model
u ∶ U(Y ) → P (Y ) and know that u ⊩ σ(ϕ) and u /⊩ σ(ψ) by Corollary 2.10.
Through Lemma 3.8, we learn of a model σ∗(u) ∶ U(Y )→ P (X) and a surjective,
definable map f ∶ u → σ∗(u) satisfying (12). See that σ∗(u) is exact and the rule
ϕ/ψ is not valid on σ∗(u). This proves that (ii) does not hold, as desired.

The above shows that exact models provide sound and complete semantics for the
admissible rules of IPC. It thus makes sense to ask: is the assignment which maps
any finite adequate set Σ ⊆ L(X) to the set KΣ of all exact models on X of the
appropriate type to applyTheorem 3.3? In order for this to be true, said assignment
has to be effective and it has to satisfy all three conditions posed by this theorem.
We go over these conditions and then return to the matter of effectivity.

Condition 1 poses no problem, for this amounts to the soundness and complete-
ness we have just proven in Theorem 3.6. We continue with condition 3 and wish
to know whether it is decidable whether a rule holds on an exact model. Perhaps
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counterintuitively so, this condition is not a major concern. If an exact model is
presented by means of the substitution to which it corresponds due to Lemmas 3.7
and 3.8, then the validity at said model can be effectively reduced to the deriv-
ability in IPC of the original formula under the given substitution. As the latter
is well-known to be decidable, this settles condition 2. An even nicer description
of the validity on exact models is possible. Indeed, it follows through the uni-
form interpolation theorem of Pitts (1992) that any exact model onX corresponds
to a formula in L(X), as proven by de Jongh and Visser (1996, Corollary 2.4).
More precisely, to every exact model v ∶ P → P (X) one can construct a formula
ϕ ∈ L(X) such that:

ϕ ⊢IPC χ if and only if v ⊩ χ for all χ ∈ L(X).

Sufficed to say that this argument was not yet known at the time of Rybakov’s
original proof, which was originally presented in 1984, a solid seven years before
Pitts uniform interpolation theorem was published. His proof gets around this
problem; in our further arguments, we do not appeal to the reasoning given in
this paragraph.

We continue our inspection of the conditions with condition 2. It poses quite
the challenge, to be sure. When the set of variables under consideration is at
most one, then there are but finitely many exact models up to isomorphism. The
situation changes drastically from two variables onwards, as in this situation there
are infinitely many non-isomorphic exact models, as shown by Bezhanishvili and
de Jongh (2012). To get around this problem, we switch to a different notion of
model in Section 4.

For the sake of argument, let us continue to the matter of effectivity. There has to
be some type of algorithmwhich producesKΣ out ofΣ. In this context, this comes
down to the question: when given a model on X , how does one know that it is
exact? The definition, as it is given above, is in no way intrinsic. Indeed, it refers to
a definable map that exist “outside” the model itself and as such it is not clear that
one can tell whether a model is exact by “looking at it”. It would be quite helpful to
have an intrinsic description of exact models; a description which can be tested on
the model itself. Such type of semantics can be found in the extendible extendible
models, which arise out of the work of de Jongh (1982). See also Iemhoff (2001b,
Definition 1), Bezhanishvili and de Jongh (2012), and Ghilardi (2004, Proposition
4) for comparable notions.

3.9 Definition (Extendible)
A Kripke frame P is said to be extendible when, for each finite anti-chainW ⊆ P ,
there exists an element p ∈ P such thatW κ p.
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Any exact model is necessarily extendible, as we show in Lemma 3.10 below. As an
immediate consequence of this and Theorem 3.6, we know that extendible models
are complete with respect to all admissible rules.

3.10 Lemma
Let v ∶ P → P (X) be an exact model. The model v is extendible, too.

Proof. As v is exact, we know there to be a surjective definable map f ∶ u → v,
where u ∶ U(Y )→ P (Y ) is the universal model on a finite set of variables Y . Let
W ⊆ P be a finite anti-chain. There exists a finite anti-chain S ⊆ f−1(W ) ⊆ U(Y )
such that f(S) = W . By the definition of U(Y ), there must be a q ∈ U(Y ) such
that S κ q. It now follows that f(S) = W κ f(q) through Lemma 2.4, proving
the desired.

Onemaywonder whether everymodel in which all admissible rules are valid must
be extendible. This is not plausible in full generality, as the definition of validity
depends solely on the theory of the model, whereas extendibility depends on its
shape. Indeed, one could easily construct twomodels with equal theories, of which
only one is extendible.

Ghilardi (1999, page 867), in essence, showed that the notions of exactness and ex-
tendibility coincide when restricting to definable upsets of the universal model.13
It thus follows that the definable extendible subsets of the universal model are
sound with respect to the admissible rules of IPC. They are complete as well, as
can be seen through Lemma 3.10 and an inspection of the proof of Lemma 3.8. As
Ghilardi (2002) already remarked, the approach taken by Ghilardi (1999) leads to a
proof of the decidability of admissibility. However, the technique employed here
was not yet present at the time of Rybakov (1984a) and his approach is the one we
aim to describe.

Note that extendibility, although it is an intrinsic notion, is not a priori an ef-
fectively testable property of a model. Were the model to be finite, though, then

13This is not precisely the statement that Ghilardi proved. His proof can, however, be easily construed
as showing this. Indeed, let U ⊆ U(X) be a definable upset and take ϕ ∈ L(X) to be such that
U = ⟦ϕ⟧u for u ∶ U(X) → P (X). Note that U is extendible in our sense precisely when ϕ∗ has
the extension property in the sense of Ghilardi (1999, p. 886). We know that if U is exact, then U
is extendible by Lemma 3.10. Through the above and Ghilardi (1999, Theorem 2), it now follows
that ϕ is projective. This, in turn, entails the extendibility of U via Lemma 3.8 or Bezhanishvili
and de Jongh (2012, Theorem 4.17). For more details on this correspondence, we refer to the latter
Bezhanishvili and de Jongh (2012) in the general case and to Arevadze (2001) in the case where U
is finite.
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extendibility can be readily verified. It may seem plausible that one could ob-
tain sound and complete semantics for admissible rules by restricting attention
to those finite models that happen to be extendible. This thought is not too out-
landish, given that formulae most certainly are complete with respect to finite
models. Rules, however, are not. We refer to Fedorishin and Ivanov (2003) and
Goudsmit (2016) for a full argument on this and point to Rybakov, Kiyatkin, and
Oner (1999) for an argument in the modal case. In the next section, we inspect a
weakening of the notion of exactness that can be safely restricted to the finite.

4 Adequately Exact Models

Filtration is one of the classic techniques used to prove the finite model property
for logics, both modal and intuitionistic. The key observation is that, when trying
to determine the validity of a given formula, it suffices to distinguish but finitely
many truth values within any model. To be a tad more precise, one can restrict
attention to a finite set of formulae and only observe a model up to the equivalence
relation that identifies nodes which behave identically with respect to that chosen
set of formulae. One could employ the same type of observation to the study of
admissibility. In fact, one has.

In the previous section, we considered the notion of exact models. These models
come equipped with a surjective map of Kripke frames from the universal model,
preserving the validity of all formulae in the language. Below, we weaken the
notion of exactness, in such a way that only the validity of but a given, specific set
of formulae need be preserved. For most of our practical applications, this set will
be finite.

When one is only interested in the validity of formulae in a given adequate set Σ,
many of the above described notions can be weakened. We first reconsider the
requirements we impose upon a map and then inspect an appropriately refined
notion of exactness. A map f ∶ P → Q between Kripke models v ∶ P → P (X) and
uwas defined in such a way that the equivalence (13) below holds for all formulae.
In general, this is much more than we need. We are concerned with maps that are
guaranteed to satisfy this only for formulae in Σ.

v, p ⊩ χ if and only if u, f(p) ⊩ χ. (13)

To define maps in such a manner would mix syntax and semantics where no such
collusion is necessary. Instead, we make use of maps satisfying the “closed do-
main condition” of Zakharyaschev (1992), or rather, the intuitionistic variant as
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described by Bezhanishvili and Bezhanishvili (2017, Section 4). Lemma 4.4 shows
that this semantic condition is sufficient to retrieve the desired syntactic informa-
tion. Take care to note that any map of Kripke frames satisfies this condition.

4.1 Definition (Closed Domain Condition)
Let f ∶ P → Q be a monotonic map between posets and let D be a subset of Q.
We say that f satisfies the closed domain condition for D (in short: f has the cdc
for D) whenever the following holds.

if ↑f(p) ∩D /= ∅ then f(↑p) ∩D /= ∅. (14)

When the above holds for all D ∈ D and D is a set of subsets of Q, then f is said
to have the cdc for D.

In the above context, we callD a domain and refer to D as a set of domains. A do-
main should always be understood as a subset of a given Kripke frame. Maps that
satisfy the cdc are closed under composition in the technical sense of Lemma 4.2.

4.2 Lemma
Let f ∶ P → Q and g ∶ Q → K be monotonic maps and let D ⊆ P (K) be a set of
domains. Suppose that g has the cdc for D and f has the cdc for g−1(D). Now,
g ○ f has the cdc for D.

Proof. Suppose that ↑(g ○ f)(p)∩D /= ∅. By assumption, we get g (↑f(p)) ∩D /= ∅.
We can thus readily deduce that ↑f(p)∩ g−1(D) /= ∅, proving f(↑p)∩ g−1(D) to
be non-empty. We obtain (g ○ f)(↑p) ∩D /= ∅, as desired.

Out of all the potential domains one could define on a model, we are particularly
interested in those domains that arise syntactically as in Definition 4.3. These
domains are precisely the sets of points where certain implications fail to hold.
Note that such domains need not be upsets, as illustrated by Fig. 2.

4.3 Definition
Let v ∶ P → P (X) be a model and let Σ ⊆ L(X) be an adequate set. We define
the domains specified by Σ as DΣ

v ∶= {⟦ϕ⟧v − ⟦ψ⟧v ∣ ϕ→ ψ ∈ Σ} .

Lemma 4.4 shows that a monotonic map respects the validity of Σ precisely if it
satisfies the cdc forDΣ

v , much like a map of Kripke models respects the validity of
all formulae. Moreover, monotonic maps that satisfy the cdc are a generalisation
of maps of Kripke frames, which we illustrate in Lemma 4.6 below. Intuitively
speaking, a monotonic map into an order-defined Kripke model is a map of Kripke
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x

Figure 2: A model on the variables X = {x}, where the marked subset is the do-
main on which the implication ¬¬x→ x is not valid.

frames precisely whenever it satisfies the cdc for all domains that can be specified
in the sense of Definition 4.3.

4.4 Lemma
Let Σ ⊆ L(X) be an adequate set of formulae, let v ∶ P → P (X) and u ∶ Q →
P (X) be models, and let f ∶ P → Q be a monotonic map such that for all p ∈ P
and x ∈X ∩Σ we have x ∈ v(p) iff x ∈ (u ○f)(p).14 The following are equivalent:

(i) the function f has the cdc for DΣ
u ;

(ii) the equivalence (15) holds.

v, p ⊩ χ if and only if u, f(p) ⊩ χ for all χ ∈ Σ and p ∈ P . (15)

Proof. Suppose that (i) holds. We prove (15) for all p ∈ P by structural induction
along χ ∈ Σ. In the base case, the desired is immediate by the requirement that
v = u ○ f . Both the conjunctive and disjunctive case follow straightforwardly
by induction. Now, suppose χ = ϕ → ψ and note that ϕ,ψ ∈ Σ holds as Σ was
assumed to be adequate. Consider p ∈ P and q ∈ Q such that v, p ⊩ ϕ → ψ,
f(p) ≤ q and u, q ⊩ ϕ. If u, q /⊩ ψ then we know:

↑f(p) ∩ (⟦ϕ⟧u − ⟦ψ⟧u) /= ∅.

Through the cdc forDΣ
u , we have some k ≥ p such that u, f(k) ⊩ ϕ and v, f(k) /⊩

ψ. By induction, (15) allows us to deduce that v, k /⊩ ϕ→ ψ, a contradiction. This
proves the implication from left to right in (15); the other direction is immediate.
14Note that the requirement that v = u ○ f is included in the definition of a map of Kripke models.

As f is merely assumed to be a monotonic map, a map between posets, we need to impose some
constraint to this effect.
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Conversely, suppose (ii) holds. We assume that ↑f(p) ∩D /= ∅ for some D ∈ DΣ
u .

This gives us some ϕ → ψ ∈ Σ such that D = ⟦ϕ⟧u − ⟦ψ⟧u. As a consequence, we
immediately know that u, f(p) /⊩ ϕ → ψ. It follows through (15) that v, p /⊩ ϕ →
ψ, so there is some q ≥ p such that v, q ⊩ ϕ and v, q /⊩ ψ. Using (15) again, we
obtain u, f(q) ⊩ ϕ and u, f(q) /⊩ ψ. This, in turn, yields f(↑p) ∩D /= ∅, proving
(i) as desired.

In the previous sections, we worked with definable maps between Kripke frames.
Consider models v ∶ P → P (X) and u ∶ Q → P (Y ). When we merely know
a monotonic map f ∶ P → Q to satisfy the cdc for DΣ

u , it is not reasonable to
require that the pre-image of every definable set is definable. The most one could
reasonably expect is the preservation of definability under pre-images of f for
upsets defined by formulae from Σ. It is both sufficient and necessary to require
this for the variables in Σ, which is how we define it.

4.5 Definition (Adequate map)
Let v ∶ P → P (Y ) and u ∶ Q → P (X) be Kripke models, let D be a set of subsets
of Q, and let f ∶ P → Q be a monotonic map. We say that f is a D-adequate map
f ∶ v → u whenever f has the cdc for D and the set f−1(⟦x⟧u) is definable for all
x ∈X . If f ∶ v → u is a DΣ

u -adequate map, we say that it is a Σ-adequate map.

In the previous section, we defined the notion of an exact model. Definition 4.7
below generalises this, replacing maps of Kripke models by maps satisfying an
instance of the cdc. The old notion can be retrieved, as follows immediately from
the next lemma.

4.6 Lemma
Let P be a poset and let u ∶ Q → P (X) be an image-finite order-defined model.
Suppose f ∶ P → Q satisfies the cdc for DΣ

u , where Σ ∶= L(X). Then f is a map
of Kripke frames.

Proof. Take p ∈ P and q ∈ Q to be such that f(p) ≤ q. Now consider the formulae

ϕ ∶= def ↑q and ψ ∶= defQ − ↓q.

It is clear that q ⊩ ϕ and q /⊩ ψ, hence ↑f(q) ∩ ⟦ϕ⟧u − ⟦ψ⟧u is non-empty. By
assumption, this yields us some k ≥ p such that u, f(k) ⊩ ϕ and u, f(k) /⊩ ψ.
The former proves q ≤ f(k), whereas the latter proves f(k) ≤ q. We thus derive
f(k) = q, as desired.

4.7 Definition (Adequately Exact)
Let v ∶ P → P (X) be a Kripke model and let D be a set of subsets of P . We say
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that v is adequately exact for D whenever there exists a finite set of variables Y
and a surjective, D-adequate map f ∶ u→ v where u ∶ U(Y )→ P (Y ).

Theorem 3.6 showed us that exact models can serve as sound and complete se-
mantics for arbitrary admissible rules. When restricting attention to admissible
rules drawn from a particular adequate set, it suffices to consider adequately exact
models instead. The major upside of this, is that there is an obvious bound on the
sensible size of an adequately exact model. Indeed, as we are only interested in
the validity of formulae of a given adequate set, the size of all models one needs to
be concerned with can be bound in terms of the size of this adequate set. As such,
the first and third condition as mentioned in the introduction are clearly satisfied;
the next section of this paper is devoted to proving the second.

4.8 Theorem (Soundness and Completeness for Adequately Exact Models)
Let Σ be an adequate set. The following are equivalent for any ϕ,ψ ∈ Σ:

(i) the rule ϕ/ψ is admissible;

(ii) the rule ϕ/ψ is valid on every model v ∶ P → P (X) that is adequately exact
with respect to DΣ

v with P ⊆ P (Σ).

In order to prove the above Theorem 4.8, we proceed in a manner similar to the
proof of Theorem 3.6. Lemmas 4.10 and 4.11 below play analogous roles to Lem-
mas 3.7 and 3.8 respectively. Their proofs are omitted, as they can be obtained
through straightforwardly generalising the proofs of their forebears. Lemma 4.9
is a fresh ingredient and it plays a key role in Theorem 4.8. Moreover, in combina-
tion with Lemma 3.8 it gives rise to many examples of adequately exact models.

4.9 Lemma (Filtration)
Let v ∶ P → P (X) be a model and let Σ be an adequate set. There exists a model
u ∶ Q→ P (Y ) and a surjective, Σ-adequate map f ∶ v → u, such that Q ⊆ P (Σ).

Proof. We define the partial order Q as the following set of subsets of P (Σ), or-
dered by inclusion.

Q ∶= {{ϕ ∈ Σ ∣ v, p ⊩ ϕ} ∣ p ∈ P}
The valuation u ∶ Q → P (X) is defined by u(q) = q ∩ X . There is an obvious
surjective, monotonic map f ∶ P → Q. The desired follows from Lemma 4.4 and a
straightforward inductive argument.

4.10 Lemma
Let Σ ⊆ L(X) be an adequate set and let v ∶ P → P (X) be a Σ-adequately exact
model. There exists a finite set of variables Y and a substitution σ ∶ L(X)→ L(Y )
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such that:
⊢IPC σ(χ) iff v ⊩ χ, for all χ ∈ Σ. (16)

4.11 Lemma
Let σ ∶ L(Y )→ L(X) be a substitution, let Σ ⊆ L(X) be an adequate set, and let
v ∶ P → P (X) be a model. There is a model σ∗(v) ∶ P → P (Y ) such that the
identity function idP ∶ P → P is a Σ-adequate map v → σ∗(v) satisfying:

v, p ⊩ σ(χ) iff σ∗(v), f(p) ⊩ χ, for all Σ ∈ L(Y ) and p ∈ P . (17)

Proof of Theorem 4.8. Suppose that (i) holds and let v ∶ P → P (X) be adequately
exact with respect to DΣ

v . This provides us with a finite set Y and a surjective, Σ-
adequate map f ∶ u → v, where u ∶ U(Y ) → P (Y ) is a universal model. Through
Lemma 4.10, there exists a substitution σ ∶ L(X)→ L(Y ) satisfying (16). If v ⊩ ϕ
then ⊢IPC σ(ϕ) follows from (16), so the admissibility of ϕ/ψ yields ⊢IPC σ(ψ).
Applying (16) yet again shows v ⊩ ψ, proving (ii).

Conversely, suppose that (i) does not hold. We thus obtain a substitution σ ∶
L(X) → L(Y ) such that ⊢IPC σ(ϕ) and /⊢IPC σ(ψ), where Y can safely be as-
sumed to be finite. As a consequence, we know u ∶ U(Y )→ P (Y ) to be such that
u ⊩ σ(ϕ) and u /⊩ σ(ψ) via Corollary 2.10. Now apply Lemma 4.11, in order to
obtain the model σ∗(u) ∶ U(Y ) → P (X) and a Σ-adequate map f ∶ u → σ∗(u).
The desired is obtained through Lemma 4.9.

5 Decidability of Admissibility

Even though we now know that adequately exact models suffice to determine the
admissible rules of IPC, the problem of decidability is not yet solved. The definition
of adequate exactness is in noway intrinsic and it is not at all apparent that one can
decide whether a model is adequately exact. In this section, we give an intrinsic
description of adequate exactness. This description is to be sufficiently concrete,
so that it can clearly be decided on finite models.

Roughly speaking, the notion of adequate extendibility we introduce here stands
to adequate exactness as extendibility stands to exactness. We show that a model
is adequately exact precisely if it is adequately extendible. As a consequence, ad-
missibility of IPC is decidable. Furthermore, the proofs given in this section can
be used to re-prove some popular results in the literature, among which the char-
acterisation of finite projective Heyting algebras.
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We first introduce a generalisation of the concept of a cover, as treated in Def-
inition 2.3. It is an easy exercise to show that this new notion is indeed a gen-
eralisation of Definition 2.3. Definition 5.1 is a semantic way of looking at the
notion that Rybakov uses. The correspondence between this semantic notion and
the more syntactic approach as taken by Rybakov is given in Lemma 5.2.

5.1 Definition (Adequate Cover)
Let P be a poset, let D be a set of subsets, let p ∈ P , and letW ⊆ P . We say that
W is a D-adequate cover of p, denotedW κD p, whenever :

if ↑p ∩D /= ∅ then p ∈D or ↑W ∩D /= ∅, for all D ∈ D. (18)

In the following, we write W κΣ p to mean that W κD p for D = DΣ
v . Recall

Definition 2.3, where we definedW κ p. The above definition is a generalisation
of this concept. Indeed, if the ambient model is order-defined, then W κ p is
equivalent toW κΣ p for Σ ∶= L(X).15

5.2 Lemma
Let v ∶ P → P (X) be a model, let Σ ⊆ L(X) be an adequate set, and let D = DΣ

v .
The following are equivalent for all p ∈ P and finiteW ⊆ P :

(i) W κΣ p;

(ii) the equivalence (19) holds for all ϕ→ ψ ∈ Σ and p ∈ P .

v, p ⊩ ϕ→ ψ iff v,W ⊩ ϕ→ ψ and (v, p ⊩ ϕ implies v, p ⊩ ψ) (19)

Proof. Suppose (i) holds and let ϕ → ψ ∈ Σ be arbitrary. The implication from left
to right in (19) is immediate, asW ⊆ ↑p. In order to prove the other direction, we
assume that v, p /⊩ ϕ → ψ. It is clear that ↑p ∩ ⟦ϕ⟧v − ⟦ψ⟧v /= ∅, hence we know
that either p ∈ ⟦ϕ⟧v − ⟦ψ⟧v or ↑W ∩ ⟦ϕ⟧v − ⟦ψ⟧v /= ∅. The former entails v, p ⊩ ϕ
and v, p /⊩ ψ, whereas the latter ensures v,W /⊩ ϕ→ ψ. This proves (ii).

Conversely, suppose (ii) holds. Take an arbitrary D ∈ DΣ
v , a point p ∈ P , and

suppose that ↑p ∩D /= ∅. We know that D = ⟦ϕ⟧v − ⟦ψ⟧v for some ϕ → ψ ∈ Σ.
It thus follows that v, p /⊩ ϕ → ψ. By (19), we know that v,W /⊩ ϕ → ψ or
v, p ⊩ ϕ and v, p /⊩ ψ. The latter disjunct entails p ∈D, whereas the former entails
↑W ∩D /= ∅. This proves (i), as desired.
15Amore granular equivalence can be given as well. Definition 2.11, the specification of what it means

to be order-defined, can easily be generalised to the adequate case. Say that amodel v ∶ P → P (X)
is order-defined byΣwhenever each principal upset and the complement of each principal downset
can be defined by means of a formula from Σ. With this in mind,W κ p is equivalent toW κΣ p
whenever the ambient model is order-defined by Σ.
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Recall that wemotivated the usefulness of the notion of covers via Lemma 2.4. The
following Lemma 5.3 plays an analogous role in justifying the purpose of adequate
covers.

5.3 Lemma
Let P andQ be Kripke frames, letD be a set of subsets ofQ, and let f ∶ P → Q be
a monotonic map. Suppose that P is image finite. The following are equivalent:

(i) the function f satisfies the cdc for D;

(ii) for every p ∈ P and for every finiteW ⊆ P , ifW κ p, then f(W ) κD f(p).

Proof. Suppose (i) holds. Let p ∈ P andW ⊆ P be such thatW is finite andW κ p.
Via monotonicity, it follows that f(W ) ⊆ ↑f(p). Fix a D ∈ D and suppose that
↑f(p)∩D /= ∅. As f is assumed to have the cdc forD, we know that f(↑p)∩D /= ∅,
so we can take some q ≥ p such that f(q) ∈ D. Because W κ p, we now know
that either p = q or q ∈ ↑W . In the former case, we know that f(p) = f(q) ∈D. In
the latter case, there is a w ∈W such that w ≤ q. Consequently, f(q) ≥ f(w) and
so f(q) ∈ ↑f(W ) ∩D, as desired.

Conversely, suppose (ii) holds. Let p ∈ P and D ∈ D be such that ↑f(p) ∩D /= ∅.
We proceed by well-founded induction along n ∶= ∣↑p∣. Suppose that we know:

↑f(k) ∩D /= ∅ implies f(↑k) ∩D /= ∅ for all k ∈ P with ∣↑k∣ < n. (20)

Our goal is to prove that f(↑p) ∩ D /= ∅. First, note that W ∶= ↥p is finite and
satisfiesW κ p. By (ii), we thus know f(W ) κD f(p). We gather that f(p) ∈ D
or ↑f(W )∩D /= ∅. In the former case, we are done, so assume we are in the latter
case. This yields some w ∈W such that ↑f(w) ∩D /= ∅. We know that:

⋃
s∈W

f(↑s) ⊆ f(↑p),

hence (20) finishes the argument when instantiating k = w. We have thus proven
(i), as desired.

The following Definition 5.4 is a generalisation of Definition 3.9. When instantiat-
ingD toDΣ

v for some adequate setΣ ⊆ L(X), one can see reflections of this notion
in Rybakov (1990b, Theorem 15.3) and Odintsov and Rybakov (2013, Proposition
4.1.b) through the lens of Lemma 5.2.

5.4 Definition (Adequately Extendible)
Let P be a poset and let D be a set of subsets of P . We say that P is adequately
extendible for D whenever there is a point p ∈ P to each finite W ⊆ P such that
W κD p.
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A function µ ∶ P (P ) → P is said to be an adequate choice of covers for D, when-
ever W κD µ(W ) for all W ⊆ P . Clearly, a finite poset is adequately extendible
precisely if it has an adequate choice of covers. This might make the latter notion
appear redundant, yet it is quite convenient in practise. We use this notion in the
proof of Theorem 5.6 below, where it gives us a handle on the choices involved.

Theorem 5.5 is the main conclusion of this section. It shows that adequately exact
models are the same as adequately extendible models. The proof in one direction
is relatively straightforward and quite reminiscent of Lemma 3.10. The remainder
of this section is devoted to the other direction.

5.5 Theorem
Let v ∶ P → P (X) be a finite model and let D be a set of subsets of P . The
following are equivalent:

(i) the model v is adequately exact for D;

(ii) the model v is adequately extendible for D.

Proof of Theorem 5.5, (i) implies (ii). Suppose (i) holds. We know there to be a finite
set of variables Y , together with a surjective D-adequate map f ∶ u → v, where
u ∶ U(Y ) → P (Y ) is the universal model on Y . LetW ⊆ P be a finite subset, we
need to find some p ∈ P such thatW κD p.

Consider the set f−1(W ). Fix a finite anti-chain S ⊆ f−1(W ) satisfying the equa-
tion ↑S = ↑f−1(W ). We know there to be a point q ∈ U(Y ) such that S κ q.
It is easy to see that f−1(W ) κ q holds as well. By Lemma 5.3, we know that
f (f−1(W )) =W κD f(q) =∶ p, proving (ii).

Instead of proving the other direction directly, we take a detour through the fol-
lowing Theorem 5.6.

5.6 Theorem (Extension Theorem)
Let v ∶ P → P (X) be an order-defined finite model, let D ⊆ P (P ) be a set of
subsets, and let µ ∶ P (P ) → P be an adequate choice of covers for D. Consider
the universal model u ∶ U(Y ) → P (Y ) on a finite set of variables Y and the
submodel u ∶ U → P (Y ) generated by a definable upset U ⊆ U(Y ). If there
is a D-adequate map g ∶ u → v, then there exists a D-adequate map f ∶ u → v
satisfying f ↾ U = g.
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Proof of Theorem 5.5, (ii) implies (i). Suppose (ii) holds. We define Y ∶=X +P and
construct a model u∗ as:

u∗ ∶ P → P (Y ) , p↦ v(p) ∪ {q ∈ P ∣ p ≤ q} .

Note that the model u∗ is order-defined. Indeed, one can readily verify that the
following equivalences hold for all p, q ∈ P :

p ≤ q iff q ⊩ p;
q /≤ p if q ⊩ k for some k /≤ p.

Hence, through Lemma 2.13, there is an upset U ⊆ U(Y ) such that the model
u ∶= u ↾ U ∶ U → P (Y ) is isomorphic to u∗, where u ∶ U(Y ) → P (X). Write
g ∶ u→ u∗ and g−1 ∶ u∗ → u for the maps of Kripke models we thus know to exist.

ByTheorem 5.6, there exists someD-adequate map f ∶ u→ u∗ such that f ↾ U = g.
The latter condition guarantees that the Σ-adequate map f is surjective. Finally,
observe that the map idP ∶ P → P is a definable map h ∶ u∗ → v, simply because
every upset in u∗ is definable. We can thus construct a surjectiveD-adequate map
h ○ f ∶ u → v through Lemma 4.2. This shows that v is adequately exact for D,
proving (i).

The Extension Theorem 5.6 is the core of Rybakov’s method towards obtaining
decidability of admissibility. Indeed, it has been proven many time over, in many
different guises. Our formulation of the proof is mostly inspired by Odintsov and
Rybakov (2013, Theorem 4.2), although the presentation is quite different.

The earliest occurrence of this technique in the literature came from Rybakov
(1984a, Lemma 4), where a similar statement is proven for S4.16 It is not straight-
forward to recognise the statement ofTheorem 5.6 in Lemma 4 of Rybakov (1984a).
Indeed, this lemma makes no mention of the notion of adequate extendibility, or
anything similar to it. Instead, it concretely describes six properties, some ofwhich
(property 4 and 6 to be precise) are analogous to what we encompass by adequate
extendibility. A more honest description would be to say that this lemma proves
the implication from (i) to (ii) of Theorem 5.5, immediately followed by the obser-
vation that adequately exact models are sound with respect to admissibility.

16This technique is employed to establish decidability of admissibility in manymodal and intermediate
logics. To illustrate the wide applicability of this technique, let us but mention Rybakov (1986a,
Lemma 3), Rybakov (1986b, Lemma 4), Rybakov (1987a, Lemma 8), Rybakov (1987b, Lemma 8),
Rybakov (1990a, Proposition 5), Rybakov (1990b, Theorem 20), Rybakov (1991a, Proposition 8),
Rybakov (1991b, Theorem 4), Rybakov (1991c, Theorem 7), Rybakov (1992a, Theorem 4), Rybakov
(1994, Lemma 7), all of which culminate to Rybakov (1997, Theorem 3.9.6).
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Before we move on to the actual proof, let us first give a rough exposition of the
technique involved. To this end, we consider the edge-case where g is the identity
map idU ∶ U → U . To satisfy all prerequisites, the upsetU ⊆ U(X) of the universal
model u ∶ U(X)→ P (X) ought to be finite. The goal of the theorem thus becomes
constructing a definable map f ∶ u → U such that f satisfies the cdc for D and f
obeys the equality f ↾ U = idU . This goal is attainable no matter the choice of D;
indeed, it is possible to make f a definable map.

Let us first illustrate why there exists a map of Kripke frames and defer thoughts
of definability. We have thus reduced the Extension Theorem 5.6 to the following,
which is but a reformulation of Ghilardi (2004, Proposition 4).

5.7 Theorem
Let U ⊆ U(X) be an upset that is both finite and extendible.17 Now, there exists a
map of Kripke frames f ∶ U(X)→ U such that f ↾ U = idU .

Proof by Ghilardi (2004). Observe that, if the map f were to exist, it ought to pre-
serve covers by Lemma 2.4. We can thus define the value of themap f on q ∈ U(X)
inductively along the height of q. If q ∈ U then f(q) is defined to be q. Otherwise,
we know that f (↥q) already has been defined. This subset of U must cover at
least one node, define f(q) to equal one of these. The resulting function is a map
of Kripke frames.

The above construction is quite elegant in its simplicity, yet it does have two ma-
jor drawbacks. First, at no finite stage in the process can the map f be seen as
completed or fully determined. Second, it does not show that f is definable. One
can fill both of these lacunae by using the method given in the proof below.

Observe that there exists a finite numberN , such that every point in U generates
an upset of size at most N . In general, the number N ∶= ∣U ∣ certainly does the
trick. We construct a definable upset A(W ) ⊆ U(X) per subset W ⊆ U . These
upsets will be such that their union equals the entire universal model. Moreover,
the value of f ∶ U(X)→ U at q ∈ U(X) is determined by the smallest S ⊆ U such
that q ∈ A(W ) and this value will be covered byW . This also makes it clear that
W must generate the same upset as f(↥q).

In the proof below, we take an approach similar to the above. Do note that the
prerequisites are quite different; Theorem 5.6 never actually assumes that P is
extendible. Indeed, the theorem requires that P is adequately extendible for D,

17Note that to each finiteX there are only finitely many such upsets, see Arevadze (2001, Chapter 5)
for details.
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given some fixedD. This matters not, as in the reasoning above one could replace
cover by adequate cover for D and the argument applies mutatis mutandis.

For the applicability of this theorem, it is crucial that pre-images of upsets under f
are definable. As illustrated above, the crux of the matter is that such pre-images
are unions ofA(W ) for suitably chosenW ⊆ P . These setsA(W ) are constructed
inductively along the size of W , together with partial definitions of the desired
map f . The majority of the work lies in making sure that these sets A(W ) behave
coherently and that their union equals the entirety of U(X).

In the proof below, we construct a sequence of maps such that five conditions
are satisfied. Let us make a few remarks on these conditions. The conditions
of Compatibility and Closed Domain are quite straightforward; the former is a
natural ingredient of a piece-wise construction and the latter is the piece-wise
formulation of the closed domain condition f ought to satisfy.

The condition Domain Growth ensures that the sequence converges to a map
which has all of the universal model in its domain. Image bound, on the other
hand, ensures that the division of U(X) into the not necessarily disjoint upsets
A(W ) forW ⊆ P contains enough information to specify the behaviour of f . Fi-
nally, the condition Identity ensures that the resulting map satisfies f ↾ U = g.

Proof of Theorem 5.6. We construct a finite sequence of monotonic maps with in-
creasing domains, in such a way that the final map in this series is the desired
D-adequate map f ∶ u→ v. For greater notational convenience, let us write

Pn(P ) ∶= {W ⊆ P ∣ n = ∣W ∣}

We also define the natural numberN ∶= ∣P ∣+1. We claim that for each n ≤ N and
eachW ⊆ Pn(P ) there exists a definable upset A(W ) ⊆ U(X) and aD-adequate
map fn ∶ domfn → P , satisfying the following conditions for all n ≤ N .

Compatibility For allm ≤ n we have that: domfm ⊆ domfn ⊆ U(X) and
fm = fn ↾ domfm.

Closed Domain For all q ∈ domfn and D ∈ D we have that ↑fn(q) ∩D /= ∅
implies fn(↑q) ∩D /= ∅.

Domain Growth If ∣fn(↥q)∣ < n then q ∈ domfn.

Image Bound For allW ∈ Pn(P ), q ∈ A(W ) implies fn(↥q) ⊆W .

Identity The equality f0 = g holds.
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Suppose that the above can be constructed. Due to Domain Growth, it is clear that
domfN = U(X). Indeed, any q ∈ U(X) satisfies

∣fN(↥q) ∣ ≤ ∣P ∣ < ∣P ∣ + 1 = N,

so q ∈ domfN follows. The map fN satisfies all constraints imposed upon f ,
as follows immediately from Compatibility, Closed Domain and Identity. Con-
sequently, we know that we need but prove that these constraints can truly be
satisfied.

The definitions of A(W ) and fn, combined with their respective proofs of cor-
rectness, will proceed by induction along n. Let us first, uniformly for all cases,
define

domfn ∶= U ∪ ⋃
i<n

⋃
S∈Pi(P )

A(S) . (21)

In the case that n = 0, we simply define f0 = g. We also construct the set A(W )
forW ∈ P0(P ). Know thatW = ∅, so it suffices to define

A(∅) ∶= {q ∈ U(X) ∣ q is maximal } .

This upset is finite and as such definable. Let us now verify that all conditions are
satisfied. Indeed, Compatibility holds trivially, Closed Domain is valid by assump-
tion, and Identity holds by construction. See that, if q ⊩ A(∅), then q is maximal
and so ↥q = ∅, proving Image Bound. Moreover, ∣f0(↑q)∣ < 0 is never satisfied,
hence Domain Growth holds vacuously. We have thus verified all conditions.

We now turn to the case where n = m + 1 and define the map fm+1. First note
that, through (21), we know

domfm+1 = domfm ∪ ⋃
S∈Pm(P )

A(S) . (22)

Recall that, for any S ∈ Pm(P ), the upset A(S) is known to be definable by
induction. Using this, we define fm+1 by cases:

fm+1(q) ∶= fm(q) if q ∈ domfm, (23)
fm+1(q) ∶= µ (fm (↥q)) if q ∈ domfm+1 and q /∈ domfm. (24)

Before we continue, we first prove the following.

if q ∈ domfm+1 and q /∈ domfm,
then fm(↥q) is the unique S ∈ Pm(P ) with q ∈ A(S).

(26)
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We know that there exists some S ∈ Pm(P ) such that q ∈ A(S), due to (22). From
Image Bound, we gather that fm(↥q) ⊆ S. If this inclusion were strict, then

∣fm(↥q)∣ < ∣S∣ =m,

so Domain Growth would yield q ∈ domfm. Yet we explicitly assumed this not to
be the case, a contradiction. This entailsW = fm(↥q), proving (26).

Let us now prove that the map fm+1 is monotonic. Suppose q, k ∈ domfm+1 are
given such that q ≤ k holds. We distinguish three cases below, these are both
exhaustive and mutually exclusive.

(i) Both q and k are in domfm.

(ii) q /∈ domfm and k ∈ domfm.

(iii) Neither q nor k are in domfm.

In the case (i), the desired is immediate, as fm is monotonic by induction. In the
case (ii), observe that fm(k) ∈ fm(↥q). By definition (24) and the assumption on
µ, we know that fm+1(q) = µ (fm(↥k)) ≤ fm(k), resolving this case.

Finally, we treat the case (iii). Because q ∈ domfm+1 −domfm, we know q ∈
A(fm(↥q)) by (26). As q ≤ k, it also follows that k ∈ A(fm(↥q)). Another appli-
cation of (26) now yields fm(↥q) = fm(↥k), proving

fm+1(q) = µ (fm(↥q)) = µ (fm(↥k)) = fm+1(k).

We have thus shown that fm+1(q) ≤ fm+1(k) in all cases (i), (ii), (iii), hence fm+1
is monotonic.

We now proceed to prove that fm+1 is definable. To this end, let U ⊆ P be a
definable upset in v ∶ P → P (X). We claim that f−1m+1(U) can be expressed as:

f−1m+1(U) = f−1m (U) ∪⋃{A(W ) ∣ W ∈ Pm(P ) and µ (W ) ∈ U } . (27)

Once we know (27) to hold, the definability is immediate. Indeed, all constituents
are known to be definable by induction and the connectives can all readily be
internalised.

To prove the inclusion from left to right, suppose that q ∈ domfm+1 is such that
fm+1(q) ∈ U . We distinguish between whether q ∈ domfm does or does not hold.
If it does, then fm+1(q) = fm(q) by (23) and hence q ∈ f−1m (U). In the case that it
does not, we know that q ∈ A(fm(↥q)) by (26). By definition (24), we know that

µ (fm(↥q)) = fm+1(q) ∈ U,
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proving the desired.

To prove the other direction, we suppose that q ∈ U(X) is either such that q ∈
domfm, or q /∈ domfm and q ∈ A(W ) for someW ∈ Pm(P ) with µ(W ) ∈ U . The
former case is immediate. In the latter case, fix thisW and note that (26) ensures
W = fm(↥q). Because µ(W ) ∈ U and fm+1(q) = µ(W ) holds by definition (24),
the desired follows.

Now, let us prove that the conditions are satisfied. It is clear that Compatibility
holds. To show that Closed Domain holds, take some q ∈ domfm+1 and D ∈ D to
be such that

↑fm+1(q) ∩D /= ∅.

We distinguish two cases, either q ∈ domfm holds or it does not. If it does, then
Compatibility and induction ensure that

fm+1(↑q) ∩D = fm(↑q) ∩D /= ∅.

In the other case, definition (24) yields fm+1(q) = µ (fm(↥q)). Observe that the
inequality ↑fm+1(q)∩D /= ∅ holds, hence we know of some p ∈ P such that both
fm+1(q) ≤ p and p ∈D hold. By the assumption on µ, it follows that fm+1(q) ∈D
or fm(↥q) ∩D /= ∅. One can easily check that both disjuncts ensure

fm+1(↑q) ∩D /= ∅,

proving that the Closed Domain condition holds.

Finally, we construct the sets A(W ) for W ∈ Pm+1(P ), prove their definability,
and show that both the conditions Domain Growth and Image Bound hold.

A(W ) ∶= {q ∈ U(X) ∣ if k ∈ f−1m (↑p) then k ∈ f−1m (↥p),
for all k ≥ q and p ∈ P −W } (28)

Because v ∶ P → P (X) is assumed to be order-defined, we know that ↑p is de-
finable. We know fm to be a definable map through induction, hence f−1m (↑p)
is definable as well. With this information, we can give the defining formula of
A(W ) as:

def A(W ) ∶= ⋀
p∈P−W

def f−1m (↑p)→ def f−1m (↥p).

We prove Domain Growth. Let q ∈ U(X) be such that ∣fm+1(↥q)∣ < m + 1. If
q ∈ domfm then q ∈ domfm+1, as readily follows through Compatibility. Consider
now the other case, where q /∈ domfm. Through Compatibility, we know that
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fm(↥q) ⊆ fm+1(↥q). We distinguish two cases, either ∣fm(↥q)∣ <m or ∣fm(↥q)∣ =
m. In the former case, we know q ∈ domfm by induction, a contradiction.

Let us focus on the latter case, that is, we assume ∣fm(↥q)∣ = m. This ensures
us that fm+1(↥q) = fm(↥q). We argue by contradiction and assume that q /∈
domfm+1. Our goal will be to derive that q ∈ A(fm+1(↥q)), which would ensure
q ∈ domfm+1, an immediate contradiction.

To this end, let p ∈ P − fm+1(↥q) and k ≥ q be given. Assume that k ∈ f−1m+1(↑p).
If q = k holds, then q ∈ domfm+1 follows, a contradiction. So suppose that k ∈ ↥p.
If fm+1(k) = p, then we have p ∈ fm+1(↥q), another contradiction. This proves
that k ∈ f−1m+1(↥p). We have thus proven that q ∈ A(fm+1(↥q)), as desired.

Finally, we prove that Image Bound holds. LetW ∈ Pm+1(P ) be given. We wish
to prove that if q ∈ A(W ), then fm+1(↥q) ⊆ W . Suppose the contrary, that is,
suppose there is some k > q such that k ∈ domfm+1 yet fm+1(k) /∈ W . We
see that p ∈ f−1m+1(↑p) for p ∶= fm+1(p) /∈ W . Clearly, p < fm+1(k) does not
hold, a contradiction with k ∈ f−1m+1(↥p). This proves the desired, finishing the
argument.
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