
ALMA MATER STUDIORUM
UNIVERSITY OF BOLOGNA

PH.D. IN COMPUTER SCIENCE AND ENGINEERING

XXXV

Towards a Logical Foundation
of Randomized Computation

Candidate
Melissa Antonelli

Supervisor
Ugo Dal Lago
Co-Supervisor
Paolo Pistone

Ph.D. Coordinator
Ilaria Bartolini

01/B1 - INFORMATICA
INF/01 - INFORMATICA

Final Exam Year 2023

Ad Asia, blue“bird” in my heart,
e a Manuela, wonder mamma,
per il loro supporto discreto e costante.

Abstract

This dissertation investigates the relations between logic and theoretical com-
puter science in the probabilistic setting. The project was motivated by two
main considerations. On the one hand, since their appearance in the 1960s-
70s, probabilistic models have become more and more pervasive in several fast-
growing areas of computer science and technology. On the other, the study and
development of (deterministic) computational models has considerably benefit-
ted from the mutual interchanges existing between logic and computer science.
Nevertheless, there is at least one crucial aspect of the theory of computation
which was only marginally touched by such fruitful interactions, namely ran-
domized computation. The goal of this thesis is precisely to (start) bridg(ing)
this gap, by developing logical systems corresponding to specific aspects of ran-
domized computation and, therefore, by generalizing standard achievements
to the probabilistic realm. To do so, the key ingredient of our proposal is the
introduction of new, measure-sensitive quantifiers associated with quantitative
interpretations.

The dissertation is tripartite. In the first part, we focus on the relation be-
tween logic and counting complexity classes. Classical propositional logic pro-
vides the first example of an NP-complete problem, while its quantified version
characterizes in the same way the full polynomial hierarchy. Yet, an analogous
logical counterpart was not known for the probabilistic and counting classes as
introduced by Valiant and Wagner. Here, we introduce a generalization of clas-
sical propositional logic with counting quantifiers and associated with a quan-
titative semantics. This system is proved able to logically characterize the full
counting hierarchy, as the validity problem for counting-quantified formulae (in
a specific form) captures the corresponding level in Wagner’s hierarchy.

In the second part of the dissertation, we consider programming language
theory. Type systems for randomized λ-calculi – also guaranteeing various forms
of termination properties – were introduced in the last decades, but these are
not “logically oriented” and no Curry-Howard correspondence is known for
them. Following intuitions coming from counting logics, we define the first
probabilistic version of the correspondence. Specifically, we present an intu-
itionistic counting propositional logic, which precisely corresponds to a counting-
typed probabilistic event λ-calculus. Notably, this type system with counting is
also proved able to capture probabilistic termination.

Finally, we consider the relationship between arithmetic and computation.

2

As known, several theorems from logic and recursion theory, deeply link Peano
Arithmetic and deterministic computation, but, again, no similar mathematical
theory is known to relate in the same way to probabilistic computation. Here,
we present a quantitative extension of the language of first-order arithmetic,
which allows us to formalize basic results from probability theory and to es-
tablish a probabilistic version of Gödel’s arithmetization. This language is also
the starting point to define a randomized bounded arithmetic and, so, to gen-
eralize standard results by Buss. Indeed, due to counting ideas, we manage to
arithmetically characterize interesting probabilistic classes, as BPP.

3

Acknowledgements

I am grateful to my supervisor, Ugo Dal Lago, and co-supervisor, Paolo Pistone.
None of the results presented in this thesis would have been achieved without
their constant guidance. They not only provided me a great topic of study and
patiently supervised me, but also helped me growing as a researcher. I thank
Isabel Oitavem for hosting me in Lisbon. I thank Rapahëlle Cruibillé and Willem
Heijltjes for carefully reviewing this manuscript, and for their comprehensive
and meliorative remarks.

I thank my colleagues and friends in Bologna – Andrea, Aurore, Davide,
Francesco, Gabriele, Paolo, and Riccardo – for supporting (even in my “odd
moments”) and uplifting me many times. It was really fundamental for me. I am
also grateful to professors who contributed to my previous education and helped
me finding my own way: Giovanna Corsi, Guido Gherardi, Eugenio Orlandelli,
and Jan von Plato.

Finally, yet most importantly, I would like to thank my mother and my family
for their love and encouragement, even in my worst times: thank you to my
mom Manuela, and to my babies Babette and Dafne; thank you to my “amate
creature” Asia, Jamas, and Yanique; thank you to my grandparents – Teresa,
Lodice and Mauro – and to my aunt Micaela; thank you to Valentina; thank you
to Andrea (Krav) and to Simone. A special thank you goes to Giulia, whose
support was so essential.

4

Contents

1 Introduction 12
1.1 On Logical Foundations of Computer Science 13
1.2 Probabilistic Computation . 14

1.2.1 On the Genealogy of Probabilistic Models 15
1.2.2 The Importance of Being Randomized 17

1.3 Towards Logical Foundation of Randomized
Computation . 18
1.3.1 Relating Logic and Randomized Computation 19
1.3.2 From Evaluating to Measuring 20

1.4 Outline of the Thesis . 21

I On Counting Logic and Wagner’s Hierarchy 23

2 Characterizing (Counting) Classes 24
2.1 Historical Background . 24

2.1.1 The Genesis of the Polynomial Hierarchy 25
2.1.2 Probabilistic and Counting Models 27
2.1.3 Probabilistic and Counting Classes 30

2.2 From Propositional to Counting Logic 32
2.3 Outline of Part I . 34

3 On Univariate Counting Propositional Logic 36
3.1 Preliminaries . 36

3.1.1 A Gentle Introduction to Basic Measure Theory 36
3.1.2 Basic Notions in Measure Theory 39

3.2 Syntax and Semantics of CPL0 42
3.3 Proof Theory of CPL0 . 44

3.3.1 Soundness and Completeness 48
3.4 A Digression on the Expressive Power of CPL0 64

3.4.1 Expressing Exact Probability 65
3.4.2 On Formulae of CPL0 and Dyadic Rationals 66

5

4 On Multivariate Counting Propositional Logic 69
4.1 Syntax and Semantics of CPL . 69
4.2 Proof Theory of CPL . 73

4.2.1 Characterizing the Semantics of CPL via Boolean Formulae 73
4.2.2 The Sequent Calculus LKCPL 78
4.2.3 Soundness and Completeness 79

4.3 Related Works . 91

5 On Counting Logics and Wagner’s Hierarchy 93
5.1 The Counting Hierarchy . 93
5.2 On CPL0 and P♯SAT . 96
5.3 On CPL and Wagner’s Hierarchy 97

5.3.1 Towards a Logical Characterization of the Hierarchy . . . 97
5.3.2 Prenex Normal Form . 98
5.3.3 Positive Prenex Normal Form 111
5.3.4 CPL and the Counting Hierarchy 113

II Curry and Howard Meet Borel 115

6 Towards a Probabilistic Correspondence
(and Beyond) 116
6.1 Background . 116

6.1.1 On the Versatility of the λ-Calculus 117
6.1.2 The Curry-Howard Correspondence 120
6.1.3 On Probabilistic λ-Calculi 122

6.2 To a Probabilistic Correspondence (and Beyond) 124
6.2.1 Randomized Programs and Counting Quantifiers 125
6.2.2 Making CbN and CbV Evaluation Coexist 126
6.2.3 Capturing Probability of Normalization Through Types . . 126

6.3 Outline of Part II . 127

7 The Logical Side: iCPL 128
7.1 Intuitionistic Counting Propositional Logic 128

7.1.1 Syntax and Semantics of iCPL 129
7.1.2 Proof Theory of iCPL . 130

7.2 The Computational Fragment of iCPL 132
7.2.1 Syntax and Semantics of iCPL0 133
7.2.2 Proof Theory of iCPL0 . 134
7.2.3 Normalization of NDiCPL0

. 136
7.3 A “CbN Proof System” . 137

8 The Computational Side: ΛPE and Λ
{}
PE 141

8.1 The Probabilistic Event λ-Calculus 141
8.2 A λ-Calculus Sampling from the Cantor Space 143

8.2.1 Introducing the (Untyped) Calculus ΛPE 144

6

8.2.2 Probabilistic (Head) Normalization 146
8.2.3 Extending ΛPE with CbV Functions 147

9 Probabilistic Curry-Howard Correspondence 149
9.1 Introducing Types with Counting 149
9.2 Relating NDiCPL0

and Cλ{}→ . 153
9.3 Relating NDCbN

iCPL0
and Cλ→ . 153

10 From Type Soundness to Type Completeness 159
10.1 From Types to Probability . 159
10.2 From Probability to (Intersection) Types 160
10.3 Related Works . 164

III Randomized Bounded Arithmetic 166

11 Characterizing Probabilistic Complexity 167
11.1 On Arithmetic and (Randomized) Computation 167
11.2 A Brief Overview of Bounded Arithmetic 168

11.2.1 Sub-Theories of Arithmetic and Complexity 168
11.2.2 Buss’ Bounded Arithmetic 169
11.2.3 Ferreira’s Bounded Arithmetic 171

11.3 Towards Randomized Bounded Arithmetic 173
11.3.1 Semantic, All Too Semantic 173
11.3.2 An Arithmetical Theory to Characterize Probabilistic Com-

plexity . 174
11.4 Outline of Part III . 175

12 On Measure Quantifiers in First-Order Arithmetic 177
12.1 Measure-Quantified Peano Arithmetic 177
12.2 On the Expressive Power of MQPA 181
12.3 Randomized Arithmetizaion . 183

12.3.1 Historical Background . 183
12.3.2 Making Arithmetization Randomized 187

13 An Arithmetic to Characterize Probabilistic Classes 200
13.1 Overview . 200
13.2 Introducing POR and RS1

2 . 202
13.2.1 The Function Algebra POR 202
13.2.2 Randomized Bounded Arithmetics 203

13.3 RS1
2 characterizes POR . 207

13.3.1 Functions in POR are Σb
1-Representable in RS1

2 208
13.3.2 The functions which are Σb

1-Representable in RS1
2 are in

POR . 212
13.4 Relating POR and Poly-Time PTMs 227

13.4.1 Preliminaries . 227

7

13.4.2 Relating RFP and SFP 229
13.4.3 Relating SFP and POR 229

13.5 Arithmetical Characterization of BPP 232
13.5.1 From Standard to Randomized Classes 232
13.5.2 Characterizing BPP . 233

14 Conclusion 235
14.1 Main Contributions . 235
14.2 Future and Ongoing Work . 237

8

List of Figures

2.1 The Polynomial Hierarchy . 28
2.2 Probabilistic and Counting Machines 30
2.3 Probabilistic and Counting Classes 32

3.1 Sequent Calculus LKCPL0
. 47

3.2 Derivation of ⊢ ⊤↣ C1/2((0 ∧ ¬1) ∨ (¬0 ∧ 1)) in LKCPL0
. . . . 48

3.3 Soundness and Completeness of LKCPL0
. 52

3.4 Skeleton of LKCPL0
-Completeness Proof 53

3.5 Proof Schema . 64
3.6 Rules for C and D . 66

4.1 Sequent Calculus LKCPL . 80

5.1 Bool(·) and Var(·) . 97
5.2 Proof Schema . 98
5.3 The Proof of Corollary 5.3.2 . 114

6.1 Combinatory Logics and the λ-Calculus 118
6.2 Comparing NI→ and λ→ . 121

7.1 Rules of NDiCPL . 131
7.2 Rules of NDiCPL0

. 135
7.3 Normalization Step for (CI/CE) 136
7.4 Two Examples of Normalization M 137
7.5 Rules of NDCbN

iCPL0
. 138

7.6 Derivation of CqF → (F → F → G)→ CqG in NDiCPL0
. 139

7.7 Normalization step (CICbN/CECbN) 140

8.1 Reduction rules for ΛPE . 143
8.2 Permutative Reductions . 145

9.1 Rules of Cλ{}→ . 151
9.2 Translation Π⇝ DΠ from NDiCPL to Cλ{}→ 154
9.3 Translation Π⇝ DΠ from NDiCPL to Cλ{}→ (continuation) 155
9.4 Translation Π⇝ DΠ from NDCbN

iCPL to Cλ→ (continuation) 157
9.5 Translation Π⇝ DΠ from NDCbN

iCPL to Cλ→ (continuation) 158

9

10.1 Typing Rules of Cλ→,∩ . 161
10.2 Comparing Probabilities Derived with the Rules (µ′) and (µΣ) . . 163

11.1 From Peano to Bounded Arithmetic 169
11.2 Ferreira’s Proof Schema [82] . 170

12.1 From Standard to Randomized Arithmetization 187
12.2 The Structure of the Proof . 188
12.3 From f ∈ OR to arithmetical f# 197
12.4 The Structure of the Proof . 199

13.1 Proof Schema . 201
13.2 Our Proof in a Nutshell . 201
13.3 Relating POR and RS1

2 . 208
13.4 Proof Schema of Corollary 13.3.5 223
13.5 Equivalence between POR and SFP 13.4.1 231
13.6 Proof Sketch of Theorem 13.4.1 232

10

“Susan, enjoy the absurdity of our world. It’s a lot less painful. Believe me, our world is
a lot less painful than the real world.”

– Tom Ford, Nocturnal Animals

11

Chapter 1

Introduction

Among the defining features of standard computational models there is cer-
tainly determinacy: given an algorithm and an input, the sequence of compu-
tation steps is uniquely determined. In the second half of the XX century this
assumption started to be relaxed in different ways. It was in this context that
randomized algorithms were first introduced, where randomized algorithms are
algorithms which evolve probabilistically so that, given an input, the computa-
tion process they perform can have different outcomes and each is associated
with a certain probability. This peculiar feature makes them a very efficient and
powerful tool, with several applications in computer science (CS, for short) and
technology.

Starting from this, the project presented in this thesis has been motivated
by two main considerations. On the one hand, since their appearance in the
1950s, probabilistic computational models have become ubiquitous in several
fast-growing areas of CS and, by now, related abstract models – as probabilis-
tic Turing machines, stochastic automata or randomized λ-calculi – have been
deeply studied in the literature. On the other, there exist deep and mutual in-
teractions linking logic and theoretical computer science (TCS, for short) and,
historically, the development of computational models has considerably benefit-
ted from them. Yet, randomized computation was only marginally touched by
such fruitful interchanges and, indeed, it has not found a precise logical coun-
terpart. Such a missing connection looks even more striking nowadays, due
to the increasing pervasiveness of probabilistic models in many relevant fields
of information technology (IT, for short), from statistical learning [170] and
cryptography [102] to approximate computing and robotics [209].

The global purpose of this study consists in laying the foundation for a uni-
form approach to bridge the quoted gap. To do so, our key ingredient is a family
of new logics, the language of which includes non-standard quantifiers “measur-
ing” the probability of their argument formula, and associated with inherently
quantitative semantics.

12

1.1 On Logical Foundations of Computer Science

The existence of several and deep interactions between logic and TCS is not
accidental, but rooted in the intimate correspondence connecting these disci-
plines. In fact, even the formal appearance of the science of computing was
essentially motivated by foundational studies in mathematics and logic, and it
was in this framework that the subject took its first steps. Later on, the back
and forth between logics and CS strongly influenced the development of both
and, today, numerous areas of IT – think of programming language (PL, for
short) theory [198, 95, 230], verification [207] and database theory [43], com-
putational and descriptive complexity [44, 78, 116], just to quote a few – has
concretely benefitted from this dialogue. As Siekman wrote,

[i]n many respects, logic provides computer science with both a unifying
foundational framework and a tool for modeling. [190, p. 17]

Indeed, many aspects of computer science are intrinsically related with logic, as
shown by several profound and seminal results, e.g. [215, 41, 115, 44, 144, 98].
The other side of the coin is the existence of numerous concrete exchanges be-
tween them. While the growing importance of IT guided and stimulated many
advances in logics, logical tools have extensive applications in CS and technol-
ogy – from software and hardware verification to the modelling of interactive,
multi-agent and AI systems, from the study of relational databases to argumen-
tation theory, from knowledge representation to semantic web.

The Science of Computing Becoming What It Is (from Logic Roots). Nowa-
days CS is a very broad subject, which includes numerous and different sub-
areas, ranging from theoretical to practical ones. Besides, it has no precise birth
date as a discipline [205], but, certainly, a new era in computing emerged at
the end of the XIX century with the foundational crisis of mathematics. In the
1930s, early attempts to formally define the notion of algorithm led to revolu-
tionary theoretical advances and to the first groundbreaking results in compu-
tation theory,1 while technological innovations mostly appeared in the 1940s,
with the crossing of the Newton-Maxwell gap from mechanical and electrome-
chanical computing to fully electrical devices.2 Of course, “abstract” and “ap-
plicative” aspects are not separable. As a paradigmatic example, think of the
historical development of computing models from Turing’s abstraction to con-
crete computing machines:

It was van Neumann’s expertise as a logician that enabled him to under-
stand the fundamental fact that a computing machine is a logic machine.
In its circuits it embodies the distilled insights of a remarkable collection
of logicians, developed over the centuries. Nowadays when computer tech-
nology is advancing with such breathtaking rapidity, as we admire the truly
remarkable accomplishments of the engineers, it is all too easy to overlook
the logicians whose ideas made it all possible. [66, p. 31]

1Further details can be found in Section 12.3.1.
2For further details, see for example [67, 222].

13

Already in the 1990s, CS had so developed to gain a well-defined and unique
body of basic knowledge and to become a(n increasingly more) crucial disci-
pline for academic and industrial research. Yet, the boundaries of this science
are still not precisely outlined [205].

Some Results Relating Logic and Computation. Among the many intriguing
interactions existing between logic and TCS, those relating classical and intu-
itionistic systems – on the one hand – and computational complexity and PL
theory – on the other – are full of theoretical and applicative consequences. In-
deed, it is well-known that classical propositional logic (PL, for short) provided
the first example of an interesting NP-complete problem [44], while the Curry-
Howard correspondence (CHC, for short) unveiled a fundamental correspon-
dence between type systems for abstract functional languages and proof calculi
for constructive logics [95, 198]. Another striking connection between logic
and computing was provided by first-order arithmetic. Indeed, proof systems
for arithmetic can be used to prove termination of certain classes of algorithms
or to establish complexity bounds [100, 139], while higher-order PLs can cap-
ture the computational content of arithmetical proofs [34]. These results have
then stimulated various lines of research and evolved in active sub-areas of CS:
variations of standard propositional logics have been put in relation with com-
plexity classes other than P and NP [146, 33] and with type systems other than
simple types [92, 38, 224, 144], while calculi for linear or bunched logic have
inspired resource-conscious type systems in which duplication and sharing are
taken into account and appropriately dealt with through typing [160, 224].

1.2 Probabilistic Computation

Probabilistic computational models have been widely investigated in the last
few years, and are nowadays pervasive in several areas of CS. The idea of relax-
ing the notion of algorithm from a purely deterministic to a probabilistic process
appeared early in the history of modern computability theory. Intuitively, a
randomized algorithm involves random processes – typically corresponding to
“flipping a coin” – as part of its procedure. While in deterministic computation,
for every input, the algorithm A produces (at most) one output, in randomized
computation, given an input, the algorithm AR returns a set of outputs, each
associated with a probability:

JAK : N ⇀ N ⇝ JARK : N→ DN.

In this way, these algorithms have enabled efficient solutions to several prob-
lems [153], becoming essential in disciplines like cryptography [102]. As a
consequence, several probabilistic formal models were then introduced: from
probabilistic Turing machines (PTM, for short) [183, 90] to Markov chains,
from stochastic automata [176, 188] to probabilistic λ-calculi [180, 119]. At
this point, randomized algorithms and programs are widespread, steering disci-
plines like robotics, verification and security coding, computer vision and NLP.

14

The last decade has witnessed a tremendous growth in the area of ran-
domized algorithms. During this period, randomized algorithms went from
being a tool in computational number theory to finding widespread appli-
cations in many types of algorithms. Two benefits of randomization have
spearheaded this growth: simplicity and speed. [154, p. ix]

1.2.1 On the Genealogy of Probabilistic Models

As anticipated, from the 1950s and 1960s on, probabilistic computational mod-
els started to receive attention [69], and machines including stochastic ele-
ments appeared. In the 1970s, the first formalizations of PTMs were pre-
sented [183, 90]. These new models were explicitly defined as generalizations
of standard ones, but were also developed in mutual dialogue. This was the
starting point of a flourishing interplay between computational complexity and
randomness.3 In the same years, randomized λ-calculi were introduced in the
context of (probabilistic) PL theory, where a probabilistic program is basically
one endowed with a (pseudo-)random number generator.

Early Probabilistic Machines. In 1961, Davis introduced probabilistic au-
tomata as extensions of finite deterministic ones and proved them to behave
like Markov chains (and vice versa) [66, pp. 264-265]. Then, in 1963, Carlyle
formally presented his stochastic sequential machine as a 4-tuple made of the in-
put, output and state sets plus the conditional probability function P (y; s′ | s;x),
which is the joint probability that, given input x and state s, the output is y and
the new state is s′ [39].4 Carlyle presented his machines as generalizations of
Moore’s deterministic finite-state machine.5 In the same year, Rabin introduced
his probabilistic automata as natural extensions of deterministic machines,6 but
including a probability transition function, which assigns a set of probabilities
to each pair ⟨s, σ⟩: when the machine is in state s and receives the input σ, it
reaches any state si with a given probability [176]. Remarkably, Rabin’s work
was one of the main source of inspiration for both Santos [183] and Gill [90].

Probabilistic Turing Machines. In 1969, Santos presented his PTM as a “nat-
ural” [184, p. 165] generalization of standard TMs.7 This work was part of

3In fact, many questions about the possible advantages of adding probabilistic elements in terms
of resources are still open. For example, as we will see in Part III, it is difficult to give implicit
characterizations to semantic classes like BPP and ZPP.

4Observe that this work was quoted by Santos (and Wee), who defined machines equivalent to
Carlyle’s one also using similar notions (e.g. that of conditional probability function) [185].

5Indeed, assuming the extra condition that the probability function has value 0 and 1, Carlyle’s
machine corresponds to Moore’s deterministic one. He also emphasized the connection with Markov
chains [39, p. 168].

6Formally, probabilistic automata are 4-tuples ⟨S,M, s0, F ⟩, where S is the set of states, M :
S × Σ → [0, 1]n+1 is the probability transition function, s0 ∈ S is the initial state, and F ⊆ S is
the set of finite states, over an alphabet Σ.

7See also [183, p. 705].

15

a more general study on probabilistic models, developed in a series of 1960s-
1970s papers [181, 182, 183, 185, 184]. In [183], Santos’ PTM is defined as
a 3-tuple, made of the alphabet set U , the set of states S, and the conditional
probability function p : S × U × (U ∪ {R, L, T}) × S → [0, 1], with R, L, T ̸∈ U ,
satisfying conditions:

1. For any s ∈ S, u ∈ U ,
∑

v∈(U∪{R,L,T})
∑

s′∈S p(s, u, v, s′) = 1,

2. For any u ∈ U , if s ̸= s′, p(s, u, T, s′) = 0.8

Observe that Santos’ probability function fully enucleates non-deterministic as-
pects of the machine and standard TMs can be seen as special PTMs in which
p ∈ {0, 1}.

A few years later, PTMs were also introduced by Gill [89, 90, 91] as TMs
“with the ability to flip coins in order to make random decisions” [90, p. 91].9

One of the main motivations guiding Gill’s interest in these new models was
their deep connection with studies on randomized algorithms and computable
random functions, starting with the pioneering article [69] on the (equivalent)
computational power of deterministic and probabilistic machines. Gill’s PTMs
can be seen as (one-way infinite tape) TMs associated with a subroutine return-
ing either 0 or 1 with equal probability. These machines have a specific coin-
tossing state. When entering this state, they flip an unbiased coin and branch to
one of two specified states according to the given “oracle” outcome. As for San-
tos’ machines, computation is a random process, this time driven by the random
bit supplies, corresponding to “the simplest type of randomness” [91, p. 676].

In fact, there are some differences between Santos’ and Gill’s PTMs. As
seen, the latter ones are defined allowing unbiased choice, whereas the “kind
of randomness” defined by Santos is more general. A related difference is that,
when entering a non-deterministic state, Gill’s PTMs choose between two possi-
ble steps only, while Santos’ probability functions may lead to many subsequent
configurations. Gill himself presented his PTM as a special case of Santos’ one,
which can be generalized by relaxing some requirements. Remarkably, these
original, alternative presentations have paved the way to different definitions,
equally labelled as PTMs in the literature.

Probabilistic Programming and λ-Calculi. Their capability to model com-
plex phenomena and the resulting many applications – for example, in machine
learning, AI, and cognitive science – pushed forward the study of probabilistic
programming languages (PPL, for short), which has significantly advanced in
the last decades. Conceptually, these languages describe probabilistic models
and inferences, usually incorporating probabilities as “first-class citizens”. Con-
cretely, PPLs – for instance, Church [103] or IBAL [171] or PRISM [186] – are
languages (say, LISP, or ML, C or PROLOG) endowed with constructs for sampling
from probability distributions or conditioning event probability.

8For further details, see Section 2.1.2.
9Similarly, in 1977 he wrote that a PTM is a “computer with the ability to make random deci-

sions” [91, p. 675].

16

With the rapidly growing trend in research on these languages, models for
higher-order functional programs have become increasingly important. In par-
ticular, probabilistic λ-calculi were introduced in the 1970s-1980s [180, 119].
Generally speaking, these are obtained by extending ordinary calculi with
constructs allowing probabilistic evolution, and there are at least two main
paradigms distinguished by the operators they provide [53], namely random-
ized and (more recent) Bayesian λ-calculi.10 In particular, randomized calculi
are obtained adding a new operator for probabilistic choice producing different
outcomes in a probabilistic fashion. The simplest one is “just” a form of binary
and fair choice, but is enough to model randomized algorithms. Despite their
early introduction [180], many aspects of these calculi – from denotational se-
mantics and program equivalence to type systems – started to be properly stud-
ied only recently [120, 62, 48, 56, 31], and, indeed, there is no unified view of
these theories yet.

1.2.2 The Importance of Being Randomized

As seen, randomized algorithms are powerful tools with numerous applications
in different fields and technology. Generally speaking, these are crucial when
dealing with uncertain information or partial knowledge, namely for all systems
acting in realistic contexts – for example, think of driverless cars or of computer
vision modelling. In some fields, probabilistic models have become even more
than optional, for instance in cryptography, where secure encryption schemas
are probabilistic [102].

Reasoning About Uncertainty As anticipated, the use of randomized models
have spread in disciplines involving uncertain domain – that is, in all disciplines
realistically interacting with “the world”. In agent systems (whether artificial
or not) reasoning is processed and decisions are made on the ground of the
partial information obtained from the environment and the background knowl-
edge.11 Clearly, in these contexts, simplifications are needed and “probabilistic
thinking” appears as a formidable tool for learning processing and decision mak-
ing [170, 131]. These concrete demands led also to the first attempts to analyze
probabilistic reasoning in a formal way and to the introduction of a few logical
systems, starting with Nilsson’s pioneering proposals in 1986:

Because many artificial intelligence applications require the ability to rea-
son with uncertain knowledge, it is important to seek appropriate general-
izations of logic from this case [158, p. 71]

10Bayesian calculi describe probabilistic models, corresponding to Bayesian networks. These cal-
culi have been introduced relatively recently [28], and adopted in concrete PPLs, e.g. ANGLICAN and
CHURCH.

11Probabilistic models became fundamental in AI research from the 1970s-1980s on. Koller and
Friedman divided the history of this disciplines in some “main phases”: in the 1950s-1960s, AI
focussed on problem solving (e.g. in games) and planning; in the 1970s-1980s, expert systems for
realistic applications started to be developed (sometimes implying high computational complexity);
in the 1990s, Bayesian networks were consolidated to develop efficient inferences and learning
algorithms (together with e.g. fuzzy and non-monotonic logics); in the 2000s also probabilistic
graphical models emerged [131, pp. 13ff.].

17

In the following years, inspired by [158, 159], some probability logics were pre-
sented and developed in the context of modal logics [20, 81].12 Of course, these
are not the only ones and there exist several alternative (logical) approaches to
deal with uncertain reasoning, for example via non-monotonic and fuzzy logics
or with direct numerical representations.13

Of Robotics and Other Demons. Applications of probabilistic algorithms and
models are copious and concern a variety of different fields, from robotics to
linguistics and cognitive science. For example, linguistics aims to characterize
common patterns and structures of a language, analyzing (real) communica-
tion and sources. Then, extrapolation of schemes and text processing clearly
include elements of approximation (sometimes errors) and partiality, to deal
with which probabilistic and statistical tools become crucial. As a consequence,
stochastic models are nowadays essential for linguistics and NLP [143]. Simi-
lar considerations also hold for (probabilistic) approaches to cognitive science,
the purpose of which is that of modelling learning and reasoning. Indeed, ob-
servations are always sparse and data acquired is incomplete and noisy. So,
even in this context, probabilistic models and PPLs become essential. Especially,
the generative paradigm [104] approaches cognition as a process representing
knowledge about the causal structure of the world, i.e. processes which unfold
with a certain degree of randomness. Robotic mapping relies on probabilistic
algorithms as well [208, 209]. Indeed, also this discipline – which is crucial
to design and build autonomous robots – requires the acquisition of (spatial)
models from the “external”, physical environment.

1.3 Towards Logical Foundation of Randomized
Computation

As seen, interchanges between logic and computation are numerous and well-
studied. Yet, when switching to the randomized setting, such a deep correspon-
dence has only been investigated rather sparsely. In probabilistic algorithms,
behavioral properties like termination or equivalence have an inherently quan-
titative nature, namely any computation terminates with a given probability and
a program might simulate a desired function up to some probability of error –
think, for instance, to probabilistic primality tests or learning algorithms. Can
such quantitative properties be studied within a logical system? In this disserta-
tion, we focus on a few specific aspects of the interaction between quantitative
logics and randomized computation, giving a positive answer to this question.
The turning point of our approach consists in considering new quantitative log-
ics able to express probability in a natural way.

12For further details, see Section 4.3.
13Pearl divides the study of uncertainty in AI into three main schools: logicists mostly rely on non-

monotonic systems, neo-calculists uses numerical representations, and neo-probabilistics focuses on
computational tools and calculi basing on probability models [170].

18

1.3.1 Relating Logic and Randomized Computation

We generalize a few standard results linking logic and computation to the prob-
abilistic realm.

Complexity Theory. As it is well-known, classical propositional logic and com-
putational complexity are connected. Checking the satisfiability of PL-formulae
is the paradigmatic NP-complete problem [44], while the language of clas-
sical tautologies is coNP-complete. In the early 1970s, Meyer and Stock-
meyer showed that, when switching to quantified propositional logic (QPL,
for short), the full polynomial-hierarchy (PH, for short) can be captured by
a single logical concept and each level in it is characterized by the validity of
QPL-formulae (in PNF), with the corresponding number of quantifier alterna-
tions [146, 147, 231, 33].14 Nevertheless, when switching to the probabilistic
framework, such a plain correspondence seems lost, as no analogous logical
counterpart is known to relate in this way to the counting classes and hierarchy,
as introduced by Valiant [217] and Wagner [225, 227]:

Polynomial Hierarchy : QPL ⇐⇒ Counting Hierarchy : ?

In Part I, we introduce a counting propositional system, called CPL, which
is basically a generalization of PL capable of expressing that a formula is true
with a given probability. This logic is shown to be strongly related to counting
computation and classes, being the probabilistic counterpart of QPL. Indeed,
the counting quantifiers of CPL can be naturally seen as the “quantitative” ver-
sions of standard propositional ones. Then, our main result is the purely logical
characterization of Wagner’s hierarchy via complete problems defined in terms
of counting-quantified formulae.

Programming Language Theory. Traditionally, the CHC relates intuitionistic
PL and the simply-typed λ-calculus, but in the last fifty years this correspon-
dence was shown to hold in other and more sophisticated contexts too [38, 92,
144, 165, 224]. Meanwhile, randomized λ-calculi [180, 70] and corresponding
type systems were introduced, sometimes also guaranteeing desirable forms of
termination properties [77, 57].15 Yet, they are not “logically-oriented” and no
(probabilistic) CHC [198] is known for them:

simply typed λ→ : intuitionistic PL ⇐⇒ randomized λ-calculus : ?

In Part II, we define an intuitionistic version of CPL0, called iCPL0, which is
able to capture quantitative behavioral properties, together with a “counting”-
typed randomized λ-calculus. Its untyped part is strongly inspired by the prob-
abilistic event λ-calculus introduced in [57], while its types are defined mimick-
ing counting quantifiers. Then, we provide a (static and dynamic) correspon-
dence in the style of Curry and Howard between these two systems.

14Further details can be found in Section 2.1.
15For further details, see 6.1.3.

19

Arithmetic and Computation Theory. Arithmetics and the theory of deter-
ministic computation are linked by deep results coming from logic and recur-
sion theory – for example, arithmetization [97] or realizability [128, 139] or
the Dialectica interpretation [98, 16]. Indeed, the language of arithmetic is able
to express many interesting properties of algorithms and, due to the relation be-
tween totality (of functions) and termination (of algorithms), several issues in
computation theory can be analyzed in the framework of arithmetic. Also in this
case, no probabilistic theory was defined to link to probabilistic computation as
Peano Arithmetic (PA, for short) does to deterministic one:

deterministic computation : PA ⇐⇒ probabilistic computation : ?

In Part III, we present a quantitative extension of the language for PA, called
MQPA, which allows us to formalize basic results from probability theory which
are not expressible in PA, for example the so-called infinite monkey theorem.
Then, we prove that this language is actually related to randomized computa-
tion, establishing a probabilistic version of Gödel’s arithmetization [97], that is
we show that each random function can be expressed by a formula of MQPA.

(Randomized) Bounded Arithmetics. One of the crucial motivations for the
development of bounded arithmetics – i.e., subsystems of PA the induction prin-
ciple of which is limited – was their connection with computational complex-
ity [34, 35]. Indeed, not all computable functions are feasibly computable, and
bounded theories make it possible to characterize such interesting complexity
classes in terms of families of arithmetical formulae. Specifically, Buss proved
that poly-time computable functions correspond to those which are Σb

1-definable
in a given bounded theory, called S1

2. Although this fact is very insightful, no
similar result was established in the probabilistic framework:

deterministic classes : BA ⇐⇒ probabilistic classes : ?

Again in Part III, we introduce a randomized bounded theory, called RS1
2, to

logically capture probabilistic classes, like BPP.

1.3.2 From Evaluating to Measuring

Counting quantifiers are quantifiers of the form Cq and Dq capable of express-
ing probabilities within a logical language. These not only determine the exis-
tence of a satisfying assignment, but rather count how many those assignments
are. In this sense, counting quantifiers can be seen as a quantitative generaliza-
tion of standard propositional ones:

(∀X)F, (∃X)F ⇝ CqF,DqF.

Intuitively, as the QPL-formula (∃X)F says that there is an interpretation for
X making F true, the counting-quantified formula C1/2F expresses that F has
probability greater than 1

2 of being true. Dually, D1/2F says that the argument

20

formula F has probability strictly smaller than 1
2 of being true. Such a general-

ization is made possible by switching from a truth-functional to a quantitative
semantics, in which formulae are no more interpreted as single truth-values but
as measurable sets of models:

JF KQPL ∈ {0, 1} ⇝ JF KCPL ⊆ 2N.

So, while (the truth of) an existentially-quantified formula of QPL – for in-
stance, (∃X)(∃Y)(X ∧ Y) – gives us information about the existence of a satis-
fying model for X ∧ Y , counting formulae express information about the num-
ber of these satisfying valuations. For instance, the (pseudo-)counting formula
C1/4(X ∧ Y) says not only that there exist a satisfying model for X ∧ Y , but
also that at least one out of four possible models of the argument formula is a
satisfying one.

As we shall see, this logic allows us to formally represent and study quanti-
tative aspects of probabilistic computation in an innovative way. Yet, although
it provides a natural model for stochastic events, the expressive power of CPL
is still quite limited. So, we generalize the notion of counting quantifier and
define an extended language, called MQPA, which is basically the language of
first-order arithmetic endowed with second-order measure quantifiers and as-
sociated with a Borel semantics.

1.4 Outline of the Thesis

As explained above, our contributions concern three aspects of the interaction
between quantitative logic and probabilistic computation. Consistently, the dis-
sertation is divided into three main parts. Each one is intended to be as self-
contained as possible.16 In particular, the opening chapter is always introducto-
rily, offering a bird’s-eye view of the topic captioned in the corresponding part.
It includes a brief historical overview and global motivations, together with an
informal presentation of the main results we are going to introduce, without
dealing with technical details.17

• In Part I, we introduce counting propositional logics and show them able
to provide complete (logical) problems for each level of Wagner’s hierar-
chy. In particular, in Chapters 3 and 4, we present the language of univari-
ate CPL0 and multivariate CPL (resp.), and the associated, quantitative
semantics. These logics offer a natural formalism to express stochastic
events and support a suitable proof-theoretical treatment, defined in the
form of sound and complete sequent calculi. Then, our main result is a
logical characterization of CH, as presented in Chapter 5.

16Actually, for the sake of readability, tedious and convoluted proofs are sometimes only sketched.
As a disclaimer, for most of them full details can be found in [13, 8, 5, 7], [11, 12] and [9, 10, 6],
respectively.

17Historical sections are intended to offer some background notions. Readers who are already
acquainted with the corresponding standard knowledge and not interested in the historical per-
spective are encouraged to skip them.

21

• Part II is devoted to our proposal of a probabilistic CHC. In Chapter 7,
we define the intuitionistic version of counting propositional logic, called
iCPL, while, in Chapter 8, we consider its computational part, namely a
slightly modified version of the probabilistic event λ-calculus [57]. The
main contribution here is the definition of a probabilistic CHC between an
intuitionisitic counting logic and a counting-type system able to express
the probability of termination. This is presented in Chapter 9. Then, in
Chapter 10, termination is further investigated by the introduction of an
intersection type system.

• In Part III, we define a language, called MQPA, together with a quan-
titative semantics. This language extends that of PA via second-order
measure quantifiers, which are close to counting ones. In Chapter 12, we
show that MQPA is very expressive. Indeed, results from probability the-
ory, which cannot be expressed in PA, can instead be expressed in it. Fur-
thermore, we show that every recursive random function is represented
by a formula of MQPA. In Chapter 13, we introduce a new randomized
bounded theory and establish that the class of formulae which are Σb

1-
representable in it is precisely that of poly-time random function. Due to
this result, we also provide an arithmetical characterization of BPP.

These contributions are all part of a joint work with my supervisor Ugo Dal
Lago and co-supervisor Paolo Pistone. Our research about randomized bounded
theory, as presented in Section 13, was developed together with Davide Davoli
and Isabel Oitavem.18

18In particular, results presented in Section 13.4 were established by Davide Davoli in his Master’s
Thesis [68].

22

Part I

On Counting Logic and
Wagner’s Hierarchy

23

Chapter 2

Characterizing (Counting)
Classes

In this part we focus on the relation between quantitative logics and counting
complexity classes. Our overall purpose is to generalize to the probabilistic set-
ting the insightful correspondence linking the polynomial hierarchy and QPL,
thus providing a logical counterpart to the counting hierarchy. To do so, we
consider new, inherently quantitative logics, conceived as extensions of classi-
cal PL. These languages are obtained by adding counting quantifiers, allowing
to express that a formula is true in a certain portion of all its possible interpre-
tations. In particular, we start by considering a univariate fragment, which is
limited in expressive power but support a very natural semantics. This logic
also constitutes a model for stochastic experiments (associated with dyadic dis-
tributions). The multivariate counting system is then obtained by generalizing
it in the straightforward way. We conclude presenting our main result, namely
the “characterization” of counting complexity classes due to our counting logics.
Specifically, we prove that the complexity of the decision problem for (a special
prenex form of) counting formulae perfectly matches the appropriate level of
Wagner’s hierarchy.

2.1 Historical Background

In 1972/73, Meyer and Stockmeyer introduced PH, a hierarchy of complexity
classes generalizing NP and coNP and defined in analogy with Kleene’s arith-
metical hierarchy [146, 147]. In the same years, new models of computation
were developed, for example probabilistic Turing machines by Santos [183]
and Gill [91], or counting and threshold machines by Valiant [217] and Si-
mon [191]. Together with these new computational models, also probabilistic
(e.g. BPP or PP [91]) and counting classes (e.g. ♯P [217]) were introduced.
Remarkably, enumerating and probabilistic computation are strongly linked. In-
deed, in 1975, Simon proved that, within certain conditions, PTMs and thresh-

24

old machines yield the same complexity class [191]. In the 1980s also a hierar-
chy of counting classes was defined [227, 164, 212].

Although these results are well-known, we briefly recap the historical back-
ground leading to their development. In fact, terminology is sometimes im-
precise or misleading. For instance, the terms counting and threshold machines
are often used as interchangeable, and there exist several definitions of PTMs
– as deterministic TMs accessing a random-bit source in the form of an oracle-
tape [90] or as NTMs with transition functions to be chosen with (possibly
equal [91]) probability [183]. Being this the root of possible misunderstanding,
we aim to make some crucial notions (and differences between them) by intro-
ducing their original formulations, in the context where they first appeared.

2.1.1 The Genesis of the Polynomial Hierarchy

In On the Computational Complexity of Algorithms (1965), Hartmainis and
Stearns laid the foundation for the study of computational complexity [109],
introducing key ideas for a general approach to quantify computational re-
sources – typically, time and space – and from the 1970s on, complexity classes
started to play a central role in CS. In particular, in his seminal article The
Complexity of Theorem-Proving Procedures (1971), Cook defined the notion of
NP-completeness and proved SAT complete for this class [44].1 In 1972,
Karp showed that other 21 problems (including combinatorial ones) are NP-
complete, so increasing the interest in the topic [121]. Meanwhile, in the USSR,
Levin conceived similar notions and results, first presented in a series of talks,
and published in [141].2 Then, in 1973/74, Fagin also provided a logical char-
acterization of NP, this constituting the groundbreaking result in descriptive
complexity [78].

Shortly after, researchers started to realize the great importance of these
notions and some decision problems were shown to be outside NP:

There has been considerable interest recently in finding “natural” problems
whose solutions require more than polynomial time. [...] Closely related
to the problem of finding non polynomial time languages is the question
of whether or not nondeterministic polynomial time Turing machines can
recognize a larger class of languages than deterministic polynomial time
machines. [146, p. 125]

Indeed, it was their search for natural problems having efficient solutions, that
led Meyer and Stockmeyer to the development of a hierarchy characterizing in
a precise way the inherent complexity of word problems in automata theory,
logic, and arithmetic. In particular, in The Equivalence Problem for Regular Ex-
pressions with Squaring Requires Exponential Space (1972), they considered the
complexity of the language MINIMAL, consisting of formulae not equivalent to
any smaller one. Neither MINIMAL or MINIMAL was known to be in NP, but

1SAT denotes the language of all satisfiable CNF-formulae.
2Nevertheless, his results were not widely known outside from USSR.

25

MINIMAL could be checked with an oracle for testing equivalence of formulae.
This suggests a hierarchy of classes above NP.

The first presentation of PH was in terms of polynomially-bounded quanti-
fiers. Specifically, in [146, Sec. II], a “hierarchy of languages” is described by
generalizing the Kleene’s arithmetical one, so that highest levels are obtained
from the preceding classes:3

For languages L1, L2 we say L1RnL2 if L1 is accepted by some nondeter-
ministic polynomial time machine with oracle language L2. [...]
Definition: Σp

0 = Πp
0 = ∆p

0 = ∅.

Σp
i+1 = {L | LRnL

′ for some L′ ∈ Σp
i }

Πp
i+1 = {L | ¬LRnL

′ for some L′ ∈ Σp
i }

∆p
i+1 = {L | L ≤p L

′ for some L′ ∈ Σp
i }.

[...] This hierarchy has the same inclusion structure as the Kleene arith-
metical hierarchy.4 [146, pp. 127-128]

Further details on this new hierarchy were given in Word Problems Requiring
Exponential Time (1973), where, in Section 4, classes is defined in terms of
poly-time computable predicates.

Let P (x1, . . . , xk) be a predicate on words in Σ∗ for some Σ. We say that
P is polynomial time computable if {x1♯x2♯ . . . ♯xk | P (x1, . . . , xk)} is a set
of words recognizable in deterministic polynomial time where ♯ is a symbol
not in Σ.
Theorem 4.1. For k ≥ 1 a set of words A is in Σp

k iff there is a deter-
ministic polynomial time computable predicate P (x, y1, y2, . . . , yk) and a
polynomial p such that

A = {x | ∃y1∀y2∃y3 . . . Qkyk[P (x, y1, . . . , yk)]}

where the quantifier range over yi ∈ Σ∗ such that |yi| ≤ p(|x|).5 [147, p.
5]

In [146, Sec. III], Meyer and Stockmeyer even provided complete sets for
each level in PH. Theorem 3.2 proved that for any k, the set Bk of true quan-
tified Boolean formulae with k − 1 alternations of quantifiers starting with ∃
is Σp

k-complete:6 case Bk = SAT was already considered in [44], and a similar
proof is offered for k = 2 relying on the notion of oracle machine.7 In [147], the

3The reference to Kleene’s hierarchy is a constant in Meyer and Stockmeyer’s works on PH. For
example, in 1977, Stockmeyer wrote:

Briefly, the P-hierarchy is that subrecursive analog of the Kleene arithmetical hierarchy, in which
deterministic polynomial time plays the role of recursive time. [201, p. 2]

4Given two languages L1, L2, L1 ≤p L2 if L1 is accepted by some deterministic poly-time
machine with oracle L2 and L2 oracle can, in a single step of the machine, determine whether or
not y ∈ L2, y being some string written on the machine’s tape [146, p. 127].

5As standard, Qk = ∃ when k is odd and Qk = ∀ when k is even.
6See also [147, THM. 4.1] and [200, THM. 4.1].
7This shows that, although the definition of PH is not totally stable, many key ideas were

conceived, at least in nuce, already in 1972/73. In particular, Fortnow noticed that [146, 147]
somehow predated the Backer, Gill and Solovay notions of oracle machine, as formally introduced
in [21]. For further details, see [86].

26

definition of the set Bω of true quantified Boolean formulae with an arbitrary
number of quantifiers also appears.

These ideas were extended and made clearer in [231] and [201]. In par-
ticular, in The Polynomial-Time Hierarchy (1977), PH (called “P-hierarchy”)
is defined in a formal way in terms of both polynomially-bounded alternating
quantifiers and oracle (or query) machines. In particular, the oracle characteri-
zation below is inspired by [231]:

The polynomial-time hierarchy (P-hierarchy) is {Σp
k,Π

p
k,∆

p
k : k ≥ 0}, where

Σp
0 = Πp

0 = ∆p
0 = P;

and for k ≥ 0,

Σp
k+1 = NP(Σp

k),

Πp
k+1 = co-NP(Σp

k),

∆p
k+1 = P(Σp

k).

Also define PH=
⋃∞

k=0 Σ
p
k. [201, pp. 5-6]

Then, [147, THM. 4.1] is re-considered as follows:

Theorem 3.1. Let Θ be a finite alphabet and A ⊆ Θ+. A ∈ Σp
k iff there is a

polynomial p(n), an alphabet Γ, and a (k+1)-ary relation R ∈ P such that
for all x ∈ Θ+,

x ∈ A iff (∃y1)(∀y2)(∃y3) . . . (Qkyk)[R(x, y1, y2, . . . , yk)],

where the quantifiers alternate (so Qk is ∃ (∀) if k is odd (even)), and
y1, . . . , yk range over all words in Γ+ of length not exceeding p(|x|). Simi-
larly, A ∈ Πp

k iff for all x,

x ∈ A iff (∀y1)(∃y2)(∀y3) . . . (Q′
kyk)[R(x, y1, y2, . . . , yk)],

(so Q′
k is ∀ (∃) if k is odd (even).) [201, p. 6]

where R is an n-ary relation on words defined as P above. Here, a relevant
remark is added by Stockmeyer in [201, pp. 7-8], where – following [78] – he
notices that there exists a natural correspondence between PH and the sets of
finite structures of formulae in second-order predicate logic.8

2.1.2 Probabilistic and Counting Models

From the 1950s on, randomized algorithms have become more and more rele-
vant and their study started spreading [69]. Since the beginning, the develop-
ment of such models has been strongly related to inquiries about their power
and connected resource issues:

Is there anything that can be done by a machine with a random element but
not by a deterministic machine? [69, p. 183] [90, p. 91]

8Other new ways to interpret space complexity in terms of alternation were presented in [40].

27

1975 1980

Coo
k-L

ev
in

The
or

em
(1

97
1/

73
)

M
ey

er
an

d St
oc

km
ey

er
’s
P
H

(1
97

2/
73

)

Fa
gin

’s
The

or
em

(1
97

4)

St
oc

km
ey

er
’s

an
d W

ra
th

all
’s

or
ac

le
P
H

(1
97

6)

Figure 2.1: The Polynomial Hierarchy

A realistic model for real-life computers is that of machines enriched with ran-
dom number generators. A corresponding precise definition was formalized in
the 1970s in the form of probabilistic machines. Generally speaking, a PTM is a
machine that, at each step in the computation, chooses between two transition
functions – say, δ1 and δ2 – (usually) with equal probability 1

2 and independently
from previous choices.9

In the same decades, other non-standard models were introduced. Gener-
ally speaking, the defining feature of threshold and counting machines is that
of enumerating the number of accepting paths: Valiant defined his counting
machines as NTMs returning the number of accepting computation paths (in
binary notation), while threshold machines accept an input when the number
of accepting paths is greater than a given threshold. Other interesting mod-
els related to probabilistic computations are, for example, alternating Turing
machines – namely, generalizations of non-deterministic TMs inspired by the
notion of alternation by Kozen, Chandra, and Stockmeyer [40] – or Papadim-
itriou’s stochastic machines [161, p. 293].

Probabilistic Turing Machines. PTMs were formally introduced by Santos
and Gill in a series of papers in dialogue with each other. In particular, in
Santos’ Probabilistic Turing Machines and Computability (1969) and Computabil-
ity by Probabilistic Turing Machines (1971), PTMs are considered together with
random functions [183, 184]. These machines are defined as tuples M =
(Q,Σ, p),10 where, as standard, Q and Σ are the sets of states and symbols
(resp.), but p : Q×Σ×V ×Q→ [0, 1] is a probability function with V = {R, L, T}
and satisfying the following conditions:

i.
∑

v∈V
∑

q∈Q p(q, σ, v, q′) = 1 for every q ∈ Q and σ ∈ Σ

9In subsequent chapters, if not otherwise specified, we assume this as our standard definition.
10Actually, in Santos’ notation the PTM is defined as follows: Z = (U, S, p) [183].

28

ii. for every σ ∈ Σ, if q ̸= q′, p(q, σ, T, q′) = 0.

This function is the conditional probability for “next acts” of the machine, given
that it is at state q and scanning a square on which σ appears [183, p. 704]
and [184, p. 12]. Then, standard TMs become a special case of PTMs in which
p returns 0 and 1 only. Santos also notices that these PTMs behave like the
stochastic sequential machines he defined in [181, 182] and can be associated
with Markov chains, where states are represented by instantaneous expressions
and a termination-state is added. Then, dynamic aspects are introduced [183,
pp. 705-706]: qM(α, β) is the probability that the instantaneous expression of
M is β, given that M starts with expression α,11 and t

(n)
M (α, β) is the probability

that, after n steps, M terminates with instantaneous expression β, given that it
starts with α.

In the same years, also Gill introduced formal machines to study the com-
putational power of probabilistic algorithms and compared them with standard
ones. His PTMs are defined as TMs with the additional ability to make random
decisions – typically, corresponding to flipping a coin – so that their output is no
longer uniquely determined:

A probabilistic Turing machine (PTM) is a Turing machine with distinguished
states called coin-tossing states. For each coin tossing state, the finite con-
trol unit specifies two possible next states. The computation of a proba-
bilistic Turing machine is deterministic except that in coin-tossing states the
machine tosses an unbiased coin to decide between the two possible next
states. [91, p. 676]

Given an input, x, the computation of a PTM M corresponds to a stochastic
process driven by the machine’s “random bits supplies”, and PROB{M(x) = y}
denotes the probability that M returns y on input x. The output of the machine
is the (at most one) number y such that PROB{M(x) = y} > 1

2 .
Observe that Gill’s definition [91, DEF. 2.1] restricts the source of random-

ness to a sequence of independent and equiprobable bits. By relaxing this model
to allow arbitrary bias, one rather obtains machines equivalent to Santos’ ones,
where, as seen, transitions can be associated to arbitrary probability. On the
other hand, despite being more limited, Gill’s PTMs – in which the source of ran-
domness is limited to independent and fair probabilities – are somehow more
realistic, as implementable in concrete machines. Nevertheless, as anticipated,
both these models are at the basis (usually without clear differentiation between
them) of standard definitions of PTMs – as either defined as (deterministic) or-
acle machines with a read-only random tape or as NTM with two transition
functions.

Threshold and Counting Machines. As anticipated, in this same context also
threshold and counting machines were introduced. Simon defined threshold

11This function is extended to qnM(α, β) to be interpreted as the probability that the instantaneous
expression of M is β “after n steps” given that M starts with instantaneous expression α.

29

machines in Chapter 4 of his thesis On Some Central Problems in Computa-
tional Complexity (1975). In particular, in Section 4.4, he focusses on non-
determinism and defines classes of languages as recognized by k-threshold ma-
chines [191, pp. 90-91]. In fact, this machine is introduced to study complexity
and connections with PTMs are explicitly considered in Theorem 4.4, stating
that the class of probabilistic poly-time languages and that of languages recog-
nized by poly-time threshold machines are the same [191, p. 91].

Counting machines were introduced to analyze probabilistic and counting
complexity as well. In The Complexity of Computing the Permanent (1979),
Valiant used them to define ♯P, the class which captures the complexity of
the problem of counting the number of solution of a Boolean formula [217].
Valiant’s counting machines are (poly-time) NTMs, the output of which consists
in the number of their accepting paths.

A counting Turing machine is a standard nondeterministic TM with an aux-
iliary output device that (magically) prints in binary notation on a special
tape the number of accepting computations induced by the input. [217, p.
191]

Valiant himself noticed that this model is equivalent to Gill’s PTM and Simon’s
threshold machine [217, p. 190].

1970 1975 1980

Sa
nt

os
’ P

TM
(1

96
9/

71
)

Gill’
s PT

M
(1

97
4/

77
)

Sim
on

’s
th

re
sh

old
mac

hin
e (1

97
5/

77

Va
lia

nt
’s

co
un

tin
g mac

hin
e (1

97
9)

Figure 2.2: Probabilistic and Counting Machines

2.1.3 Probabilistic and Counting Classes

As anticipated, these new probabilistic and counting computational models were
developed in strict connection with open problems in complexity theory:

Since the notion of probabilistic machine was introduced by Gill, several
researchers have been much interested in several questions about its com-
putational power. [210, p. 514]

This increasing interest in complexity and the development of new models led
to the discovery of many problems beyond PH. In fact, also probabilistic and
threshold machines were introduced in relation to complexity theory:

30

...there are many natural computational problems whose complexity cannot
be modelized in terms of existential and universal quantifiers; on the other
hand this complexity is captured by other complexity classes, more adapted
to the idea of counting. [212, p. 213]

Probabilistic and Counting Classes. Together with PTMs, Gill introduced
probabilistic classes – as BPP and PP – to capture the notion of probabilis-
tic efficient computation [90, 91]:

DEFINITION 5.1 (i) PP is the class of languages recognized by polynomial
bounded PTMs. (ii) BPP is the class of languages recognized by polyno-
mial bounded PTMs with bounded error probability. (iii) ZPP is the class of
languages recognized by PTMs with polynomial bounded average run time
and zero error probability. [91, p. 685]

In the quoted paper, Gill also considers complete problems characterizing these
classes. Specifically, he takes into account MAJSAT (actually called MAJ) – defined
in the standard way, i.e. as the set of propositional formulae satisfied by the
majority of their interpretations – and ♯SAT – defined as the set of pairs ⟨i, F ⟩
such that the propositional formula F has more than i satisfying interpretations.
He quotes Simon’s result, stating that ♯SAT is complete for PP [91, LEMMA 5.8]
and extends it to MAJSAT [91, PROP. 5.10].

Meanwhile, in On the Difference between One and Many (1977), Simon ex-
amined whether it is more difficult to decide a problem or to count the number
of its solutions and showed that the class of threshold languages corresponds
to PP [192]. A few years later, in The Complexity of Computing the Perma-
nent (1979), Valiant defined the class ♯P of functions computing the number
of accepting paths of a (poly-time) counting machine [217, p. 191]. Further-
more, in Two Remarks on the Power of Computing (1982), studying the relation-
ship between counting classes and PH, Papadimitriou and Zachos introduced
⊕P [163], the class of decision problems solvable by a poly-time NTM accept-
ing an input when its number of accepting paths is odd. Since then, research
in the area of counting complexity has been wide-spread and several definitions
for such classes have been introduced.

The Counting Hierarchy. It was in this context that, in 1986, the counting
hierarchy was conceived for the first time and independently defined by Wag-
ner [225, 227, 226] and by Parberry and Schnitger [164].12 In particular, in The
Complexity of Combinatorial Problems with Succinct Input Representation (1986),
Wagner defined CH as a generalization of Meyer and Stockmeyer’s hierarchy,
allowing to express the complexity of many natural problems in which count-
ing is involved, and which are not in PH. This was the first clear presentation
of CH in terms of language operators. Some years later, another popular and
equivalent characterization was presented by Torán [212, 214].

Notice that Wagner’s operator was not the only “probabilistic” quantifier
introduced in the 1980s. For example, Papadimitriou showed that the class

12For further details, see Chapter 5.

31

PPSPACE can be characterized by logical formulae, when alternating stan-
dard and probabilistic quantifiers, the latter expressing that more than half of
the strings of a certain length satisfies the underlying predicate [161]. In 1986,
Zachos and Heller defined BPP by means of a random quantifier [233], while
in 1988 Zachos considered the relationship between canonical and probabilistic
classes by introducing the overwhelming and the majority quantifiers [232]. Re-
markably, all these operators are over (classes of) languages, rather than stricto
sensu logical quantifiers. In this context, a relevant exception is represented by
Kontinen’s work [134, 135, 136], where second-order generalized quantifiers
were defined in the style of descriptive complexity.

1975 1980 1985 1990

Gill’
s P

P
an

d B
P
P

(1
97

4/
77

)

Va
lia

nt
’s
♯P

(1
97

9)

Pa
pa

dim
itr

iou
an

d Za
ch

os
’ ⊕
P

(1
98

2)

W
ag

ne
r’s
C
H

(1
98

4/
86

)

Pa
rb

er
ry

an
d Sc

hn
itg

er
’s
C
H

(1
98

8)

Figure 2.3: Probabilistic and Counting Classes

2.2 From Propositional to Counting Logic

From PL to QPL (and Beyond)

As seen, checking the satisfiability of a formula in classical PL constitutes the
paradigmatic NP-complete problem, while determining whether any such for-
mula is a tautology is, dually, coNP-complete. When switching to QPL, these
two classes can be also uniformly captured: satisfiability of PL formulae cor-
responds to validity of existentially-quantified formulae of QPL in the form
(∃X1) . . . (∃Xn)F , where F is quantifier-free, while PL-tautology can be seen
as universally-quantified formulae (∀X1) . . . (∀Xn)F .

Example 2.2.1 (Formula of QPL). For example, the formula

FQPL : (∃X1)(∃X2)(∃X3)
(
(X1 ∧ ¬X2) ∨ (X2 ∧ ¬X3) ∨ (X3 ∧ ¬X1)

)
expresses that there exists at least one model satisfying (X1 ∧ ¬X2) ∨ (X2 ∧
¬X3) ∨ (X3 ∧ ¬X1).

Checking the validity of quantified formulae provides complete problems for the
whole PH, so that each level in it is characterized by the number of alternations
in the corresponding PNF-formula of QPL.

32

Indeed, in this case, existential and universal quantifications play the role
of the acceptance condition in (non-deterministic) machines defining the corre-
sponding complexity classes, that is requiring that either (at least) one or all
computation paths are accepting ones. What if other kinds of quantification
over computation paths replace universal and existential ones? Otherwise said,
is it possible to (logically) deal with different machine models? For example,
can we take into account complexity classes like PP, which concerns problems
computable by a poly-time PTM, such that the produced answer is correct for at
least half of its accepting paths (and similarly for the non-accepting states)?

Notably, complete problems for PP can still be expressed in terms of PL-
expressions, namely via the problem MAJSAT checking if a formula of PL is true
in at least half of its possible interpretations. Furthermore, PP is related to
P♯SAT, the class of counting problems associated with the decision problems in
NP. It was starting from these classes and in analogy with PH that Wagner
defined his counting hierarchy,

CH0 = P

CHn+1 = PPCHn ,

with n ≥ 0. Then, a typical problem belonging to this hierarchy – in fact, one
which is complete for CH2 = PPPP – is MAJMAJSAT, the problem of determin-
ing, given a formula of PL F containing two disjoint sets x and y of variables,
whether for the majority of the valuations of variables in x, it holds that for the
majority of variables in y, the resulting valuation makes F true.

From Standard to Counting Quantifiers

Wagner’s hierarchy is clearly the quantitative counterpart of PH, the structure
of the two being very similar. So, the basic idea to generalize the insightful
characterization by Meyer and Stockmeyer is to consider a quantitative version
of QPL, this time able to capture “quantitative” acceptance conditions and, so,
probabilistic classes. In other words, we need to consider a logic x to fill in the
conceptual proportion below:

QPL
PH

=
x

CH
.

Our core idea is to take into account more expressive quantifications and,
specifically, to switch to measure-sensitive quantifiers able to count the num-
ber of satisfying valuations of formulae:

quantified propositional logic
PH

=
measure-quantified propositional logic

CH
.

This means moving from standard quantified propositional formulae of the
form,

(▷1X1)(▷2X2) . . . (▷xXn)F{X1, . . . , Xn},

33

where for any i ∈ {1, . . . , n}, ▷i ∈ {∃,∀} to “counting” quantified expressions
of the form

Q1Q2 . . .Qm.F,

where for i ∈ {1, . . . ,m}, Qi are non-standard, measure-sensitive quantifiers.

From Qualitative to Quantitative Semantics

Yet, concretely, how could these measure quantifiers help us to define complete
problems for CH? Otherwise said, while the semantics of QPL is quite natu-
ral, what is the intuitive meaning of counting-quantified formulae? Clearly, this
question appears as meaningless if variables one would like to quantify over
only take two possible values. The perspective changes when allowing to si-
multaneously quantify over all the propositional variables which are free in the
argument formula, that is when the interpretation of a formula is no longer a
single truth-value got in a given valuation, but the set of all valuations making
the formula true. So, for any valuation v,

JF Kv = truth-value =⇒ JF Kv = measurable set

For example, given a formula of PL – say, F = X ∨ ¬Y – measuring the
probability for it to be valid now amounts at counting, among the finitely many
valuations of the variables of the formula, those which satisfy it – in this case
three out of four.

In general, letting the semantics of a formula JF K be a (measurable) set, we
can interpret the quantified formula CqF as saying that F is true in at least a
fraction q·2n of the 2n possible assignments of its n variables. Let us consider a
concrete formula similar to that of Example 2.2.1.

Example 2.2.2 (Pseudo-Formula of CPL0). The measure-quantified formula

FCPL0
: C1/2

(
(X1 ∧ ¬X2) ∨ (X2 ∧ ¬X3) ∨ (X3 ∧ ¬X1)

)
intuitively says that (X1 ∧ ¬X2) ∨ (X2 ∧ ¬X3) ∨ (X3 ∧ ¬X1) is satisfied by at

least four (actually by six) of its 23 = 8 models and, so, FCPL0
is valid.

Observe also that our counting quantifier is reminiscent of the operator on
classes of languages, which Wagner introduced in his seminal works on CH
(and succinct representation) [227, 226]. Indeed, our logic precisely aims to
capture counting problems in which one does not ask if a machine accepts some
input, but how many times the machine accepts it. As seen, these problems are
deeply related to the study of probabilistic classes, such as PP, and counting
quantifiers will be shown effectively able to define natural problems for them.

2.3 Outline of Part I

As anticipated, in this part of the thesis, we introduce new counting logics and
investigate their connections with counting complexity classes. In particular, we
proceed as follows:

34

• In Chapter 3, we present CPL0, the univariate fragment of our counting
propositional logic. Although the expressive power of this language is
limited, it offers a plain interpretation for formulae and its generalization
to the more complex, multivariate version comes straightforwardly. This
logic is also shown to admit a satisfactory proof-theoretical treatment and
to be strongly related to stochastic experiments. Indeed, it provides a nat-
ural model to formalize events the measure of which is a dyadic rational.

• Then, in Chapter 4, we extend our study to multivariate CPL. Its language
is named, so that relations between valuations of different groups of vari-
ables can be considered. Also in this case we define a sequent calculus
and prove it sound and complete with respect to the given quantitative
semantics.

• Chapter 5 is devoted to the link between our new logics and counting
complexity. On the one hand, we prove that deciding the validity of CPL0-
formulae is in P♯SAT (namely, the class of problems which can be solved in
polynomial time when accessing a ♯SAT oracle). On the other, multivariate
CPL provides complete problems for the each level in CH. Indeed, we
establish that the deciding the validity of counting formulae (in a special
form) with k nested quantifications precisely corresponds to the k-th level
of Wagner’s hierarchy.

35

Chapter 3

On Univariate Counting
Propositional Logic

In the present chapter, we introduce CPL0, the univariate version of our count-
ing propositional logic. Although this fragment is rather limited in expressive
power, its interpretation is natural and can be extended to multivariate CPL
plainly. Our presentation will proceed as follows. We start by summarising
a few standard notions in probability theory, which are needed to define our
quantitative semantics. In Section 3.2, we define the syntax and semantics of
CPL0. Then, in Section 3.3 we introduce a rule system in the form of a labelled
sequent calculus, which is proved sound and complete with respect to the given
semantics. Finally, in Section 3.4, we show that CPL0 provides a natural model
to formalize stochastic experiments the probability of which is associated with
dyadic rationals.

3.1 Preliminaries

In Section 3.1.1 provide an informal introduction of basic notions in probability
theory, which are needed to define the semantics of CPL, and make our no-
tational convention explicit. In order for this Chapter to be self-contained, in
Section 3.1.2, we present these definitions in a formal way. Readers already
familiar with probability theory is encouraged to skip this latter Section.

3.1.1 A Gentle Introduction to Basic Measure Theory

Probability theory concerns mathematical foundations of stochastic phenomena.
In probability theory an outcome or point ω is the result of a single execution
of an experiment, the sample space Ω is the set of all its possible outcomes, and
an event E is a subset of Ω. Two events, say E1 and E2, are disjoint or mutually
exclusive when they cannot happen at the same time, that is E1∩E2 = ∅. A class

36

Fof subsets of Ω is a σ-field or σ-algebra when (i.) it contains Ω, i.e. Ω ∈ F,
(ii.) it is closed under complementation, i.e. if E ∈ F, then E ∈ F, being E
the complementation of E, and (iii.) it is closed under countable union (and
intersection), i.e. if {Ei}i∈N, then

⋃
i∈N Ei ∈ F. The largest σ-field on Ω is

the power class 2Ω, while the smallest one is {∅,Ω}. The σ-field generated by
F, σ(F), is the smallest σ-algebra containing F. A measurable space is a pair
(Ω,F), where F is a σ-algebra over Ω.

In the 1930s, Kolmogorov introduced the notion of probability space, to-
gether with the axioms for probability [133]. A probability measure PROB(·) on
a σ-field Fassociates each event E ∈ Fwith a number PROB(E) so that,

i. for each E ∈ F, 0 ≤ PROB(E) ≤ 1,

ii. PROB(∅) = 0 and P (Ω) = 1,

iii. if E1, E2, · · · ∈ F is a sequence of disjoint events, then

PROB

(∞⋃
k=1

Ek

)
=

∞∑
k=1

PROB(Ek).

Two events are (stochastically) independent when the occurrence of one does
not affect the probability for the other to occur. In particular, given two disjoint
events, E1 and E2, PROB(E1 ∪ E2) = PROB(E1) + PROB(E2), while for two
independent events, E′1 and E′2, PROB(E′1 ∩ E′2) = PROB(E′1) · PROB(E′2).

A probability space (Ω,F, PROB) is a mathematical object that provides a
formal model for random processes and it is made of:

• A sample space Ω, which is the set of all possible outcomes,

• A σ-field F, which is the set of events,

• A probability measure PROB, which assigns to each event in Fa probability,
i.e. a number between 0 and 1 satisfying the so-called Kolmogorov axioms.

In the following we will focus on a specific probability space, namely the
one related to fair coin tosses such that the set of possible outcomes of the
experiment is {TAIL, HEAD}. In general, if dealing with a Bernoulli experiment,
we can consider the set of its possible outcomes as simply B = {0,1} or 2 =
{0, 1}.1 The corresponding sample space is Ω = BN, to be naturally seen as the
set of all infinite sequences of random bits (i.e. coin tosses) denoted as

ω = ω(1)ω(2) . . . ,

with ω(i) ∈ B for any ω ∈ Ω and i ∈ N. Each sequence ω can be interpreted as
the result of infinitely flipping a coin.

1In what follows, we use all these three notations depending on the context. In particular, we
use TAIL and HEAD when dealing with concrete examples concerning coin tossing. Observe however
that all these sets are equivalent for our goal.

37

Definition 3.1.1 (Cylinder of Rank n). A cylinder of rank n is a set of the form

cylH = {ω | ω(1), . . . , ω(n) ∈ H},

with H ⊂ Bn.

Note that when H = {(u1, . . . , un)} is a singleton (u1, . . . , un ∈ B), an event
E = {ω | ω(1), . . . , ω(n) = (u1, . . . , un)}, such that the first n repetitions of the
experiment have outcomes u1, . . . , un in sequence, is called a thin cylinder. We
will be particularly interested in special thin cylinders in which the only set of
H is made of one element ui = 1.

Notation 3.1.1. Let i ∈ N, we denote special thin cylinders as follows:

Cyl(i) = {ω | ω(i) = 1}.

The class of cylinders of all ranks, which is a field,2 is denoted by C, while
σ(C) indicates the σ-algebra generated by C. It is thus possible to define a mea-
sure on it. In particular, the canonical one, consists in assigning the following
probability measure µC to any cylinder of rank n.

Definition 3.1.2 (Cylinder Measure). Given u ∈ B, let pu denote the (non-
negative and summing to 1) probability of getting u. Then, for any cylinder
cylH ,

µC(cylH) =
∑
H

pu1
· · · pun

.

the sum extending over all the sequences (u1, . . . , un) ∈ H

So, in the special case of cylH being a thin cylinder,

µC

(
{ω | (ω(1), . . . , ω(n)) = (u1, . . . , un)}

)
= pu1

· · · pun
.

This is also a mathematical model for an infinite sequence of random bits or
independent tosses, each having probability p0i

of success, and p1i
of failure.

Furthermore, when the coin is fair, for any tossing: p0i
= p1i

= 1
2 . In this

case, since cylinders of rank n are finite sets, the following result comes out as
a straightforward consequence of Definition 3.1.1.

Corollary 3.1.1. For any cylinder of rank n, call it cylH (such that for any i ∈ N
and p0i = p1i =

1
2), there are some m,m′ ∈ N such that µC(cylH) = m′

2m .

So, going back to σ(C), a well-defined probability measure can be assigned to
it by simply generalizing Definition 3.1.2 in the natural way, and the probability
space PC = (BN, σ(C), µC), where µC is such that, for any i ∈ N, p0i

= p1i
= 1

2 ,
defines a standard model for infinite and independent tosses of a fair coin.3

2See [25, pp. 27-30]. Observe that Billingsley uses C0 to denote this class, and C to indicate
corresponding, generated σ-algebra.

3For further details on the “coin toss model”, see Section 3.1.2 or [25].

38

3.1.2 Basic Notions in Measure Theory

The following notions are standard, see for example [25, 150].

On Fields and σ-Fields. As seen, we use Ω to denote the space consisting of
all possible outcomes ω of an experiment. Subsets of Ω are called events.

Definition 3.1.3 (Field). A class Fof subsets of Ω is called a field if it contains
Ω itself and is closed under complementation and finite unions:

i. Ω ∈ F,

ii. if E ∈ F, then E ∈ F,

iii. if E1, E2 ∈ F, then E1 ∪ E2 ∈ F.

A field is closed under finite set-theoretic operations, while a σ-field is closed
also under countable ones.

The first condition simply ensures that F is nonempty. Furthermore, by De-
Morgan’s law (and (ii.)), condition (iii.) could be replaced by the alternative
condition (iii.’) saying that if E1, E2 ∈ F, then E1 ∩ E2 ∈ F. In probability
theory, we are particularly interested in classes that, given A, (i.) contain A
itself, (ii.) are σ-fields (and are as small as possible).

Definition 3.1.4 (Generated σ-Field). The σ-field generated by A, σ(A), is the
intersection of all (and only) the σ-fields containing A:

i. A ⊂ σ(A),
ii. σ(A) is a σ-field,

iii. if A ⊂ A′ and A′ is a σ-field, then σ(A) ⊂ A′

Example 3.1.1 ([25]). Let I be the class of sub-intervals of Ω = (0, 1]. Then,
B= σ(I) is called the Borel set over the unit interval.

Basic Probability Theory. Probability functions are set functions – i.e. a real-
valued functions defined on some class of subsets of Ω – satisfying specific con-
ditions.

Definition 3.1.5 (Probability Function). A probability function is a function
PROB : F→ [0, 1] satisfying the following conditions:

1. for any event E, 0 ≤ PROB(E) ≤ 1,

2. PROB(Ω) = 1,

3. for any finite or countably infinite sequence of pairwise mutually disjoint
events E1, E2, . . . in F, and

⋃∞
k=1 Ek ∈ F, then

PROB
(∞⋃

i≥1

Ei

)
=

∞∑
i≥1

PROB(Ei).

39

In particular, condition (3.) is called countable additivity.

Definition 3.1.6 (Probability Space). A probability space is a triple (Ω,F, PROB):

I. a sample space Ω, which is the set of all possible outcomes,

II. a σ-field F, representing the collection of all events to be considered,

III. a probability function PROB : F→ [0, 1].

An element of Ω is a simple or elementary event.

Observe that in a discrete probability space, Ω is finite or countably infinite, and
F consists of all subsets of Ω. Furthermore, in a discrete probability space, the
probability function is uniquely defined by the probabilities of simple events [150].

Since events are sets, notation comes from set theory: E1 ∩ E2 denotes the
occurrence of both E1 and E2, while E1 ∪E2 indicates the occurrence of either
E1 or E2 or both.

Example 3.1.2. Given a fair coin, let E1 be the event that its first flipping re-
turns HEAD and E2 that representing the second flipping returning HEAD. Then,
E1 ∩ E2 denotes the event that both coin tosses have returned HEAD, while
E1 ∪ E2 expresses that at least one of them has had.

E1 − E2 expresess the occurrence of E1 but not of E2.

Notation 3.1.2. We use E as a shorthand for Ω− E.

Lemma 3.1.1. For two events E1 and E2,

PROB(E1 ∪ E2) = PROB(E1) + PROB(E2)− PROB(E1 ∩ E2).

Definition 3.1.7 (Independent Events). Two events E1, E2 are independent when

PROB(E1 ∩ E2) = PROB(E1) · PROB(E2).

In general, events E1, . . . , Ek are mutually independent when
PROB

(⋂
i∈{1,...,k}Ei

)
=

∏
i∈{1,...,k} PROB(Ei). Observe that – as we shall

see – the notion of independence is crucial in the context of randomized
computation to formalize algorithm sampling with replacement [150].

Definition 3.1.8 (Random Variables). A random variable X on a sample space
Ω is a real-valued function on Ω, i.e. X : Ω→ R. A discrete random variable is a
random variable that takes only a finite or countably infinite number of values.

For a discrete random variable X and a real value r, the event X = r is made by
all basic events of the sample space such that the random variable X assumes
value r. Otherwise said, X = r represents the set {ω ∈ Ω | X(ω) = r}. Its
probability is denoted as

PROB(X = r) =
∑

ω∈Ω:X(ω)=r

PROB(ω).

40

Notice that the notion of independence is naturally generalized to this context.
In this context, experiments of particular interests are those in which the prob-
ability of success is p and of failure is 1− p. Then, we call a Bernoulli variable is
a random variable X such that:

X =

{
1 success
0 failure.

Cylinder Probability Space We now focus on a model which allows us to
make precise the idea of tossing a (fair) coin infinitely many times.

In [25], Billingsley considers a model to simultaneously fit random draw-
ing of points from a segment and infinite sequences of coin tosses. He started
with a finite sets of points to be regarded as the possible outcomes of an ex-
periment, in particular letting Ω = 2N (or, equally, {HEAD, TAIL}∞).4 So, 2N is
an infinite Cartesian product, while 2n = {0, 1} × · · · × {0, 1} is the Cartesian
product of n copies of {0, 1} and consists of the n-long sequences (u1, . . . , un) of
elements in {0, 1}. As seen, for such a sequence, the set {ω : (ω(1), . . . , ω(n)) =
(u1, . . . , un)} represents the event that the first n repetitions of the experiment
give outcomes u1, . . . , un in sequence. Clearly, this notion of set of sequences is
strongly related with that of ranked cylinder (Definition 3.1.1) and, then, defin-
ing a probability space for classes of such cylinders would also offer a formal
model for coin tossing experiments.

As seen, a well-defined probability space is defined in the form of PC =
(2N, σ(C), µC), where:

• C is the field set of all cylinders of any rank,

• σ(C) is the σ-algebra generated by C, that is the smallest σ-algebra con-
taining C (Definition 3.1.3). (Observe that σ(C) is contained in the Borel
σ-algebra.),

• µC denotes the standard cylinder measure over σ(C), namely the unique
measure on σ(C) such that µC(Cyl(i)) = 1

2 (Definition 3.1.2).

In order for this probability space to be well-defined it is essential that the un-
derlying measurable space is. So, first, it is proved that C is a field: 2N and ∅
has the form of cylinders of rank, and C is closed under complementation and
finite union [25, pp. 27-28]. Then, it is considered how to define the quoted,
unique probability measure over σ(C). In particular, letting again pui (with
u ∈ {0, 1} and i ∈ N) denote probabilities on {0, 1}, nonnegative and summing
to 1, Billignsley define the set function PROB on C as in Definition 3.1.2 above,
i.e. as

PROB(cylH) =
∑
H

pu1
· · · pun

.

4Notice that we have slightly modified Billingsley’s notation, according to which, for example,
the infinite Cartesian product Ω is denoted as S∞ and ω as z1(ω).

41

the sum of all the sequences (u1, . . . , un) ∈ H. This probability is finally shown
to be a (unique) probability measure, as desired,5 and defined on both C and
(generalizable to) σ(C), [25, pp.28-30].

3.2 Syntax and Semantics of CPL0

Standard interpretation for PL associates formulae to truth-values. As antici-
pated in Section 2.2, the core idea to develop our counting semantics consists
of modifying the canonical interpretation in a quantitative sense, associating
formulae with the measurable set of all valuations satisfying them. In particu-
lar, since propositional formulae may have an arbitrary number of propositional
variables, valuations are taken as elements of 2N. Then, any formula of CPL0,
say F , is interpreted as the set JF K ⊆ 2N consisting of all maps f ∈ 2N “mak-
ing F true”. As seen, such sets can be easily seen to belong to the standard
Borel algebra over 2N, B(2N), thus yielding a genuinely quantitative semantics.
Specifically, atomic propositions correspond to cylinder sets [25] of the following
form:6

Cyl(i) = {f ∈ 2N | f(i) = 1}

where i ∈ N, while molecular formulae are interpreted in a natural way by
relying on the standard σ-algebra operations of complementation, finite inter-
section and finite union. Moreover, we let µC denote the unique measure on
σ(C) such that µC(Cyl(i)) = 1

2 , see [25].
Now that formulae correspond to measurable sets, it makes sense to en-

rich the language of PL with new expressions able to represent conditions on
the measure of such sets. By adapting Wagner’s notion of counting opera-
tor [227, 226], we introduce two non-standard quantifiers, Cq and Dq, with
q ranging over Q ∩ [0, 1]. Then, counting-quantified formulae CqF and DqF
intuitively express that F is satisfied in a certain portion of all its possible in-
terpretations to be, respectively, greater or strictly smaller than the index q.
For example, the formula C1/2F expresses that F is satisfied by at least half
of its valuations, namely F is true with probability greater than (or equal to)
1
2 . Similarly, the formula D3/4F says that the probability for F to be true is
strictly smaller than 3

4 . Semantically, this amounts to (resp.) checking that
µC(JF K) ≥ 1

2 and µC(JF K) < 3
4 , where µC is the standard Borel measure on

B(2N).

Syntax. Formally, the grammar for CPL0 is obtained by modifying the stan-
dard propositional language with two peculiar elements: special atoms and
counting-quantified formulae.

5In particular since one cylinder has multiple representation, consistency problems may occur
with Definition 3.1.2. For further details, see [25, pp. 28-30].

6This is the special thin cylinder defined in Section 3.1, but we consider 2 instead of B for
uniformity with subsequent semantic definitions.

42

Definition 3.2.1 (Formulae of CPL0). Formulae of CPL0 are defined by the
grammar below:

F ::= i | ¬F | F ∧ F | F ∨ F | CqF | DqF

where i ∈ N and q ∈ Q ∩ [0, 1].

Semantics. The formal definition of our semantics relies on the standard cylin-
der space PC = (2N, σ(C), µC), as presented in Section 3.1.

Definition 3.2.2 (Semantics of CPL0). For each formula F of CPL0 its inter-
pretation is the measurable set JF K ∈ B(2N) defined in an inductive way as
follows:

JiK := Cyl(i)

J¬GK := 2N − JGK
JG ∧HK := JGK ∩ JHK
JG ∨HK := JGK ∪ JHK

JCqGK :=

{
2N if µC(JGK) ≥ q

∅ otherwise

JDqGK :=

{
2N if µC(JGK) < q

∅ otherwise.

The examples below may help clarifying the intuitive meaning of the semantics
of CPL0.

Example 3.2.1. Let us consider the counting formula C1/2F , where F = G∨H,
G = 0 ∧ ¬1 and H = ¬0 ∧ 1. The measurable sets, JGK and JHK, have both
measure 1

4 and are disjoint. Hence, µC

(
JF K

)
= µC

(
JGK

)
+ µC

(
JHK

)
= 1

2 . As a
consequence, JC1/2F K = 2N.

Example 3.2.2. Let F = G∨H, where G = (0∧¬1)∨ 2 and H = (¬0∧ 1)∨ 2.
Clearly, both sets JGK and JHK have measure 5

8 (in fact, 5 of their 8 possi-
ble models are satisfying ones), but JGK ∩ JHK = Cyl(2). Hence, µC

(
JF K

)
=

µC

(
JGK

)
+ µC

(
JHK

)
− µC(Cyl(2)) = 3

4 .

Two formulae of CPL0, F and G, are said to be logically equivalent, noted F ≡
G, when JF K = JGK.

Definition 3.2.3 (Validity and Invalidity). Let F be a formula of CPL0, F is
valid when JF K = 2N and invalid when JF K = ∅.

Observe that the two counting quantifiers are inter-definable, as it is easily
shown semantically by Lemma 3.2.2 below. Yet they are not dual in the sense
of standard modal operators: CqF is not equivalent to ¬Dq¬F .

Lemma 3.2.1. Let F be a formula of CPL0, then:

JC0F K = 2N JD0F K = ∅.

43

Proof. For every F , µC

(
JF K

)
≥ 0 holds. Thus,

JC0F K =

{
2N if µC

(
JF K

)
≥ 0

∅ otherwise

= 2N

JD0F K =

{
2N if µC

(
JF K

)
< 0

∅ otherwise

= ∅.

Lemma 3.2.2 (Inter-Definability). Let F be a formula of CPL0 and q ∈ Q∩ [0, 1],
then the following equivalences hold:

CqF ≡ ¬DqF DqF ≡ ¬CqF.

Proof. The proof consists of simply applying Definition 3.2.2:

J¬DqF K = 2N − JDqF K

= 2N −
{
2N if µC

(
JF K

)
< q

∅ otherwise

=

{
∅ if µC

(
JF K

)
< q

2N otherwise

= JCqF K

J¬CqF K = 2N − JCqF K

= 2N −
{
2N if µC

(
JF K

)
≥ q

∅ otherwise

=

{
∅ if µC

(
JF K

)
≥ q

2N otherwise

= JDqF K.

Remarkably due to counting quantifiers it is even possible to express that a
formula F is satisfied with probability strictly greater than q or no smaller than
q, respectively as D(1−q)¬F and C(1−q)¬F (and combining them that a formula
is true with precisely a given probability).7

3.3 Proof Theory of CPL0

We introduce a one-sided, single-succedent sequent calculus, called LKCPL0
,

and prove it sound and complete with respect to the semantics of CPL0.

The Labelled Language. The language of this rule system is constituted by
labelled expressions of the form b↣ F or b↢ F , where b is a Boolean formula
and F is a formula of CPL0. Intuitively, a labelled formula b ↣ F (resp.,
b ↢ F) is true when the set of valuations satisfying b is included in (resp.,
includes) the interpretation of F .

Notation 3.3.1. In the following, we will use b ⊨ c for JbK ⊆ JcK.

Let us start by defining Boolean formulae.

7For further details, see Section 3.4.1.

44

Definition 3.3.1 (Boolean Formulae). The grammar of Boolean formulae is as
below:

b ::= xi | ⊤ | ⊥ | ¬b | b∧ b | b∨ b,

where i ∈ N. The interpretation of a Boolean formula b, JbK ∈ B(2N), is defined
in an inductive way:

JxiK := Cyl(i)

J⊤K := 2N

J⊥K := ∅

J¬bK := 2N − JbK
Jb∧ cK := JbK ∩ JcK
Jb∨ cK := JbK ∪ JcK.

Given a Boolean formula b, a valuation of b is any function θ : FV(b)→ {⊤,⊥}.
The satisfaction relation θ ⊨ b is defined inductively in the obvious way.

We also express semantic properties of Boolean formulae, as µ
(
JcK

)
▷ q,

where ▷ ∈ {≥, >,≤, <,=}, b is a Boolean formula and q ∈ Q ∩ [0, 1].8 Observe
that the measure of a Boolean formula, µC

(
JbK

)
, can be related to the number

♯SAT of the valuations making b true.

Lemma 3.3.1. For any Boolean formula b containing exactly n distinct proposi-
tional variables xi1 , . . . ,xin ,

µC(JbK) = ♯SAT(b) · 2−n.

Proof. Any valuation θ : {xi1 , . . . ,xin} 7→ 2 is associated with a measurable set
X(θ) ∈ B(2N) by letting

X(θ) = {f | (∀j ≤ n)f(j) = θ(xij)} =
n−1⋂
i=0

Cyl(j)θ(xij
),

where

Cyl(j)θ(xij
) =

{
Cyl(j) if θ(xij) = 1

Cyl(j) othrwise.

Observe that µC

(
X(θ)

)
= 2−n. It is easily checked by induction on the structure

of b that JbK =
⋃

θ⊨bX(θ). Since for all distinct θ and θ′, X(θ) ∩X(θ′) = ∅, we
conclude that

♯SAT(b) · 2−n =
∑
θ⊨b

µC

(
X(θ)

)
= µC

(⋃
θ⊨b

X(θ)

)
= µC(JbK).

Then, labelled formulae and external hypotheses are introduced. Specifically,
labelled formulae are defined as follows:

8For readability’s sake, when dealing with semantic conditions in the context of sequent calculi
we use µ instead of µC.

45

Definition 3.3.2 (Labelled Formulae). A labelled formula is an expression of
one of the forms b ↣ F and b ↢ F , where b is a Boolean formula and F is
a counting one. A labelled sequent is a sequent of the form ⊢ L, where L is a
labelled formula.

On the other hand, external hypotheses define a special class of formulae, which
– as anticipated – express semantic properties of Boolean formulae or conditions
to be checked inside B(2N).

Definition 3.3.3 (External Hypothesis). An external hypothesis is either an ex-
pression of the form b ⊨ c or of the form µ

(
JbK

)
▷ q, where ▷ ∈ {≥, >,≤, <,=},

b, c are Boolean formulae and q ∈ Q ∩ [0, 1].

The Rule System. We now introduce a proof system for CPL0 in the form of
a labelled sequent calculus.

Definition 3.3.4 (Sequent Calculus LKCPL0
). The proof system LKCPL0

is de-
fined by the rules illustrated in Figure 3.1.

Notation 3.3.2 (µ-Rules). Let us call µ-rules the two rules R↣µ and R↢µ .

Notice that in counting rules – namely, R↣C , R↢C and R↣D , R↢D – the Boolean
formula b in the conclusion is arbitrarily chosen. This is coherent with the
semantics of counting-quantified formulae, which are interpreted as either 2N

or ∅ (being respectively the superset and the subset of any set).
The use of external hypotheses – that is, of genuinely semantic conditions –

as premisses of syntactic rules might seem somehow unsatisfactory. Neverthe-
less, such premisses do make sense from a computational viewpoint, as corre-
sponding to the idea that, when searching for a proof of a counting formula,
one might need to call an oracle measuring expressions of the form µ(JbK), in
fact an oracle for ♯SAT(b). Indeed, our calculus is designed having the count-
ing hierarchy in mind, so accepting the idea of querying for an oracle. This
is precisely “mirrored” by external hypotheses, which measure Boolean formu-
lae. Due to these semantic conditions we can somehow divide our proof system
in two parts: the counting and propositional aspects are dealt with in explicit
way (by the rules), while the task of implicitly measuring Boolean formulae is
delegated to external hypotheses. As said, this choice is guided by the overall
interest of Part I, but notice that a purely-syntactical proof system could have
been defined by substituting semantic conditions with an effective procedure to
measure the probability of formulae [5].9 Yet, as a drawback, this would lead
to a more complex language and to the addition of more rules, so we preferred
semantic hypotheses.

Derivations in LKCPL0
are defined in the standard way.

9Further studies in this direction would be of particular interest also to offer a way to provide
poly-time verifiable proofs.

46

Initial Sequents

b ⊨ xn
Ax1⊢ b↣ n

xn ⊨ b
Ax2⊢ b↢ n

Set Rules

⊢ c↣ F ⊢ d↣ F b ⊨ c∨ d
R↣∪⊢ b↣ F

⊢ c↢ F ⊢ d↢ F c∧ d ⊨ b
R↢∩⊢ b↢ F

Logical Rules

⊢ c↢ F b ⊨ ¬c
R↣¬⊢ b↣ ¬F

⊢ c↣ F ¬c ⊨ b
R↢¬⊢ b↢ ¬F

⊢ b↣ F
R1↣∨⊢ b↣ F ∨G

⊢ b↣ G
R2↣∨⊢ b↣ F ∨G

⊢ b↢ F ⊢ b↢ G
R↢∨⊢ b↢ F ∨G

⊢ b↣ F ⊢ b↣ G
R↣∧⊢ b↣ F ∧G

⊢ b↢ F
R1↢∧⊢ b↢ F ∧G

⊢ b↢ G
R2↢∧⊢ b↢ F ∧G

Counting Rules

µ(JbK) = 0
R↣µ⊢ b↣ F

µ(JbK) = 1
R↢µ⊢ b↢ F

⊢ c↣ F µ(JcK) ≥ q
R↣C⊢ b↣ CqF

⊢ c↢ F µ(JcK) < q
R↢C⊢ b↢ CqF

⊢ c↢ F µ(JcK) < q
R↣D⊢ b↣ DqF

⊢ c↣ F µ(JcK) ≥ q
R↢D⊢ b↢ DqF

Figure 3.1: Sequent Calculus LKCPL0

Definition 3.3.5 (Derivation in LKCPL0
). A derivation in LKCPL0

is either an
initial sequent, Ax1 and Ax2, or an instance of a µ-rule, R↣µ and R↢µ , or is
obtained by applying a rule of LKCPL0

to derivations concluding its premisses.

Let ⊢CPL0
L indicate that ⊢ L is derivable by the rules in Figure 3.1. The defini-

tion of derivation height is canonical as well.

Definition 3.3.6 (Derivation Height). The height of a derivation in LKCPL0
is

the greatest number of successive applications of rules in it, where initial se-
quents and µ-rules have height 0.

In Figure 3.2 we provide an example of derivation in LKCPL0
.

47

x0 ⊨ x0
Ax1

⊢ x0 ↣ 0
R↣
∪⊢ x0 ∧ ¬x1 ↣ 0

x1 ⊨ x1
Ax2

⊢ x1 ↢ 1
R↣
¬⊢ ¬x1 ↣ ¬1
R↣
∪⊢ x0 ∧ ¬x1 ↣ ¬1

R↣
∧⊢ x0 ∧ ¬x1 ↣ 0 ∧ ¬1

R1↣∨⊢ x0 ∧ ¬x1 ↣ (0 ∧ ¬1) ∨ (¬0 ∧ 1)

x0 ⊨ x0
Ax2

⊢ x0 ↢ 0
R↣
¬⊢ ¬x0 ↣ ¬0
R↣
∪⊢ ¬x0 ∧ x1 ↣ ¬0

x1 ⊨ x1
Ax1

⊢ x1 ↣ 1
R↣
∪⊢ ¬x0 ∧ x1 ↣ 1

R↣
∧⊢ ¬x0 ∧ x1 ↣ ¬0 ∧ 1

R2↣∨⊢ ¬x0 ∧ x1 ↣ (0 ∧ ¬1) ∨ (¬0 ∧ 1)
R↣
∪⊢ (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1) ↣ (0 ∧ ¬1) ∨ (¬0 ∧ 1)

R↣
C

*
⊢ ⊤↣ C1/2((0 ∧ ¬1) ∨ (¬0 ∧ 1))

* as µ
(
J(x0 ∧ ¬x1) ∨ (¬x0 ∧ x1)K

)
≥ 1

2
.

Figure 3.2: Derivation of ⊢ ⊤↣ C1/2((0 ∧ ¬1) ∨ (¬0 ∧ 1)) in LKCPL0

3.3.1 Soundness and Completeness

As anticipated, LKCPL0
is sound and complete with respect to the given quanti-

tative semantics: a labelled formula is valid when provable.

Preliminary Notions

Validity of labelled formulae and sequents is defined as follows.

Definition 3.3.7 (Validity). A labelled formula b↣ F (resp., b↢ F) is valid,
noted ⊨ b ↣ F (resp., ⊨ b ↢ F), when JbK ⊆ JF K (resp., JF K ⊆ JbK). A
sequent ⊢ L is valid, noted ⊨ L, when L is a valid labelled formula.

Lemma 3.3.2. For any formula of CPL0 F , we can construct a Boolean formula
bF such that:

JF K = JbF K.

Proof Sketch. The proof is trivial, except for F being of the form F = CqG or
F = DqG. In the former case, we have

bF =

{
⊤ if µC(JGK) ≥ q

⊥ if µC(JGK) < q.

Similarly, in the latter case, we have:

bF =

{
⊤ if µC(JGK) < q

⊥ if µC(JGK) ≥ q.

48

Soundness of LKCPL0

First, let us introduce the preliminary Lemma below, which is crucial to prove
soundness.

Lemma 3.3.3. For any Boolean formula b, if µC(JbK) = 0, then JbK = ∅.

Proof. This is an immediate consequence of Lemma 3.3.1. The proof is by con-
traposition. If JbK ̸= ∅, then by Lemma 3.3.1, b must have a satisfying model,
i.e. µC(JbK) = ♯SAT(b)

2n ≥ 1
2n , where n is the number of all the distinct variables

occurring in b.

Soundness is established by standard induction on the height of the derivation.

Proposition 3.3.1 (Soundness). If ⊢ L is derivable in LKCPL0
, then ⊨ L holds.

Proof. The proof is by induction on the height of the derivation of ⊢ L.
Base Case. If n = 0, ⊢ L is either an initial sequent or is derived by a µ-rule.

Both cases are trivial.

• Ax1. The derivation is of the following form:

b ⊨ xn
Ax1⊢ b↣ n

Since b ⊨ xn, then JbK ⊆ JxnK, that is JbK ⊆ Cyl(n). Yet since JnK =
Cyl(n), also JbK ⊆ JnK, that is ⊨ b↣ n.

• R↣µ . The derivation is of the following form:

µ
(
JbK

)
= 0

R↣µ⊢ b↣ F

Since µ
(
JbK

)
= 0, by Lemma 3.3.3, JbK = ∅. Then, for any F , JbK ⊆ JF K,

and we conclude ⊨ b↣ F .

• The cases Ax2 and R↢µ are proved as Ax1 and R↣µ , respectively.

Inductive case. Let us assume that soundness holds for derivations of heights
up to n and show that it holds for derivations of height n+ 1.

• R↣∪ . Let the last rule applied be an instance of R↣∪ and the derivation be
of the following form:

...
⊢ c↣ F

...
⊢ d↣ F b ⊨ c∨ d R↣∪⊢ b↣ F

49

By IH, ⊨ c ↣ F and ⊨ d ↣ F , that is JcK ⊆ JF K and JdK ⊆ JF K.
Thus, for basic set theory, JcK∪ JdK ⊆ JF K. Given the external hypothesis
b ⊨ c∨ d – that is, JbK ⊆ JcK ∪ JdK – also JbK ⊆ JF K. So, we conclude
⊨ b↣ F .

• R↢∩ . Assume that the last rule applied is an instance of R↢∩ and that the
derivation is of the following form:

...
⊢ c↢ F

...
⊢ d↢ F c∧ d ⊨ b R↢∩⊢ b↢ F

By IH, ⊨ c ↢ F and ⊨ d ↢ F , that is JF K ⊆ JcK and JF K ⊆ JdK.
Thus, for basic set theory, JF K ⊆ JcK ∩ JdK. Furthermore, for hypothesis
c ∧ d ⊨ b, that is JcK ∩ JdK ⊆ JbK. So, JF K ⊆ JbK, and we conclude
⊨ b↢ F .

• R↣¬ . Assume that the last rule applied is an instance of R↣¬ and that the
derivation is of the following form:

...
⊢ c↢ F b ⊨ ¬c R↣¬⊢ b↣ ¬F

By IH, ⊨ c↢ F , so JF K ⊆ JcK. By basic set theory
(
2N−JcK

)
⊆

(
2N−JF K

)
.

Moreover, b ⊨ ¬c, that is JbK ⊆ (2N − JcK). So JbK ⊆
(
2N − JF K

)
= J¬F K,

and we conclude ⊨ b↣ ¬F .

• R↢¬ . The proof is equivalent to the previous one.

• R1↣∨ . Assume that the last rule applied is an instance of R1↣∨ and the
derivation is of the following form:

...
⊢ b↣ F R1↣∨⊢ b↣ F ∨G

By IH, ⊨ b↣ F and so JbK ⊆ JF K. For basic set theory, JbK ⊆ JF K ∪ JGK,
that is JbK ⊆ JF ∨GK, and thus ⊨ b↣ F ∨G.

• R2↣∨ . Assume that the last rule applied is an instance of R2↣∨ and the
derivation is of the following form:

...
⊢ b↣ G R2↣∨⊢ b↣ F ∨G

50

By IH, ⊨ b↣ G and so JbK ⊆ JGK. For basic set theory, JbK ⊆ JF K ∪ JGK –
that is, JbK ⊆ JF ∨GK – and thus ⊨ b↣ F ∨G.

• R↢∨ . Assume that the last rule applied is an instance of R↢∨ and the
derivation is of the following form:

...
⊢ b↢ F

...
⊢ b↢ G R↢∨⊢ b↢ F ∨G

By IH, ⊨ b ↢ F , and ⊨ b ↢ G, that is JF K ⊆ JbK and JGK ⊆ JbK. For
basic set theory, JF K ∪ JGK ⊆ JbK – that is JF ∨ GK ⊆ JbK – and therefore
⊨ b↢ F ∨G.

• R↣∧ , R1↢∧ , R2↢∧ . These cases are equivalent to R1↣∨ , R2↣∨ , R↣∨ .

• R↣C . Assume that the last rule applied is an instance of R↣C and the
derivation is of the following form:

...
⊢ c↣ F µ

(
JcK

)
≥ q

R↣C⊢ b↣ CqF

By IH, ⊨ c ↣ F , that is JcK ⊆ JF K. Given the external hypothesis,
µ(JcK) ≥ q, by basic measure theory, also µC(JF K) ≥ q. Thus, JCqF K = 2N

and for any b, JbK ⊆ JCqF K. So, we conclude ⊨ b↣ CqF .

• R↢C . Assume that the last rule applied is an instance of R↢C and the deriva-
tion is in the following form:

...
⊢ c↢ F µ(JcK) < q

R↢C⊢ b↢ CqF

By IH, ⊨ c ↢ F , that is JF K ⊆ JcK. Since for the external hypothesis
µ(JcK) < q, by basic measure theory, also µC(JF K) < q. Thus, JCqF K = ∅
and for any b, JCqF K ⊆ JbK. So, we conclude ⊨ b↢ CqF .

• R↣D , R↣D . These cases are proved as R↢C and R↣C .

51

Completeness for LKCPL0

The proof of completeness is less straightforward. Let us start with notational
conventions.

Notation 3.3.3. We use Ψ1,Ψ2, . . . to denote labelled sequents in the language
of LKCPL0

and S, T, . . . to denote sets of such sequents.

First, we introduce a decomposition relation,⇝, between finite sets of sequents,
allowing us to decompose the validity of a sequent into that of a finite set of less
complex sequents. Specifically, ⇝ is in turn defined based on the relation ⇝0

between sequents and finite sets of sequents, and letting S ⇝ T whenever S =
S′ ∪{⊢ L}, ⊢ L⇝0 T and T = S′ ∪T ′. Then, it is shown that a (complex) valid
sequent is decomposable into a finite set of non-decomposable valid sequents,
and, from the provability of the latter, one can climb back to the validity of the
original sequent, using the rules of LKCPL0

. Existential preservation of validity
relies on the fact that ⇝ is strongly normalizing. Normalization is proved in
a standard way by defining a size-function ms(S) over finite sets of sequents
and showing that, whenever S ⇝ T , ms(T) < ms(S). For a sequent Ψ =
⊢ L, let cn(Ψ) be the size of the counting part, say F , of L, i.e. the number of
connectives in L, cn(L)(= cn(F)). Then, ms(S) is defined as

∑k
i cn(Ψi), where

S = {Ψ1, . . . ,Ψk}. Finally, given a finite set of sequents S = {Ψ1, . . . ,Ψk}, let ⊨
S (resp., ⊢CPL0

S) indicate that ⊨ Ψi (resp., ⊢CPL0
Ψi) holds for all i = 1, . . . , k.

Existential Preservation of Validity through⇝

NF⇝-Derivability iff NF⇝-Validity Decomposition reflects derivability

Soundness
Prop. 3.3.1

Figure 3.3: Soundness and Completeness of LKCPL0

The fundamental ingredients of the completeness proof are then expressed
by the following three properties:

1. if T is⇝-normal, then ⊨ T if and only if ⊢CPL0
T .

2. if ⊨ S with S not⇝-normal, then there is a T such that S ⇝ T and ⊨ T

3. if ⊢CPL0
T and S ⇝ T , then ⊢CPL0

S.

Using these, one can check that if ⊨ L holds, then by (2.) ⊨ S holds for some
⇝ normal form S of ⊢ L. Then, by (1.), ⊢CPL0

S holds and by (3.) we conclude
that ⊢CPL0

L, as summarized in Figure 3.4.

52

⊨ L

(2.)

⊨ T
T normal form of {⊢ L}

(1.)
⊢ T

⊢ L

(3.)

Figure 3.4: Skeleton of LKCPL0
-Completeness Proof

Preliminary Notions. In order to prove completeness, some preliminary no-
tions and lemmas are needed.

Definition 3.3.8 (Basic Formula). A basic formula of LKCPL0
is a labelled for-

mula, b↣ F or b↢ F , in which the counting part, F , is atomic.

Definition 3.3.9 (Regular Sequent). A regular sequent of LKCPL0
is a sequent

of the form ⊢ L, where L is a basic formula.

The notion of decomposition rewriting reduction is defined by the following
decomposition rules.

Definition 3.3.10 (Decomposition Rewriting Reduction, ⇝0). The decomposi-
tion rewriting reduction ⇝0, from a sequent to a set of sequents (both in the
language of LKCPL0

), is defined by the following decomposition rules:

if b ⊨ ¬c, ⊢ b↣ ¬F ⇝0 {⊢ c↢ F}
if ¬c ⊨ b, ⊢ b↢ ¬F ⇝0 {⊢ c↣ F}

if b ⊨ c∨ d, ⊢ b↣ F ∨G ⇝0 {⊢ c↣ F,⊢ d↣ G}
⊢ b↢ F ∨G ⇝0 {⊢ b↢ F,⊢ b↢ G}
⊢ b↣ F ∧G ⇝0 {⊢ b↣ F,⊢ b↣ G}

if c∧ d ⊨ b, ⊢ b↢ F ∧G ⇝0 {⊢ c↢ F,⊢ d↢ G}
if µ(JcK) ≥ q, ⊢ b↣ CqF ⇝0 {⊢ c↣ F}
if µ(JcK) < q, ⊢ b↢ CqF ⇝0 {⊢ c↢ F}
if µ(JcK) < q, ⊢ b↣ DqF ⇝0 {⊢ c↢ F}
if µ(JcK) ≥ q, ⊢ b↢ DqF ⇝0 {⊢ c↣ F}

if µ(JbK) = 0, ⊢ b↣ F ⇝0 {}
if µ(JbK) = 1, ⊢ b↢ F ⇝0 {}

if µ(JbK) ̸= 0, ⊢ b↣ D0F ⇝0 {⊢ ⊥}
if µ(JbK) ̸= 1, ⊢ b↢ C0F ⇝0 {⊢ ⊥}.

53

Preliminarily notice that – as we “measure” the size of a labelled formula con-
sidering the size of its counting part, the application of each of these rewriting
rules decreases the size of the involved formula and then of the corresponding
sequent, but not that of Boolean formulae.

Rewriting rules are so defined that each application of a decomposition re-
duction on an arbitrary sequent, ⊢ L, leads to a set of sequents {⊢ L1, . . . ,⊢
Ln}, such that for every i ∈ {1, . . . , n}, the number of connectives of ⊢ Li is
(strictly) smaller than that of ⊢ L. Basing on ⇝0, it is possible to define a
set-decomposition reduction,⇝, from a set of sequents to a set of sequents.

Definition 3.3.11 (Set Decomposition,⇝). The set-decomposition reduction⇝,
from a set of sequents in LKCPL0

to another set of sequents is defined as follows:

⊢ Li ⇝ {⊢ Li1 , . . . ,⊢ Lim}
{⊢ L1, . . . ,⊢ Li, . . . ,⊢ Ln}⇝ {⊢ L1, . . . ,⊢ Li1 , . . . ,⊢ Lim , . . . ,⊢ Ln}

Otherwise said, ⇝ is the natural lifting of ⇝0 to a relation over sets. Observe,
indeed, that each predicate concerning one sequent can be naturally generalized
to sets of sequents by stipulating that a predicate holds for the set when it holds
for every sequent in it. For clarity’s sake, given a sequent ⊢ L, we call its
corresponding set, the set including only this sequent as its element, namely {⊢
L}.

The notion of⇝-normal form is defined as expected: a set of sequents is in
⇝-normal form when no set-decomposition reduction,⇝, can be applied on it.
Otherwise said, the set is in⇝-normal form if there is no sequent in it on which
⇝0 can be applied.

Definition 3.3.12 (⇝-Normal Form). A sequent is a ⇝-normal form if no de-
composition rewriting reduction rule,⇝0, can be applied on it. A set of sequents
is in⇝-normal form if it cannot be reduced by any⇝ set-rewriting rule.

As anticipated, the proof of completeness relies on the given rewriting reduc-
tions, ⇝0 and ⇝, in a crucial way, and is based on three auxiliary steps: (i.)
validity is existentially preserved through ⇝-decomposition, that is each valid
sequent, has (at least) one valid ⇝-normal form, (ii.) each ⇝0-normal form is
valid when it is derivable, (iii.) derivability is “reflected by”⇝0-decomposition,
that is given a (set of) sequent(s) which is ⇝0-decomposed into another set of
sequents, if the ⇝-decomposed set is derivable, then it is possible to construct
a derivation for the original (set of) sequent(s).

Strong Normalization of⇝. It is proved that⇝ is strongly normalizing, and
so that each decomposition process terminates. A couple of auxiliary definitions
are needed, first.

Definition 3.3.13 (Number of Connectives, cn). The number of connectives of
a labelled formula L, cn(L), is the number of connectives of its counting part –

54

labelled cn(F) as well – and is inductively defined as follows:

cn(b↣ n) = cn(b↢ n) = cn(n) := 1

cn(b↣ ¬F) = cn(b↢ ¬F) = cn(¬F) := 1 + cn(F)

cn(b↣ F△G) = cn(b↢ F△G) = cn(F△G) := 1 + cn(F) + cn(G)

cn(b↣ •F) = cn(b↢ •F) = cn(•F) := 1 + cn(F)

with △ ∈ {∧,∨} and • ∈ {Cq,Dq}. The number of connectives of the sequent
⊢ L, cn(⊢ L), is the number of connectives of its labelled formulae:

cn(⊢ L) := cn(L).

Definition 3.3.14 (Set Measure, ms). Given a set of sequents {⊢ L1, · · · ⊢ Ln},
its measure, ms({⊢ L1, . . . ,⊢ Ln}) is defined as follows:

ms({}) := 0

ms({⊢ L1, . . . ,⊢ Ln}) := cn(⊢ L1) + · · ·+ cn(⊢ Ln).

Lemma 3.3.4. The reduction⇝ is strongly normalizing.

Proof. That every set of sequents is⇝-strongly normalizing is proved by show-
ing that, if {⊢ L1, . . . ,⊢ Lm}⇝0 {⊢ L′1, . . . ,⊢ L′m}, then

ms({⊢ L1, . . . ,⊢ Lm}) > ms({⊢ L′1, . . . ,⊢ L′m}).

The proof is based on exhaustive inspection of all possible forms of⇝-reduction
applicable to the given set, that is by dealing with all possible forms of ⇝0-
reduction of one of the ⊢ Li, where i ∈ {1, . . . ,m}. For simplicity, we take (an
arbitrary) ⊢ Li to be the “active” sequent of ⇝. We then consider all possible
forms of⇝0 on which⇝ can be based:

• Li = b ↣ ¬F . Assume that ⊢ Li is the active sequent in the given ⇝-
decomposition and that⇝ is based on the⇝0 below:

⊢ b↣ ¬F ⇝0 {⊢ c↢ F}

where b ⊨ ¬c. Thus:

ms({⊢ L1, · · · ⊢ c↢ F, · · · ⊢ Lm}) 3.3.14
= cn(L1) + · · ·+ cn(c↢ F) + · · ·+ cn(Lm)

3.3.13
= cn(L1) + · · ·+ cn(F) + · · ·+ cn(Lm)

< cn(L1) + · · ·+
(
cn(¬F) + 1

)
+ · · ·+ cn(Lm)

3.3.13
= cn(L1) + · · ·+ cn(¬F) + · · ·+ cn(Lm)

3.3.13
= cn(L1) + · · ·+ cn(b↣ ¬F) + . . . cn(Lm)

3.3.14
= ms

(
{⊢ L1, · · · ⊢ b↣ ¬F, · · · ⊢ Lm}

)
.

• Li = b↢ ¬F . Similar to the case above.

55

• Li = b↣ F ∨G. Assume that ⊢ Li is the active sequent of⇝ and that⇝
is based on the following⇝0:

⊢ b↣ F ∨G ⇝0 {⊢ c↣ F,⊢ d↣ G}

where b ⊨ c∨ d. Thus,

ms({⊢ L1, ... ⊢ c ↣ F,⊢ d ↣ G, ... ⊢ Lm})
3.3.14

= cn(L1)... + cn(c ↣ F) + cn(d ↣ G)... + cn(Lm)

3.3.13
= cn(L1)... + cn(F) + cn(G)... + cn(Lm)

< cn(L1)... + (cn(F) + cn(G) + 1)... + cn(Lm)

3.3.13
= cn(L1)... + cn(b ↣ F ∨ G)... + cn(Lm)

3.3.14
= ms({⊢ L1, ... ⊢ b ↣ F ∨ G, ... ⊢ Lm}).

• Li = b↢ F ∨ G. Assume that ⊢ Li is the active sequent of ⇝ and ⇝ is
based on the following⇝0:

⊢ b↢ F ∨G ⇝0 {⊢ b↢ F,⊢ b↢ G}

Thus,

ms({⊢ L1, ...,⊢ b ↢ F,⊢ b ↢ G, ... ⊢ Lm})
3.3.14

= cn(L1)... + cn(b ↢ F) + cn(b ↢ G) · · · + cn(Lm)

3.3.13
= cn(L1)... + cn(F) + cn(G)... + cn(Lm)

< cn(L1)... + (cn(F) + cn(G) + 1)... + cn(Lm)

3.3.13
= cn(L1)... + cn(b ↢ F ∨ G)... + cn(Lm)

3.3.14
= ms({⊢ L1, ...,⊢ b ↢ F ∨ G, ... ⊢ Lm}).

• Li = b↣ F ∧G,Li = b↢ F ∧G. Similar to the two cases above.

• Li = b↣ CqF . Assume that ⊢ Li is the active sequent of the given ⇝-
decomposition and that ⇝ is in its turn based on the ⇝0-decomposition
below:

⊢ b↣ CqF ⇝0 {⊢ c↣ F}

where µ(JcK) ≥ q. Then,

ms({⊢ L1, ... ⊢ c↣ F, ... ⊢ Lm}) 3.3.14
= cn(L1) + · · ·+ cn(c↣ F) + · · ·+ cn(Lm)

3.3.13
= cn(L1) + · · ·+ cn(F) + · · ·+ cn(Lm)

< cn(L1) + · · ·+
(
cn(F) + 1

)
+ · · ·+ cn(Lm)

3.3.13
= cn(L1) + · · ·+ cn(CqF) + · · ·+ cn(Lm)

3.3.13
= cn(L1) + · · ·+ cn(b↣ CqF) + · · ·+ cn(Lm)

3.3.14
= ms

(
{⊢ L1, . . . ,⊢ b↣ CqF, . . . ,⊢ Lm}

)
.

• Li = b ↢ CqF,Li = b ↣ DqF,Li = b ↢ DqF . Similar to the case
above.

56

• Li = b ↣ F . Assume that ⊢ Li is the active sequent in the given ⇝-
decomposition and that⇝ is based on the⇝0-decomposition below:

⊢ b↣ F ⇝0 {}

where µ(JbK) = 0. Since for Definition 3.3.13 and 3.3.14, cn({}) = 0 and
cn(⊢ b↢ F) > 0, clearly cn({}) < cn(⊢ b↢ F).

• Li = b↢ F,Li = b↣ D0F,Li = b↢ C0F . Similar to the case above.

On ⇝-Normal Sequents. It is possible to show that ⇝-normal sequents are
valid if and only if they are derivable in LKCPL0

. First, it is shown that sequents
which are ⇝-normal are regular. Then, it is proved that regular sequents are
derivable if and only if they are valid. These two results together imply that
⇝-normal sequents are valid when derivable.

Lemma 3.3.5. If a (non-empty) sequent is⇝-normal, then it is regular.

Proof. The proof is by contraposition. Given an arbitrary non-regular sequent,
call it ⊢ L, it is shown that it is not ⇝-normal. Every possible form of labelled
formula, call it L, is considered.

• L = b↣ ¬F . Clearly, for any b JbK ⊆ 2N and J¬⊥K = 2N. So, b ⊨ ¬⊥
and the following decomposition is well-defined:

⊢ b↣ ¬F ⇝0 {⊢ ⊥↢ F}.

• L = b↢ ¬F . Clearly, for any b ∅ ⊆ JbK, and J¬⊤K = ∅. Then, ¬⊤ ⊨ b,
and the following decomposition is well-defined:

⊢ b↢ ¬F ⇝0 {⊢ ⊤↣ F}

• L = b↣ F ∨ G. For any b, JbK ⊆ 2N and J⊤ ∨ ⊤K = 2N. So, b ⊨ ⊤ ∨ ⊤
and the following decomposition is well-defined:

⊢ b↣ F ∨G ⇝0 {⊢ ⊤↣ F,⊢ ⊤↣ G}.

• L = b↢ F ∨G. Then, the following decomposition is well-defined:

⊢ b↢ F ∨G ⇝0 {⊢ b↢ F,⊢ b↢ G}.

• L = b↣ F ∧G,L = b↢ F ∧G. Similar to the previous cases.

• L = b↣ CqF . For every q ∈ Q ∩ [0, 1], µC(2
N) ≥ q and J⊤K = 2N. Then,

the following decomposition is well-defined:

⊢ b↣ CqF ⇝0 {⊢ ⊤↣ F}.

57

• L = b ↢ CqF . There are two possible cases, basing on the value of
q ∈ Q ∩ [0, 1]:

1. Let q ̸= 0. Then, for any q, µC(∅) < q and, since J⊥K = ∅, the
following decomposition is well-defined:

⊢ b↢ CqF ⇝0 {⊢ ⊥↢ F}.

2. Let q = 0. There are two possible sub-cases:

(a) Let µ(JbK) ̸= 1. Then, the following decomposition is well-
defined:

⊢ b↢ C0F ⇝0 {⊢ ⊥}.

(b) Let µ(JbK) = 1. Then, the following decomposition is well-
defined:

⊢ b↢ C0F ⇝0 {}.

• L = b↣ DqF,L = b↢ DqF . Similar to the previous cases.

Lemma 3.3.6. A regular sequent is valid if and only if it is derivable in LKCPL0
.

Proof. Let ⊢ L be a regular sequent, that is let L be basic.

⇒ Assume that ⊢ L is valid. Since L is a basic formula, there are two main
cases – Ax1 and Ax2 – which are both trivial.

⇐ Assume that ⊢ L is derivable in LKCPL0
. Then, by Proposition 3.3.1, ⊨ L.

Corollary 3.3.1. If a sequent is ⇝-normal, then it is valid if and only if it is
derivable in LKCPL0

.

Proof. By putting Lemma 3.3.5 and Lemma 3.3.6 together.

All the given results can be generalized from single sequents to sets in a natural
way, obtaining, in particular, that if a set of sequents is⇝-normal – i.e. each of
its sequents is⇝-normal –, then it is valid when derivable – that is, its sequents
are valid if and only if derivable.

Existential Preservation of Validity. It is now possible to prove that validity
is existentially preserved through⇝-decomposition.

Lemma 3.3.7 (Existential Preservation of Validity). Each valid sequent has a
valid⇝-normal form.

58

Proof. Let ⊢ L be an arbitrary, valid sequent. It is shown that ⊢ L has a valid
⇝-normal form. The proof is by exhaustive inspection. There are two main
cases:

Case 1. Assume that ⊢ L is such that no ⇝0-reduction can be applied on
it. Then, by Lemma 3.3.5, the sequent is either empty or basic; in other words,
L is a basic formula. In both cases, the sequent is already ⇝-normal and, for
hypothesis, valid.

Case 2. Assume that ⊢ L is ⇝-reducible. By Lemma 3.3.4, there is no
infinite reduction sequence. Thus, it is sufficient to prove that each reduction
step existentially preserves validity, that is for every possible⇝-reduction, based
on any possible ⇝0-reduction, if ⊨ L, then there is a ⇝0 such that ⊢ L ⇝0 S
and S is valid. The proof is based on exhaustive inspection of all possible forms
of⇝0-reduction.

• L = b ↣ ¬F . Let us consider a Boolean formula defined as c = ¬b.
Thus, J¬cK = 2N − JcK = 2N − (2N − JbK) = JbK and so, in particular,
b ⊨ ¬c. Let us consider the following well-defined ⇝0-decomposition
(given b ⊨ ¬c):

⊢ b↣ ¬F ⇝0 {⊢ c↢ F}.
For hypothesis b ↣ ¬F , that is JbK ⊆ J¬F K. By basic set theory, also

JF K ⊆ J¬bK. Since by construction c = ¬b, JF K ⊆ JcK holds, that is
⊨ c↢ F as desired. Therefore, there is a ⇝0-decomposition which pre-
serves validity.

• L = b↢ ¬F . Similar to the case above.

• L = b↣ F ∨G. Let us consider two bF and bG, such that JbF K = JF K and
JbGK = JGK, which exist by Lemma 3.3.2. For hypothesis ⊨ b↣ F ∨ G,
and so JbK ⊆ JF K ∪ JGK. Thus, by construction, also JbK ⊆ JbF K ∪ JbGK,
that is b ⊨ bF ∨ bG. Let us consider the following reduction, which is
well-defined (given b ⊨ bF ∨ bG):

⊢ b↣ F ∨G ⇝0 {⊢ bF ↣ F,⊢ bG↣ G}.

Since JbF K = JF K and JbGK = JGK, in particular, also JbF K ⊆ JF K and
JbGK ⊆ JGK. Therefore, ⊨ bF ↣ F and ⊨ bG ↣ G and the given ⇝0-
decomposition is as desired.

• L = b↣ F ∧ G,L = b↢ F ∧ G. Proofs are equivalent to the ones for
(resp.) b↢ F ∨G and b↣ F ∨G.

• L = b↣ CqF . There are two main sub-cases:

1. Let µ(JbK) = 0. Then, the sequent can be decomposed by means of
the following well-defined⇝0-decomposition:

⊢ b↣ CqF ⇝0 {}.

{} is vacuously valid. We conclude that the given decomposition is
as desired.

59

2. Let µ(JbK) ̸= 0. For hypothesis ⊨ b ↣ CqF , that is JbK ⊆ JCqF K.
Since JbK ̸= ∅ (by Lemma 3.3.3), also JCqF K ̸= ∅, and so by defini-
tion JCqF K = 2N and, then, µC(JF K) ≥ q. Let us consider a Boolean
formula bF , such that JbF K = JF K, which exists due to Lemma 3.3.2.
Clearly, µC(JbF K) ≥ q and so the following ⇝0-decomposition is
well-defined:

⊢ b↣ CqF ⇝0 {bF ↣ F}.

For construction JbF K = JF K so, in particular, JbF K ⊆ JF K, that is
⊨ bF ↣ F as desired.

• L = b↢ CqF . There are two main sub-cases:

1. Let µ(JbK) = 1. Then, the sequent can be decomposed by means of
the following well-defined⇝0-decomposition:

⊢ b↢ CqF ⇝0 {}.

{} is vacuously valid, so the given decomposition is as desired.

2. Let µ(JbK) ̸= 1. For hypothesis ⊨ b ↢ CqF , that is JCqF K ⊆ JbK.
Since JbK ̸= 2N, JCqF K = ∅, and by Definition 3.2.2, µC(JF K) < q.
Let us consider a Boolean formula bF such that JbF K = JF K, which
can be constructed due to Lemma 3.3.2. Thus, µ(JbF K) < q and the
following decomposition is well-defined:

⊢ b↢ CqF ⇝0 {bF ↢ F}.

For construction JbF K = JF K so, in particular, JF K ⊆ JbF K, that is
⊨ bF ↢ F as desired.

• L = b ↣ DqF,L = b ↢ DqF . Proofs are equivalent to the ones for
b↢ CqF and b↣ CqF , respectively.

• L = b↣ F and µ(JbK) = 0. Then, the following decomposition is well-
defined:

⊢ b↣ F ⇝0 {}.

{} is vacuously valid. We conclude that the given decomposition is as
desired.

• L = b↣ F and µ(JbK) = 1. Then, the following decomposition is well-
defined:

⊢ b↢ F ⇝0 {}.

{} is vacuously valid so the given decomposition is as desired.

There is no other possible case.10

10Notice that if L = D0F , for hypothesis ⊨ b↣ D0F , that is JbK ⊆ JD0F K. Clearly JD0F K = ∅,
so JbK = ∅ and µ(JbK) = 0. Equally, when L = b↢ C0F , µ(JbK) = 1.

60

Derivability Preservation. As anticipated, properties and proofs concerning
sequents can be easily generalized to corresponding proofs about sets of se-
quents. Specifically, by considering Lemma 3.3.5 and Lemma 3.3.6 together, a
result in the style of Corollary 3.3.1 – stating that a⇝-normal set of sequents is
derivable in LKCPL0

if and only if it is valid – can easily be proved.

Definition 3.3.15 (Derivable Set). A set of sequents is derivable if and only if
all of its sequents are derivable in LKCPL0

.

Proposition 3.3.2 (Decomposition Reflects Derivability). Given two sets of se-
quents S and T , if S ⇝ T and T is derivable in LKCPL0

, then S is derivable in
LKCPL0

as well.

Proof Sketch. Assume S ⇝ T . Then, there is a sequent ⊢ L ∈ S such that it
is the “active” sequent on which ⇝ is based, that is ⇝ is based on the ⇝0-
decomposition below:

⊢ L ⇝0 {⊢ L1, . . . ,⊢ Ln}.

The proof is by straightforward inspection of all possible forms of⇝0-reduction.

• L = b↣ ¬F and the given⇝0-decomposition be:

⊢ b↣ ¬F ⇝0 {⊢ c↢ F},

where b ⊨ ¬c. Since ⊢ c↢ F ∈ T , for hypothesis ⊢ c↢ F is derivable
by a derivation, call it Π. Therefore, ⊢ b ↣ ¬F is shown derivable in
LKCPL0

as follows:

Π
⊢ c↢ F b ⊨ ¬c R↣¬⊢ b↣ ¬F

• L = b↢ ¬F and the given⇝0-decomposition be:

⊢ b↢ ¬F ⇝0 {⊢ c↣ F},

where ¬c ⊨ b. Since c↣ F ∈ T , for hypothesis ⊢ c↣ F is derivable
by a derivation, call it Π. Therefore, ⊢ b ↢ ¬F is shown derivable in
LKCPL0

as follows:

Π
⊢ c↣ F ¬c ⊨ b R↢¬b↢ ¬F

• L = b↣ F ∨G and the given⇝0-decomposition be:

⊢ b↣ F ∨G ⇝0 {⊢ c↣ F,⊢ d↣ G},

where b ⊨ c∨ d. Since ⊢ c↣ F,⊢ d↣ G ∈ T , for hypothesis they
are both derivable by two derivations, call them (resp.) Π and Π′. Then,
b↣ F ∨G is shown derivable in LKCPL0

as follows:

61

Π
⊢ c↣ F R1↣∨⊢ c↣ F ∨G

Π′

⊢ d↣ G R2↣∨⊢ d↣ F ∨G b ⊨ c∨ d R↣∪⊢ b↣ F ∨G

• L = b↢ F ∨G and the given⇝0-decomposition be:

⊢ b↢ F ∨G ⇝0 {⊢ b↢ F,⊢ b↢ G}

Since ⊢ b↢ F,⊢ b↢ G ∈ T , for hypothesis they are both derivable by
two derivations, call them (resp.) Π and Π′. Then, b↢ F ∨ G is shown
derivable in LKCPL0

as follows:

Π
⊢ b↢ F

Π′

⊢ b↢ G R↢∨⊢ b↢ F ∨G

• L = b↣ F ∧G and the given⇝0-decomposition be:

⊢ b↣ F ∧G ⇝0 {⊢ b↣ F,⊢ b↣ G}.

Since ⊢ b↣ F,⊢ b↣ G ∈ T , for hypothesis they are both derivable by
two derivations, call them (resp.) Π and Π′. Then, b↣ F ∧ G is shown
derivable in LKCPL0

as follows:

Π
⊢ b↣ F

Π′

⊢ b↣ G R↣∧⊢ b↣ F ∧G

• L = b↢ F ∧G and the given⇝0-decomposition be:

⊢ b↢ F ∧G ⇝0 {⊢ c↢ F,⊢ d↢ G},

where c∧ d ⊨ b. Since ⊢ c↢ F,⊢ d↢ G ∈ T , for hypothesis they
are both derivable by two derivations, call them (resp.) Π and Π′. then,
b↢ F ∧G is shown derivable in LKCPL0

as follows:

Π
⊢ c↢ F R1↢∧⊢ c↢ F ∧G

Π′

⊢ d↢ G R2↢∧⊢ d↢ F ∧G c∧ d ⊨ b R↢∩⊢ b↢ F ∧G

• L = b↣ CqF and the given⇝0-decomposition be:

⊢ b↣ CqF ⇝0 {⊢ c↣ F},

where µ(JcK) ≥ q. Since ⊢ c↣ F ∈ T , for hypothesis it is derivable by a
derivation, call it Π. Then ⊢ b↣ CqF is derivable in LKCPL0

as follows:

62

Π
⊢ c↣ F µ(JcK) ≥ q

R↣C⊢ b↣ CqF

• L = b↢ CqF and the given⇝0-decomposition be:

⊢ b↢ CqF ⇝0 {⊢ c↢ F},

where µ(JcK) < q. Since ⊢ c↢ F ∈ T , for hypothesis it is derivable by a
derivation, call it Π. Then, ⊢ b↢ CqF is derivable in LKCPL0

as follows:

Π
⊢ c↢ F µ(JcK) < q

R↢C⊢ b↢ CqF

• L = b↣ DqF and the given⇝0-decomposition be:

⊢ b↣ DqF ⇝0 {⊢ c↢ F}

where µ(JcK) < q. Since ⊢ c↢ F ∈ T , for hypothesis it is derivable by a
derivation, call it Π. Then, ⊢ b↣ DqF is derivable in LKCPL0

as follows:

Π
c↢ F µ(JcK) < q

R↣D⊢ b↣ DqF

• L = b↢ DqF and the given⇝0-decomposition be:

⊢ b↢ DqF ⇝0 {⊢ c↣ F},

where µ(JcK) ≥ q. Since ⊢ c↣ F ∈ T , for hypothesis it is derivable by a
derivation, call it Π. Then, ⊢ b↢ DqF is derivable in LKCPL0

as follows:

Π
⊢ c↣ F µ(JcK) ≥ q

R↢D⊢ b↢ DqF

• L = b↣ F and the given⇝0-decomposition be:

⊢ b↣ F ⇝0 {}

where µ(JbK) = 0. Then, ⊢ b↣ F is derivable in LKCPL0
as follows:

µ(JbK) = 0
R↣µ⊢ b↣ F

• L = b↢ F and the given⇝0-decomposition be:

⊢ b↢ F ⇝0 {}

where µ(JbK) = 1. Then, ⊢ b↢ F is derivable in LKCPL0
as follows:

µ(JbK) = 0
R↢µ⊢ b↢ F

63

Concluding the Proof. Putting these results together, we conclude that LKCPL0

is complete with respect to the semantics of CPL0.

Proposition 3.3.3 (Completeness). If ⊨ L holds, then ⊢ L is derivable in LKCPL0
.

Proof. If the sequent is valid, by Lemma 3.3.4, it has a valid ⇝-normal form.
By Corollary 3.3.1, a ⇝-normal form is valid if and only if it is derivable, so
the given ⇝-normal form must be derivable as well. Therefore, by Proposi-
tion 3.3.2, the given (valid) sequent must be derivable in LKCPL0

.

⊨ L

⊨ L′ ⊢ L′

⊢ L

Existential Preservation
of Validity (L 3.3.4)

Cor. 3.3.1
with L′ ⇝-normal with L′ ⇝-normal

Derivability Preservation
through⇝ (P 3.3.2)

Figure 3.5: Proof Schema

Remark 3.3.1. A remarkable consequence of the completeness theorem is that the
following cut-rule turns out to be derivable in LKCPL0

:

⊢ c↣ ¬F ∨G ⊢ d↣ F b ⊨ c∧ d
Cut⊢ b↣ G

3.4 A Digression on the Expressive Power of CPL0

As said, our counting logic is strongly related to probabilistic reasoning and
stochastic events. Indeed, it can be seen as offering a natural model to logically
represent events the probability of which is associated with dyadic rationals.11

We start by introducing auxiliary quantifiers, to express exact probability in
a compact way (Section 3.4.1). Then, we prove that counting formulae can
actually enucleate (quantitative properties of) events the probability of which is
a dyadic rational (Section 3.4.2).

11In perspective, this result would be interesting, on the one hand, to relate (in a formal way)
our logic CPL0 with Bernoulli experiments and, more in general, with experiments associated with
dyadic distributions, on the other – given the limits of the univariate counting fragment – to extend
this analysis to more expressive languages, as the ones presented in Chapter 4 and 12.

64

3.4.1 Expressing Exact Probability

In the language of CPL0, we can even express that the probability for a formula
to be true is precisely a given one. For the sake of readability, we introduce
auxiliary quantifiers, Cq and Dq, intuitively meaning that the argument formula
is true with probability, respectively strictly greater and smaller or equal than the
index q ∈ Q ∩ [0, 1].

Notation 3.4.1 (Auxiliary Quantifiers). The so-called white counting quantifiers
are interpreted as follows:

JCqF K :=

{
2N if µC(JF K) > q

∅ otherwise
JDqF K :=

{
2N if µC(JF K) ≤ q

∅ otherwise.

Clearly, these quantifiers do not extend the expressive power of our language,
as they are easily definable in terms of primitive Cq and Dq.

Lemma 3.4.1. For every formula F of CPL0 and q ∈ Q ∩ [0, 1],

µC(JF K) ▷ q iff µC(J¬F K) ◁ 1− q,

with ▷, ◁ ∈ {(≥,≤), (≤,≥), (>,<), (<,>)}.

Proof. Let us consider the case ≤,≥. Since

µC(J¬F K) = µC(2
N − JF K) = 1− µC(JF K),

trivially:

µC(JF K) ≥ q iff 1− µC(JF K) ≤ 1− q

iff µC(J¬F K) ≤ 1− q.

All the other cases are proved in a similar way.

Lemma 3.4.2. For every formula F of CPL0 and q ∈ Q ∩ [0, 1],

Cq¬F ≡ D1−qF

Cq¬F ≡ ¬C1−qF

Dq¬F ≡ C1−qF

Dq¬F ≡ ¬D1−qF.

Proof. The proof is based on Definition 3.2.2 and Lemma 3.4.1 above:

JCq¬F K =

{
2N if µC(J¬F K) ≥ q

∅ otherwise

=

{
2N if µC(JF K) ≤ 1− q

∅ otherwise

= JD1−qF K

JDq¬F K =

{
2N if µC(J¬F K) < q

∅ otherwise

=

{
2N if µC(JF K) > 1− q

∅ otherwise

= JC1−qF K

JCq¬F K = J¬Dq¬F K

= J¬C1−qF K

JDq¬F K = J¬Cq¬F K

= J¬D1−qF K.

65

So, due to these quantifiers, we can express exact probability in a compact way.

Example 3.4.1. For example, we formalize that F = 1 ∧ 2 is true with proba-
bility 1

4 as follows:
Fex : C1/4(1 ∧ 2) ∧ D1/4(1 ∧ 2).

We can even extend LKCPL0
with the (derivable) rules for C and D illustrated

in Figure 3.6.

⊢ c↣ F µ(JcK) > q
R↣C⊢ b↣ CqF

⊢ c↢ F µ(JcK) ≤ q
R↢C⊢ b↢ CqF

⊢ c↣ F µ(JcK) ≤ q
R↣D⊢ b↣ DqF

⊢ c↢ F µ(JcK) > q
R↢D⊢ b↢ DqF

Figure 3.6: Rules for C and D

3.4.2 On Formulae of CPL0 and Dyadic Rationals

As anticipated, it is natural to interpret atomic formulae of CPL0 as infinite
sequences of independently and identically distributed (i.i.d. for short) random
bits – i.e., more concretely, as infinite sequences of independent fair coin tosses.
Coherently, we can see counting formulae as formalizing experiments associated
with probabilities of a very special kind. In particular, we will show that any
counting formula F is such that µC(JF K) is a dyadic rational.12 Intuitively, this
is the first step to “simulate” any event associated with these measures. For
instance, the fact that, when tossing an unbiased coin twice, the probability
that it returns HEAD both times is 1

4 can be expressed in our logic by the valid
formula Fex of Example 3.4.1. Let us consider another very intuitive example.

Example 3.4.2. Let a biased coin return HEAD only 25% of the time. In this
case a single toss cannot be formalized by an atomic formula of CPL0. Yet, as
done above, it can be easily expressed using a molecular formula, namely one in
the form (i ∧ j), with i, j ∈ N “fresh”. Consequently, also properties concerning
complex events can be “captured” via CPL0. For instance, that the probability
for at least one of two subsequent biased tosses to return HEAD is greater than
1
3 is formalized by the (valid) formula:

Fbias : C
1/3

(
(1 ∧ 2) ∨ (3 ∧ 4)

)
.

More in general, basing on Definition 3.1.1 (and Corollary 3.1.1), we prove
that the measure of formulae of CPL0 is always a dyadic rational, that is a

12For further details on the converse, namely, that for any dyadic rational q there is a formula
F ∈ CPL0 such that µC(JF K) = q, see [4].

66

number q ∈ Q such that q can be expressed as k
2m , where k ∈ Z.13 We start

by showing that any counting formula can be interpreted as a cylinder of the
proper rank. To do so, we pass through the following auxiliary lemma.

Lemma 3.4.3. For any cylinder cylH of rank k1 and k′ > k, there is a cylinder
cylH′ of rank k′ such that

cylH = cylH′ .

Proof. Let us consider H ′ consisting of all sequences (u1, . . . , uk′) ∈ 2k
′

such
that (u1, . . . , uk) ∈ H. Clearly, cylH′ is an alternative, but equivalent repre-
sentation for cylH , of rank k′.

Lemma 3.4.4. For any formula of CPL0 F , there is a cylinder of rank k, cylH ,
such that JF K = cylH .

Proof. The proof is by induction on the structure of F :

• F = i for some i ∈ N. Then, JiK = Cyl(i), which is a thin cylinder.

• F = ¬G. By IH, there is a k ∈ N and a cylinder of rank k, cylK′ , such
that JGK = cylK′ . Let K = 2k −K ′. Then,

J¬GK = 2N − JGK = 2N − cylK′ = cylK

is a cylinder of rank k as well.

• F = G1 ∧ G2. By IH, there exist k1, k2 ∈ N and cylinders of rank k1, k2,
respectively, such that JG1K = cylH1

and JG2K = cylH2
. Then, if k1 =

k2,

JF K = JF1 ∧ F2K = JG1K ∩ JG2K = cylH1
∩ cylH2

= cylH1∩H2
,

which is a cylinder of rank k1 as well. Otherwise, assume k1 > k2 (the
case k2 > k1 is equivalent). Let cylH′2 be defined as in Lemma 3.4.3, so
to be equivalent to cylH2

but of rank k1 – that is H ′2 consists of the se-
quences (u1, . . . , uk1

) ∈ 2k1 such that the truncated sequence (u1, . . . , uk2
)

is in H2. So,

JF K = JF1 ∧ F2K = JG1K ∩ JG2K = cylH1
∩ cyl′H2

= cylH1∩H′2
,

which is a cylinder of rank k1.

• F = G1 ∧G2 is similar to the case above.

• F = CqG. Then, by Definition 3.2.2, either JF K = 2N or JF K = ∅, which
are both cylinders of rank k (in particular, in the former case k = 0).

• F = DqG. Equivalent to the case above.

13Actually, in our case k ∈ N.

67

Then, since by Corollary 3.1.1, for any k the measure of a cylinder of rank k
is a dyadic rational, we conclude that for each formula of CPL0 its measure is
dyadic as well.14

Lemma 3.4.5. For any formula of CPL0 F , there are n,m ∈ N such that µC(JF K) =
m
2n .

Proof. By putting Corollary 3.1.1 and Lemma 3.4.4 together.

Remarkably, as a consequence of this Lemma, we obtain a stronger, negative
result, namely that formulae of CPL0 cannot formalize events with probability
different from n

2m , for any n,m ∈ N (Lemma 3.4.5).15

14A “syntactic proof” of this result can also be obtained as a corollary of the procedure presented
in [5].

15Nevertheless, we can somehow “simulate” these events in an approximate way. For further
details, see [5, 4]. This fact also leads to natural questions of the “measure expressivity” of more
general languages, as CPL or MQPA, which have been left for future study.

68

Chapter 4

On Multivariate Counting
Propositional Logic

We introduce a more expressive counting logic, called CPL, in which relations
between valuations of different groups of variables can be taken into account.
Its language is made of named atomic formulae and counting quantifiers. Con-
textually, the corresponding quantitative semantics is subtler than the one for
CPL0 and, in particular, the interpretation for counting-quantified formulae re-
lies on some technical notions, presented in Section 4.1. As univariate CPL0,
also CPL supports a satisfactory proof theoretical treatment. Indeed, in Sec-
tion 4.2, we introduce a sound and complete calculus, which is nothing but a
straightforward generalization of LKCPL0

.

4.1 Syntax and Semantics of CPL

Preliminaries. Let us briefly recall useful facts about the Borel σ-algebra of
the Cantor space. We will consider a countably infinite set A of names noted
a, b, c, For any finite subset X ⊆ A, we let B(2N)X denote the Borel σ-
algebra on the X-th product of the Cantor space (2N)X , that is the smallest
σ-algebra containing all open sets under the product topology. For any name
a ∈ Aand index i ∈ N, the elements of the cantor space whose value over a and
i is 1 form a Borel set called a cylinder.1 More precisely, the cylinder induced by
a and i is defined as:

Cyl(a, i) = {f ∈ (2N)N | f(a)(i) = 1}.

Importantly, there exist a unique measure µC of B((2N)A) such that
µC(Cyl(a, i)) = 1

2 holds for all cylinders. For any Borel set S ∈ B((2N)X∪Y)
and f ∈ (2N)X , the projection of S over f is the set Πf (S) ⊆ (2N)Y defined as:

1For further details, see Section 3.1 or [25].

69

Πf (S) = {g ∈ (2N)Y | f + g ∈ S},
where

(f + g)(α) =

{
f(α) if α ∈ X

g(α) if α ∈ Y.

Yet, since it is an analytic set [124], one can show that its Lebesgue measure is
always well-defined. Moreover, the following result holds.

Theorem 4.1.1 (Theorem 14.11 and Theorem 29.26 [124]). For any S ∈
B(2X∪Y), with X ∩ Y = ∅ and r ∈ [0, 1], {ω ∈ (2N)X | µ(Πf (S)) ≥ r} ∈ B(2X).

Syntax. The language of CPL is made of named propositional atoms and
counting quantifiers.

Notation 4.1.1. In what follows, we use a, b, c, ... ∈ A for names and X,Y, ... ⊆
A for (countable) sets of names.

Counting quantifiers – indicated as Cq
a or Dq

a – now depend on the number
of valuations of propositional atoms with the corresponding name – here, a –
satisfying the argument formula F .

Definition 4.1.1 (Formulae of CPL). Formulae of CPL are defined by the gram-
mar below:

F ::= ia | ¬F | F ∧ F | F ∨ F | Cq
aF | Dq

aF,

where i ∈ N, a ∈ A, and q ∈ Q ∩ [0, 1].

Intuitively, a named quantifier binds the occurrences of the name in the argu-
ment formula and counts models relative to the corresponding bounded vari-
able.

Notation 4.1.2. Given a formula of CPL F , let FN(F) indicate the set of names
occurring free, i.e. not bound, in F .

These names can be used to distinguish between different groups of proposi-
tional variables.

Example 4.1.1. For example, let us consider the propositional formula FPL =
(x1 ∨ y1) ∧ (x2 ∨ y2), which contains two groups of variables x = {x1, x2} and
y = {y1, y2}. In CPL, we can deal with different groups of variables using
distinct names – for instance, a and b – and construct the counting formula

FCPL : (1a ∨ 1b) ∧ (2a ∨ 2b).

As we shall see in details in Chapter 5, since the intuitive meaning of Cq
aF is

that F is true in at least q valuations of the variables with name a, counting-
quantified formulae allow us to express canonical counting problems. For ex-
ample,

C1/2
a C

1/2
b FCPL

expresses the MAJMAJSAT problem for FCPL (which happens to have a positive
answer, in this case).

70

Semantics. As seen, formulae of CPL0 have a rather intuitive meaning. On
the contrary, the semantics of CPL is subtler. In particular, the interpretation of
a formula F now depends on the choice of a finite set of names X ⊇ FN(F) and
is a measurable set JF KX belonging to the Borel algebra, B

(
(2N)X

)
. To define

it formally we need to introduce the following technical notion.

Definition 4.1.2 (f -projection). Let X,Y be two disjoint, finite sets of names
and f ∈ (2N)X . For all X ⊆ (2N)X∪Y , the f -projection of X is the set:

Πf (X) := {g ∈ (2N)Y | f + g ∈ X} ⊆ (2N)Y ,

where

(f + g)(α) :=

{
f(α) if α ∈ X

g(α) if α ∈ Y.

More concretely, suppose that X and Y are two disjoint sets of names, with
FN(F) ⊆ X ∪ Y . Then, if we fix a valuation f ∈ (2N)X for the variables of
F with names in X, the set Πf

(
JF KX∪Y

)
describes the set of valuations of the

variables of F with names in Y , extending f .
Due to this notions we can formally define the interpretation for formulae

of CPL as below.

Definition 4.1.3 (Semantics of CPL). For each formula F of CPL and finite set
of names such that X ⊇ FN(F), its interpretation JF KX ⊆ (2N)X is as follows:

JiaKX := {f | f(a)(i) = 1}
JG ∧HKX := JGKX ∩ JHKX
JG ∨HKX := JGKX ∪ JHKX

J¬GKX := (2N)X − JGKX
JCq

aGKX := {f | µC(Πf

(
JGKX∪{a})

)
≥ q}

JDq
aGKX := {f | µC(Πf

(
JGKX∪{a})

)
< q}.

That all sets JF KX are measurable – that is JF KX ∈ B((2N)) – crucially relies
on some properties of f -projections, as it is proved in details in Section 4.2.1.
Observe that, generally speaking, it is not always true that the projection of a
measurable set is measurable. Yet, this actually holds in all the cases we are
interested in.

To have a grasp of the semantics of named quantifiers, let us consider the
following example:

Example 4.1.1. Let F be the formula of CPL:

F :
(
2a ∧ (¬2b ∧ 3b)

)
∨
(
¬2a ∧ (2b ∧ ¬3b)

)
∨
(
(¬2a ∧ 3a) ∧ 3b

)
.

The valuations f ∈ (2N){b} belonging to JC1/2
a F K{b} are those which can be

extended to valuations of all Boolean variables in F satisfying F in at least half
of the cases. Let us list all possible cases:

1. if f(b)(2) = f(b)(3) = 1, then F has 1
4 chances of being true, as both ¬2a

and 3a must be true,

71

2. if f(b)(2) = 1 and f(b)(3) = 0, then F has 1
2 chances of being true, as ¬2a

must be true,

3. if f(b)(2) = 0 and f(b)(3) = 1, then F has 3
4 chances of being true, as

either 2a or both ¬2a and 3a must be true,

4. if f(b)(2) = f(b)(3) = 0, then F has no chance of being true.

Clearly, JC1/2
a F K{b} only contains the valuations which agree with cases 2. and

3. Therefore, JC1/2
b C

1/2
a F K∅ = 2N, i.e. C1/2

b C
1/2
a F is valid, since half of the

valuations of b has at least 1
2 chances of being extended to a model of F .

Let us also consider the following slight variation of F ,

G =
(
2a ∧ (¬2b ∧ 3b)

)
∨ (¬2a ∧ 2b ∧ ¬3b) ∨

(
(¬2a ∨ 3a) ∧ 3b

)
.

The cases 2. and 4. are equivalent to the ones above, but 1. and 3. are not.
Indeed,

1. if f(b)(2) = f(b)(3) = 1, then G has 3
4 chances of being true, as either ¬2a

or 3a can be true,

2. if f(b)(2) = 1 and f(b)(3) = 0, then G has 1
2 chances of being true, since

as before ¬2a must be true,

3. if f(b)(2) = 0, f(b)(3) = 1, then G must be true, as either 2a or ¬2a (or
3a) is true,

4. if f(b)(2) = f(b)(3) = 0, then G has no chance of being true.

Coherently, logical equivalence in CPL is defined relatively to a set of names X,
by letting F ≡X G if and only if FN(F),FN(G) ⊆ X and JF KX = JGKX .

Relating CPL and CPL0.

Remark 4.1.1. Observe that there is a strong connection between (closed) formu-
lae of CPL0 and (closed) formulae of CPL in which only one name occurs.

This can be easily proved by defining a translation which “preserves” validity
from (closed) formulae of CPL (with one name only) to formulae of CPL0.
Intuitively, this transformation simply deletes all occurrences of the name in the
counting expression.

Definition 4.1.4. We define a translation trn from formulae of CPL with only
one name occurring in it, say a ∈ A, to formulae of CPL0

• F = ia, for any i ∈ N and a ∈ A, then trn(F) = i

• F = ¬G, then trn(¬G) = ¬(trn(G))

• F = G1△G2, then △ ∈ {∧,∨}, then trn(G1△G2) = trn(G1) △ trn(G2)

• F = Cq
aG, then trn(C

q
aG) = Cqtrn(G)

• F = Dq
aG, the trn(D

q
aG) = Dqtrn(G).

72

Then, it is proved that this translation preserves validity. Without loss of gener-
ality, given a formula of CPL with one name only, we can assume that it is in
PNF and with no nested quantification.

Proposition 4.1.1. Let F be a closed formula of CPL in PNF and with no nested
quantifications, such that FN(F) ⊆ {a} for some a ∈ A. Then,

JF K{a} = (2N){a} iff Jtrn(F)K = 2N

Proof Sketch. For assumption,
F ≡ Cq

aG,

where G is quantifier-free. Since a is unique, it can be proved by induction
on the structure of G that µC

(
JGK

)
= µC

(
Jtrn(G)K

)
and, then, by semantic

Definition of Cq
a and Cq, we conclude that JF K{a} = (2N){a} if and only if

Jtrn(F)K = 2N, as desired.

4.2 Proof Theory of CPL

In this Section we introduce the rule system LKCPL. To do so, we start by giv-
ing an alternative characterization for formulae of CPL using Boolean ones, in
Section 4.2.1. Then, relying on these Boolean expressions, in Section 4.2.2 we
present our labelled calculus, generalizing LKCPL0

. Finally, in Section 4.2.3 we
show this rule system to be sound and complete with respect to the quantitative
semantics of CPL.

4.2.1 Characterizing the Semantics of CPL via Boolean For-
mulae

The definition of JCq
aF KX and JDq

aF KX is not very intuitive at first glance.
So, we provide an alternative characterization of such sets by means of named
Boolean formulae and prove them measurable.

Definition 4.2.1 (Named Boolean Formulae). Named Boolean formulae are de-
fined by the grammar below:

b ::= xa
i | ⊤ | ⊥ | ¬b | b∧ b | b∨ b,

where i ∈ N and a ∈ A.

The set of free names for named Boolean formulae is defined as for counting
ones. For any named Boolean formula b, we let FN(b) ⊆ A indicate the set of
names that occur in F , and FV(b) ⊆ A× N denote the set of pairs (a, i) such
that the atom xa

i occurs in b.

Example 4.2.1. Let us consider the named Boolean formula b = (x0
a ∧ ¬x3

b) ∨
(¬x1

c ∧x7
a), such that FN(b) = {a, b, c} and FV(b) = {(a, 0), (a, 7), (b, 3), (c, 1)}.

73

Definition 4.2.2 (Named Boolean Semantics). Given a Boolean formula b, with
FN(b) ⊆ X, its interpretation, JbKX , is defined as follows:

Jxa
i KX := {f : X → 2N | f(a)(i) = 1}

J⊤KX := (2N)X

J⊥KX := ∅X

J¬bKX := (2N)X − JbKX
Jb∧ cKX := JbKX ∩ JcKX
Jb∨ cKX := JbKX ∪ JcKX .

As for univariate Boolean formulae, given a named Boolean formula b, a val-
uation of b is any function θ : FV(b) → {⊤,⊥}. The satisfaction relation
θ ⊨ b is defined inductively in the obvious way. Observe that, if X ⊇ FN(b),
any f ∈ (2N)X induces a valuation by considering only its values f(a)(i), for
(a, i) ∈ FV(b). With a slight abuse of notation, we use f ⊨ b to mean that the
unique valuation induced by f satisfies b. In particular, the JbKX could be also
defined as JbKX = {f ∈ (2N)X | f ⊨ b}.

We also need to introduce the auxiliary notion of a-decomposition for Boolean
formulae:

Definition 4.2.3 (a-decomposition). Let b be a named Boolean formula with
free names in X ∪ {a}. An a-decomposition of b is a Boolean formula c =∨k−1

i=0 di ∧ ei such that:

• JcKX∪{a} = JbKX∪{a},
• FN(di) ⊆ {a} and FN(ei) ⊆ X,

• if i ̸= j, then JeiKX ∩ JejKX = ∅.

Example 4.2.2. Given the Boolean formula c = (x0
a ∧ x1

b) ∨ (¬x1
a ∧ x0

b), an
a-decomposition of b can be obtained by transforming b into the equivalent
formula

c′ = (x0
a ∨ ¬x1

a ∧x1
b ∧x0

b) ∨ (x0
a ∧x1

b ∧ ¬x0
b) ∨ (¬x1

a ∧x0
b ∧ ¬x1

b)

and letting d0 = x0
a ∨ ¬x1

a, d1 = x0
a, d2 = ¬x1

a, and e0 = x1
b ∧ x0

b , e1 =
x1
b ∧ ¬x0

b , e2 = x0
b ∧ ¬x1

b .

A general way to construct an a-decomposition of Boolean formulae is described
by proof of the following Lemma, which is established by induction on the struc-
ture of Boolean expressions.

Lemma 4.2.1. Any named Boolean formula b with FN(b) ⊆ X ∪ {a} (with
a ̸∈ X) admits an a-decomposition in X.

Proof. We will actually prove a stronger statement saying that any named Boolean
formula b admits an a-decomposition

∨k
i=0 di ∧ ei, where J

∨k
i=0 eiKX = J⊤KX .

We argue by induction on the structure of b:

• if b = xa
i or b = ¬xa

i , then k = 0, d0 = b and e0 = ⊤
• if b = xb

i or b = ¬xb
i , where b ̸= a, then k = 1, d0 = ⊤, d1 = ⊥ and

e0 = b, e1 = ¬b.

74

• if b = b1∨ b2 then, by IH, b1 =
∨k1−1

i1=0 d1
i1
∧ e1

i1
and b2 =

∨k2−1
i2=0 d2

i2
∧ e2

i2
.

So,

b ≡
(k1−1∨

i1=0

d1
i1 ∧ e1

i1

)
∨
(k2−1∨

i2=0

d2
i2 ∧ e2

i2

)

≡
(k1−1∨

i1=0

d1
i1 ∧ e1

i1 ∧ ⊤
)
∨
(k2−1∨

i2=0

d2
i2 ∧ e2

i2 ∧ ⊤
)

≡
(k1−1∨

i1=0

d1
i1 ∧ e1

i1 ∧
k2−1∨
i2=0

e2
i2

)
∨
(k2−1∨

i2=0

d2
i2 ∧ e2

i2 ∧
k1−1∨
i1=0

e1
i1

)

≡
(k1−1,k2−1∨

i1=0,i2=0

(d1
i1 ∧ e1

i1 ∧ e2
i2)

)
∨
(k2−1,k1−1∨

i2=0,i1=0

(d2
i2 ∧ e2

i2 ∧ e1
i1)

)

≡
k1−1,k2−1∨
i1=0,i2=0

(d1
i1 ∨ d2

i2) ∧ (e1
i1 ∧ e2

i2).

Let k = k1 · k2. We can identify any l ≤ k − 1 with a pair (i1, i2), where
i1 < k1 and i2 < k2. Let di1,i2 = d1

i1
∨ d2

i2
and ei1,i2 = e1

i1
∨ e2

i2
. Then,

b ≡
k1−1,k2−1∨
i1=0,i2=0

di1,i2 ∧ ei1,i2 .

Observe that for (i1, i2) ̸= (i′1, i
′
2), ei1,i2∧ei′1,i′2 ≡ ⊥. Moreover,

∨
i1,i2

ei1,i2 ≡∨
i1,i2

e1
i1
∨ e2

i2
≡

∨
1 e

1
i1
∨
∨

i2
e2
i2
≡ ⊤ ∨⊤ ≡ ⊤.

• b = b1 ∧ b2, then, by IH, b1 ≡
∨k1−1

i1=0 d1
i1
∧ e1

i1
and b2 ≡

∨k2−1
i2=0 d2

i2
∧ e2

i2
.

So,

b ≡
(k1−1∨

i1=0

d1
i1 ∧ e1

i1

)
∧
(k2−1∨

i2=0

d2
i2 ∧ ei1

)

≡
k1−1,k2−1∨
i1=0,i2=0

d1
i1 ∧ e1

i1 ∧ d2
i2 ∧ e2

i2

≡
k1−1,k2−1∨
i1=0,i2=0

(d1
i1 ∧ d2

i2) ∧ (e1
i1 ∧ e2

i2).

As in the case above, let k = k1 · k2. We can identify any l ≤ k − 1
with a pair (i1, i2), i1 < k1 and i2 < k2. Let di1,i2 = d1

i1
∧ d2

i2
and

ei1,i2 = e1
i1
∧ e2

i2
We have than that

b ≡
k1−1,k2−1∨
i1=0,i2=0

ei1,i2 ∧ ei1,i2 .

75

As in the previous case we have that for (i1, i2) ̸= (i′1, i
′
2), ei1,i2∧ei′1,i′2 ≡ ⊥

and
∨

i1,i2
ei1,i2 ≡

∨
i1,i2

e1
i1
∧ e2

i2
≡

∨
i1
e1
i1
∧
∨

i2
e2
i2
≡ ⊤ ∧⊤ ≡ ⊤.

It is worth observing that, while an a-decomposition c of b always exists, find-
ing it may be complex in computational terms, since c can be of exponential
length with respect of b. Yet, a-decompositions can be used to show that the
interpretation of a quantified formula is a finite union of measurable sets.

Lemma 4.2.2 (Fundamental Lemma). Let b be a named Boolean formula with
FN(b) ⊆ X ∪{a} and c=

∨k−1
i=0 di ∧ ei be an a-decomposition of b. Then, for all

q ∈ Q ∩ [0, 1],

{f ∈ (2N)X | µC(Πf (JbKX∪{a})) ≥ q} =
⋃
i

{JeiKX | µC

(
JdiK{a}

)
≥ q}

{f ∈ (2N)X | µC(Πf (JbKX∪{a})) < q} =
⋃
i

{JeiKX | µC

(
JdiK{a}

)
< q}.

Proof. We prove the first equality, the second one being established in a similar
way. First, notice that if q = 0, then both sets are equal to (2N)X . So, let us
suppose q > 0.

⊆ Suppose µC

(
Πf

(
JbKX∪{a}

))
≥ q. Then, since Πf

(
JbKX∪{a}

)
is non-empty,

from b ≡
∨k

i di ∧ ei, by Definition 4.2.3, we deduce that there ex-
ists an i ≤ k such that f ∈ JeiKX and for each g ∈ JdiK{a}, f + g ∈
Jdi ∧ eiKX∪{a}. This implies then that JdiK{a} ⊆ {g ∈ (2N){a} | f + g ∈
Jdi ∧ eiKX∪{a}}

D4.1.2
= Πf

(
JbKX∪{a}

)
. Moreover, since the sets JeiKX

are pairwise disjoint, for all j ̸= i, f ̸∈ JejKX , which implies that
Πf

(
JbKX∪{a}

)
⊆ JdiK{a}. Hence, Πf

(
JbKX∪{a}

)
= JdiK{a}, which implies

µC

(
JdiK{a}

)
≥ q.

⊇ If f ∈ JeiKX , where µC

(
JdiK{a}

)
≥ q, then, since di ∧ ei ⊨X∪{a} b,

µC

(
Πf

(
JbKX∪{a}

))
≥ µC

(
Πf

(
Jdi∧eiKX∪{a}

)) D 4.1.2
= µC

(
{g ∈ (2N){a} | f+

g ∈ Jdi ∧ eiKX∪{a}}
)

= µC

(
JdiK{a}

)
≥ q, that is µC

(
Πf (JbKX∪{a} ≥ q as

desired.

The importance of this Lemma 4.2.2 consists of its being used to associate any
formula of CPL F (where FN(F) ⊆ X), with a Boolean formula bF , such that
JF KX = JbF KX . Then, the crucial cases concerning JCq

aF KX and JDq
aF KX are

handled using the fact that these sets are finite unions of measurable sets of the
form JeiKX , where

∨k−1
i=0 ei ∧ di is an a-decomposition of bF . As an immediate

consequence of Lemma 4.2.2, it follows that the Borel sets which are interpre-
tations of counting formulae are precisely those whcih are the interpretations
of Boolean formulae with names. In other words, the formula of CPL do not
increase the set of “definable” Borel sets.

76

Corollary 4.2.1. For any formula F (with FN(F) ⊆ X), there is a Boolean for-
mula bF , such that JF KX = JbF KX .

Proof. The proof is by induction on the structure of F . The crucial steps
concerning JCq

aF KX and JDq
aF KX are handled using the fact that, thanks to

Lemma 4.2.2, these sets are finite unions of sets of the form JeiKX , where∨k−1
i=0 di ∧ ei is an a-decomposition of bF .

Observe again that, given a counting formula F , finding a quantifier-free b such
that JF KX = JbKX can be complex, computationally, as the construction of b

crucially depends on the construction of a-decompositions for any sub-formula
of F of the form Cq

aG and Dq
aG.

Remark 4.2.1. To show that the sets JF KX are Borel we exploited Theorem 4.1.1,
which is a non-trivial measure-theoretic result, to account for the case of quan-
tifiers. Yet, using the result above one can get rid of this Lemma and prove that
the sets JF KX are Borel using, in the inductive steps related to quantifiers, the fact
that JCqF KX and JDqF KX are finite unions of sets which must all be Borel by the
inductive hypothesis.

As for CPL, the measure of named Boolean formulae can be related with
♯SAT. In particular, given a named Boolean formula b, let

♯SAT(b) = ♯{θ : FN(b)→ {0, 1} | θ ⊨ b}.

This function can be used to compute the measure of the finitary Borel set
JbKX . The proof is very similar to the corresponding one for CPL0, as provided
in Chapter 3.

Lemma 4.2.3. For any named Boolean formula b and X ⊇ FN(b),

µC(JbKX) = ♯SAT(b) · 2−♯FV(b).

Proof. For any valuation θ of b, let X(θ) ⊆ (2N)X be the following measurable
set:

X(θ) = {f | ∀(a, i) ∈ FN(b), f(a)(i) = θ(a, i)} =
n−1⋂
i=0

Cyl(a, i)θ(a,i),

where

Cyl(a, i)θ(a,i) =

{
Cyl(a, i) if θ(a, i) = 1

Cyl(a, i) if θ(a, i) = 0.

One can check by induction that for any Boolean formula b, JbKX =
⋃

θ⊨bX(θ).
Then, since for all distinct θ′, θ′’, X(θ′) ∩ X(θ′′) = ∅, letting N = ♯FV(b), we

have ♯SAT(b) ·2−N =
∑

θ⊨bX(θ) ·2−N =
∑

θ⊨b µC(X(θ)) = µC

(⋃
θ⊨bX(θ)

)
=

µC(JbKX).

77

As a of Lemma 4.2.3, µC

(
JbKX

)
is always a rational number and it is indepen-

dent from the choice of X ⊇ FN(b).
Furthermore, due to Lemma 4.2.2 we can prove that all sets JF KX are mea-

surable.2

Corollary 4.2.2. For any formula of CPL F and X ⊇ FN(F), JF KX ∈ B
(
(2N)X

)
.

Proof. The proof is by induction on the structure of formulae of CPL.

• F = ia, for some i ∈ N and a ∈ A. Then, by Definition 4.1.3, JiaKX =
{f | f(a)(i) = 1} = Cyl(a, i) (with X ⊇ {a}), which is measurable and,
in particular, – as seen in Section 4.1 – µC(Cyl(a, i)) = 1

2 (for any i ∈ N
and a ∈ A).

• F = ¬G. Then, by Definition 4.1.3, J¬GKX = (2N)X − JGKX (with
X ⊇ FN(G)). For IH, JGKX ∈ B

(
(2N)X

)
so, clearly, by the axioms of

the (generated) σ-algebra, J¬GKX = 2N − JGK ∈ B
(
(2N)X

)
as well.

• F = G ∧ H. Then, by Definition 4.1.3, JF KX = JGKX ∩ JHKX (with
X ⊇ FN(F)). For IH JGKX , JHKX ∈ B

(
(2N)X

)
, so clearly, by the axioms

of the (generated) σ-algebra JF KX = JGKX ∩ JHKX ∈ B
(
(2N)X

)
.

• F = G ∨H. Analogous to the case above.

• F = Cq
aG. Then, by Definition 4.1.3, JCq

aF KX = {f | µC

(
Πf (JGKX∪{a})

)
≥

q} (with X ⊇ F), that is, for the Lemma 4.2.2, JCq
aF K =

⋃
i{JeiKX |

µC(JdiK{a}) ≥ q}, where c =
∨k−1

i=0 di ∧ ei is an a-decomposition of bG.
Furthermore, by IH, JGK(= JbGK) ∈ B

(
(2N)X

)
, so, by the axioms of the

σ-algebra, also
⋃

i{JdiKX | µC(JeiK{a}) ≥ q} ∈ B
(
(2N)X

)
.

• F = Dq
aG. Similar to the case above.

4.2.2 The Sequent Calculus LKCPL

We now introduce a sound and complete labelled calculus for CPL, called
LKCPL. Using the Fundamental Lemma 4.2.2, we could define this proof system
in analogy with the one introduced for CPL0.

The Labelled Language. As for LKCPL0
, the language of LKCPL is labelled.

Definition 4.2.4 (Named External Hypothesis). A named external hypothesis is
an expression of one of the following forms:

• ⊨ {a} ∈ X

• b ⊨X c

• µ
(
JbKX

)
= 0 and µ

(
JbKX

)
= 1

2Observe that this could also be proved as an immediate consequence of Corollary 4.2.1.

78

• b ⊨X
∨

i{ei | µ
(
JdiKY

)
▷ q} and

∨
i{ei | µ

(
JdiKY

)
▷ q} ⊨X b,

where i ∈ N, X,Y ⊆ A, b,di, ei are named Boolean formulae, q ∈ Q ∩ [0, 1]
and ▷ ∈ {≥,≤, >,<,=}.

Definition 4.2.5 (Named Sequent of LKCPL). A named sequent of LKCPL is an
expression of the form ⊢X L, where L is a labelled formula – i.e., it is either b↣
F or b↢ F – with b being a named Boolean formula and FN(b)∪FN(F) ⊆ X.

The Rules System. LKCPL is a one-sided, single-succedent and labelled se-
quent calculus, the rules of which are obtained as straightforward extensions
of LKCPL0

. The only ones which are substantially different with respect to the
corresponding univariate ones are initial sequents and counting rules.

Definition 4.2.6 (Sequent Calculus LKCPL). The proof system LKCPL is de-
fined by the rules illustrated in Figure 4.1.

Remark 4.2.2. Rules R↣C and R↢D look significantly simpler than the correspond-
ing rules R↢C and R↣D , which refer to the a-decomposition of c. Actually, it can
easily shown that the following variants R↣∗C and R↢∗D – which are similar to the
corresponding univariate ones – are admissible in LKCPL:

⊢X∪{a} c↣ F b ⊨
∨

i{ei | µ(JdiK{a}) ≥ q}
R↣∗C⊢X b↣ Cq

aF

⊢X∪{a} c↣ F ¬b ⊨
∨

i{ei | µ(JdiK{a}) ≥ q}
R↢

∗

D⊢X b↢ Dq
aF

where
∨

i ei ∧ di is an a-decomposition of c.
Let us consider for example R↣∗C . Assume that

∨k−1
i=0 ei∧di, is an a-decomposition

of c, with FN(ei) ⊆ {a} and FN(ei) ⊆ X. Then, for all j ∈ {0, . . . k − 1} such
that µC(JdjK{a}) ≥ q we apply R↣C . Then, we conclude due to R∪:

⊢ dj1
∧ ej1

↣ F µ(Jdj1
K) ≥ q

⊢X ej1
↣ C

q
aF . . .

⊢ djn
∧ ej ↣ F µ(Jdjn

K) ≥ q

⊢X ejn
↣ C

q
aF b ⊨X ∨

j ej
R∪

⊢X b ↣ C
q
aF

Clearly,
∨{j1,...,jn}

j ej corresponds to
∨

i{ei | µ(JeiK{a}) ≥ q} as desired.

4.2.3 Soundness and Completeness

The proofs of soundness and completeness for LKCPL are structurally equiva-
lent to the ones for LKCPL0

. In this Section we briefly illustrate the skeleton of
the proof for CPL, trying to emphasize the discrepancies between the two.

79

Initial Sequents

⊨ {a} ∈ X b ⊨X xa
i

Ax1
⊢X b↣ ia

⊨ {a} ∈ X xa
i ⊨

X b
Ax2

⊢X b↢ ia

Union Rule

⊢X c↣ F ⊢X d↣ F b ⊨X c∨ d
R∪

⊢X b↣ F

Intersection Rule

⊢X c↢ F ⊢X d↢ F c∧ d ⊨X b
R∩

⊢X b↢ F

Logical Rules

⊢X c↢ F b ⊨X ¬c
R↣¬⊢X b↣ ¬F

⊢X c↣ F ¬c ⊨X b
R↢¬⊢X b↢ ¬F

⊢X b↣ F
R1↣∨⊢X b↣ F ∨G

⊢X b↣ G
R2↣∨⊢X b↣ F ∨G

⊢X b↢ F ⊢X b↢ G
R↢∨⊢X b↢ F ∨G

⊢X b↣ F ⊢X b↣ G
R↣∧⊢X b↣ F ∧G

⊢X b↢ F
R1↢∧⊢X b↢ F ∧G

⊢X b↢ G
R2↢∧⊢X b↢ F ∧G

Counting Rules

µ
(
JbKX

)
= 0

R↣µ
⊢X b↣ F

µ
(
JbKX

)
= 1

R↢µ
⊢X b↢ F

⊢X∪{a} b∧ c↣ F µ(JcK) ≥ q
R↣C⊢X b↣ Cq

aF

where FN(b) ⊆ X, FN(c) ⊆ {a} and
FN(b) ∩ FN(c) = ∅

⊢X∪{a} ¬b∧ c↣ F µ(JcK) ≥ q
R↢D⊢X b↢ Dq

aF

where FN(b) ⊆ X, FN(c) ⊆ {a} and
FN(b) ∩ FN(c) = ∅

⊢X∪{a} c↢ F
∨

i{ei | µ
(
JdiK{a}

)
≥ q} ⊨X b

R↢C⊢X b↢ Cq
aF

where
∨

i ei ∧ di is an a-decomposition of c.

⊢X∪{a} c↢ F b ⊨X
∨

i{ei | µ
(
JdiK{a}

)
< q}

R↣D⊢X b↣ Dq
aF

where
∨

i ei ∧ di is an a-decomposition of c.

Figure 4.1: Sequent Calculus LKCPL

80

Preliminaries. First of all, in the multivariate setting, the notion of validity
for labelled formulae and sequents is defined in relation to a set of names X.

Definition 4.2.7 (X-Validity). Given a Boolean formula b, and a CPL-formula
F , with FN(b) ∪ FN(F) ⊆ X, the labelled formula b ↣ F (resp., b ↢ F) is
X-valid when JbKX ⊆ JF KX (resp., JF KX ⊆ JbKX).

Similarly, an external hypothesis containing n named Boolean variables
bi1 , . . . , bin , with i1, . . . , in ∈ N, is valid when for every X such that⋃n

ij=1 FN(bij) ⊆ X, for j ∈ {1, . . . , n}, the hypothesis is valid. So, for example,
b ⊨X xa

i (resp., xa
i ⊨

X b) is valid if and only if for every X ⊇ FN(b) ∪ FN(xa
i),

JbKX ⊆ Jxa
i KX (resp., Jxi

aKX ⊆ JbKX).

Notation 4.2.1. Let us write F ≡X G when JF KX = JGKX .

Soundness. In order to establish soundness we need to first introduce the
auxiliary Corollary 4.2.3 below.

Corollary 4.2.3. For any Boolean formula b and X ⊇ b, if µC(JbKX) = 0, then
JbKX = (∅)X .

Proof. Since JbKX ̸= (∅)X , b must have at least one satisfying model, defined
by the set satisfying a finite set of conditions. Since JbKX includes all models
models of b, µ(JbKX) > 0.

As for LKCPL0
, soundness is proved by standard induction.

Proposition 4.2.1 (Soundness of LKCPL). If a sequent is derivable in LKCPL,
then is valid.

Proof. The proof is by induction on the height n, of the derivation for ⊢X L.
Base case. The sequent is either an initial sequent or is derived by a µ-

rule. Let us consider the cases Ax1 and R↣µ . The other ones are proved in an
analogous way.

• Ax1. Let the derivation be of the following form:

⊨ {a} ∈ X b ⊨X xa
i

Ax1
⊢X b↣ ia

As b ⊨X xa
i , FN(b) ∪ FN(xa

i) ⊆ X, so JbKX ⊆ Jxa
i KX , that is JbKX ⊆ {f ∈

(2N)X | f(a)(i) = 1}. By Definition 4.1.3, JiaKX = {f ∈ (2N)X | f(a)(i) =
1}, so JbKX ⊆ JiaKX and b↣ ia is X-valid. We conclude that ⊢X b↣ ia
is valid as well.

• R↣µ . Let the derivation be of the following form:

µ
(
JbKX

)
= 0

R↣µ⊢X b↣ F

81

Since µ
(
JbKX

)
= 0, by Corollary 4.2.3, JbKX = (∅)X . Then, trivially, for

every F , JbKX ⊆ JF KX , that is b ↣ F is X-valid. We conclude that
⊢X b↣ F is valid.

• The proofs for Ax2 and R↢µ are similar.

Inductive Case. Let us assume soundness to hold for derivations of height up
to n and show it holds for derivations of height n+1. The proof is equivalent to
that for LKCPL0

, so let us just consider a few examples only. All the other cases
are similar.

• R ∪ . The derivation is of the following form:

...
⊢X c↣ F

...
⊢X d↣ F b ⊨X c∨ d

R∪
⊢X b↣ F

The premisses are valid (IH), so ⊨X c ↣ F and ⊨X d ↣ F , that is
JcKX ⊆ JF KX and JdKX ⊆ JF KX . Then, for basic set theory, also Jc ∪
dKX ⊆ JF KX . Furthermore, b ⊨X c∨ d, then JbKX ⊆ JcKX ∪ JdKX . So,
for the transitivity of the subset relation, JbKX ⊆ JF KX . We conclude that
⊢X b↣ F is valid as desired.

• R ∩ . The derivation is of the following form:

...
⊢X c↢ F

...
⊢X d↢ F c∧ d ⊨X b

R∩
⊢X b↢ F

The premisses are valid (IH), so ⊨X c ↢ F and ⊨X d ↢ F , that is
JF KX ⊆ JcKX and JF KX ⊆ JdKX . Then, for basic set theory, JF K ⊆
JcKX ∪ JdKX . Furthermore as c∧ d ⊨X b, also JcKX ∩ JdKX ⊆ JbKX .
So, for the transitivity of subset relaiton, JF KX ⊆ JbKX . We conclude that
⊢X b↢ F is valid, as desired.

• R↣¬ . The derivation is of the following form:

...
⊢X c↢ F b ⊨X ¬c R↣¬⊢X b↣ ¬F

The premiss is valid (IH), so ⊨X c↢ F , that is JF KX ⊆ JcKX . Then, for
basic set theory, (2N)X − JcKX ⊆ (2N)X − JF KX , i.e. by Definition 4.1.3
and 4.2.1, J¬cKX ⊆ J¬F KX . Furthermore as b ⊨X ¬c, also JbKX ⊆
J¬cKX . So, for the transitivity of subset relation, JbKX ⊆ J¬F KX . We
conclude that ⊢X b↣ ¬F is valid, as desired.

82

• R↢¬ . The proof is similar to the one above.

• R1↣∨ . The derivation is of the following form:

...
⊢X b↣ F R1↣∨⊢X b↣ F ∨G

The premiss is valid (for IH), so ⊨X b↣ F , that is JbKX ⊆ JF KX . Then,
for basic set theory, JbKX ⊆ JF KX ∪ JGKX , i.e. by Definition 4.1.3 JbKX ⊆
JF ∨GKX . We conclude that ⊢X b↣ G ∨H is valid, as desired.

• R2↣∨ . The proof is equivalent to the one above.

• R↢∨ . The derivation is of the following form:

...
⊢X b↢ F

...
⊢X b↢ G R↢∨⊢X b↢ F ∨G

The premisses are valid (for IH), so ⊨X b ↢ F and ⊨X b ↢ G, that is
JF KX ⊆ JbKX and JGKX ⊆ JbKX . Then, also JF KX ∪JGKX ⊆ JbKX , namely
JF ∨GKX ⊆ JbKX . We conclude that ⊢X b↢ F ∨G is valid.

• The proofs for R↣∧ , R1↢∧ , R2↢∧ are proved in a similar way.

• R↣C . Let FN(b) ⊆ X,FN(c) ⊆ {a} and FN(b) ∩ FN(c) = ∅. Then, the
derivation is of the following form:

...
⊢X∪{a} b∧ c↣ F µ(JcK) ≥ q

R↣C⊢X b↣ Cq
aF

For IH, b ∧ c ↣ F is X ∪ {a}-valid, that is Jb ∧ cKX∪{a} ⊆ JF KX∪{a},
i.e. JbKX ∩ JcK{a} ⊆ JF KX∪{a}. Furthermore, since µ(JcK) ≥ q, also
µC

(
JcK{a}

)
≥ q. By Definition 4.1.2, Πf (Jb∧cKX∪{a}) = {g ∈ (2N){a} | f+

g ∈ Jb∧cKX∪{a}}, and, given µC

(
JcK{a}

)
≥ q, b ⊆ {f ∈ (2N)X | µC(Πf (Jb∧

cKX∪{a})) ≥ q}. Moreover, since Jb∧ cKX∪{a} ⊆ JF KX (and FN(b) ⊆ X,
FN(c) ⊆ {a}, FN(b) ∩ FN(c) = ∅), we conclude b ⊆ {f ∈ (2N)X |
µC(Πf (JF KX∪{a})) ≥ q} D 4.1.3

= Cq
aF . Therefore ⊢X b↣ Cq

aF is valid.

• R↢C . Let
∨

i ei ∧ di be an a-decomposition of c. Then, the derivation is
of the following form:

...
⊢X∪{a} c↢ F

∨
i{ei | µ

(
JdiK{a}

)
≥ q} ⊨X b

R↢C⊢X b↢ Cq
aF

83

For IH, c↢ F is X ∪ {a}-valid, that is JF KX∪{a} ⊆ JcKX∪{a}. Further-
more,

∨
i{ei | µ

(
JdiK{a}

)
≥ q} ⊨X b, that is

⋃
i{JeiKX | µC

(
JdiKX

)
≥

q} ⊆ JbKX . By Lemma 4.2.2 (and being
∨

i ei ∧ di an a-decomposition
of c), {f ∈ (2N)X | µC

(
Πf

(
JcKX∪{a}

))
≥ q} ⊆ JbKX and, since (for

IH) JF KX∪{a} ⊆ JcKX∪{a}, also {f ∈ (2N)X | µC

(
Πf

(
JF KX∪{a}

))
≥ q} ⊆

JbKX . We conclude JCq
aF KX ⊆ JbKX , that is b ↢ Cq

aF is X-valid and,
thus, ⊢X b↢ Cq

aF is valid as well.

• R↣D . Let
∨

i ei ∧di be an a-decomposition of c. Then, the derivation is of
the following form:

...
⊢X∪{a} c↢ F b ⊨X

∨
i{ei | µ(JdiK{a}) < q}

R↣D⊢X b↣ Dq
aF

For IH, c ↢ F is X ∪ {a}-valid. Furthermore,
∨

i{ei | µ(JdiK{a}) <
q}, that is JbKX ⊆

⋃
i{JeiKX | µC(JdiK{a}) < q}. By Lemma 4.2.2,⋃

i{JeKX | µC(JdiK{a}) < q} = {f ∈ (2N)X | µC(Πf (JcKX∪{a})) < q}.
Then JbKX ⊆ {f ∈ (2N)X | µC(Πf (JcKX∪{a})) < q}. Since (for IH)
JF KX∪{a} ⊆ JcKX∪{a}, also JbKX ⊆ {f ∈ (2N)X | µC(Πf (JF KX∪{a}) < q}.
We conclude then that JbKX ⊆ JDq

aF KX , that is ⊢X b↣ Dq
aF is valid.

• R↢D . Let FN(b) ⊆ X,FN(c) ⊆ {a}, and FN(b) ∩ FN(c) = ∅. Then, the
derivation is of the following form:

...
⊢X∪{a} ¬b∧ c↣ F µ(JcK) ≥ q

R↢D⊢X b↢ Dq
aF

For IH, ¬b∧ c↣ F is X ∪ {a}-valid, that is J¬b∧ cKX∪{a} ∩ JcKX∪{a} ⊆
JF KX∪{a}. Furthermore, since µ(c) ≥ q, µC

(
JcK{a}

)
≥ q. Then, Πf

(
J¬b∧

cKX∪{a}
)

= {g ∈ (2N){a} | f + g ∈ J¬b ∧ cKX} and since, for assump-
tion, µ(c) ≥ q and so µC(JcK{a}) ≥ q, ¬b ⊆ {f ∈ (2N)X | µC(Πf (J¬b ∧
cKX∪{a})) ≥ q}. Given J¬b ∧ cKX∪{a} ⊆ F , we conclude ¬b ⊆ {f ∈
(2N)X | µC(Πf (JF KX∪{a})) ≥ q}, that is b ⊇ {f ∈ (2N)X | µC(Πf (JF KX∪{a}
< q} 4.1.3

= Dq
aF . Thus, b↢ Dq

aF is X-valid.

Completeness. The proof of completeness for LKCPL is similar to the one for
LKCPL0

as well. We start by defining the decomposition relation ⇝ between
sets of sequents, which is in its turn based on⇝0.

84

Definition 4.2.8 (Decomposition Rewriting Reduction, ⇝0). The decomposi-
tion rewriting reduction, ⇝0, from a sequent to a set of sequents (both in the
language of LKCPL), is defined by the following decomposition rewriting rules:

if b ⊨X ¬c,⊢X b↣ ¬F ⇝0 {⊢X c↢ F}

if ¬c ⊨X b,⊢X b↢ ¬F ⇝0 {⊢X c↣ F}

if b ⊨X c∨ d,⊢X b↣ F ∨G ⇝0 {⊢X c↣ F,⊢X d↣ G}

⊢X b↢ F ∨G ⇝0 {⊢X b↢ F,⊢X b↢ G}

⊢X b↣ F ∧G ⇝0 {⊢X b↣ F,⊢X b↣ G}

if c∧ d ⊨X b,⊢X b↢ F ∧G ⇝0 {⊢X c↢ F,⊢X d↢ G}

if c=
∨
i

ei ∧ di is an a-decomposition of b

and b ⊨X
∨
i

{ei | µ(JdiK{a}) ≥ q},⊢X b↣ Cq
aF ⇝0 {⊢X∪{a} c↣ F}

if c=
∨
i

ei ∧ di is an a-decomposition of b

and
∨
i

{ei | µ(JdiK{a}) ≥ q} ⊨X b,⊢X b↢ Cq
aF ⇝0 {⊢X∪{a} c↢ F}

if c=
∨
i

ei ∧ di is an a-decomposition of b

and b ⊨
∨
i

{ei | µ(JdiK{a}) < q} ⊢X b↣ Dq
aF ⇝0 {⊢X∪{a} c↢ F}

if c=
∨
i

ei ∧ di is an a-decomposition of b

and ¬b ⊨X
∨
i

{ei | µ
(
JdiK{a}

)
≥ q}, ⊢X b↢ Dq

aF ⇝0 {⊢X∪{a} c↣ F}

if µ(JbKX) = 0,⊢X b↣ F ⇝0 {}

if µ(JbKX) = 1,⊢X b↢ F ⇝0 {}

if µ(JbK) ̸= 0,⊢X b↣ D0F ⇝0 {⊢ ⊥}

if µ(JbK) ̸= 1,⊢X b↢ C0F ⇝0 {⊢ ⊥}.

It is basing on⇝0 that we define set-decomposition reduction⇝, from a set of
sequents to a set of sequents.

Definition 4.2.9 (Set Decomposition, ⇝). The set-decomposition reduction ⇝,
from a set of sequents to another set of sequents is defined as follows:

⊢X Li ⇝0 {⊢X′1 Liq , . . . ,⊢X′m Lim}

{⊢X1 L1, . . . ,⊢Xi Li, . . . ,⊢Xn Ln}⇝ {⊢X1 L1, . . . ,⊢X′1 Li1 , . . . ,⊢X′m Lim , . . . ,⊢Xn Ln}

As for LKCPL0
, ⇝ is a natural lifting of ⇝0 to a relation between sets of se-

quents. Again, predicates about sequents can be generalized to ones on sets,
and the definitions of corresponding sets,⇝0-normal form, and normalizations
are equivalent to the ones given in Section 3.3. The notions of basic and regular
sequents are also close to those for LKCPL0

.

85

Definition 4.2.10 (Regular Sequent). A basic formula is a named labelled for-
mula – i.e. either b↣ F or b↢ F – where F is atomic. A regular sequent of
LKCPL is a sequent of the form ⊢X L, such that L is a (named) basic formula.

All the following lemmas and proofs are analogous to those for LKCPL0
.

Lemma 4.2.4. A regular sequent is valid if and only if derivable in LKCPL.

Proof. Let ⊢X L be an arbitrary, regular sequent, that is let L be basic.

⇒ Assume that L is an X-valid formula. There are two possible cases.

Let L = b↣ ia for some i ∈ N. Then, JbKX ⊆ JiaKX , that is JbKX ⊆ {f ∈
(2N)X | f(a)(i) = 1} = Jxa

i KX , with FN(ia) ⊆ X. Thus, ⊢X b↣ ia can be
derived by means of Ax1 as follows:

a ∈ X b ⊨X xa
i

Ax1
⊢X b↣ ia

Let L = b↢ ia for some i ∈ N. Then, JiaKX ⊆ JbKX , which is Jxa
i KX =

{f ∈ (2N)X | f(a)(i) = 1} ⊆ JbKX , with FN(ia) ⊆ X. Thus, ⊢X b↢ ia is
derivable by means of Ax2 as follows:

a ∈ X xa
i ⊨

X b
Ax2

⊢X b↢ ia

⇐ By Proposition 4.2.1.

Lemma 4.2.5. If a (non-empty) sequent is⇝0-normal, then is regular.

Proof. The proof is by contraposition. Assume that ⊢X L is an arbitrary, non-
regular sequent, that is let L be non-basic. We prove that the sequent is not
⇝-normal by inspecting all possible cases. Since they are all similar, we actually
deal with a few cases only.

• L = b↣ ¬F . For every b, JbKX ⊆ 2N and, since J¬⊥KX = 2N, b ⊨X ¬⊥.
Thus, the following⇝0-decomposition is well-defined:

⊢X b↣ ¬F ⇝0 {⊢X ⊥↢ F}.

• L = b ↣ F ∨ G. For every b, b ⊨X ⊤ ∨ ⊤, so the following ⇝0-
decomposition is well-defined:

⊢X b↣ F ∨G ⇝0 {⊢X ⊤↣ F,⊢X ⊤↣ G}.

• L = b↢ F ∨G. Then, the following⇝0-decomposition is well-defined:

⊢X b↢ F ∨G ⇝0 {⊢X b↢ F,⊢X b↢ G}.

86

• L = b ↣ Cq
aF . Let ⊤ =

∨
⊤ ∧ ⊤ be an a-decomposition of ⊤. Then,

for every b and q ∈ Q ∩ [0, 1], b ⊨X
∨
{⊤ | µ(J⊤K) ≥ q}. The following

⇝0-decomposition is well-defined:

⊢X b↣ Cq
aF ⇝0 {⊢X∪{a} ⊤↣ F}.

Corollary 4.2.1. If a sequent is ⇝0-normal, then it is valid when derivable in
LKCPL.

Proof. It is a straightforward consequence of Lemma 4.2.4 and Lemma 4.2.5.

Lemma 4.2.6. Reduction⇝ is strongly normalizing.

Proof Sketch. The proof is based on the notion of sequent measure. It is shown
that if {⊢X1 L1, · · · ⊢Xm Lm}⇝ {⊢X

′
1 L′1, . . . ,⊢X

′
m L′m}, then

ms
(
{⊢X1 L1, . . . ,⊢Xm Lm}

)
> ms

(
{⊢X

′
1 L′1, . . . ,⊢X

′
m L′m}

)
.

This property is established by exhaustive analysis of all possible forms of⇝0-
reduction applicable to the set, that is by dealing with all possible forms of⇝0-
reduction of ⊢Xi Li, with i ∈ {1, . . . ,m}, and where ⊢Xi Li is the active sequent
on which the ⇝0-reduction is based. These cases are proved in a similar way
with respect to the corresponding ones in Section 3.3, so only a few examples
are considered:

• Li = b↢ ¬F . Assume that ⊢X b↢ ¬F is the sequent on which the con-
sidered⇝0-reduction of {⊢X1 L1, . . . ,⊢Xm Lm} is based and, specifically,
that the sequent is⇝0-reduced as follows:

⊢X b↢ ¬F ⇝0 {⊢X c↣ F}

for some c such that ¬c ⊨X b. By Definition 3.3.13, cn(b ↢ ¬F) =
cn(c↣ F) + 1. Since the considered⇝0-step reduces the active sequent
⊢X b↢ ¬F only, for Definition 3.3.14, we conclude
ms

(
{⊢X1 L1... ⊢X b↢ ¬F... ⊢Xm Lm}

)
> ms

(
{⊢X1 L1... ⊢X c↣ F... ⊢Xm Lm}

)
.

• Li = b↣ F ∨G. Assume that ⊢X b↣ F ∨G is the sequent on which the
considered ⇝0-reduction of {⊢X1 L1, . . . ,⊢Xm Lm} is based and, specifi-
cally, it is⇝0-reduced as follows:

⊢X b↣ F ∨G ⇝0 {⊢X c↣ F,⊢X d↣ F}

for some c and d such that b ⊨X c ∨ d. Thus, by Definition 3.3.13
and 3.3.14 we conclude:
ms({⊢X1 L1... ⊢X c ↣ F,⊢X d ↣ G... ⊢Xm Lm}) = cn(L1)...cn(c ↣ F) + cn(d ↣ G)...cn(Lm)

= cn(L1)... + cn(F) + cn(G)... + cn(Lm)

< cn(L1)... + cn(F) + cn(G) + 1... + cn(Lm)

= cn(L1)... + cn(b ↣ F ∨ G)... + cn(Lm)

= ms({⊢X1 L1... ⊢X b ↣ F ∨ G... ⊢Xm Lm}).

87

• Li = b↢ Cq
aF . Assume that ⊢X b↢ Cq

aF is the sequent on which the
considered ⇝0-reduction of {⊢X1 L1, · · · ⊢Xm Lm} is based and, specifi-
cally, that the sequent is⇝0-reduced as follows:

⊢X b↢ Cq
aF ⇝0 {⊢X∪{a} c↢ F}

for some c such that c=
∨

i ei∧di is an a-decomposition of c and
∨

i{ei
| µ(JdiK{a} ≥ q} ⊨X b. By Definition 3.3.13, cn(b ↢ Cq

aF) = cn(d↢
F) + 1. Thus, since the considered ⇝0-step reduces the active sequent
⊢ b↢ Cq

aF only, for Definition 3.3.14,

ms
(
{⊢X1 L1... ⊢X b↢ ¬F... ⊢Xm Lm}

)
> ms

(
{⊢X1 L1... ⊢X c↣ F... ⊢Xm Lm}

)
.

Lemma 4.2.7 (Existential Preservation of Validity for LKCPL). For each sequent
of LKCPL, if it is valid, then it has a valid⇝-normal form.

Proof Sketch. The proof is by exhaustive inspection of all possible cases. Given
an arbitrary sequent Ψ = ⊢X L, there are two main, possible cases:

Case 1. Let Ψ be such that no ⇝0-reduction can be applied on it. So, the
sequent is⇝0-normal, that is either empty or regular (Lemma 4.2.5). Therefore,
it is already a⇝-normal form and, for hypothesis, it is valid.

Case 2. Let Ψ be⇝0-reducible. By Lemma 4.2.6,⇝ is strongly normalizing
and no infinite reduction sequence is possible. Consequently, it is enough to
prove that each reduction step existentially preserves validity, that is for each
possible⇝-reduction, based on a⇝0-reduction, if Ψ is valid, there is a set of se-
quents {Ψ1, . . . ,Ψm} such that Ψ ⇝0 {Ψ1, . . . ,Ψm} and {Ψ1, . . . ,Ψm} is valid.
The proof consists of taking into account all possible forms of⇝0 on which the
reduction step can be based. These proofs are analogous to the corresponding
univariate ones We consider a few examples only:

• L = b ↣ ¬F . We show that there is a well-defined ⇝0-reduction of Ψ
such that the reduced set is valid. For hypothesis ⊢ b↣ ¬F is valid, that
is b ↣ ¬F is X-valid. Let us consider a Boolean expression c = ¬b.
Then,

J¬cKX = (2N)X − JcKX = (2N)X −
(
(2N)X − JbKX

)
= JbKX

and in particular JbKX ⊆ J¬cKX , that is b ⊨X ¬c. Consequently, the
following⇝0-reduction is well-defined,

⊢X b↣ ¬F ⇝0 {⊢X c↢ F}.

• L = b ↢ ¬F . We show that there is a well-defined ⇝0-reduction of Ψ
such that the reduced set is valid. For hypothesis ⊢X b ↢ ¬F is valid,
that is b↢ ¬F is X-valid. Let us consider a Boolean expression c= ¬b.
Then,

J¬cKX = (2N)X − JcKX = (2N)X −
(
(2N)X − JbKX

)
= JbKX

88

and, in particular, J¬cKX ⊆ JbKX , that is ¬c ⊨X b. Consequently, the
following⇝0-reduction is well-defined,

⊢X b↢ ¬F ⇝0 {⊢X c↣ F}.

Since b ↢ ¬F is X-valid, J¬F KX ⊆ JbKX . Thus, for basic set theory,
J¬bKX ⊆ JF KX . But, by construction, c = ¬b, so JcKX ⊆ JF KX , that is
c↣ F is X-valid. We conclude that ⊢X c↣ F is valid.

• L = b↣ F ∨G. Let us consider two bF and bG, such that JbF KX = JF KX
and JbGKX = JGKX . For hypothesis b↣ F ∨G is X-valid, that is JbKX ⊆
JF KX ∪ JGKX . Thus, by construction, also JbKX ⊆ JbF KX ∪ JbGKX , that
is b ⊨X bF ∨ bG. Let us consider the following reduction, which is well
defined, given b ⊨X bF ∨ bG:

⊢X b↣ F ∨G ⇝0 {⊢X bF ↣ F,⊢X bG↣ G}.

Since JbF KX = JF KX and JbGKX = JGKX , in particular, also JbF KX ⊆
JF KX and JbGKX ⊆ JGKX . Therefore, ⊨X bF ↣ F and ⊨X bG ↣ G and
the given⇝0-decomposition is as desired.

• L = b↢ F ∨ G,L = b↣ F ∧ G,L = b↢ F ∧ G. Proofs are similar to
the one above.

• L = b↣ Cq
aF . There are two main sub-cases:

1. Let µC(JbK) = 0. Then, the sequent can be decomposed by means of
the following well-defined⇝0-decomposition:

⊢X b↣ Cq
aF ⇝0 {}.

{} is vacuously valid. We conclude that the given decomposition is
as desired.

2. Let µC(JbK) ̸= 0. For hypothesis ⊨X b ↣ Cq
aF , that is JbKX ⊆

JCq
aF KX = {f | µC(Πf (JF KX∪{a})) ≥ q}. Let us consider bF such

that JbF KX = JF KX . By Lemma 4.2.1, it admits an a-decomposition
c=

∨
i ei∧di. By the Lemma 4.2.2, {f ∈ (2N)X | µC(Πf (JbF KX∪{a}))

≥ q}=
⋃

i{JeiKX | µC(JdiK{a}) ≥ q}, so JbKX ⊆
⋃

i{JeiKX | µC(JdiK{a})
≥ q}. Then the following⇝0-decomposition is well-defined:

⊢X b↣ Cq
aF ⇝0 {⊢X∪{a} e↣ F}

For construction JeF KX∪{a} = JcKX∪{a} and so ⊨X∪{a} c↣ F .

• L = b↢ Cq
aF,L = b↣ Dq

aF,L = b↢ Dq
aF . Proofs are similar to the

one above.

Finally, it is proved that derivability in LKCPL is preserved in the following
sense.

89

Lemma 4.2.8 (Derivability Reflection for LKCPL). Given two sets of sequents S
and T , if S ⇝ T and T is derivable in LKCPL, then S is derivable in LKCPL as
well.

Proof. For hypothesis S ⇝ T , that is for some Ψ ∈ S, there is a⇝0-decomposition

Ψ ⇝0 {Ψ1, . . . ,Ψm}

on which the considered ⇝0 is based, so that Ψ1, . . . ,Ψm ∈ S. The number
of possible ⇝0 is finite, so the proof is obtained by considering all forms of
reduction applicable to the set. Let us consider just a few cases.

• L = b ↣ ¬F . Assume Ψ ≡ ⊢X b ↣ ¬F and that the considered ⇝ is
based on the⇝0-reduction below:

⊢X b↣ ¬F ⇝0 {⊢X c↢ F}

for some c such that b ⊨X ¬c. For hypothesis T is derivable, so each of
its sequents is. Thus, ⊢X c↢ F (∈ T) is derivable. Given that b ⊨X ¬c,
it is possible to derive ⊢X b↣ ¬F by applying R↣¬ as follows:

...
⊢X c↢ F b ⊨X ¬c R↣¬⊢X b↣ ¬F

• L = b↣ F ∨G. Assume that Ψ ≡ ⊢X b↣ F ∨G and that the considered
⇝-reduction is based on the⇝0-reduction below:

⊢X b↣ F ∨G ⇝0 {⊢X c↣ F,⊢X d↣ G}

where c and d are two Boolean formulae such that b ⊨X c ∨ d. For
hypothesis T is derivable, so each of its sequents is. Therefore, both ⊢X
c↣ F (∈ T) and ⊢X d↣ F (∈ T) are derivable and, since b ⊨X c∨d,
we conclude that also ⊢X b↣ F ∨G is derivable as follows:

...
⊢X c↣ F R1↣∨⊢X c↣ F ∨G

...
⊢X d↣ G R2↣∨⊢X d↣ F ∨G b ⊨X c∨ d R↣∪⊢X b↣ F ∨G

• L = b ↢ Cq
aF . Assume Ψ ≡ ⊢X b ↢ Cq

aF and that the considered
⇝-reduction is based on the⇝0-reduction below:

⊢X b↢ Cq
aF ⇝0 {⊢X∪{a} c↢ F}

where c=
∨

ei∧di is an a-decomposition of c and
∨

i{ei | µ(JdiK{a}) ≥
q} ⊨ b. For hypothesis T is derivable, so also ⊢X∪{a} c↢ F (∈ T) is and
⊢X c↢ Cq

aF can be shown derivable as follows:

90

...
⊢X∪{a} c↢ F

∨
i{ei | µ(JdiK{a}) ≥ q} ⊨X b

R↢C⊢X b↢ Cq
aF

Proposition 4.2.2 (Completeness). If a sequent is valid, then it is derivable in
LKCPL.

Proof. By combining the given Lemma 4.2.7, Corollary 4.2.1 and Lemma 4.2.8.

4.3 Related Works

Several authors – at least from the late XIX century on – have tried to define
logics to model probability. In the last decades, studies dealing with uncertain
reasoning have also spread in CS, but – as Fagin, Halpern, and Megiddo no-
ticed [81, p. 79] – these not always attempt at constructing a logic to reason
explicitly about probability. Generally speaking, when moving towards this di-
rection, the modal approach seems prevailing in the literature. Yet, remarkably,
most proposals in this area are not focussed on computational aspects and, in-
deed, our notion of counting quantifier is mostly inspired by Wagner’s operator
over classes of languages [227].

One of the first works on probability logic in the context of possible-world
semantics was by Nilsson [158, 159].3 Although he did not present a formal
semantics, his ideas are at the basis of many subsequent formalizations, for in-
stance those by Bacchus and Halpern. Indeed, first probability logical systems
were defined in the 1990s. These can be divided into two main classes: log-
ics for statistical probability, which treat probability as a distribution over the
structure domain, and logics expressing probability as degrees of belief, which
models probability via sets of possible worlds. The two approaches were devel-
oped in the same years, by the same authors and can be “combined”.4 In this
context, particularly relevant are Bacchus’ [20, 17, 18, 19] and Fagin, Halpern
and Megiddo’s [81] proposals.5 More recently, similar probability logics have
been studied by Finger and others in connection with non-standard systems –
for example, Lukasiewicz’s logic [85].

3Given a sentence, say F , two sets of possible worlds are considered: one where F = 1, the
other where F = 0. Given L sentences, there will be 2L sets of worlds and the probability of each
sentence is defined as the sum of probabilities of the sets of possible worlds in which it is true.

4Observe that Bacchus also related his logics with standard epistemic systems, like KD45 [19].
5In particular, Bacchus defined probability terms by means of a modal operator prob which com-

putes the probability of certain events, and probability formulae, which are equalities between prob-
ability terms and numbers, such as prob(α) = 1

2
. Observe that this is not too different from the

intuitive meaning we associate to CPL0-formula C1/2 (see also the measuring procedure presented
in [5]). Remarkably, Bacchus’ prob yields terms, whereas Cq yields formulae. A similar notion was
that of weight term, as defined in [81, 79, 80, 106, 107].

91

Another class of probabilistic modal logics have been designed to model
Markov chains and similar structures [108, 137, 140]. Some of these logics are
probabilistic extensions of CTL, the standard logic for model-checking. Differ-
ently from CPL, in these systems modal operators have a dynamic meaning, as
they describe transitions in MDP. A notable example is Riesz modal logic [87],
which admits a sound and complete proof system. Other sequent calculi ex-
pressing probabilities are developed in [26, 27] and probabilistic proof systems
are also studied in [114].6 Complete axiomatizations have been provided for
both the probability logics quoted above [19, 81]. On the other hand, our cal-
culi are mostly inspired by (non-probabilistic) labelled systems – e.g. G3K∗

and G3P∗ – as presented in [156, 96].

6We thank Raphaëlle Crubillé for pointing us to these works.

92

Chapter 5

On Counting Logics and
Wagner’s Hierarchy

In this Chapter, we investigate the profound relation existing between our count-
ing logics and (probabilistic) complexity classes. First, in Section 5.1, we briefly
recap salient aspects of Wagner’s hierarchy directly referring to the original
source. In Section 5.2, we consider univariate CPL0 and show that deciding
the validity of its formulae is complete for the class P♯SAT of problems which
can be solved in polynomial time when accessing an oracle for ♯SAT. Finally,
in Section 5.3, we establish our main result, by relating the decision problem
for formulae of CPL (in a special prenex form) with the corresponding level in
CH.

5.1 The Counting Hierarchy

As for PH, there exist (at least) two main, equivalent presentations of the count-
ing hierarchy: Wagner’s original one [227, 226], in terms of alternating quan-
tifiers, and Torán’s oracle characterization [212, 214]. The latter one is very
similar to the corresponding polynomial version, but its building blocks are ob-
tained by replacing NP with PP, where PP can either be defined as the class of
languages recognized by a poly-time probabilistic Turing machine with an error
probability smaller than 1

2 [90, 91] or as the counting classes of languages rec-
ognized by a poly-time threshold machine, accepting an input when the majority
of its computation paths are accepting ones [217, 191].1

Definition 5.1.1 (Counting Hierarchy, Oracle Characterization [212]). Let k ≥
1As seen in Section 2.1, probabilistic and threshold models are strongly related, as proved for

example in [191, 193].

93

0,

CH0 = P

CHk+1 = PPCHk .

So, for example, CH1 = PP and CH2 = PPPP.

Remarkably, in [227], Wagner not only introduced CH, but also defined canon-
ical complete problems for each level in it.

Historical Background. The increasing interest in complexity theory and the
development of new computational models, led to the discovery of problems
beyond PH. It was in this context that in the 1980s the counting hierarchy
was conceived for the first time both by Wagner [226] and by Parberry and
Schnitger [164]. As said, Wagner defined it in terms of a special counting op-
erator but, remarkably, this was not the only “probabilistic” (class) quantifier
that appeared in those decades to characterize complexity classes. For example,
Papdimitriou introduced a probabilistic quantifier to capture PSPACE [161],
Zachos and Heller defined random quantifiers to characterize BPP [233], and
(again) Zachos in [232] considered the overwhelming and majority quantifiers.
Furthermore, the counting classes were shown not only interesting in them-
selves, but also for their relations with standard classes, as shown for instance
by Toda’s Theorem [210, 211].

Wagner’s Characterization In 1984/86, starting from the investigation of
languages for succinct representation of combinatorial problems, Wagner intro-
duced CH to classify natural problems in which counting is involved [225, 226,
227]. His characterization relies on the notion of counting operator over classes
of languages, which was inspired by that of threshold machine: Cp(n)

f(x)yP (y)

expresses that there are at least f(x) strings y of length p(n) satisfying P . In
particular, a clear presentation was offered in The Complexity of Combinatorial
Problems with Succinct Input Representation (1986), where, in Section 3, the so-
called CPH was introduced as an extension of PH obtained by adding C to
standard existential and universal quantifiers.

The counting quantifier C is defined as follows. For every formula H(x, y)
with the free variables x and y (which can be n-tuples),

Ck
yH(x, y) ↔ card{y : H(x, y) is true} ≥ k.

The polynomially bounded version of the existential, universal, and count-
ing quantifiers give rise to the operators

∨
,
∧

and C, resp., which are de-
fined as follows. Let C be a class of languages.
A ∈

∨
K iff there exist a B ∈ K and a polynomial p such that

x ∈ A↔
∨

y,|y|≤p(|x|)

(x, y) ∈ B.

94

A ∈
∧

K iff there exist a B ∈ K and a polynomial p such that

x ∈ A↔
∧

y,|y|≤p(|x|)

(x, y) ∈ B.

A ∈ CK iff there exist a B ∈ K, a polynomial-time computable function f
and a polynomial p such that

x ∈ A↔ C
f(x)

y,|y|≤p(|x|)(x, y) ∈ B.

[227, p. 335]

Then, CH was defined as the smallest family of classes of languages including
P and closed under existential, universal and counting operators [227, p. 335].
For each level in the hierarchy Wagner showed how to construct a complete set
for it.

For k ≥ 1, Q1, ..., Qk−1 ∈
{∧

,
∨
,C

}
and Qk ∈

{∨
,C

}
we define:

(F (x̃1, ..., x̃k),m1, ...,mk) ∈ Q1, ..., QkBbe ↔ F is a Boolean expression in

conjunctive normal form and

m1, ...,mk ∈ N such that

Qm1
α̃1

...Q
mk
α̃k

F (α̃1, ..., α̃k) = 1,

(F (x̃1...x̃k),m1...mk) ∈ Q1...Qk−1

∧
Bbe ↔ (F (x̃1...x̃k),m1...mk) ̸∈ Q1...Qk−1

∨
Bbe

[...] Let ≤log
m

denote the logarithic-space m-reducibility.
Theorem 7. For every k ≥ 1 and every Q1, ..., Qk ∈ {

∨
,
∧
,C},

Q1...QkBbe is ≤log
m

-complete in Q1...QkP.

[227, p. 338]

Torán’s Characterization. Some years later, an alternative, but equivalent or-
acle characterization for CH was introduced by Torán [212, 213]. First, Torán
presented a slightly modified notion of C, the so-called exact counting quantifier.

The polynomial counting quantifier C is defined in the following way; for
a function f : Σ∗ → N, f ∈ FP, a polynomial p, and a two argument
predicate P ,

Cp
f(x)y : P (x, y) ⇔ ||{y : |y| ≤ p(|x|) and P (x, y)}|| ≥ f(x).

If K is a language class, for any setA, A ∈ CK if there is a function f ∈ FP,
such that for every x, f(x) > 0, a polynomial p and a language B ∈ K such
that for any x ∈ Σ∗,

x ∈ A ⇔ Cp
f(x)y : ⟨x, y⟩ ∈ B.

We alternate now the polynomial counting quantifier C with the existential
and universal quantifiers in order to define the counting hierarchy. [...] For
a function f : N → N, f ∈ FP, a polynomial p and two argument predicate
P ,

Cp
f(x)y : P (x, y) ⇔ ||{y : |y| ≤ p(|x|) and P (x, y)}|| = f(x).

[212, p. 215]

95

Then, in [212, Sec. 4], the oracle characterization was presented. This defini-
tion is close to the oracle characterization of PH, but PTMs are used instead of
NTMs.

Theorem 15. For any class K in CH,

i. PPK = CK
ii. NPK = ∃K. [212, p. 219]

Torán also proved this characterization equivalent to Wagner’s one.2 These new
approaches to counting classes are clarified and summarised a few years later,
for example in Allender and Wagner’s Counting Hierarchies: Polynomial Time
and Constant Depth Circuits (1993). In this paper also combinations with other
probabilistic operators – e.g. those by [163] – were considered [2, pp. 469-
470].

5.2 On CPL0 and P♯SAT

We have seen that quantified formulae of CPL0 can be proved valid by invok-
ing an oracle, which provides a suitable measurement µC

(
JbK

)
for any Boolean

formula b. This corresponds to actually counting the number of valuations sat-
isfying the corresponding formula.3 We now make this intuition more precise
by showing that the validity of a CPL0-formula can be decided by a poly-time
algorithm accessing an oracle for the problem ♯SAT, i.e. an oracle counting the
models of a Boolean formula. To do so, we start by introducing the notion of
closed formula.

Definition 5.2.1 (Closed Formula). A formula of CPL0, say F , is said to be
closed if it is either of the form QqF with Q ∈ {C,D}, or a negation, conjunction
or disjunction of closed formulae.

It can be easily checked by induction on the structure of closed formulae that
for any closed F , either JF K = 2N or JF K = ∅. Then, we define by mutual
recursion, two poly-time algorithms Bool and Var as illustrated in Figure 5.1.
For each counting formula F , Bool(F) computes a Boolean fromula bF , such
that JF K = JbF K and, for any closed formula F ,

Var(F) =

{
⊤ if JF K = 2N

⊥ if JF K = ∅.

Notice that the algorithm Var is defined relying on a ♯SAT oracle. So both
Bool and Var belong to P♯SAT, where – as said – P♯SAT is the class made of
problems which can be decided in polynomial time having access to an oracle
for ♯SAT [14].

Proposition 5.2.1. Validity of CPL0-formulae is in P♯SAT.
2Furthermore, in [212, Lemma 3, p. 215], Torán proved CP = PP. So, basically, CH0 =

CP = PP and CHk = PPCHk−1 .
3See also Lemma 3.3.1.

96

Bool(n) = xn

Bool(¬F) = ¬Bool(F)

Bool(F ∧G) = Bool(F) ∧ Bool(G)

Bool(F ∨G) = Bool(F) ∨ Bool(G)

Bool(CqF) = Var(CqF)

Bool(DqF) = Var(DqF)

Var(¬F) = not Var(F)

Var(F ∧G) = Var(F) and Var(F)

Var(F ∨G) = Var(F) or Var(G)

Var(CqF) = let b = Bool(F) in

let n = ♯Var(b) in

♯SAT(b)

2N
≥ q

Var(DqF) = let b = Bool(F) in

let n = ♯Var(b) in

♯SAT(b)

2N
< q

where ♯SAT(b) denote the number of propositional
variables in the Boolean formula b.

Figure 5.1: Bool(·) and Var(·)

5.3 On CPL and Wagner’s Hierarchy

Clearly, counting problems are not restricted to those in P♯SAT. In this section we
provide a logical characterization of Wagner’s hierarchy, showing that the valid-
ity of multivariate counting formulae yields a new family of complete problems
for the corresponding level of CH.

5.3.1 Towards a Logical Characterization of the Hierarchy

The introduction of named atoms and named quantifiers makes it possible to
relate valuations of different groups of variables. For instance, the intuitive
meaning of the quantified formula Cq

aF is that “F is true in at least q ·n of the n
valuations of variables labelled with name a”. As seen, in this way, a problem in
MAJMAJSAT can be captured by formulae in the form Cq

aC
p
bF , as shown by the

example of Chapter 4 restated below.

Example 5.3.1. Given the formula of PL F = (X1 ∨Y1)∧ (X2 ∨Y2), containing
two disjoint sets of variables, X = {X1, X2} and Y = {Y1, Y2}, we can express its
MAJMAJSAT problem [24, 219, 220], by the CPL-formula below,

C1/2
a C

1/2
b

(
(1a ∨ 1b) ∧ (2a ∨ 2b)

)
.

It is precisely by making this intuition formal that we provide a characterization
of the full CH via CPL. In particular, we show that: (i.) any counting formula
is equivalent to one in the special prenex normal form Cq1

a1
. . .Cqk

ak
F , where F is

quantifier-free and (ii.) prenex formulae with k nested quantifiers characterize
the level k of Wagner’s CH.

97

Specifically, our logical characterization is basically obtained by internaliz-
ing Wagner’s constructions inside a proper logical system, namely CPL. Our
starting point is Wagner’s Theorem 7, which provides a complete problem for
each level in CH [227]. We notice that there is a mismatch between the form
of Wagner’s problems and that of our counting formulae. Indeed, on the one
hand, counting quantifiers can appear deep-inside formulae, rather than just at
top-level and, on the other, the quantifier D has no counterpart in Wagner’s con-
structions. So, in order to obtain the desired characterization we pass through
a specific prenex form, called positive prenex normal form (PPNF, for short). A
formula is in PPNF if it is both in PNF and D-free. In Section 5.3.2 and Sec-
tion 5.3.3, we prove that any formula of CPL can be converted into this special
PPNF. Finally, in Section 5.3.4, we show that, as desired, this form perfectly
matches that of Wagner’s problems and, so, CPL can be seen as the counting or
quantitative counterpart of QPL. Observe that in all the following lemmas and
proofs, formulae of CPL are considered modulo α-conversion.

Wagner’s Theorem 7 [227]

Wagner’s problems mismatch⇐⇒ CPL-formulae

Cq
a/D

q
a deep-insider formulae Dq

a quantifiers

PPNF
PNF

Valid k-PPNF defines complete problems for CHk

Figure 5.2: Proof Schema

5.3.2 Prenex Normal Form

First, we show that any formula of CPL can be converted into prenex normal
form.4

Definition 5.3.1 (Prenex Normal Form). A formula of CPL is a(n n-ary) prenex
normal form (PNF, for short) if it can be written as:

Q1 . . .QnF,

4I thank Raphaëlle Crubillé for suggesting me to add several details and proofs to this Section.

98

where Qi ∈ {Cq
a,D

q
a}, for any a ∈ A, q ∈ Q ∩ [0, 1] and i ∈ {1, . . . , n}, and F is

quantifier-free. The formula F is said to be the matrix of the PNF.

To convert a formula of CPL into an equivalent one in PNF, some intermediate
lemmas are needed. Preliminarily notice that as for QPL, conversion into CNF
of (the matrix of) counting formulae can have high complexity.

Converting Conjunction and Disjunction. Without loss of generality, we as-
sume a ̸∈ FN(F). First, let us show that counting quantifiers occurring inside
conjunction and disjunction can be extruded from them. Preliminarily notice
that the following results hold.

Lemma 5.3.1. For any X such that FN(F) ⊆ X ∪ {a} and a ̸∈ X,

JC0
aF KX = (2N)X JD0

aF KX = ∅X .

Proof. Let us consider JC0
aF KX = (2N)X . Since by Definition 4.1.2, for every

Πf (JF KX∪{a}) ⊆ (2N){a}, µC

(
Πf (JF KX∪{a})

)
≥ 0 holds. So, trivially,

JC0
aF KX = {f ∈ (2N)X | µC

(
Πf (JF KX∪{a})

)
≥ 0}

= (2N)X .

Let us consider JD0
aF KX = ∅X . Again by Definition 4.1.2, for no Πf (JF KX∪{a}),

µ
(
Πf (JF KX∪{a})

)
< 0 holds. So, trivially,

JD0
aF KX = {f ∈ (2N)X | µC

(
Πf (JF KX∪{a})

)
< 0}

= ∅X .

Corollary 5.3.1. For any X such that FN(F) ∪ FN(G) ⊆ X ∪ {a} and a ̸∈ X:

F ∧C0
aG ≡X F

F ∧D0
aG ≡X ∅X

F ∨C0
aG ≡X (2N)X

F ∨D0
aG ≡X F.

Proof. Let us consider F ∧C0
aG ≡X F , that is:

JF ∧C0
aGKX = JF KX .

By Definition 4.1.3,

JF ∧C0
aGKX = JF KX ∩ JC0

aGKX
L.5.3.1
= JF KX ∩ (2N)X

= JF KX .

Let us now consider F ∨C0
aG ≡X (2N)X , that is:

JF ∨C0
aGKX = (2N)X .

99

Again, by Definition 4.1.3,

JF ∨C0
aGKX = JF KX ∪ JC0

aGKX
L.5.3.1
= JF KX ∪ (2N)X

= (2N)X .

Let us consider F ∧D0
aG ≡X ∅X , that is:

JF ∧D0
aGKX = ∅X .

By Definition 4.1.3,

JF ∧D0
aGKX = JF KX ∩ JD0

aGKX
L 5.3.1
= JF KX ∩ ∅X

= ∅X .

Let us consider F ∨D0
aG ≡X F , that is:

JF ∨D0
aGKX = JF KX .

By Definition 4.1.3:

JF ∨D0
aGKX = JF KX ∪ JD0

aGKX
L 5.3.1
= JF KX ∪ ∅X

= JF KX .

Let X,Y be two disjoint sets of names. For any X ⊆ (2N)X , the set X⇑Y ⊆
(2N)X∪Y is defiend by

X⇑Y = {f ∈ (2N)X∪Y | fX ∈ X}

where fX ∈ (2N)X denotes the function obtained from f by restricting its
domain to X. We can formally define the extension of X to Y as follows.

Definition 5.3.2 (Extension of X of Y). Given X ⊆ (2N)X and Y such that
X ∩Y = ∅, we use X⇑Y ⊆ (2N)X∪Y to denote the extension of X to Y . Since we
assume X ∩ Y = ∅, given X ⊆ (2N)X , the extension of X to Y is

X⇑Y := {f + g ∈ (2N)X∪Y | f ∈ X & g ∈ (2N)Y },

where

(f + g)(a) =

{
f(a) if a ∈ X

g(a) if a ∈ Y.

Then, even the following auxiliary lemmas are proved:

100

Lemma 5.3.2. Given Z ⊆ (2N)X∪Y and f ∈ X ⊆ (2N)X , then

Πf (Z) = Πf

(
Z ∩ X⇑Y

)
.

Proof. The proof is by cases:

⊆ If g ∈ Πf (Z), as by Definition 4.1.2, Πf (Z) = {g′ ∈ (2N)Y | f + g′ ∈
Z} ⊆ (2N)Y , f + g ∈ Z. Since f ∈ X , by Definition of X⇑Y (= {f + h ∈
(2N)X∪Y | f ∈ X}), also f +g ∈ X⇑Y . As a consequence, f +g ∈ Z ∩X⇑Y
and, because again by Definition 4.1.2, Πf (Z ∩ X⇑Y) = {g ∈ (2N)X | f +
g ∈ Z ∩ X⇑}, we conclude that g ∈ Πf

(
Z ∩ X⇑Y

)
.

⊇ Trivial since the projection operator is monotone.

Lemma 5.3.3. Let f ∈ (2N)X , Z ⊆ (2N)X∪Y and X ⊆ (2N)X with X ∩ Y = ∅, if
µC

(
Πf (Z ∩ X⇑Y)

)
> 0, then f ∈ X .

Proof. The proof is by contraposition. Assume f ̸∈ X . Then, there are two
possible cases:

• If Z ∩ X⇑Y = ∅, then

µC

(
Πf (Z ∩ X⇑Y)

)
= µC(Πf (∅))
= µC(∅)
= 0.

• Otherwise, by Definition 4.1.2, Πf (Z ∩ X⇑Y) = {g ∈ (2N)Y | f + g ∈
(Z ∩ X⇑Y)}. Furthermore, by Definition of Y-extension of X , X⇑Y =
{h+ h′ ∈ (2N)X ∪ Y | h ∈ X} and, since (X ∩ Y = ∅ and) by assumption
f ̸∈ X , {g ∈ (2N)Y | f + g ∈ X⇑Y } = ∅. Then, trivially also {g ∈
(2N)Y | f + g ∈ Z ∩ X⇑Y } = ∅. Therefore,

µC

(
Πf (Z ∩ X⇑Y)

)
= µC

(
{g ∈ (2N)Y | f + g ∈ (Z ∩ X⇑Y)}

)
f ̸∈X
= µC(∅)
= 0.

It is now possible to prove that, for a ̸∈ X, FN(F) ⊆ X and f ∈ (2N)X , if f ∈
JF KX , then Πf

(
JF KX∪{a}

)
= (2N){a}. Intuitively, since a ̸∈ FN(F), JF KX∪{a} is

a set of f ∈ (2N)X∪{a}, the characterization of which does not rely on {a}. So,
for each α ∈ Y , either f(α) ∈ JF KX , and f + g ∈ JF KX∪{a}, or f(α) ̸∈ JF KX ,
and f + g ̸∈ JF KX∪{a}. Therefore, if f ∈ JF KX , Πf

(
JF KX∪{a}

)
= (2N){a}.

The following auxiliary Proposition is proved by simply applying Defini-
tions 4.1.2 and 5.3.2.

101

Proposition 5.3.1. Let X,Y be finite disjoint sets, Z ⊆ (2N)X∪Y , f ∈ (2N)X and
g ∈ (2N)Y , then

Πf+g(Z⇑Y) = Πf (Z).

Lemma 5.3.4. For any CPL-formula F , f ∈ (2N)X , g ∈ (2N){a}, a ̸∈ X, and
FN(F) ⊆ X:

f ∈ JF KX iff f + g ∈ JF KX∪{a}

Proof. The proof is by induction on the structure of F :

• F = ib. Then,

⇒ Assume f ∈ JibKX , with {b} ⊆ X. By Definition 4.1.3, JibKX =
{h ∈ (2N)X | h(b)(i) = 1}, with a ̸∈ X, and for assumption f ∈
JibKX , i.e. f(b)(i) = 1. Again by Definition 4.1.3, JibKX∪{a} = {h′ ∈
(2N)X∪{a} | h′(b)(i) = 1}, i.e. {f ′+g′ ∈ (2N)X∪{a} | f ′ ∈ (2N)X & g′ ∈
(2N){a} & f ′(b)(i) = 1} = {f ′ + g′ ∈ (2N)X∪{a} | f ′ ∈ JibKX & g′ ∈
2N}. So, we conclude (f + g) ∈ JibKX∪{a}, as desired.

⇐ The proof is by contraposition. Assume f ̸∈ JibKX , with {b} ⊆ X.
As seen, by Definition 4.1.3, f(b)(i) = 0 and since (for a ̸∈ X)
JibKX∪{a} = {f ′ + g′ ∈ (2N)X∪{a} | f ′ ∈ (2N)X & g′ ∈ (2N){a} &
f ′(b)(i) = 1}, we conclude f + g ̸∈ JibKX∪{a}.

• F = ¬G. Then,

⇒ For assumption f ∈ J¬GKX , with FN(¬G) ⊆ X, i.e. by Definition 4.1.3,
f ∈ (2N)X − JGKX and, so f ̸∈ JGKX . Then, by IH, f + g ̸∈ JGKX∪{a},
with a ̸∈ X, and so, again by Definition 4.1.3, f + g ∈ J¬GKX∪{a} as
desired.

⇐ The proof is by contraposition. Assume f ̸∈ J¬GKX , with FN(¬G) ⊆
X. Then, by Definition 4.1.3, f ∈ JGKX and, so, by IH, f + g ∈
JGKX∪{a}, with a ̸∈ X. So also f + g ̸∈ (2N)X∪{a} − JGKX∪{a}. By
Definition 4.1.3, we conclude f + g ̸∈ J¬GKX∪{a}.

• F = G1 ∧G2. Then,

⇒ For assumption f ∈ JG1 ∧ G2KX , with FN(G1 ∧ G2) ⊆ X, i.e. by
Definition 4.1.3, f ∈ JG1KX ∩ JG2KX . Then, f ∈ JG1KX and f ∈
JG2KX . By IH, f + g ∈ JG1KX∪{a} and f + g ∈ JG2KX∪{a}, with
a ̸∈ X, so, by basic set theory, also f + g ∈ JG1KX∪{a} ∩ JG2KX∪{a}.
Again by Definition 4.1.3, we conclude f + g ∈ JG1 ∧ G2KX∪{a}, as
desired.

⇐ Assume f + g ∈ JG1 ∧G2KX∪{a}, with FN(G1 ∧G2) ⊆ X and a ̸∈ X.
Then, by Definition 4.1.3, f + g ∈ JG1KX∪{a}∩ JG2KX∪{a}, and so for
basic set theory f + g ∈ JG1KX∪{a} and f + g ∈ JG2KX∪{a}. By IH,
also f ∈ JG1KX and f ∈ JG2KX . Then, f ∈ JG1KX ∩ JG2KX and, by
Definition 4.1.3, we conclude f ∈ JG1 ∧G2KX .

102

• F = G1 ∨G2. Then,

⇒ The proof is by contraposition. Assume f +g ̸∈ JG1∨G2KX∪{a}, with
FN(G1 ∨ G2) ⊆ X and a ̸∈ X. Then, f + g ∈ (2N)X∪{a} − JG1 ∨
G2KX∪{a}, that is, f + g ∈

(
(2N)X∪{a}− J¬G1KX∪{a}

)
∩
(
(2N)X∪{a}−

JG2KX∪{a}
)
. So, f + g ∈ (2N)X∪{a} − JG1KX∪{a} and f + g ∈

(2N)X∪{a} − JG2KX∪{a}, which are equivalent to f + g ̸∈ JG1KX∪{a}
and f + g ̸∈ JG2KX∪{a}. By IH, f ̸∈ JG1KX and f ̸∈ JG2KX , i.e. f ∈
(2N)X − JG1KX and f ∈ (2N)X − JG2KX . So, f ∈ ((2N)X − JG1KX) ∩
((2N)X − JG2KX), and, for basic set theory, also f ∈ JG1KX ∪ JG2K.
By Definition 4.1.3, f ∈ (2N)X − JG1 ∨ G2KX , so we conclude f ̸∈
JG1 ∨G2K, as desired.

⇐ The proof is by contraposition. Assume f ̸∈ JG1∨G2KX , with FN(G1∨
G2) ⊆ X. Then, f ∈ (2N)X − (JG1 ∨G2KX) and, by Definition 4.1.3,
f ∈

(
(2N)X − JG1KX

)
∩
(
(2N)X − JG2KX

)
, i.e. f ∈

(
(2N)X − JG1KX

)
and f ∈

(
(2N)X − JG2KX

)
, implying f ̸∈ JG1KX and f ̸∈ JG2K.

By IH, f + g ̸∈ JG1KX∪{a} and f + g ̸∈ JG2KX∪{a}, with a ̸∈ X,
i.e. f+g ∈ (2N)X∪{a}−JG1KX∪{a} and f+g ∈ (2N)X∪{a}−JG2KX∪{a}.
So, f + g ∈

(
(2N)X∪{a} − JG1KX∪{a}

)
∩
(
(2N)X∪{a} − JG2KX∪{a}

)
=

(2N)X∪{a} − (JG1KX∪{a} ∪ JG2KX∪{a}). Then, f + g ̸∈ JG1KX∪{a} ∪
JG2KX∪{a} and, by Definition 4.1.3, we conclude f + g ̸∈ JG1 ∨
G2KX∪{a}.

• F = Cq
bG. Without loss of generality assume a ̸= b. Then,

⇒ Assume f ∈ JCq
bGKX , for FN(Cq

bG) ⊆ X. By Definition 4.1.3,
JCq

bGKX = {h ∈ (2N)X | µC(Πh(JGKX∪{b})) ≥ q} and, by IH,
f ∈ JGKX∪{b} when f+g ∈ JGKX∪{b}∪{a}. Then, since for hypothesis
f ∈ (2N)X , g ∈ (2N){a} and a ̸∈ FN(Cq

bG), Πf+g(JGKX∪{a}∪{b}) =

Πf+g(JGK⇑{a}X∪{b}) = Πf (JGKX∪{b}), by Proposition 5.3.1 and Defini-
tion 4.1.2. So, we conclude that also µC(Πf+g

(
JGKX∪{a}∪{b})

)
≥ q

and, then, also f + g ∈ JCq
bGKX∪{a}.

⇐ The proof is by contraposition. Assume f ̸∈ JCq
bGKX . Then, by

Definition 4.1.3, JCq
bGKX = {h ∈ (2N)X | µC(Πh(JGKX∪{b})) <

q}. Again, by IH, f ∈ JGKX∪{b} when f + g ∈ JGKX∪{b}∪{a}.
Also in this case, by Proposition 5.3.1 and Definition 4.1.2,
Πf+g(JGKX∪{a}∪{b}) = Πf (JGKX∪{b}). Thus, we conclude that
µC(Πf+g(JGKX∪{a}∪{b})) ≥ q and, so, f + g ∈ JCq

bGKX∪{a} as de-
sired.

• F = Dq
aG. The proof is similar to the equivalent above.

Lemma 5.3.5. Let a ̸∈ X, FN(F) ⊆ X, and f ∈ (2N)X :

i. if f ∈ JF KX , then Πf

(
JF KX∪{a}

)
= (2N){a}

103

ii. if f ̸∈ JF KX , then Πf

(
JF KX∪{a}

)
= ∅{a}

or equivalently, JF KX∪{a} = JF K⇑{a}X .

Proof. As clear, there are two cases to be taken into account:

i. Let f ∈ JF KX . Then,

Πf (JF KX∪{a})
D 4.1.2
= {g ∈ (2N){a} | f + g ∈ JF KX∪{a}}

L 5.3.4
= {g ∈ (2N){a} | f ∈ JF KX}
= (2N){a}.

ii. Let f ̸∈ JF KX . Then,

Πf (JF KX∪{a})
D 4.1.2
= {g ∈ (2N){a} | f + g ∈ JF KX∪{a}}

L 5.3.4
= {g ∈ (2N){a} | f ∈ JF KX}
= ∅{a}.

Lemma 5.3.6. Let a ̸∈ X,FN(F) ⊆ X, f ∈ (2N)X , and q > 0. Then:5

µC

(
Πf (JF KX∪{a})

)
≥ q iff f ∈ JF KX

µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
≥ q iff f ∈ JF KX ∧ µC

(
Πf (JGKX∪{a})

)
≥ q

µC

(
Πf (JF KX∪{a}) ∪Πf (JGKX∪{a})

)
≥ q iff f ∈ JF KX ∨ µC

(
Πf (JGKX∪{a})

)
≥ q

µC

(
Πf (JF KX∪{a}) ∪Πf (JGKX∪{a})

)
< q iff f ̸∈ JF KX ∧ µC

(
Πf (JGKX∪{a})

)
< q

µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
< q iff f ̸∈ JF KX ∨ µC

(
Πf (JGKX∪{a})

)
< q.

Proof. Let us consider each case.

Case I. Let us consider

µC

(
Πf (JF KX∪{a})

)
≥ q iff f ∈ JF KX .

⇒ The proof is by contraposition. Assume f ̸∈ JF KX . Since a ̸∈ X and f ∈
(2N)X for hypothesis, we apply Lemma 5.3.5.ii, obtaining Πf (JF KX∪{a}) =
∅{a}. Then, µC(Πf (JGKX∪{a})) = µC(∅{a}) = 0, that is µC

(
Πf (JF KX∪{a}

))
< q.

⇐ Assume f ∈ JF KX . Since a ̸∈ X and f ∈ (2N)X for hypothesis,
we apply Lemma 5.3.5.i, obtaining Πf (JF KX∪{a}) = (2N){a}. Then,
µC

(
Πf

(
JF KX∪{a}

))
= µC

(
(2N){a}

)
= 1, that is µC

(
Πf

(
JF KX∪{a}

))
≥ q.

5Notice that, given cases II and III, cases IV and V become somehow pleonastic, but for the
sake of clarity (in particular, in connection with the proof of Lemma 5.3.8 above) we present them
explicitly.

104

Case II. Let us consider

µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
≥ q iff f ∈ JF KX∧µC

(
Πf (JGKX∪{a})

)
≥ q.

Preliminarily notice that:

• If f ∈ JF KX , then, since a ̸∈ X and f ∈ (2N)X , by Lemma 5.3.5.i,
Πf

(
JF KX∪{a}

)
= (2N){a}. So:

µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
= µC

(
(2N){a} ∩Πf (JGKX∪{a})

)
= µC

(
Πf (JGKX∪{a})

)
.

• If f ̸∈ JF KX , then, since a ̸∈ X and f ∈ (2N)X , by Lemma 5.3.5.ii,
Πf (JF KX∪{a}) = ∅X . So:

µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
= µC

(
(∅){a} ∩Πf (JGKX∪{a})

)
= µC(∅{a})
= 0.

Then, we conclude the proof as follows:

⇐ For hypothesis f ∈ JF KX and µC

(
Πf (JGKX∪{a})

)
≥ q. Then,

for the first clause above together with the first hypothe-
sis, µC

(
Πf (JF KX∪{a} ∩ Πf (JGKX∪{a})

)
= µC

(
Πf (JGKX∪{a})

)
and,

clearly, for the second hypothesis – namely, µC

(
Πf (JGKX∪{a})

)
≥ q

– µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
≥ q, as desired.

⇒ The proof is by contraposition. If f ̸∈ JF KX , then, for the second
clause above, µ

(
Πf (JF KX∪{a}) ∩ Πf (JGKX∪{a})

)
= 0. So, trivially,

for any q ∈ Q[0,1], we conclude µC(Πf (JF KX) ∩Πf (JGKX∪{a})
)
< q.

Otherwise, f ∈ JF KX and µC

(
Πf (JGKX∪{a})

)
< q. Observe

that for the first clause above, µC

(
Πf (JF KX∪{a}) ∩ Πf (JGKX∪{a})

)
= µC(Πf (JGKX∪{a})

)
< q. Then, clearly, we conclude

µC

(
Πf (JF KX∪{a}) ∩ Πf (JGKX∪{a})

)
< q.

Case III. Let us consider

µC

(
Πf (JF KX∪{a}) ∪Πf (JGKX∪{a})

)
≥ q iff f ∈ JF KX∨µC

(
Πf (JGKX∪{a})

)
≥ q.

Preliminarily, notice that:

• If f ∈ JF KX , then, since a ̸∈ X and f ∈ (2N)X , by Lemma 5.3.5.i,
Πf (JF KX∪{a}

)
= (2N){a} So:

µC

(
Πf (JF KX∪{a}) ∪Πf (JGKX∪{a})

)
= µC

(
(2N){a} ∪Πf (JGKX∪{a})

)
= µC

(
(2N){a}

)
= 1.

105

• If f ̸∈ JF KX , then, since a ̸∈ X and f ∈ (2N)X , by Lemma 5.3.5.ii,
Πf

(
JF KX∪{a}

)
= ∅X . So:

µC

(
Πf (JF KX∪{a}) ∪Πf (JGKX∪{a})

)
= µC

(
∅{a} ∪Πf (JGKX∪{a})

)
= µC

(
Πf (JGKX∪{a})

)
.

Then, we conclude the proof as follows:

⇐ If f ∈ JF KX , then, for the first clause above, µC

(
Πf (JF KX∪{a})

∪ Πf (JGKX∪{a})
)

=1. It is then clear that, for any q ∈ Q[0,1],
µC(Πf (JF KX∪{a} ∪ Πf (JGKX∪{a})

)
≥ q.

If µC

(
Πf (JGKX∪{a})

)
≥ q, then – since clearly µC

(
Πf (JF KX∪{a})

∪ Πf (JGKX∪{a})
)
≥ µC

(
Πf (JGKX∪{a})

)
– also µC

(
Πf (JF KX∪{a}) ∪

Πf (JGKX∪{a})
)
≥ q.

⇒ The proof is by contraposition. Assume f ̸∈ JF K and µC

(
Πf (JGKX∪{a})

)
<

q. Furthermore, for the second clause above µC

(
Πf (JF KX∪{a}) ∪

Πf (JGKX∪{a})
)

= µC(Πf (JGKX∪{a})
)
. So, we conclude µC(Πf (JF KX∪{a})

∪ Πf (JGKX∪{a})
)
< q.

Case IV. Let us consider

µC

(
Πf (JF KX∪{a})∪Πf (JGKX∪{a})

)
< q iff f ̸∈ JF KX∧µC

(
Πf (JGKX∪{a})

)
< q.

Notice that preliminary observations of Case III above will be useful also to
treat Case IV. Then, we conclude the proof as follows:

⇐ Assume f ̸∈ JF KX and µC

(
Πf (JGKX∪{a}

)
< q. Observe that

for the second clause above, µC

(
Πf (JF KX∪{a}) ∪ Πf (JGKX∪{a})

)
=

µC

(
Πf (JGKX∪{a})

)
. Then, since for hypothesis µC

(
Πf (JGKX∪{a})

)
< q

so also µC

(
Πf (JF KX∪{a}) ∪ Πf (JGKX∪{a})

)
< q.

⇒ The proof is by contraposition. If f ∈ JF KX . then for the first clause above
µC(Πf (JF KX∪{a})∪Πf (JGKX∪{a})

)
= 1. Then, clearly, for every q ∈ Q[0,1]

such that q > 0 (for hypothesis), µC

(
Πf (JF KX∪{a}) ∪ Πf (JGKX∪{a})

)
≥ q.

If f ̸∈ JF K and µ(Πf (JGKX∪{a})
)
≥ q. Observe that, for the second

clause above, µC

(
Πf (JF KX∪{a}) ∪ Πf (JGKX∪{a})

)
= µC

(
Πf (JGK)X∪{a}

)
.

But, for hypothesis, µC

(
Πf (JGKX∪{a})

)
≥ q holds. So, we conclude

µC

(
Πf (JF KX∪{a}) ∪ Πf (JGKX∪{a})

)
≥ q.

Case V. Let us consider

µC

(
Πf (JF KX∪{a})∩Πf (JGKX∪{a})

)
< q iff f ̸∈ JF KX ∨µC

(
Πf (JGKX∪{a})

)
< q.

Again notice that preliminary observations of Case II will be useful also to treat
Case V. Then, we conclude the proof as follows:

106

⇐ If f ̸∈ JF KX , then, for the second clause in Case II, µC

(
Πf (JF KX∪{a}) ∩

Πf (JGKX∪{a})
)
= 0. So, trivially, for any q ∈ Q[0,1] such that q > 0 (for

hypothesis), we conclude µC

(
Πf (JF KX) ∩Πf (JGKX∪{a})

)
< q.

Otherwise, f ∈ JF KX and µC

(
Πf (JGKX∪{a})

)
< q. Observe that

for the first clause in Case II, µC

(
Πf (JF KX∪{a}) ∩ Πf (JGKX∪{a})

)
=

µC

(
Πf (JGKX∪{a})

)
< q. Then, we conclude µC

(
Πf (JF KX∪{a}) ∩

Πf (JGKX∪{a})
)
< q.

⇒ The proof is by contraposition. Assume f ∈ JF KX and
µC

(
Πf (JGKX∪{a})

)
≥ q. Then, for the first clause in Case II to-

gether with the first hypothesis, µC

(
Πf (JF KX∪{a} ∩ Πf (JGKX∪{a})

)
=

µC

(
Πf (JGKX∪{a})

)
. So, clearly, for the second hypothesis, we conclude

µC

(
Πf (JF KX∪{a}) ∩Πf (JGKX∪{a})

)
≥ q.

Lemma 5.3.7. For any CPL-formulae F and G such that FN(F),FN(G) ⊆ X
and f ∈ (2N)X

Πf (JF KX) ∩Πf (JGKX) = Πf (JF ∧GKX) (1)

Πf (JF KX) ∪Πf (JGKX) = Πf (JF ∨GKX) (2)

Proof. (1) By Definition 4.1.2, Πf (JF KX) = {g ∈ (2N)X | f + g ∈ JF KX}
and Πf (JGK) = {g′ ∈ (2N)X | f + g ∈ JGKX}. Then, Πf (JF KX) ∩ Πf (JGKX)
= {g ∈ (2N)X | f + g ∈ JF KX} ∩ {g′ ∈ (2N)X | f + g′ ∈ JGKX} = {h ∈
(2N)X | f +h ∈ JF KX ∩ JGKX}

D 4.1.3
= {h ∈ (2N)X | f +h ∈ JF ∧GKX}. So, again

by Definition 4.1.2, we conclude Πf (JF KX) ∩Πf (JGKX) = Πf (JF ∧GKX).
(2) Clearly, again by Definition 4.1.2, Πf (JF KX) ∪ Πf (JGKX) = {g ∈ (2N)X

| f + g ∈ JF KX} ∪ {g′ ∈ (2N)X | f + g′ ∈ JGKX} = {h ∈ (2N)X | f + h ∈ JF KX ∪
JGKX}

D 4.1.3
= {h ∈ (2N)X | f + h ∈ JF ∨ GKX}. So, again by Definition 4.1.2,

we conclude Πf (JF KX) ∪Πf (JGKX) = Πf (JF ∨GKX).

We can now prove the desired lemma, stating that counting quantifiers can
be extruded from conjunctions and disjunctions.

Lemma 5.3.8. Let a ̸∈ FN(F) and q > 0. Then, for every X such that FN(F) ∪
FN(G) ⊆ X ∪ {a}, and a ̸∈ X, the following holds:

F ∧Cq
aG ≡X Cq

a(F ∧G)

F ∧Dq
aG ≡X Dq

a(¬F ∨G)

F ∨Cq
aG ≡X Cq

a(F ∨G)

F ∨Dq
aG ≡X Dq

a(¬F ∧G).

Proof. Let us deal with each case separately from the others.

Case I. Let us consider

JF ∧Cq
aGKX = JCq

a(F ∧G)KX

107

⊆ We will prove that for any f ∈ (2N)X , if f ∈ JF ∧ Cq
aGKX , then f ∈

JCq
a(F ∧ G)KX . Assume f ∈ JF ∧ Cq

aGKX
D 4.1.3
= JF KX ∩ JCq

aGKX . So,
by basic measure theory f ∈ JF KX and f ∈ JCq

aGKX
D 4.1.3
= {h ∈

(2N)X | µC(Πh(JGKX∪{a})) ≥ q}, i.e. µC(Πf (JGKX∪{a})) ≥ q. Then, by
Lemma 5.3.6.2⇐, µC

(
Πf (JF KX∪{a}) ∩ Πf (JGKX∪{a})

)
≥ q, that is, by

Definition 4.1.3, f ∈ {h ∈ (2N)X | µC

(
Πh(JF KX∪{a}) ∩ Πh(JGKX)

)
≥ q}

L 5.3.7.1
= {h ∈ (2N)X∪{a} | µC(ΠhJF ∧GKX∪{a}) ≥ q}. So, again by Defini-

tion 4.1.3, we conclude f ∈ JCq
a(F ∧G)KX .

⊇ We will prove that, for any f ∈ (2N)X , if f ∈ JCq
a(F ∧ G)KX , then

f ∈ JF ∧Cq
aGKX . Assume f ∈ JCq

a(F ∧G)KX = {h ∈ (2N)X | µC

(
Πh(JF ∧

GKX∪{a})
)
≥ q} L 5.3.7.1

= {h ∈ (2N)X | µC

(
Πh(JF KX∪{a}) ∩Πh(JGKX∪{a}) ≥

q}, i.e. µC(Πf (JF K)X∪{a} ∩ Πf (JGKX∪{a})) ≥ q. So, by Lemma 5.3.6.2⇒,
f ∈ JF KX and µC

(
Πf (JGKX∪{a})

)
≥ q. Then, also f ∈ {h ∈ (2N)X

| µC(Πh(JGKX∪{a})) ≥ q} D 4.1.3
= JCq

aGKX . So, since f ∈ JF KX and
f ∈ JCq

aGKX , also f ∈ JF KX ∩ JCq
aGKX and, by Definition 4.1.3, we

conclude f ∈ JF ∧Cq
aGKX .

Case II. Let us consider

JF ∨Cq
aGKX = JCq

a(F ∨G)KX

⊆ We will prove that, for any f ∈ (2N)X , if f ∈ JF ∨ Cq
aGKX , then

f ∈ JCq
a(F ∨ G)KX . Assume f ∈ JF ∨ Cq

aGKX
D 4.1.3
= JF KX ∪ JCq

aGKX .
Then, for basic set theory, f ∈ JF KX or f ∈ JCq

aGKX
D 4.1.3
= {h ∈ (2N)X

| µC

(
Πh(JGKX∪{a})

)
≥ q}, i.e. µC(Πf (JGKX∪{a})) ≥ q. Then, by

Lemma 5.3.6.3⇐, µC

(
Πf (JF KX∪{a})∪Πf (JGKX∪{a})

)
≥ q, that is, by Def-

inition 4.1.2, f ∈ {h ∈ (2N)X | µC(Πh(JF KX∪{a}) ∪ Πh(JGKX∪{a})) ≥ q}
L 5.3.7.2

= {h ∈ (2N)X | µC

(
Πh(JF ∨ GKX∪{a})

)
≥ q}. So, again by Defini-

tion 4.1.3, we conclude f ∈ JCq
a(F ∨G)KX .

⊇ We will prove that, for any f ∈ (2N)X , if f ∈ JCq
a(F ∨ G)KX , then

f ∈ JF ∨Cq
aGKX . Assume f ∈ JCq

a(F ∨ G)K = {h ∈ (2N)X | µC(Πh(JF ∨
GKX∪{a})) ≥ q

L 5.3.7.2
= {h ∈ (2N)X | µC

(
Πh(JF KX∪{a})∪Πh(JGKX∪{a}) ≥

q}, that is µC

(
Πf (JF KX∪{a}

)
∪ Πf

(
JGKX∪{a})

)
≥ q. So, by

Lemma 5.3.6.3⇒ f ∈ JF KX or µC

(
Πf (JGKX∪{a})

)
≥ q. Then, also

f ∈ {h ∈ (2N)X | µC

(
Πh(JGKX∪{a})

)
≥ q} D 4.1.3

= JCq
aGKX . Then, since

f ∈ JF KX or f ∈ JCq
aGKX , also f ∈ JF KX ∪ JCq

aGKX and, by Defini-
tion 4.1.3, we conclude f ∈ JF ∨Cq

aGKX .

Case III. Let us consider

JF ∧Dq
aGKX = JDq

a(¬F ∨G)KX

108

⊆ We will prove that, for ny f ∈ (2N)X , if f ∈ JF ∧ Dq
aGKX , then

f ∈ JDq
a(¬F ∨ G)KX . Assume f ∈ JF ∧Dq

aGKX
D 4.1.3
= JF KX ∩ JDq

aGKX .
So, for basic set theory, f ∈ JF KX and f ∈ JDq

aGKX
D 4.1.3
= {h ∈ (2N)X

| µC(Πh(JGKX∪{a})) < q}, i.e. µC(Πf (JGKX∪{a})) < q. Furthermore,

since f ∈ JF KX , f ̸∈ (2N)X − JF KX
D 4.1.3
= f ̸∈ J¬F KX . Then, by

Lemma 5.3.6.4⇐, µC

(
Πf (J¬F KX∪{a}) ∪ Πf (JGKX∪{a})

)
< q, that is by

Lemma 5.3.7.2, µC

(
Πf (J¬F ∨ GKX∪{a})

)
< q. So, by Definition 4.1.2,

f ∈ {h ∈ (2N)X | µC

(
Πf (J¬F ∨ GKX∪{a})

)
< q. Therefore, again by

Definition 4.1.3, f ∈ JDq
a(¬F ∨G)KX .

⊇ We will prove that, for any f ∈ (2N)X , if f ∈ JDq
a(¬F ∨

G)KX , then f ∈ JF ∧ Dq
aGKX . Assume f ∈ JDq

a(¬F ∨ G)KX
D 4.1.3
= {h ∈ (2N)X | µC(Πh(J¬F ∨ GKX∪{a})) < q} L 5.3.7.2

=

{h ∈ (2N)X | µC

(
Πh(J¬F KX∪{a}) ∪ Πh(JGKX∪{a})

)
< q}, that is

µC

(
Πf (J¬F KX∪{a}) ∪ Πf (JGKX∪{a})

)
< q. Then, by Lemma 5.3.6.4⇒,

f ̸∈ J¬F KX and µC

(
Πf (JGKX∪{a})

)
< q. In particular, since f ̸∈ J¬F KX ,

f ∈ (2N)X − J¬F KX and by Definition 4.1.3, f ∈ (2N)X − ((2N)X − JF KX),
that is f ∈ JF KX . Furthermore, since µC

(
Πf (JGKX∪{a})

)
< q, f ∈ {h ∈

(2N)X | µC

(
Πh(JGKX∪{a})

)
< q} D 4.1.3

= JDq
aGKX Thus, f ∈ JF KX and

f ∈ JDq
aGKX . We conclude f ∈ JF KX ∩ JDq

aGKX = JF ∨ Dq
aGKX , as

desired.

Case IV. Let us consider

JF ∨Dq
aGKX = JDq

a(¬F ∧G)KX

⊆ We will prove that for any f ∈ (2N)X , if f ∈ JF ∨ Dq
aGKX , then

f ∈ JDq
a(¬F ∧ G)KX . Assume f ∈ JF ∨ Dq

aGKX = JF KX ∪ JDq
aGKX .

So, for basic measure theory, f ∈ JF KX or f ∈ JDq
aGKX

D 4.1.3
= {h ∈ (2N)X

| µC

(
Πf (JF KX∪{a})

)
< q}, i.e. µC

(
Πf (JGKX∪{a})

)
< q. Furthermore,

since f ∈ JF KX , f ̸∈ (2N)X − JF KX
D 4.1.3
= f ̸∈ J¬F KX . Then, by

Lemma 5.3.6.5⇐, µC(Πf (J¬F KX∪{a} ∩ Πf (JGKX∪{a})
)
< q, that is, by

Lemma 5.3.7.2 µC

(
Πf (J¬F ∧ GKX∪{a})

)
< q. Thus, by Definition 4.1.2,

f ∈ {h ∈ (2N)X | µC

(
Πf (J¬F ∧ GKX∪{a})

)
< q and, again by Defini-

tion 4.1.3, we conclude f ∈ JDq
a(¬F ∧G)KX .

⊇ We will prove that for any f ∈ (2N)X , if f ∈ JDq
a(¬F∧G)KX , then f ∈ JF∨

Dq
aGKX . Assume f ∈ JDq

a(¬F ∧ G)KX
D 4.1.3
= {h ∈ (2N)X | µC

(
Πh(J¬F ∧

GKX∪{a})
)

< q} L 5.3.7.1
= {h ∈ (2N)X | µC

(
Πh(J¬F KX∪{a}) ∩

Πh(JGKX∪{a})
)
< q}, that is µC

(
Πf (J¬F KX∪{a}) ∩ Πf (JGKX∪{a})

)
< q.

Then, by Lemma 5.3.6.5⇒, f ̸∈ J¬F KX or µC

(
Πf (JGKX∪{a})

)
< q. In

particular, if f ̸∈ J¬F KX , by Definition 4.1.3, f ∈ JF KX . Furthermore, if
µC(Πf (JF KX∪{a})) < q, then f ∈ {h ∈ (2N)X | µC

(
Πh(JGKX∪{a})

)
< q}

109

D 4.1.3
= JDq

aGKX . Therefore, f ∈ JF KX or f ∈ JDq
aGKX . So, for basic mea-

sure theory and Definition 4.1.3, we conclude f ∈ JF KX ∪ JDq
aGKX =

JF ∨Dq
aGKX , as desired.

Observe that the proof of Lemma 5.3.8 relies on the possibility of renaming
variables and, indeed, a corresponding Lemma does not hold for CPL0.

Inter-Definability of Quantifiers. Let us now consider negation. Inter-
definability of univariate counting quantifiers, Cq and Dq, can be generalized to
the multivariate case. This allows us to get rid of negations which lie between
an occurrence of a counting quantifier and the formula’s root.

Lemma 5.3.9. For every q ∈ Q ∩ [0, 1], name a ∈ A, and X such that FN(F) ⊆
X ∪ {a} and a ̸∈ X,

¬Dq
aF ≡X Cq

aF ¬Cq
aF ≡X Dq

aF.

Proof. Let us consider the first one only. (The second is proved in a similar way.)
There are two possible cases to be taken into account:

• If q = 0,

J¬D0
aF K = (2N)X − JD0

aF KX
L 5.3.1
= (2N)X − ∅X

= (2N)X

L 5.3.1
= JC0

aF K.

• If q > 0,

J¬Dq
aF KX = (2N)X − JDq

aF KX
= (2N)X − {f ∈ (2N)X | µC

(
Πf (JF KX∪{a})

)
< q}

= {f ∈ (2N)X | µC

(
Πf (JF KX∪{a})

)
≥ q}

= JCq
aF KX .

Therefore, using Lemma 5.3.8 and 5.3.9, we conclude that – as desired – every
formula of CPL can be converted into PNF.

Proposition 5.3.2. For any formula of CPL, F , there is a formula in PNF G, such
that for any X with FN(F) ∪ FN(G) ⊆ X,

F ≡X G.

Moreover, G can be computed in polynomial time from F .

110

5.3.3 Positive Prenex Normal Form

Reducing formulae to PNF is close to what we need, but there is one last step to
be made, namely getting rid of the quantifier D, which does not have any coun-
terpart in Wagner’s construction. In other words, we need to reduce formulae
of CPL to prenex normal forms of a special kind:

Definition 5.3.3 (Positive Prenex Normal Form). A formula of CPL is said to
be a positive prenex normal form (PPNF, for short) when it is both in PNF and
D-free.

The gist to convert counting formulae into (equivalent) PPNF, consists of two
main steps: (i.) converting each instance of D into one of C, using Lemma 5.3.9,
and (ii.) applying the Lemma below which states that C enjoys a specific, weak
form of self-duality, to push the negation inside the matrix. In order to prove
(ii.), we need to introduce some auxiliary definition and to establish some re-
sults, in particular the so-called Epsilon Lemma.

Epsilon Lemma. For any k ∈ N, let [0, 1]k indicate the set of rationals of the
form q =

∑k
i=0 bi ·2−i, where bi ∈ {0, 1}. Notice that, for all p ≤ 2k, p

2k
∈ [0, 1]k.

Lemma 5.3.10. For each p ≤ 2k, p
2k
∈ [0, 1]k.

Proof. Let b0 . . . bk = (p)2 the base 2 of p, with possibly all 0s at the end so that
the length is precisely k, then p =

∑k
i=0 bi · 2i:

p

2k
=

∑k
i=0 bi · 2i

2k

=

k∑
i=0

bi · 2−k+i

=

k∑
i=0

bk−i · 2−i.

Lemma 5.3.11. For every formula of CPL F , there is a named Boolean formula
bF , such that for every X, with FN(F) ∪ FN(G) ⊆ X:

JF KX = JbF KX .

Proof Sketch. The proof is by simple induction on the structure of F , where the
quantified cases rely on Lemma 4.2.2.

Lemma 5.3.12. For each Boolean formula b with FN(b) ⊆ {a},

µ
(
JbK{a}

)
∈ [0, 1]k,

where k is the maximum natural number such that xa
k occurs in b.

111

Proof. By Lemma 3.3.1 and 5.3.10:

µ
(
JbK{a}

)
= ♯b =

♯{xa
0 , . . .x

a
k} → {0, 1} | m ⊢ b}

2k
∈ [0, 1]k.

Lemma 5.3.13. For all S ∈ B
(
(2N)X∪{a}

)
and f : X → 2N,

Πf (S) = Πf (S).

Proof. Indeed,

Πf (S) = {g : {a} → 2N | f + g ∈ S}
= {g : {a} → 2N | f + g ̸∈ S}
= {g : {a} → 2N | f + g ∈ S}
= Πf (S).

Lemma 5.3.14. For all S ∈ B
(
(2N)X

)
and r ∈ [0, 1],

µC(S) ≤ r iff µC(S) ≥ 1− r.

Proof. The claim follows from:

1− µC

(
(2N)X

)
= µC(S ∪ S) = µC(S) + µC(S).

We now have all ingredients to prove the crucial Epsilon Lemma.

Lemma 5.3.15 (Epsilon Lemma). For every formula of CPL F , and q ∈ Q∩[0, 1],
there is a p ∈ Q ∩ [0, 1], such that for every X with FN(F) ⊆ X and a ̸∈ X,

¬Cq
aF ≡X Cp

a¬F.

Moreover, p can be computed from q in polynomial time.

Proof. Let bF be a Boolean formula satisfying JF KX∪{a} = JbF KX∪{a}, which
exists by Lemma 5.3.11. Let bF be a-decomposable as

∨n
i di ∧ ei and let k

be the maximum such that xa
k occurs in bF . By Lemma 5.3.12, for all i =

0, . . . , n, µC(JdK{a}) ∈ [0, 1]k. This implies in particular that for all f : X →
2N, µ

(
Πf (JF KX∪{a})

)
∈ [0, 1]k, since Πf

(
JF KX∪{a}

)
coincides with the unique

JdiK{a} such that f ∈ JeiKX , by Lemma 4.2.2. Now, if q ̸∈ [0, 1]k, let ϵ = 0 and
if q ∈ [0, 1]k, then:

ϵ =

{
−2−(k+1) if q = 1

2−(k+1) if q ̸= 1.

112

So, in any case, q + ϵ ̸∈ [0, 1]k and we conclude:

J¬Cq
aF KX = {f : X → 2N | µC

(
Πf (JF KX∪{a})

)
≤ q + ϵ}

L 5.3.14
= {f : X → 2N | µC

(
Πf (JF KX∪{a})

)
≥ 1− (q + ϵ)}

L 5.3.12
= {f : X → 2N | µC(Πf (J¬F KX∪{a})) ≥ 1− (q + ϵ)}
= JC1−(q+ϵ)

a ¬F KX .

Actually, the value of p is very close to 1 − q, the difference between the two
being easily computable from the formula F .

Concluding the Proof. We now conclude that any counting formula can be
converted into the desired PPNF.

Proposition 5.3.3. For every formula of CPL F , there is a PPNF G, such that for
every X, with FN(F) ∪ FN(G) ⊆ X,

F ≡X G.

Moreover, G can be computed from F in polynomial time.

Proof. Due to Lemma 5.3.15.

5.3.4 CPL and the Counting Hierarchy

As seen, in 1986, Wagner not only introduced his counting operator and hi-
erarchy, but also defined complete problems for each level of CH. Below, we
present a slightly weaker version of Wagner’s Theorem 7 [226, pp. 338-339],
which perfectly fits our needs. Assume that L is a subset of Sn, where S is a set,
1 ≤ m ≤ n, and b ∈ N. We define Cq

mL as the following subset of Sn−m:

{(an, . . . , am+1) | ♯({(am, . . . , a1) | (an, . . . , a1) ∈ L}) ≥ q}.

Let ⊤ and ⊥ indicate the usual formulae of PL. For any natural number n ∈ N,
let T Fn be the subset of PLn+1 containing all tuples in the form (F, t1, . . . , tn),
where F is a propositional formula in CNF with at most n free variables and
t1, . . . , tn ∈ {⊤,⊥} render F true. Finally, for every k ∈ N, we denote as
Wk the language consisting of all (binary encodings of) tuples of the form
(F,m1, . . . ,mk, b1, . . . , bk) such that F ∈ C

bq
m1 . . .C

bk
mk
T F

∑
mi .

Theorem 5.3.1 (Theorem 7 [227]). For every k, the language Wk is complete
for CHk.

Observe that elements of Wk can be seen as alternative representations for
CPL-formulae in PPNF once any mi is replaced by min

{
1, mi

2bi

}
. Consequently,

Corollary 5.3.2. The closed and valid k-ary PPNFs, the matrix of which is in CNF,
define a complete set for CHk.

Proof Sketch. Putting Proposition 5.3.3 and Theorem 5.3.1 together.

113

PNF, Def. 5.3.1

F ∗Qq
aG ≡ Qq

a(F ∗G) ¬Qq
aF ≡ Q

q

aF

Lemma 5.3.9Lemma 5.3.8
Proposition 5.3.2

PPNF, Def 5.3.3

¬Cq
aF ≡ Cp

a¬F

Proposition 5.3.3

Valid k-PPNF defines complete problems for CHk, Cor. 5.3.2

Lemma 5.3.15

Theorem 7 [227]

where ∗ ∈ {∨,∧}Q ∈ {C,D}, and Q
q
a = Dq

a if Qq
a = Cq

a and Qq
a = Cq

a if Qq
a = Dq

a.

Figure 5.3: The Proof of Corollary 5.3.2

114

Part II

Curry and Howard Meet Borel

115

Chapter 6

Towards a Probabilistic
Correspondence
(and Beyond)

We introduce the intuitionistic version of CPL, called iCPL0, associated with
a quantitative Kripke-style semantics and equipped with a sound and complete
natural deduction system. We then show that it corresponds, in the sense of
Curry and Howard, to an expressive type system for a specific randomized λ-
calculus, namely a variant of the probabilistic event λ-calculus [57]. Proofs
for formulae of iCPL0 (resp., types) do not guarantee that validity (resp., ter-
mination) holds, but also reveal the underlying probability. Furthermore, by
endowing our counting-type systems with intersection operators, we obtain a
system precisely capturing the probabilistic behavior of λ-terms.

6.1 Background

Early in its history, the notion of algorithm was extended in a quantitative sense,
obtaining efficient solutions to several computational problems. In these cases,
elementary computation steps are not purely deterministic anymore, but enable
probabilistic outcomes. From the viewpoint of PL theory, a probabilistic pro-
gram is an algorithm which is able to make random choices and, thus, the exe-
cution of which can be described by a stochastic model. Concretely, a classical
program defines a deterministic input-output relation: given an input, it termi-
nates or not. On the contrary, a probabilistic program generates a probabilistic
distribution over the set of possible outcomes: given an input, it terminates
with a given probability and – even when terminating with probability 1 – it can
possibly run for infinitely many steps.

On the other hand, among the many ways in which mathematical logic in-
fluenced PL theory, the CHC is certainly one of the most intriguing and signif-

116

icant. Traditionally, the correspondence identified by Curry [51] and formal-
ized by Howard [115] relates intuitioinstic PL and the simply-typed λ-calculus.
Though, it holds in other contexts too and, indeed, in the last fifty years more so-
phisticated type systems have been put in relation with logical formalism: from
polymorphism [92, 95] to various forms of session typing [38, 224], from con-
trol operators [165] to dependent types [144, 198]. Yet, these generalizations
do not involve probabilistic effects. In the following chapters, we will bridge
this gap by introducing a probabilistic intuitionistic logic and a counting-typed
randomized λ-calculus, thus providing a probabilistic version of the CHC:

intuitionistic PL
simply typed λ-calculus

=
intuitionistic version of CPL

counting-typed probabilistic λ-calculus

6.1.1 On the Versatility of the λ-Calculus

In the 1930s, Church and Curry introduced two new, embryonal models of com-
putation: combinatory logics and the λ-calculus. In particular, the λ-calculus –
the core notion of which is β-reduction – has turned out to be extremely versa-
tile. Indeed, in subsequent years, a collection of formal systems (with different
grammars) have been defined around the heart of these models [112].

Historical Overview. Combinators were first presented in a public talk in
1920 by the mathematician Schönfinkel [187] and, in 1927, combinators and
combinatory logics were (independently) conceived by Curry as well. A few
years later, the λ-calculus was formally defined by Church and Curry, in relation
to studies on effective computability, which – according to Church’s conjecture
– can be formalized in terms of λ-definability. This calculus was further stud-
ied and developed together with Rosser and Kleene. In 1936, Kleene showed
that λ-definability is equivalent to Gödel-Herbrand recursiveness [127]. When
in 1936/37 TMs were defined [215, 216], also Turing’s notion of computabil-
ity was proved equivalent to λ-definability. Then, in the 1940s, a new area
of research was initiated by Church’s introduction of a typed version of the λ-
calculus, as a means to avoid paradoxes.

Nevertheless, until about the 1960s, combinatory logics and λ-calculi were
studied by small communities only. This picture substantially changed with
the development of functional PLs. In the late 1950s, McCarthy introduced
the functional style of programming by designing LISP, the first higher-order
language. LISP was explicitly inspired by the λ-calculus (and is, indeed, based
on a form of “λ-notation”).1 Thus, the properties of functional languages reflect
those of abstract λ-calculi; for example typed languages are safer, as errors are
statically checked, while untyped ones are more flexible. From then on, λ-calculi
have been recognized as fruitful tools in the design, implementation and theory
of PLs, and have soon attracted fast-growing interest.

1The λ-calculus has had a profound impact on the development of functional programming lan-
guages, both typed and untyped, e.g. GEDANKEN, Scheme and ML, and the purely functional Haskell
and Miranda.

117

1920 1930 1940 1950

Sc
hö

nfi
nk

ne
l’s

co
mbin

ato
ry

log
ics

Cur
ry

’s
co

mbin
ato

rs

Chu
rch

’ a
nd

Cur
ry

’s
λ-

ca
lcu

lu
s

M
cC

ar
th

y an
d th

e fu
nc

tio
na

l P
Ls

Figure 6.1: Combinatory Logics and the λ-Calculus

A Versatile Computational Model. From the mathematical viewpoint, the
λ-calculus is a theory of “functions as rules”, defining how to determine values
from arguments. A λ-term, say λx.t, can be seen as the description of a nameless
function that, given x, produces t. As Kleene showed, this calculus represents
a model for the intuitive notion of computable function, in the same way as
Turing’s machines or Herbrand, Gödel and Kleene’s partial recursive functions
do. In the λ-calculus, the notion of computation is expressed in a clear way by
β-reduction, obtaining a model which is dynamic (as TMs), but, at the same
time, abstracts from implementation details (as recursive functions).

For a computer scientist, the λ-calculus is an abstract model for functional
programs and, as such, has had a profound impact on the development of pro-
gramming language theory. In functional languages, functions are treated as
“first-class citizen” – indeed, λ-terms represent both programs and data – and
computation consists in the evaluation of expressions in a given environment,
that is to a process of reduction. This way the λ-calculus can be seen as a paradig-
matic (higher-order) PL.2 Moreover, due to the absence of side-effects and the
related referential transparency, properties – like correctness – are easier to
study for functional languages than for the corresponding imperative ones. The
λ-calculus being a pure model, it is crucial to analyze properties of programs
in the abstract setting and to design languages, think, for example, of how
advanced type theory can support program verification and computer-assisted
reasoning.

Reduction Strategies and Termination. One of the aspects characterizing
functional languages is the reduction strategy they are associated with. Indeed,
when an expression is made of more than one redex, one can perform rewriting
steps in different orders and the order of evaluation is precisely prescribed by

2Notably, also the terminology for constructs in functional programs is the same as that of the
λ-calculus, e.g. redex for reducible expression of the form ((fnx ⇒ body)arg) or value for an ex-
pression which cannot be rewritten.

118

the reduction strategy, that is a policy guiding the choice for a β-redex to be re-
duced. One of the most common evaluation strategies is call by value (CbV, for
short), consisting in never reducing a redex when its argument is not a value.
Another common strategy is call by name (CbN, for short), according to which
arguments are not evaluated before the function is called. So in CbN, the redex
can be reduced even when its argument is not a value.3

Due to the absence of side-effects, the result of a computation, when defined,
is not determined by the reduction strategy – that is, different strategies never
lead to different results. Otherwise said the result returned by a (terminating)
computation does not depend on the language in which the program is written.
From the abstract perspective, this corresponds to the fact that in the λ-calculus
reduction is confluent, meaning that every term has a unique normal form. Let
us consider a concrete example.

Example 6.1.1. An interpreter based on the CbV reduction strategy – for in-
stance that of Scheme – would evaluate the term (return(∗1(+2 2))) as follows:

(return(∗ 1 (+2 2)))→CbV (return(∗ 1 4))→CbV (return(4))→CbV 4.

On the other hand, interpreters supporting CbN evaluation – for example that
of (pseudo) Algol60 – would proceed as follows:

return(1 ∗ (2+ 2))→CbN return(2+ 2)→CbN return(+4)→CbN +4.

Clearly, these two reduction sequences are different, but lead to the same value.

Actually, although different strategies cannot reduce to different results (or nor-
mal forms), they do not necessarily produce the same output, since – even if a
normal form exists – certain strategies might still not terminate. This fact can
be concisely illustrated through a simple example.

Example 6.1.2. As is standard, let Ω = (λx.xx)(λx.xx) and u be a (closed)
normal form. Then the evaluation of the term t = (λx.u)Ω either produces a
normal form or diverges, depending on the strategy it is associated with:

u CbN ← (λx.u)Ω→CbV (λx.u)Ω→CbV · · ·

Clearly, CbN substitution immediately leads to the normal form u, while, fol-
lowing CbV, which prescribes that the argument is evaluated before applying
substitution, evaluation does not terminate.

Notably, the evaluation (alias reduction) of the same program (alias λ-term)
may lead to a normal form based on a specific strategy – in Example 6.1.2, CbN
– and diverge under another – in Example 6.1.2, CbV.

3As said, each programming language is associated with a default reduction strategy, for example
LISP and Scheme use the CbV strategy, while Miranda’s and Haskell’s calculation is based on CbN
evaluation.

119

6.1.2 The Curry-Howard Correspondence

Although it is linked to previous intuitions, the CHC has been progressively
developed from the 1950s on, offering deep insights on the connection between
logical systems and PL theory.

Historical Overview. As said, type systems are widely used in programming
theory as an efficient tool to prevent errors: a language based on (static) typing
only diverges as a result of the explicit use of diverging constructs. In the 1940s,
Church introduced the simply-typed λ-calculus (λ→, for short) as a means to
avoid paradoxes resulting from self-application. It was then proved consistent
by Rosser. On the other hand, its expressive power is limited if compared to
that of the untyped calculus and, from a computational viewpoint, algorithms
representable in λ→ are restricted to terminating ones.

Together with the development of λ→, also its relation with Gentzen’s de-
ductive systems started to come to light. Insightful results in this direction are
known as the formulae-as-types or Curry-Howard correspondence. These um-
brella terms actually denote several aspects of the analogy between the two
“systems”. On the one hand, there is a static correspondence, first discovered
by Curry (and Feys), between intuitionistic formulae and proofs, on one side,
and types and (typed) terms of λ→, on the other [51, 52, 50]. On the other,
starting from a few observations by Curry himself and Tait [203], an anal-
ogy between dynamic aspects of computation in λ→ – namely, β-reduction –
and normalization for the implicational fragment of intuitionistic natural de-
duction (NI→, for short) was revealed and made precise by Howard [115].
Since then, the CHC has been generalized to more expressive logics and type
systems [92, 144, 165, 224].

The Core of the Correspondence. The core of the CHC lies in a computational
understanding of intuitionistic logic as defined by the BHK interpretation. In-
tuitionistically, formulae are defined by the set of their proofs. For instance, an
implicational formula F → G, corresponds to a function from F to G, and its
proof is a procedure that transforms a proof of F into a proof of G. In the same
way, a type σ ⇒ τ denotes a function from σ to τ . So, if interpreting⇒ as (intu-
itionistic) implication, we can see open types as propositional formulae. On the
other hand, λ-terms can be interpreted as (operational) representations of pro-
grams In λ→, types describe the functional behavior of terms. Otherwise said,
the type of a term (or program) represents its specification, namely what the
program abstractly does. Therefore, under CHC, we interpret terms as corre-
sponding to (constructive) logical deductions: t : σF expresses that t is a proof
of F , where F is another, logical notation for σF .

Furthermore, type-assignment rules can be seen as annotated versions of
NI→ (Figure 6.2),4 while rules for NI→ are special ways of constructing func-

4Notice that, in [115], the deduction system is presented as a so-called “sequent calculus”. Actu-
ally, Howard used a hybrid system containing introduction and elimination rules (as natural deduc-

120

tions: terms in I-rules corresponds to constructors and in E-rules to selector.
Then, a proof of F is linearly codified by a term of type σF , and if Γ ⊢ t : σF

in λ→, then rg(Γ) ⊢ F in NI→ and vice versa. The correspondence lifts to the
dynamics. So, proof normalization, that is detour (→ I/→ E) conversion in
NI→

[F]1

...
G → I,1

F → G

...
F → E ⇝

G

...
F
...
G

corresponds to β-reduction

x : σF ⊢ tG : σG (λ)
⊢ λx.tG : σF ⇒ σG tF : σF ⊢ tF : σF (@)

tF : σF ⊢ λx.tG(tF) : σG →β x : σF ⊢ tG[tF /x] : σG

Then, the theory of computation (expressed in the language of functions) and
proof theory turn out to be two sided of the same coin: (inhabited) types cor-
respond to (provable) propositional formulae, (typed) terms to proofs, I-rules
translate to constructors, E-rules to destructors, redex to detours, reduction to
normalization, normal forms to normal proofs, the inhabitation problem to the
provability problem, subject reduction to removing detours, the Church-Rosser
theorem to the fact that the order of detour conversion is irrelevant,

...
F

x : σF ,Γ ⊢ x : σF

[F]1

...
G → I,1

F → G

Γ, x : σF ⊢ t : σG

Γ ⊢ λx.t : σF ⇒ σG

...
F → G

...
F → E

G

Γ ⊢ t : σF ⇒ σG Γ ⊢ u : σF

Γ ⊢ tu : σG

Figure 6.2: Comparing NI→ and λ→

tion), together with structural rules. From the algorithmic perspective, sequent calculus does not
support straightforward CHC. So, subsequent authors have usually interpreted proofs by Howard
as in NI→.

121

6.1.3 On Probabilistic λ-Calculi

The pervasive role of stochastic models in a variety of domains – from machine
learning to NLP and verification – has prompted a vast body of research also on
probabilistic PLs. Generally speaking, these languages support discrete proba-
bility distributions providing an operator which models sampling.

Probabilistic λ-Calculi. Studies on the functional style of probabilistic pro-
gramming, pioneered by Saheb-Djaromi [180], have attracted increasing inter-
est as allowing higher-order computation and offering a noteworthy level of ab-
straction. Early works [132, 167, 168, 177], have evolved in a growing body of
software developments and theoretical research. To model higher-order proba-
bilistic computation, it is natural to enrich basic λ-calculi by one (or more) prob-
abilistic construct(s). There exist at least two main paradigms of probabilistic
λ-calculi, distinguished by the additional operator they provide: Bayesian and
randomized ones.5 In what follows, we focus on the latter one only.

Randomized λ-Calculi. The usual way to define randomized calculi is to equip
untyped λ-calculi with a probabilistic choice operator, as done, for example
in [70, 71, 74, 63].

Definition 6.1.1 (Minimal Probabilisitic λ-Terms). Probabilistic λ-terms are de-
fined by the following (minimal) grammar:

t := x | λx.t | tt | t⊕ t.

Actually, various choice operators can be considered, the simplest one being a
form of binary and fair probabilistic choice. One can form terms, say t⊕u, which
evolve like t or u depending on the outcome of a probabilistic process, typically
corresponding to coin-tossing. The outcome is thus a probabilistic event and
different coin flips are taken as independent events:

t⊕ u

t u

1
2

1
2

Probabilistic Confluence and Termination. One of the most relevant prop-
erties of ordinary λ-calculi is confluence, making its form of non-determinism

5Generally speaking, Bayesian λ-calculi endow the class of terms with two new constructs, one
modelling sampling (similar to the probabilistic choice operator of randomized λ-calculi) and the
other conditioning the underlying distribution based on external evidence. This paradigm has been
adopted in concrete PLs like Anglican and Church. For further details, see [53]. Another relevant
(orthogonal) distinction is that between languages that handle discrete probability distributions
and languages that handles continuous probability distributions. The approach we pursue basing on
counting is limited to discrete distributions. We thank Raphaëlle Crubillé for pointing this distinction
to us.

122

benign since the reduction strategy does not influence the final result of the
computation. Nevertheless not all strategies are guaranteed to lead to a normal
form. This nice picture is not there anymore when adding the operator ⊕, as
the resulting probabilistic λ-calculus is non-confluent.

Example 6.1.3 (Non-Confluence [77]). Let us consider terms t = (λx.x XOR x)
and u = (⊤ ⊕ ⊥), where XOR denotes for exclusive OR (and ⊤ = λx.y.x and
⊥ = λxy.y). Then, when dealing with.

tu = (λz.z XOR z)(⊤⊕⊥),

• if first reducing u, either (λz.z XOR z)⊤ or (λz.z XOR z)⊥ are obtained,
with equal probability 1

2 . Then, tu evaluates to ⊥ with probability 1.

(λx.x XOR x)(⊤⊕⊥)

(λz.z XOR z)⊤ (λz.z XOR z)⊥

⊥

1
2

1
2

• if reducing the outermost redex first, tu reduces to (⊤ ⊕ ⊥)XOR(⊤ ⊕ ⊥),
and, then, the term evaluates either to⊤with probability 1

2 and to⊥ again
with probability 1

2 :

(λz.z XOR z)(⊤⊕⊥)

(⊤⊕⊥) XOR (⊤⊕⊥)

⊤ ⊥

1
2

1
2

The problem with confluence is handled in the literature in several ways, often
consisting in fixing the reduction strategy.6 Another key property of functional

6Indeed, the semantics of a probabilistic λ-calculus usually depends on the choice of a reduction
strategy and terms only have meaning in the context of that strategy. When distinguishing between
calculus, as defined by reduction rules (independently from reduction strategies), and programming
languages (associated with a reduction strategy) [173], it emerges that probabilistic computation
works well only in the latter case (that is, when the execution of a program can be associated with
CbV [63, 77] or CbN [74, 77]).

123

programs is termination. As said, in presence of probabilistic choice, termina-
tion becomes a probabilistic event and, as such, happens with a certain prob-
ability. Even if the termination probability is 1 (almost sure termination), the
degree of certitude is typically not reached in any finite number of steps, but
appears as a limit [180, 145, 29]. For instance, in the informal Example 6.1.4
below, the probability that the evaluation of the term terminates is

∑∞
i=0

1
2n+1 ,

namely 1. As such nt is said to be an almost surely terminating term.7

Example 6.1.4 (Probabilistic Termination [53]). Let t n deterministically re-
duce to n⊕ (t (n+ 1)), where ⊕ is fair probabilistic choice operator and n ∈ N.
At each reduction step, the term t n either reduces to n with probability 1

2 ,
or proceeds as n t, again with probability 1

2 . In particular, the computational
behavior of t 0 can be graphically represented as the infinite binary tree below:

t 0

0 t 1

1 t 2
...

1
2

1
2

1
2

1
2

6.2 To a Probabilistic Correspondence (and Beyond)

No logical counterpart, in the sense of Curry and Howard, was established for
the class of PLs and type systems involving probabilistic effects, and these type-
theoretic accounts have recently been put forward in various ways, e.g. type
systems based on sized types [56], intersection types [31], or type systems in
the style of so-called amortized analysis [228]. In all the aforementioned cases,
a type system is built by modifying well-known type systems for determinis-
tic languages without being guided by logic, and instead incepting inherently
quantitative concepts directly from probability theory. Our perspective is rather
different: we search for a logical system to possibly play the role of PL in sug-
gesting meaningful and expressive type systems for a λ-calculus endowed with
probabilistic choice effects.

A tempting answer is to start from modal logic, which is known to corre-
spond in the Curry-Howard sense to staged computation and to algebraic ef-
fects [49, 65, 234]. But – with a few notable exceptions (for example [87])
– there remains one aspect of randomized computation that modal logic fails
to capture, namely the probability of certain notable events, typically termina-

7Observe that, as noticed by Dal Lago, this tree do not correspond to the reduction tree of an
ordinary λ-term. Here, branching is modelling a form of nondeterminism coming from a somehow
external choice of the next redex to fire (and do not rely on the presence of a choice operator
occurring inside the given term).

124

tion.8 For example, in many of the probabilistic type systems mentioned above,
a term t receives a type that captures the fact that t has a certain probability q
(perhaps strictly smaller than 1) of reducing to a value. This probability is an
essential part of what we want to observe about the dynamic behavior of t and,
as such, has to be captured by its type, at least if one wants the type system to
be expressive.

6.2.1 Randomized Programs and Counting Quantifiers

As seen, a probabilistic functional program is a functional program with the
additional ability of sampling from some distributions, or to proceed by per-
forming some form of discrete probabilistic choice.9 Consequently, program
evaluation becomes an essentially stochastic process, while programs satisfy a
given specification up to a certain probability.

Example 6.2.1. Let us consider the λ-term

thalf = λx.λy.x⊕ y

where ⊕ is a binary infix operator for fair probabilistic choice. When applied
to two arguments t and u assumed to be normal form, the evaluation on thalf
results in either t, with probability 1

2 , or in u, again with probability 1
2 .

When trying to consider thalf as a proof of a standard propositional formula, it
becomes clear that PL is not rich enough to capture the behavior above. Indeed,
given that thalf is a function with two arguments, it is natural to see it as a proof
of an implication F → G → H, that is, following the BHK interpretation, as a
function turning a proof of F and a proof of G into a proof of H. What is H
then? Is it F or G? Actually, it could be both with some degree of uncertainty, but
PL is not able to express all this. It is at this point counting quantifiers can come
to the rescue. Indeed, while intutionistic PL cannot represent the behavior of
H, this can be expressed by the counting formulae C1/2F – saying that F has
probability at least probability 1

2 to hold – and by C1/2G – equally saying that
G has probability at least 1

2 to hold.
Extending this intuition, we introduce the intuitionistic counting logic iCPL.

Its language extends that of intuitionistic PL with Boolean variables and the
counting quantifier Cq, to be interpreted as in Chapter 3. Intuitively, if a proof
of a formula F can be seen as a deterministic program satisfying the specifica-
tion F , a proof of CqF corresponds to a probabilistic program that satisfies the
specification F with probability q. This logic (actually the corresponding com-
putational fragment), together with its natural deduction system, provides the
logical part of our probabilistic CHC. Our main result consists in showing that
intuitionistic, counting proofs correspond to functional probabilistic programs,
and that normalization in this logic describes probabilistic evaluation.

8Notably, several other properties – such as reachability and safety – can be reduced to termina-
tion. For further details, see [130].

9We are not concerned with sampling from continuous distributions, nor with capturing any
form of conditioning.

125

6.2.2 Making CbN and CbV Evaluation Coexist

There are two main evaluation strategies: CbN might duplicate choices before
evaluating them, while CbV evaluates choices before possibly duplicating their
outcomes. Then, the probability of termination of a program might differ de-
pending on the chosen strategy.

Example 6.2.2. Consider the following term:

2 = λyx.y(yx),

corresponding to the second Church numeral and its application to I⊕ Ω,

2(I⊕ Ω),

where I = λx.x and Ω = (λx.xx)λx.xx is diverging.

• Under CbN the redex 2(I⊕Ω) first reduces λx.(I⊕Ω)((I⊕Ω)x), and then to
different terms, each with probability 1

4 . In particular, since only λx.I(Ix)
converges, the global probability of convergence is 1

4 .

• Under CbV, we first evaluate I ⊕ Ω and then passes the result to 2, hence
returning either the converging term I(Ix) or the diverging one, each with
probability 1

2 .

When interpreted as a logical proof, the Church numeral would prove differ-
ent counting formulae depending on the reduction strategy we are considering.
Given that I⊕Ω proves C

1
2 (F → F) in the CbN case, 2 proves C1/2(F → F)→

F → C1/4F . Indeed, only in one case out of four it yields a proof of F . On the
other hand, in the CbV case, 2 proves the formula C1/2(F → F)→ F → C1/2F ,
as it yields a proof of F in one case out of two.

Going back to the computational model, we have seen that in the literature
on randomized λ-calculi, the apparent incompatibility of CbN and CbV is usu-
ally resolved by considering calculi associated with one or the other strategy,
but the observation above suggests that, if functional programs are typed us-
ing counting quantifiers, it should become possible to make the two evaluation
strategies coexist, by assigning them different types. As a starting point, we
consider a few recent approaches already offering ways to make CbN and CbV
mutually compatible [54, 57, 73, 77] and, in particular, in the probabilistic event
λ-calculus, in which the choice operator ⊕ is decomposed into two different syn-
tactic objects, yielding a confluent calculus [57]. This calculus constitutes an
ideal candidate for our CHC, especially when dealing with the dynamic aspects
and, indeed, it would be our (untyped) basis to define the computational side
of the probabilistic correspondence.

6.2.3 Capturing Probability of Normalization Through Types

As said, a fundamental quantitative property we would like to observe using
types is the probability of termination, but as known reduction in standard type

126

systems for randomized λ-calculus is purely deterministic. So, what notions
of probabilistic termination should we actually observe? First, we notice that
rather than evaluating programs by implementing probabilistic choices, reduc-
tion in the probabilistic event λ-calculus has the effect of progressively gener-
ating the full tree of outcomes of (sequences of) probabilistic choices, giving
rise to a distribution of values. Therefore, given a term t, rather than asking
whether some or all reductions of t terminate, it makes sense to ask what is the
probability for a normal form to be found by giving all probabilistic outcomes of
t. Following these intuitions, in Chapter 10, we show that when the type Cqσ
is assigned to a program t, the value q ∈ Q ∩ (0, 1] provides a lower bound for
the actual probability of finding a (head) normal form in the development of t.
Then, we extend this type system with an intersection operator, which allows
us to obtain also as upper bound for probability, and thus fully characterize the
distribution of values associated with a term.

6.3 Outline of Part II

This part of the thesis is devoted to the presentation of our probabilistic CHC.
We first present its main ingredients: on the logical side we introduce an intu-
itionistic version of CPL, while the computational part is defined by (a slight
variation of) the probabilistic event λ-calculus by [57] together with an expres-
sive type systems based on the notion of counting quantifiers. Finally, we es-
tablish their correspondence showing that, in this context, proofs (resp., types)
do not guarantee that validity (resp., termination) holds, but rather reveal the
underlying probability.

Concretely, the presentation is structured as follows:

• In Chapter 7 we introduce an intuitionistic version of CPL together with
a Kripke-style semantics based on the Borel σ-algebra of the Cantor space.
We also identify its “computational fragment” and design its sound and
complete natural deduction system.

• In Chapter 8 we present a variant of the probabilistic event λ-calculus [57],
which is a vehicle calculus capable of expressing both CbV and CbN. In our
case, the standard underlying probability space is replaced by the Cantor
space.

• In Chapter 9 we define counting-type system(s) decorating derivations
with terms of our probabilistic λ-calculus. We show that natural deduc-
tion derivations translate into typing derivations in it, with normalization
precisely corresponding to reduction.

• Finally, in Chapter 10, we introduce an intersection type system derived
from the one defined in Chapter 9, and prove it able to capture the nor-
malization probability of terms in the given randomized λ-calculus. We
conclude by comparing our results and systems with the ones offered in
the literature.

127

Chapter 7

The Logical Side: iCPL

In Section 7.1, we introduce an intuitionistic counting logic, called iCPL, and
the corresponding (sound and complete) natural deduction system. It is self-
contained, but in the perspective of CHC, this logic is both too much and not
enough. So, in Section 7.2, we slightly modify it to obtain the minimal, com-
putational fragment, called iCPL0, which perfectly meets our needs. Also in
this case, we provide a natural deduction rule system together with its normal-
ization proof. As we shall see in Chapter 9, this calculus is strongly connected
with probabilistic type systems for CbV evaluation. Before concluding, in Sec-
tion 7.3, we introduce an alternative proof system for iCPL0 able to capture
CbN evaluation.

7.1 Intuitionistic Counting Propositional Logic

We introduce a counting propositional logic, called iCPL, which extends the
standard intuitionistic system with Boolean variables and counting quantifiers.
Intuitively, this logic combines constructive reasoning, corresponding under CHC
to functional programming, with semantic reasoning (in the form of Boolean
formulae and their models), corresponding to discrete probabilistic reasoning.
Then, formulae of iCPL are somehow hybrid, comprising both a countable set
of intuitionistic propositional variables, P = {P1, P2, . . . }, and named Boolean
variables of the form xi

a where i ∈ N and a is a name.
Before introducing the semantics of iCPL in a formal way, let us consider

two simple examples to clarify the intuitive meaning of intuitionistic, counting
formulae.

Example 7.1.1. Let F be the following formula of iCPL:

F : P1 → P2 → (x0
a ∧ P1) ∨ (¬x0

a ∧ P2).

Intuitively, proving F amounts to showing that, whenever both P1 and P2 hold,
then either x0

a and P1 or ¬x0
a and P2 do. Let us now suppose to test F against

128

some “environment” ω in (2N){a}: given assumptions P1 and P2, we conclude P1

and x0
a when ω(0) = 1 – i.e. if ω satisfies x0

a –, but conclude P2 and ¬x0
a when

ω(0) = 0 – i.e. if ω does not satisfy x0
a. Otherwise said, given the “environment”

ω, a proof of F would be something of the form:

λxy.x⊕a y.

where ⊕a is a (fair) probabilistic operator, depending on a. So, assuming that ω
is uniformly sampled, what are the chances that our strategy will actually yield
a proof of F? As seen, there are two possible cases, and in both of them we get
a proof of one of the disjuncts x0

a ∧P1 and ¬x0
a ∧P2, thus a proof of F . We can

conclude that a proof of F is obtained with probability 1 – that is we conclude
C1

aF –, which no more depends on any “environment”. Observe that this proof
looks precisely as the closed term:

νa.λxy.x⊕a y.

Example 7.1.2. Let us consider another formula of iCPL:

G := P1 → P2 → x0
a ∧ P1,

and let ω be an “environment”. For any ω such that ω(a)(0) = 1, we can build a
proof of G under ω by concluding P1 ∧x0

a. For ω such that ω(a)(0) = 0, we are
instead not able to build a proof of G. Then, when we build the finial proof by
probabilistically summing over the possible cases for ωa(0) (as in Example 7.1.1
above), not all the environments ω would give a correct proof. Yet, when the
proof they provide is not correct, we obtain a proof of CqG (instead of a proof
of G) and 1 − q corresponds to the probability of the set of all environments ω
with incorrect proof.

7.1.1 Syntax and Semantics of iCPL

Syntax. As anticipated, the grammar of iCPL is obtained by endowing that of
intuitionistic PL with named expressions and C-quantified formulae.

Definition 7.1.1 (Formulae of iCPL). Formulae of iCPL are defined by the
grammar below:

F ::= ⊤ | ⊥ | xi
a | P | F ∧ F | F ∨ F | F → F | Cq

aF,

with a ∈ A, P ∈ P and q ∈ Q ∩ [0, 1].

Semantics. A natural semantics for formulae of iCPL is given in terms of
Kripke-like structures.

Definition 7.1.2 (iCPL-Structure). An iCPL-structure is a triple M = (W,⪯
,I), where W is a countable set, ⪯ is a preorder on W , and I : P→ W ↑ is an
interpretation of propositional atoms to the set W ↑ of upper-closed subsets of
W .

129

The interpretation of formulae in iCPL-structures is defined combining a set
W of worlds – for the interpretation of intuitionistic propositional variables –
with the choice of an element from the Cantor space – for the interpretation of
Boolean variables.

Definition 7.1.3 (Semantics for iCPL). For any iCPL-structureM = (W,⪯,I)
and finite set X, we define the relation w,ω ⊩X

M F , where w ∈ W,ω ∈ (2N)X

and FN(F) ⊆ X, by induction:

w,ω ̸⊩X
M ⊥

w,ω ⊩X
M ⊤

w,ω ⊩X
M xi

a iff ω(a)(i) = 1

w,ω ⊩X
M P iff w ∈ I(P)

w,ω ⊩X
M F ∧G iff w,ω ⊩X

M F and w,ω ⊩X
M G

w,ω ⊩X
M F ∨G iff w,ω ⊩X

M F or w,ω ⊩X
M G

w,ω ⊩X
M F → G iff for all w ⪯ w′, w′, ω ⊩X

M F implies w′, ω ⊩X
M G

w,ω ⊩X
M Cq

aF iff µ
({

ω′ ∈ 2N | w,ω +a ω
′ ⊩X∪{a}
M F

})
≥ q,

where ω +a ω
′ ∈ (2N)X∪{a} is given by (ω +a ω

′)(b)(n) = ω(b)(n) for any b ∈ X
and (ω +a ω

′)(a)(n) = ω′(n).

Using the properties of the Borel σ-algebra BX , it is shown that for any w ∈W
and formula F , the set {ω ∈ (2N)X | w,ω ⊩X

M F} is a Borel set and, thus, is
measurable. The notions of validity of a formula in a model and of validity are
standard.

Notation 7.1.1. We write Γ ⊩X
M F , when for all w ∈ W and ω ∈ (2N)X ,

whenever w,ω ⊩X
M Γ holds, also w,ω ⊩X

M F holds. Moreover, Γ ⊨ F holds
when for any iCPL-structureM and X ⊇ FN(F), Γ ⊩X

M F holds.

Notation 7.1.2. We use ¬F as a shorthand for F → ⊥.

7.1.2 Proof Theory of iCPL

We define a sound and complete natural deduction system, called NDiCPL.1 In
particular, we start from usual rules for intuitionistic logic, and add the excluded
middle (EM, for short) for Boolean variables, namely xi

a ∨ ¬xi
a, as well as

suitable rules and axioms for counting quantifiers.

Definition 7.1.4. Rules for NDiCPL are illustrated in Figure 7.1, and satisfies
the following provisos:

i. for readability’s sake, we use ⊢ instead of ⊢X for sequents in the form
Γ ⊢ F , assuming FN(Γ),FN(F) ⊆ X.

1For the proof of soundness and completeness of NDiCPL with respect to iCPL semantics,
see [12, Section A.4] or [11].

130

ii. in the rule CI it is assumed that FN(b) ⊆ {a},

together with all instances of the two axiom schemas below:

Cq
a(F ∨G)→ F ∨ (Cq

aG) (a ̸∈ FN(F)) (C∨)

¬Cq
ab (FN(b) ⊆ {a}, µC(b) < q). (C⊥)

As for CPL0 and CPL, some rules include semantic premisses, which intuitively
ask for an oracle to count the models of the Boolean formulae.

Classical Identity

Cid
Γ ⊢ xi

a ∨ ¬xi
a

Intuitionistic Identity

Iid
Γ, F ⊢ F

Logical Rules

⊤I
Γ ⊢ ⊤ Γ ⊢ ⊥ ⊥E

Γ ⊢ F

Γ ⊢ F Γ ⊢ G ∧I
Γ ⊢ F ∧G

Γ ⊢ F ∧G ∧E1
Γ ⊢ F

Γ ⊢ F ∧G ∧E2
Γ ⊢ G

Γ ⊢ F ∨I1
Γ ⊢ F ∨G

Γ ⊢ G ∨I2
Γ ⊢ F ∨G

Γ ⊢ F ∨G Γ, F ⊢ H Γ, G ⊢ H
∨E

Γ ⊢ H

Γ, F ⊢ G
→ I

Γ ⊢ F → G

Γ ⊢ F → G Γ ⊢ F → E
Γ ⊢ G

Counting Logic

Γ, b ⊢ F µ(JbK) ≥ q
CI

Γ ⊢ Cq
aF

where a ̸∈ Γ

Γ ⊢ Cq
aF

CE1
Γ ⊢ F

where a ̸∈ F, q > 0

Γ ⊢ Cq
aF Γ, F ⊢ G

CE2
Γ ⊢ Cqs

a G

where a ̸∈ Γ

Figure 7.1: Rules of NDiCPL

131

Example 7.1.3. For example, let us consider CI,

Γ, b ⊢ F µ(JbK) ≥ q
CI

Γ ⊢ Cq
aF

with the proviso that a does not occur in Γ and is the only name occurring in
b. This rule intuitively says that if there is a proof of F under assumptions Γ
and b, and if a randomly chosen valuation of a has chance at least q of being a
model of b, then a proof of Cq

aF from Γ can be built.

A Digression on NDiCPL− . It is also possible to introduce a variation of NDiCPL,
called NDiCPL− , which is defined as the system above, but does not include the
axiom schemas C∨ and C⊥.

Remark 7.1.1. The distinction between these two systems corresponds to the one
usually defined in the context of intuitionistic modal logic (IML, for short). Indeed,
standard axiomatizations of IML include the axioms:

⋄(F ∨G)→ ⋄F ∨ ⋄G (⋄∨)

¬ ⋄ ⊥, (⋄⊥)

which do not have a clear computational interpretation. Instead, a CHC can be
defined for an axiomatization of IML, usually referred to as constructive modal
logic, which does not include these two axioms (⋄∨) and (⋄⊥).

In a similar way, we show that provability in NDiCPL− corresponds, under the
decomposition provided by Lemma 7.2.1 below to provability in the Curry-
Howard proof system NDiCPL, while axioms (C∨) and (C⊥) cannot be inter-
preted in a similar way.

7.2 The Computational Fragment of iCPL

From the perspective of the CHC, the system NDiCPL is still not appropriate.
As iCPL contains Boolean logic, in order to relate proofs and programs, one
should first choose among the several existing constructive interpretations of
classical logic. Yet, in our previous examples, Boolean formulae are not proved,
but used as semantic constraints that programs may or may not satisfy. For
instance, we say that a program depending on some event ω, yields a proof of
F when ω satisfies b, or that the program has q chances of yielding a proof of F
when b has measure at least q. It would then be desirable to somehow separate
purely constructive reasoning from Boolean semantic reasoning within formulae
and proofs of iCPL. The following lemma suggests that this is indeed possible.2

2Further details and a syntactic version of the following proof sketch can be found in [12, 11,
Appendix A.2].

132

Lemma 7.2.1 (Decomposition Lemma). For any formula F of iCPL, there exist
Boolean formulae bv and purely intuitionistic formulae Fv – i.e. formulae con-
taining no Boolean variables – where v varies over all possible valuations of the
Boolean variables in F , such that:

⊨ F ↔
∨
v

bv ∧ Fv

Proof Sketch. Let (i.) bv be the formula characterizing v, i.e. the conjunction
of all variables true in v and of all negations of variables false in v, and (ii.)
Fv be obtained from F by replacing each Boolean variable by either ⊥ or ⊤,
depending on its value under v.

By Lemma 7.2.1, any sequent Γ ⊢ F of iCPL can be associated with a family of
intuitionistic sequents of the form Γv, bv ⊢ Fv, where v ranges over all valua-
tions of the Boolean variables of Γ and F , with Γv, bv, and Fv as in Lemma 7.2.1.

Notation 7.2.1. These special sequents Γv, bv ⊢ Fv are denoted as Γ ⊢ b↣ F .

Notably, sequents of the form Γ ⊢ b↣ F have a natural computational inter-
pretation, as expressing program specifications of the form “Π yields a proof of
F from Γ whenever its sampled function satisfies b”. By the way, Lemma 7.2.1
ensures that, modulo Boolean reasoning, logical arguments in iCPL can be re-
duced to (families of) arguments of this kind.

7.2.1 Syntax and Semantics of iCPL0

Let us now define iCPL0, a fragment of iCPL made of purely intuitionistic for-
mulae of iCPL. Observe that for simplicity’s sake, we take implication as the
only connective. Indeed, it is enough to define our CHC, but all other proposi-
tional connectives could have been added.

Definition 7.2.1 (Formulae of iCPL0). Formulae of iCPL0 are defined by the
following grammar:

F ::= P | F → F | CqF,

with q ∈ Q ∩ [0, 1].

As formulae do not contain Boolean variables, counting quantifiers in iCPL0 are
not named.

Definition 7.2.2 (Semantics for iCPL0). Given a structureM = (W,⪯,I), we
define by induction the relation w,ω ⊩M F , where w ∈W and ω ∈ 2N:

w,ω ⊩M P iff w ∈ I(P)

w,ω ⊩M F → G iff for all w ⪯ w′, w′, ω ⊩M F implies w′, ω ⊩M G

w,ω ⊩M CqF iff µ
({

ω ∈ 2N | w,ω ⊨M F
})
≥ q.

133

Notation 7.2.2. We use Cq1∗···∗qnF (or even Cq⃗, for simplicity) as an abbrevia-
tion for Cq1 . . .CqnF .

Observe that iCPL0 is a (very limited) fragment of iCPL and, in particular, its
semantics is trivial – in the sense that it is “not quantitative” anymore.3 iCPL0 is
not very interesting in terms of formulae provability: for q > 0, CqF is provable
whenever F is. Nonetheless, it is relevant because of its proof-theoretic behav-
ior, namely cut-elimination. Otherwise said, due to iCPL0, one can turn the
system iCPL – which is interesting in terms of provability – into a constructive
system – which is interesting in relation to proof theory.

7.2.2 Proof Theory of iCPL0

We define a natural deduction system for iCPL0, called NDiCPL0
, obtained by

enriching NDiCPL with standard rules for intuitionistic connectives adapted to
the (labelled) language for sequents of NDiCPL0

, that is by adding a fixed num-
ber of Boolean formulae to the consequent.4 Indeed, this proof system is still
made of natural deduction rules, as NDiCPL of Section 7.1.2, but in this case the
language is labelled, as for sequent calculi LKCPL0

and LKCPL0
of Chapters 3

and 4.

Definition 7.2.3 (Sequents of NDiCPL0
). A sequent of NDiCPL0

is an expression
of the form Γ ⊢ b ↣ F , where Γ is a set of iCPL0-formulae, b is a Boolean
formula and F is a formula of iCPL0.

As in the proof system for iCPL, some rules of NDiCPL0
involve semantic pre-

misses of the form b ⊨ c and µ(JbK) ≥ q. On the other hand, beyond standard
intuitionistic rules, NDiCPL0

includes structural rules to manipulate Boolean
formulae.

Definition 7.2.4 (Proof System NDiCPL). The proof system NDiCPL is made of
the rules defined in Figure 7.2, where it is assumed that in CI, FN(b)∩FN(c) =
∅.

Intuitively, the rule ⊥R yields dummy proofs of any formula, namely proofs
which are correct for no possible event. The rule M combines two proofs Π1,Π2

of the same formula into a single proof Π, with the choice depending on the
value of some Boolean variable xi

a (Π is thus something like Π1 ⊕a Π2). The
introduction rule for the counting quantifier CI is similar to the corresponding
one in NDiCPL, saying that if Π in the “environment” ω + ω′ ∈ (2N)X∪{a} ≡
(2N)X × 2N yields a proof of F whenever ω + ω′ satisfies the two independent
constraints b and c (i.e. ω ⊨ b and ω′ ⊨ c), then, by randomly choosing ω′ ∈ 2N,
we have at least q ≥ µC(JcK) chances of getting a proof of F (something like
νa.Π). Finally, CE turns a proof of F → G into a proof of CqF → CqsG. As we
shall see in Chapter 9, this rule captures CbV function application.

3In particular, if q > 0, CqF is equivalent to F (as usual, if q = 0, the C0F is equivalent to ⊤).
4For further details on the relation between NDiCPL and NDiCPL0

, see [12, 11, Appendix A].

134

Identity Rule

ID
Γ, F ⊢ b↣ F

Structural Rules

b ⊨ ⊥ ⊥R
Γ ⊢ b↣ F

Γ ⊢ c↣ F Γ ⊢ d↣ F b ⊨ (c∧xi
a) ∨ (d∧ ¬xi

a)
M

Γ ⊢ b↣ F

Logical Rules

Γ, F ⊢ b↣ G
→ I

Γ ⊢ b↣ (F → G)

Γ ⊢ b↣ (F → G) Γ ⊢ b↣ F
→ E

Γ ⊢ b↣ G

Counting Rules

Γ ⊢ b∧ c↣ F µ(JcK) ≥ q
CI

Γ ⊢ b↣ CqF

Γ ⊢ b↣ CqF Γ, F ⊢ b↣ G
CE

Γ ⊢ b↣ CqsG

Figure 7.2: Rules of NDiCPL0

Example 7.2.1. The following derivation is a proof Π 1
2 id of C1/2(F → F). It is

obtained by first “mixing” an exact proof of F → F with a dummy one. Then, a
counting quantifier is introduced.

Π 1
2 id

F ⊢ xi
a ↣ F

→ I
⊢ xi

a ↣ (F → F)
⊥R

⊢ ⊥↣ (F → F) xi
a ⊨ xi

a ∨ ⊥
M

⊢ xi
a ↣ (F → F) µ(Jxi

aK) ≥ 1
2

CI
⊢ ⊤↣ C1/2(F → F)

Example 7.2.2. Let us consider the derivation of Cq(F → F)→ F → Cq∗qF :

Π′

Cq(F → F), F ⊢ CqF

Π′′

Cq(F → F), F, F ⊢ CqF
CE

Cq(F → F), F ⊢ Cq∗qF
→ I

⊢ Cq(F → F)→ F → Cq∗qF

where,
Π′

135

Cq(F → F), F ⊢ Cq(F → F)

F → F, F ⊢ F → F F → F, F ⊢ F
→ E

F → F, F ⊢ F
CE

Cq(F → F), F ⊢ CqF

and
Π′′

Cq(F → F), F, F ⊢ Cq(F → F)

F → F, F, F ⊢ F → F F → F, F, F ⊢ F
→ E

F → F, F, F ⊢ F
CE

Cq(F → F), F, F ⊢ CqF

Observe that, for simplicity’s sake, labels ⊤ have been omitted.

7.2.3 Normalization of NDiCPL0

Going back to the CHC perspective, natural deduction proofs correspond to
programs, and normalization corresponds to execution. So, we now need to es-
tablish the normalization for NDiCPL0

. Concretely, this amounts at dealing with
two normalization steps, for detours (→ I/→ E) and (CI/CE). In particular,
the conversion for (→ I/ → E) is standard and relies on the admissible rule of
substitution Sub:

Γ ⊢ b↣ F Γ, F ⊢ b↣ G
Sub

Γ ⊢ b↣ G

On the other hand, detour conversion for (CI/CE) is defined in Figure 7.3
below. First, the rule CI is permuted downwards. Then, as you can see, the

Σ′

Γ ⊢ b∧ c↣ F µ(JcK) ≥ q
CI

Γ ⊢ b↣ CqF
Σ′′

Γ, F ⊢ b↣ G
CE

Γ ⊢ b↣ CqsG

⇝

Σ′

Γ ⊢ b∧ c↣ F

Σ′′[b7→b∧c]

Γ, F ⊢ b∧ c↣ G
Sub

Γ ⊢ b∧ c↣ G µ(JcK) ≥ qs
CI

Γ ⊢ b↣ CqsG

Figure 7.3: Normalization Step for (CI/CE)

normalization step consists in applying the rule Sub to the premiss of CI and
the minor premiss of CE. For instance, given Π defined as in Example 7.2.2,
if one cuts it with Π 1

2 id (letting q = 1
2), normalization duplicates Π, that is it

136

duplicates the choice between the correct and dummy proof of F → F , yield-
ing a normal proof of F → C1/2∗1/2F . The other normalization steps permute
M with other rules. Examples of such detour conversions are displayed in Fig-
ure 7.4.5 As we shall see, these correspond to reduction in probabilistic event
λ-calculus introduced in Chapter 8.6

(M)

Σ

Γ ⊢ c↣ F

Σ

Γ ⊢ c↣ F b ⊨ Di
a(c, c)

M
Γ ⊢ b↣ F

⇝
Σ[b→c]

Γ ⊢ b↣ F

(M/M)

Σ

Γ ⊢ c↣ F

Σ′

Γ ⊢ d↣ F b′ ⊨ Di
a(c,d)

M
Γ ⊢ b′ ↣ F

Σ′′

Γ ⊢ e↣ F b ⊨ Di
a(b
′, e)

M
Γ ⊢ b↣ F

⇝

Σ

Γ ⊢ c↣ F

Σ′

Γ ⊢ e↣ F b ⊨ Di
a(c, e)

M
Γ ⊢ b↣ F

where Di
a(b, c) is an abbreviation for (xi

a ∧ b) ∨ (¬xi
a ∧ c).

Figure 7.4: Two Examples of Normalization M

7.3 A “CbN Proof System”

Finally, we introduce an alternative proof system, called NDCbN
iCPL0

, which is
nothing but a CbN version of NDiCPL0

. Indeed, as we shall see in Chapter 9,
this calculus provides the logical counterpart for a correspondence with the type
system Cλ{}→.

The Rule System NDCbN
iCPL0

. In the perspective of defining a probabilistic CHC
involving computation based on CbN, we restrict the rule CE and pass through

5Full details can be found in [12, 11].
6For simplicity, we do not consider a “multiplication rule” to pass from CqCsF to Cqs, as this

would introduce other normalization steps.

137

the following definition of sequents. The language for NDCbN
iCPL0

is exactly the
same as that for NDiCPL0

.

Definition 7.3.1 (Sequent of NDCbN
iCPL0

). A sequent of NDCbN
iCPL0

is an expression
of the form Φ,Γ ⊢ b ↣ F , where Φ and Γ are two sets of formulae of iCPL0

and Φ contains at most one of them.

The fundamental intuition is that the formula in Φ (if any) is used linearly in
the proof.

Definition 7.3.2 (Proof System NDCbN
iCPL0

). Rules for the so-called CbN-system
are illustrated in Figure 7.5.

Identity Rules

IDCbN
; Γ, F ⊢ b↣ F

IDlin
F ; Γ ⊢ b↣ F

Structural Rules

b ⊨ ⊥
⊥RCbN

; Γ ⊢ b↣ F

; Γ ⊢ c↣ F ; Γ ⊢ d↣ F b ⊨ (c∧xi
a) ∨ (d∧ ¬xi

a)
MCbN

; Γ ⊢ b↣ F

Logical Rules

Φ;Γ, F ⊢ b↣ G
→ ICbN

Φ;Γ ⊢ b↣ (F → G)

Φ; Γ ⊢ b↣ (F → G) ; Γ ⊢ b↣ F
→ ECbN

Φ;Γ ⊢ b↣ G

Counting Rules

; Γ ⊢ b∧ c↣ F µ(JcK) ≥ q
CICbN

; Γ ⊢ b↣ CqF

Φ;Γ ⊢ b↣ CqF F ; Γ ⊢ b↣ G
CECbN

Φ;Γ ⊢ b↣ CqG

Φ;Γ ⊢ b↣ CqCsF
CCbN

×Φ;Γ ⊢ b↣ CqsF

Figure 7.5: Rules of NDCbN
iCPL0

Observe that, differently from NDiCPL0
, this system includes a “multiplication

rule” CCbN
× permitting to derive CqsF from CqCsF .

This system proves less formulae than NDiCPL0
as its restricted CECbN-

rule allows to deduce CqG from CqF only when G can be deduced from F
linearly. For instance, one cannot derive Cq(F → F) → (F → CqF) as

138

done in Example 7.2.2, since the hypothesis Cq(F → F) – which is a ma-
jor premiss of a CE-rule – should be used twice. From the programming per-
spective, this means that one cannot encode in NDCbN

iCPL0
the non-linear “CbV-

function” λy.λx{λf.f(fx)}y. For similar reasons, it seems that one cannot prove
CqF → (F → F → G) → CqG in NDCbN

iCPL0
, while it is derivable in NDiCPL0

as shown in Figure 7.6. This means that one cannot encode the non-linear
“CbV-function” λx.λy.{λy.yxx}x.

CqF,H ⊢ CqF

F,H ⊢ F → F → G F,H ⊢ F
→ E

F,H ⊢ F → G F,H ⊢ F
→ E

F,H ⊢ G
CE

CqF,H ⊢ CqG
→ Is

⊢ CqF → H → CqG

where H = F → F → F .

Figure 7.6: Derivation of CqF → (F → F → G)→ CqG in NDiCPL0

Normalization of NDCbN
iCPL0

. Normalization steps are as in NDiCPL0
, except for

the case (CICbN/CECbN). In this case, to easily define such a detour-conversion
we use the admissible rule SubCbN:

; Γ ⊢ b↣ Cs1∗···∗snF F ; Γ ⊢ b↣ G
SubCbN

; Γ ⊢ b↣ Cs1∗···∗snG

Due to this rule, the desired normalization step is obtained as shown in Fig-
ure 7.7 below. Notice also that, in this case, the (CICbN/CECbN)-step includes
a finite number of internal instances of CCbN

× .

139

Σ

;Γ ⊢ b∧ c↣ Cs1∗···∗snF µ(JcK) ≥ q
CICbN

; Γ ⊢ b↣ Cq∗s1∗···∗snF
CCbN

× s
; Γ ⊢ b↣ Cq

∏
i siF

Π

F ; Γ ⊢ b↣ G
CECbN

; Γ ⊢ b↣ Cq
∏

i siG

⇝

Σ

;Γ ⊢ b∧ c↣ Cs1∗···∗snF

Π[b7→b∧c]

F ; Γ ⊢ b∧ c↣ G
SubCbN

; Γ ⊢ b∧ c↣ Cs1∗···∗snG µ(JcK) ≥ q
CICbN

; Γ ⊢ b↣ Cq∗s1∗···∗snG
CCbN

× s
; Γ ⊢ b↣ Cq

∏
i siG

Figure 7.7: Normalization step (CICbN/CECbN)

140

Chapter 8

The Computational Side: ΛPE
and Λ

{}
PE

In this chapter we focus on the computational side of our probabilistic CHC.
This is defined in the form of a variant of the probabilistic event λ-calculus ΛPE

by Dal Lago, Guerrieri and Heijltjes [57], in which choices depend on events
from the Cantor space, and terms yield distributions of values. So, we start by
briefly recapping salient features of ΛPE, in Section 8.1. Then, in Section 8.2,
we focus on our calculus ΛPE.

8.1 The Probabilistic Event λ-Calculus

The randomized calculus we will introduce in Section 8.2 is strongly inspired
by the probabilistic event λ-calculus ΛPE [57]. So, we first outline its crucial
features. Starting with motivations, we have already seen in Section 6.1.3, that
one of the main undesirable features of standard probabilistic λ-calculi concerns
(non-)confluence and duplication in relation with different evaluation strate-
gies. Then, a notion of probabilistic λ-calculus usually comes with a prescribed
reduction strategy, typically CbN or CbV, as the calculus is non-confluent and
these strategies yield different results.

Example 8.1.1 (Non Confluence [57]). Let us consider the term

(λx.x == x)(⊤⊕⊥),

where == tests equality of Boolean values, yields different results basing on
the evaluation strategy one takes into account:

⊤ CbV ↞ (λx.x == x)(⊤⊕⊥) ↠CbN ⊤⊕⊥.

In ΛPE this issue is handled in an elegant way by decomposing the probabilistic
operator. This makes the calculus both randomized and confluent.

141

The Language of ΛPE. So, in the probabilistic event λ-calculus, non-confluence
is handled by decomposing the probability operator into two syntactic con-

structs: a generator of the form a and a choice operator of the form
a
⊕ (for

a Boolean).

Definition 8.1.1 (Terms of ΛPE). Terms of the probabilistic event λ-calculus are
defined by the grammar below:

t := x | λxt | tt | t a
⊕ t | a t

for a being a Boolean

Syntactically, a acts as a quantifier, binding a. Semantically, the generator a
represents a probabilistic event, that generates a Boolean value recorded as a.
Otherwise said, a flips a coin setting a to either 0 or 1.

Notation 8.1.1. Observe also that the standard probabilistic operator ⊕, can be
defined in terms of generator and choice operator as:

t⊕ u := a t
a
⊕ u.

Confluence and Reduction. This technical novelty is crucial to obtain a calcu-
lus, which is actually confluent. In fact, decomposing the probabilistic operator
allows Dal Lago, Guerrieri and Heijltjes to syntactically distinguish between du-
plicating an event, and duplicating its outcome. In this way, ΛPE can express
both CbN and CbV strategies.

Example 8.1.2. Let us now (re-)consider Example 8.1.1 in the context of ΛPE:

CbN
(λx.x = x)(a1 ⊤

a1

⊕ ⊥)→β (a1 ⊤
a1

⊕ ⊥) = (a2 ⊤
a2

⊕ ⊥)↠ ⊤⊕⊥

CbV
a1 (λx.x = x)(⊤

a1

⊕ ⊥)→β a1 (⊤
a1

⊕ ⊥) = (⊤
a1

⊕ ⊥)↠ ⊤.

Clearly, in ΛPE, CbN and CbV strategies are expressed by different terms and
confluence is guaranteed.

Reduction in ΛPE consists of standard β-reduction →β plus an evaluation
mechanism for generators and choice operator, which implements probabilistic
choice.1 In particular, we consider permutative reduction, _p.

Definition 8.1.2. Reduction _ in ΛPE is made of β-reduction →β plus permu-
tative reduction _p, as illustrated in Figure 8.1.

1Full details can be found in [57].

142

(λx.t)u →β t[u/x] (β)

t
a
⊕ t _p t (i)

(t
a
⊕ u)

a
⊕ v _p t

a
⊕ v (c1)

t
a
⊕ (u

a
⊕ v) _p t

a
⊕ v (c2)

λx(t
a
⊕ u) _p (λx.t)

a
⊕ (λx.u) (⊕λ)

(t
a
⊕ u)v _p (tv)

a
⊕ (uv) (⊕f)

t(u
a
⊕ v) _p (tu)

a
⊕ (tv) (⊕a)

(t
a
⊕ u)

b
⊕ v _p (t

b
⊕ v)

a
⊕ (u

b
⊕ v) (a < b) (⊕⊕1)

t
b
⊕ (u

a
⊕ v) _p (t

b
⊕ u)

a
⊕ (t

b
⊕ v) (a < b) (⊕⊕2)

a (t
b
⊕ u) _p (a t)

b
⊕ (a u) (b ̸= a) (⊕□)

a t _p t (a ̸∈ t) (�□)

λx. a t _p a λx.t (□λ)

(a t)u _p a tu (□f)

Figure 8.1: Reduction rules for ΛPE

As its crucial feature, the choice operator
a
⊕ does permute out the argument

position of an application, but generator a does not:

t(u
a
⊕ v) _p (tu)

a
⊕ (tv)

but
t(a u)��_p a tu.

This expresses the difference between the outcome of a probabilistic event,
the duplicates of which can be identified, and the event itself, the duplicates
of which may yield different outcomes. In [57, Sec. 3-4], _p is also proved
strongly normalizing and confluent.

Theorem 8.1.1 ([57]). _p is confluent and strongly normalizing. Full reduction
_ := _β ∪_p is confluent.

Then, ΛPE is as desired: it is both confluent and able to interpret both CbN and
CbV strategies through different interpretations of the probabilistic operator.

8.2 A λ-Calculus Sampling from the Cantor Space

In Section 8.2.1 we introduce a variant of ΛPE, called ΛPE, in which choices
depend on events from the Cantor space and terms yield distributions of values.

143

We also define two notions of probabilistic normalizations for such distributions.
Finally, in Section 8.2.3, we present another calculus, called Λ

{}
PE, which provides

a straightforward representation of CbV functions.2

8.2.1 Introducing the (Untyped) Calculus ΛPE

The grammar for terms of ΛPE is slightly different from that of Definition 8.1.1.
In particular, the choice operator becomes dependent from an index i ∈ N, and
the generator is now expressed as νa.

Definition 8.2.1 (Terms of ΛPE). Terms of ΛPE are defined as follows

t := x | λx.t | tu | t⊕i
a u | νa.t

with a ∈ Aand i ∈ N.

The intuition is that νa.t samples some function ω from the Cantor space, and
t⊕i

a u yields either t or u depending on the value of ω(a)(i) ∈ {0, 1}.

Notation 8.2.1. In the following, let t ⊕i u be an abbreviation for νa.t ⊕i
a u,

supposing a does not occur free in either t or u.

As desirable ΛPE maintains all the nice confluence properties of ΛPE concerning
confluence. For example, going back to the Example 6.2.2 in Chapter 6, it is
clear that the CbN and CbV applications of 2 to I⊕a Ω are here encoded by two
distinct term: 2(νa.I ⊕a Ω) and νa.2(I ⊕a Ω), crucially distinguishing between
generating a probabilistic choice before or after a duplication takes place.

In usual randomized λ-calculi, program execution is defined so to be inher-
ently probabilistic. For example, a term t ⊕ u can reduce to either t or u with
the same probability 1

2 . In this way, chains of reduction can be described as
stochastic Markovian sequences [175] and help formalizing the idea of normal-
ization with probability q ∈ [0, 1], see [30]. By contrast, reduction in ΛPE is fully
deterministic.

Definition 8.2.2 (Reduction in ΛPE). Reduction _ in ΛPE is defined by the
usual (and un-restricted) β-rule (λx.t)u _β t[u/x], together with permutative
reduction t _p u made of rules in Figure 8.2.

Intuitively, permutative reductions implement probabilistic choices by comput-
ing the full tree of possible choices. For example, given terms t1, t2, u1, u2,

νa.(t1 ⊕0
a t2)(u1 ⊕1

a u2) _p νa.(t1u1 ⊕1
a t1u2)⊕0

a (t2u1 ⊕1
a t2u2),

hence displaying all possible alternatives.3

2For several results presented in the following sections, the corresponding (ΛPE) version has
already been established in [57]. Since, in these cases, proofs are equivalent to the one in [57],
they are only sketched or omitted. For further details, see [11, 12] or [57].

3To compare ΛPE with ΛPE [57], observe that, given a bijection φ : N2 → N, one can define
an invertible embedding t → tφ from ΛPE by replacing t ⊕i

a u by tφ ⊕φ(a,i) uφ and (νa.t)φ =
νφ(a, 0) . . . νφ(a, orda(t)).tφ, where orda(t) is the maximum i such that ⊕i

a occurs in t. In this
way, permutation rules of ΛPE are translated into those in Figure 8.2 and, then, results from [57]
can be transposed into our language of ΛPE.

144

t⊕i
a t _p t (i)

(t⊕i
a u)⊕i

a v _p t⊕i
a v (c1)

t⊕i
a (u⊕i

a v) _p t⊕i
a v (c2)

λx.(t⊕i
a u) _p (λx.t)⊕i

a (λx.u) (⊕λ)

(t⊕i
a u)v _p (tu)⊕i

a (uv) (⊕f)

t(u⊕i
a v) _p (tu)⊕i

a (tv) (⊕a)

(t⊕i
a u)⊕j

b v _p (t⊕j
b v)⊕

i
a (u⊕j

b v) (a, i) < (b, j) (⊕⊕1)

t⊕j
b (u⊕i

a v) _p (t⊕j
b u)⊕

i
a (t⊕j

b v) (a, i) < (b, j) (⊕⊕2)

νb.(t⊕i
a u) _p (νb.t)⊕i

a (νb.u) a ̸= b (⊕ν)

νa.t _p t a ̸∈ FN(t) (¬ν)

λx.νa.t _p νa.λx.t (νλ)

(νa.t)u _p νa.(tu) (νf)

where (a, i) < (b, j) if either νb occurs in the scope of νa or a = b and i < j

Figure 8.2: Permutative Reductions

Let us now introduce the following technical notion, which will be crucial in
relation to normal form.

Definition 8.2.3. For any term t, finite set X and ω ∈ (2N)X , let the projection
of ω to t through X, πω

X(t), be defined as follows:

πω
X(x) = x

πω
X(λx.t) = λx.πω

X(t)

πω
X(tu) = πω

X(t)πω
X(u)

πω
X(t⊕i

a u) =


πω
X(t) if a ∈ X and ω(a)(i) = 1

πω
X(u) if a ∈ X and ω(a)(i) = 0

πω
X(t)⊕i

a π
ω
X(u) otherwise

πω
X(νb.t) = νb.πω

X(t).

where b ̸∈ X. The existence and unicity of normal forms for _p, the so-called
permutative normal forms (PNF, for short) leads to natural questions on what
these normal forms represent. Let Tdenote the set of PNFs containing no free
name occurrence. For any t ∈ T, the PNF of t in one of two possible forms:
(i.) either t starts with a generator, i.e. t = νa.t′ and t′ is a tree of a-labelled
choices ⊕i

a, in which leaves form a finite set of T, the support of t′, supp(t),
or (ii.) t is of the form λx1 . . . λxn.t

′t1 . . . tp, where t′ is either a variable or a
λ-abstraction. We call these last terms pseudo-values and let V⊆ Tdenote the

145

set formed by them. Using this decomposition, any t ∈ Tcan be associated in a
unique way with a sub-distribution of pseudo-values Dv : V→ [0, 1] by letting
Dv(u) = δt, and Dt :=

∑
u∈supp(t′) Du(v) · µ

({
ω ∈ 2N | πω

{a}(t
′) = u

})
, when

t = νa.u′.4 Intuitively Dt(v) measures the probability of finding v by iteratively
applying random choices of events from the Cantor space to t any time a v is
found.

8.2.2 Probabilistic (Head) Normalization

Given a term t ∈ T, questions such as “is t in normal form?” or “does t reduce
to a normal form?” receive univocal yes/no answers. Indeed _ is deterministic.
Nevertheless, if one thinks of t as Dt, the relevant questions become “what is
the probability for t to be in normal form?” and “what is the probability for t to
reduce to normal form?”. To answer these new kinds of questions we introduce
functions HNV_(t) and NF_(t) measuring the probability that t reduces to a
normal form.

Let us start with randomized contexts and head-normal forms. The random-
ized context R is defined by the grammar below:

R[] := [] | R[]⊕i
a u | t⊕i

a R[] | νa.R[].
Then, the head-reduction t _h u is either a _p-reduction or a _β-reduction of

the form:
R[λx⃗.(λy.t)uu1 . . . un] _β R[λx⃗.t[u/x]u1 . . . un],

where R is a randomized context.

Definition 8.2.4. A head normal value (HNV, for short) is a _h-normal term
which is also a pseudo-value, i.e. it is of the form λx⃗.yt1 . . . tn. Let HNV indicate
the set of such terms. For any t ∈ T,

HNV(t) :=
∑

v∈HNV

Dt(v)

and
HNV_(t) := sup{HNV(u) | t _∗h u}.

When HNV_(t) ≥ q, we say that t yields an HNV with probability at least q.

Example 8.2.1. Let us now consider the term

t = νa.(λxλy.(y ⊕i
a I)x)u,

where u = νb(I⊕j
b Ω). Then, HNV_(t) = 3

4 . Indeed,

t _∗h νa.
(
λy.y(νb.I⊕j

b Ω)
)
⊕i

a (νb
′.I⊕j

b′ Ω)

4Observe that the measurability of {ω ∈ 2N | πω
{a}(t

′) = u} could be checked by induction on
t′. We thank Raphaëlle Crubilllé for pointing out to us the relevance of this measurability condition.

146

and three out of four possible choices (corresponding to choosing between
either left or right for both νa and νb′) yield a HNV. Notice that the choice for
νb does not matter, since λy.yu is already a HNV.

Let us now consider normal forms. The first idea might be to define a similar
function NF(t) =

∑
v normal form Dt(v). Yet, following this definition, for example

a term λx.x(νa.I⊕0
aΩ) would have probability 0 of yielding a normal form, while

it should yield a normal form with probability 1
2 , i.e. depending on a choice for

a. So, we introduce the definition below:

Definition 8.2.5. For any t ∈ T, NF(t) is defined by:

• if t = λx⃗.yu1 . . . un ∈ HNV, then

NF(t) :=
n∏

i=1

NF(ui)

• otherwise,
NF(t) :=

∑
u∈HNV

NF(u) · Dt(u).

Let NF_(t) = supp{NF(u) | t _∗ u} and if NF_(t) ≥ q, we say that t yields a
normal form with probability at least q.

Now, consider again the term t of Example 8.2.1: NF_(t) = 4
8 = 1

2 as four out of
eight possible choices for νa, νb and νb′ yield a normal form, i.e. either choose
left for νa and νb and choose anything for νb′ or choose right for νa, left for νb′

and choose anything for νb.

8.2.3 Extending ΛPE with CbV Functions

As said, in ΛPE it is possible to encode a CbV redex like νa.2(I⊕0
a Ω). Neverthe-

less, in the perspective of the functional interpretation of iCPL0, we would be
able to represent the CbV functions mapping νa(t⊕a v) onto νa.2(t⊕0

a v). To do
so, we enrich the language of ΛPE with a “CbV application” operator {t}u, with
suitable permutative rules. Let Λ{}PE denote such extension of the syntax of ΛPE

with {}.
Reduction in Λ

{}
PE is similar to ΛPE, that is β-reduction is as standard and

_p{} is defined as in Figure 8.2, except for (¬ν) and the three new permutation
rules below:

{t}νa.u _p{} νa.tu ({}ν)

{t}(u⊕i
a u)v _p{} {t}v ⊕i

a {t}v ({}⊕1)

{t}(u⊕i
a v) _p{} {t}u⊕i

a {t}v ({}⊕2)

Let us consider a clarifying example showing how to represent CbV into our
calculus.

147

Example 8.2.1. A CbV Church numeral can be encoded in Λ
{}
PE as

2CbV := λf.{2}f.

Indeed,
2CbV(νa.t⊕i

a v) _β {2}νa.t⊕i
a v _p{} νa.2(t⊕i

a v).

The fundamental properties of ΛPE hold also when moving to Λ
{}
PE. In particular,

confluence and strong normalizations are proved as in [57].5

Proposition 8.2.1. _p{} is confluent and strongly normalizing. Full reduction
_{} := _β ∪_p{} is confluent.

The definitions of Dt and HNV_(t) scale to Λ
{}
PE in the natural way.

5For further details, see [12].

148

Chapter 9

Probabilistic Curry-Howard
Correspondence

In this Chapter we introduce the core of our probabilistic CHC. First, in Sec-
tion 9.1, we define two type systems Cλ→ and Cλ{}→ for (resp.) ΛPE and Λ

{}
PE,

which extend standard grammars for types with counting quantifiers. In Sec-
tion 9.2 we focus on static and dynamic aspects of the correspondence between
NDiCPL0

and Cλ{}→. In particular, we show that each proof Π in the quoted
calculus for iCPL0 can be associated with a typing derivation in Cλ{}→ of some
probabilistic term tΠ, in such a way that normalization of Π corresponds to
reduction of tΠ. Remarkably, in this case, translating CE requires the CbV ap-
plication operator {}. So, in Section 9.3, we also consider the alternative CbN
proof-system for iCPL0, namely NDCbN

iCPL0
, and provide the corresponding trans-

lation with respect to Cλ{}→.

9.1 Introducing Types with Counting

We introduce two type systems, called Cλ→ and Cλ{}→, which both extend stan-
dard grammars for types with counting quantifiers.

Counting Types and Judgements Counting types of Cλ→ are of the form
Cqs, where s is prefixed by exactly one counting quantifier, while in Cλ{}→, these
types are of the form Cq⃗s, so s is prefixed by a (possibly empty) list of quanti-
fiers.

Definition 9.1.1 (Types for Cλ→ and Cλ{}→). The grammar for types of Cλ→,

149

denoted as s, t, . . . , is generated as follows:

σ := o | s⇒ σ

s := Cqσ.

and that for types of Cλ{}→ is defined below:

σ := o | s⇒ σ

s := Cq⃗σ,

where, in both cases, q ∈ Q(0,1].

In both systems, judgments are labelled and, of course, include counting quan-
tifiers.

Definition 9.1.2 (Judgments in Cλ→ and Cλ{}→). Judgments in Cλ→ and Cλ{}→
are of the form:

Γ ⊢X t : b↣ s,

where Γ is a set of type declarations xi : si with pairwise distinct variables, t is
a term of ΛPE (resp. Λ{}PE), b is a Boolean formula, and X is a finite set of names,
with FN(t),FN(b) ⊆ X.

The intuitive meaning of Γ ⊢X t : b↣ s is that, whenever ω ∈ (2N)X satisfies
b, πω

X(t) correctly maps programs of type Γ into programs of type s.

Typing Rules. The typing rules of Cλ{}→ are essentially obtained by decorating
those of NDiCPL0

.

Definition 9.1.3 (Typing Rules of Cλ{}→). Typing rules of Cλ{}→ are illustrated
in Figure 9.1.

Rule (∨) allows one to merge n typing derivations for the same term.1 Rules
(⊕), (µ) and ({}) are reminiscent of rules M,CI and CE of NDiCPL0

, respec-
tively; for example,

Γ ⊢ b∧ c↣ F µ(c) ≥ q
CI

Γ ⊢ b↣ CqF

Γ ⊢X∪{a} t : b∧ c↣ s µ(c) ≥ q
(µ)

⊢ ΓXνa.t : b↣ Cqs

Observe that we consider arrow types of the form Cq⃗(s ⇒ σ), so never having
a counting quantifier to the right of ⇒ (as in s ⇒ Cqσ). The reason is that
we need rule (λ) to be permutable over (µ), as required by the permuting rule
(νλ) (Figure 8.2). The typing rule of Cλ→ coincide with those of Cλ{}→ where
Cq⃗ replaced by Cq, except for the rule ({}), which is absent, and the rule (µ),
which is adapted as follows:

1In particular, when n = 0, Γ ⊢X t : ⊥↣ s holds for any term t.

150

Identity Rules

FN(b) ⊆ X
(id)

Γ, x : s ⊢X x : b↣ s

Structural Rule{
Γ ⊢X t : bi ↣ s

}
i∈{1,...,n}

b ⊨X
∨

i bi

(∨)
Γ ⊢X t : b↣ s

Plus Rule

Γ ⊢X∪{a} t : c↣ s Γ ⊢X∪{a} u : d↣ s b ⊨X (c∧xi
a) ∨ (d∧ ¬xi

a)
(⊕)

Γ ⊢X∪{a} t⊕i
a u : b↣ s

Arrow Rule

Γ, x : s ⊢X t : b↣ Cq⃗σ
(λ)

Γ ⊢X λx.t : b↣ Cq⃗(s ⇒ σ)

Γ ⊢X t : c↣ Cq⃗(s ⇒ σ) Γ ⊢X u : d↣ s b ⊨X c∧ d
(@)

Γ ⊢X tu : b↣ Cq⃗σ

Γ ⊢X t : c↣ Cq⃗(s ⇒ σ) Γ ⊢X u : d↣ Crs b ⊨X c∧ d
({})

Γ ⊢X {t}u : b↣ Crs∗⃗qσ

Counting Rule

Γ ⊢X∪{a} t : b∧ c↣ s µ(c) ≥ q
(µ)

Γ ⊢X νa.t : b↣ Cqs

where FN(b) ⊆ X, FN(c) ⊆ {a}, a ̸∈ X

Figure 9.1: Rules of Cλ{}→

Γ ⊢X∪{a} t : b∧ c↣ Cqσ µ(c) ≥ s
(µ′)

Γ ⊢X νa.t : b↣ Cqsσ

with FN(b) ⊆ X,FN(c) ⊆ {a} and a ̸∈ X
Let us now compare the two typing systems Cλ→ and Cλ{}→ by means of the

example below.

Example 9.1.1 (Typing Church Numerals). Let us consider the typing deriva-
tion in Cλ{}→ of the CbN Church numeral 2CbN = λyλx.{y}(yx) with type
Cq∗q(Cq(o⇒ o)⇒ (o⇒ o)):

151

y : Cq(o⇒ o), x : o ⊢ y : ⊤↣ Cq(o⇒ o) D
({})

y : Cq(o⇒ o), x : o ⊢ {y}(yx) : ⊤↣ Cq∗qo
(λ)

⊢ 2CbN : ⊤↣ Cq∗q(Cq(o⇒ o)⇒ (o⇒ o))

where D is the derivation,

y : Cq(o⇒ o), x : o ⊢ y : ⊤↣ Cq(o⇒ o) y : Cq(o⇒ o), x : o ⊢ x : ⊤↣ o
(@)

y : Cq(o⇒ o), x : o ⊢ yx : ⊤↣ Cqo

On the other hand, the derivation in Cλ→ of the CbV Church numeral 2CbV =
λf.{2}f with type Cq(Cq(o⇒ o)⇒ (o⇒ o))

...
y : Cq(o ⇒ o) ⊢ 2 : ⊤↣ (o ⇒ o) ⇒ (o ⇒ o) y : Cq(o ⇒ o) ⊢ y : ⊤↣ Cq(o ⇒ o)

({})
y : Cq(o ⇒ o) ⊢ {2}y : ⊤↣ Cq(o ⇒ o)

(λ)
⊢ 2CbV ↣ Cq(Cq(o ⇒ o) ⇒ (o ⇒ o))

Notice also that these systems enjoy the subject reduction property.2

Proposition 9.1.1 (Subject Reduction). If Γ ⊢X t : b ↣ s in Cλ→ (resp., in
Cλ{}→) and t _ u (resp., t _{} u), then Γ ⊢X u : b↣ s.

Normalization. Both Cλ→ and Cλ{}→ can type non-normalizable terms. For
instance, one can type terms of the form I⊕iΩ in Cλ{}→ with C1/2(o⇒ o) and in
Cλ→ with C1/2(C1o ⇒ o). The failure of normalization for typable programs
can be ascribed to the rule (∨), as shown by Theorem 9.1.1.

Notation 9.1.1. Let Γ ⊢¬∨ t : b ↣ s indicate that Γ ⊢ t : b ↣ s is derived
without using the rule (∨).

Theorem 9.1.1 (Deterministic Normalization). In both Cλ→ and Cλ{}→, if Γ ⊢¬∨
t : b↣ s, then t is strongly normalizing.

As observed before, for a term of ΛPE to have a normal form excludes the most
interesting part of the calculus, which is made of terms for which normalization
is inherently probabilistic. Similarly, the restriction to type derivations with-
out (∨) trivializes the most interesting features of Cλ→ and Cλ{}→, that is, the
possibility to estimate probabilities of termination.

2For further details, see [12].

152

9.2 Relating NDiCPL0
and Cλ{}→

In this section we show how derivations in iCPL0 translate into typing deriva-
tions in Cλ{}→.

Definition 9.2.1 (Static Translation). For any formula of iCPL0 F , we define a
corresponding type sF by letting:

sP := o

sF→Cq⃗G := Cq⃗(sF ⇒ sG)

sCqF := CqsF .

The translation of a derivation Π of Γ ⊢ b↣ F in iCPL0 into a typing derivation
DΠ of sΓ ⊢ tΠ : b↣ sF in Cλ{}→, with FN(tΠ) ⊆ FN(b) is defined by induction
on the height of Π as illustrated in Figure 9.2. and 9.3.

Notice that the rule → E translates as the CbN application tu, while the rule
CE translates as the CbV application {t}u.

Furthermore, as required by the CHC, normalization steps of iCPL0 are sim-
ulated by _{}-reductions:

Proposition 9.2.1 (Stability Under Normalization). If Π⇝ Π′, then tΠ _∗{} t
Π′ .

Proof Sketch. The normalization step (→ I/→ E) translates into β-reduction:

(λxCqsF .tΠ)νa.tΠ
′
→β tπ[νa.tΠ

′
/x].

The normalization step (CI/CE) translates into the chain of reductions:

{λsF .tΠ}νa.tΠ
′
_p{} νa.(λx

sF .tΠ)tΠ
′
→β νa.tΠ[tΠ

′
/x].

All other normalization steps translate into _p{}-reductions.

Observe that the detour conversion for (→ I/ → E) translates into CbN reduc-
tion, that is plain β-reduction: so, the “choice” νa.tΠ

′
is directly substituted,

and thus possibly duplicated. On the contrary, the normalization step (CI/CE)
translates into CbV reduction, that is (νf) followed by β-reduction: so, the gen-
erator νa is first permuted down and only tΠ

′
is substituted.

Since only (∨) introduces the constant c, from Theorem 9.1.1, we conclude
the as follows.

Corollary 9.2.1. iCPL0 is strongly normalizing.

9.3 Relating NDCbN
iCPL0

and Cλ→

In this section we define a CHC between the CbN variant of the proof system for
iCPL0, namely NDCbN

iCPL0
, and the type system Cλ→ above.

153

ID

ID
Γ, F ⊢ b↣ F

⇝

(id)
sΓ, x : sF ⊢ x : b↣ sF

⊥R

b ⊨ ⊥ ⊥R
Γ ⊢ b↣ F

⇝
b ⊨ ⊥

(∨)
sΓ,⊢ c : b↣ sF

where c is a special constant to translate (⊥).

M

Π

Γ ⊢ c↣ F

Π′

Γ ⊢ d↣ F b ⊨ (c∧xi
a) ∨ (d∧ ¬xi

a)
M

Γ ⊢ b↣ F
⇝

DΠ

sΓ ⊢ tΠ : c↣ sF

DΠ′

sΓ ⊢ tΠ
′
: d↣ sF b ⊨ (c∧xi

a) ∨ (d∧ ¬xi
a)

(⊕)
sΓ ⊢ tΠ ⊕i

a tΠ
′
: b↣ sF

→ E

Π

Γ ⊢ b↣ (F ↣ Cq⃗G)

Π′

Γ ⊢ b↣ F
→ E

Γ ⊢ b↣ Cq⃗G

⇝

DΠ

sΓ ⊢ tΠ : b↣ Cq⃗(sF → sG)

DΠ′

sΓ ⊢ tΠ
′
: b↣ sF

(@)
sΓ ⊢ tΠtΠ

′
: b↣ sCq⃗G

Figure 9.2: Translation Π⇝ DΠ from NDiCPL to Cλ{}→

Head Context. The translation from NDCbN
iCPL0

to Cλ→ relies on properties of
head context in ΛPE.

Definition 9.3.1 (Head Context). Head contexts H[] are defined by the grammar
below:

H[] := [] | λx.H | H[]u.

The fundamental property of head contexts is that they naturally behave as CbV
functions, due to the following Lemma 9.3.1.

154

→ I

Π

Γ, F ⊢ b↣ G
→ I

Γ ⊢ b↣ (F ↣ G)

⇝

DΠ

sΓ, x : sF ⊢ tΠ : b↣ sG
(λ)

sΓ ⊢ λx.tΠ : b↣ sF→G

CI

Π

Γ ⊢ b∧ c↣ F µ(JcK) ≥ q
CI

Γ ⊢ b↣ CqF

⇝
DΠ

sΓ ⊢ tΠ : b∧ c↣ sF µ(c) ≥ q
(µ)

sΓ ⊢ νa.tΠ : b↣ sCqF

CE

Π

Γ ⊢ b↣ CqF

Π′

Γ, F ⊢ b↣ Cs⃗G
CE

Γ ⊢ b↣ CqsCs⃗G

⇝

DΠ

sΓ ⊢ tΠ : b↣ CqsF

DΠ′

sΓ, x : sF ⊢ tΠ
′
: b↣ Cs⃗

(λ)
sΓ ⊢ λx.tΠ

′
: b↣ Cs⃗(sF ⇒ sG)

({})
sΓ ⊢ {λx.tΠ′}tΠ : b↣ sCqsCs⃗G

Figure 9.3: Translation Π⇝ DΠ from NDiCPL to Cλ{}→ (continuation)

Lemma 9.3.1. For any head context H[] and term t,

H[νa.t] _∗p νa.H[t].

Proof. The proof is by induction on the structure of H[]:

• H[] = []. Then, the claim is immediate.

• H[] = λx.H′[]. Then,

H[νa.t] = λx.H′[νa.t]
IH

_∗p_p νa.λx.H′[t] = νa.H[t].

• H[] = H′[]t. Then,

H[νa.t] = H′[νa.t]u
IH

_∗p (νa.H′[t])u _p νa.H′[t]u = νa.H[t].

155

Otherwise said, whenever t is a function of the form λx.H[x] for some head
context H[], CbN and CbV application of t coincide, since t(νa.u) and νa.tu
have the same normal form.

Lemma 9.3.2. For any head context H, the following rule of head-substitution is
derivable in Cλ→:

Γ ⊢ t : b↣ Cqsσ x : Cq σ,Γ ⊢ H[x] : b↣ Crτ
(hs)

Γ ⊢ H[t] : b↣ Crsτ

Proof. The proof is by induction on H[]:

• H[] = []. Then, q = r and the claim is immediate.

• H[] = λy.H′[]. Then, τ = t⇒ τ ′ and x : Cqσ,Γ, y : t ⊢ H′[x] : b↣ Cqτ ′.
Then, by IH, we deduce Γ, y : t ⊢ H′[t] : b ↣ Crsτ ′ and conclude Γ ⊢
H[t] : b↣ Crsτ .

• H[] = H′[]u. Then, x : Cqσ,Γ ⊢ H′[x] : b↣ Cr(t ⇒ τ) and x : Cqσ,Γ ⊢
u : b↣ t. So, by IH, we deduce Γ ⊢ H′[t] : b↣ Crs(t⇒ τ) and conclude
Γ ⊢ H[t] : b↣ Crs τ .

Static and Dynamic Translation. It is now possible to show how derivations
in NDCbN

iCPL0
translate into type derivations in Cλ→.

Definition 9.3.2 (Static Translation). Any formula of iCPL0 F , is associated
with a non-quantified type σF and a positive real |F | ∈ (0, 1] ∩ Q of Cλ→ as
follows:

σP := o

σF→G := (C|F |σF)⇒ σG

σCqF := σF

|o| := 1

|F → G| := |G|
|CqF | := q · |F |.

Then, let:
sF := C|F |σF .

Observe that sCqF = Cq·|F |σF .
The translation of a derivation Π of Φ;Γ ⊢ b↣ F into a typing derivation

DΠ of sΦ, sΓ ⊢ tΠ : b↣ sF in Cλ→ is illustrated in Figure 9.3 and 9.5, where
we exploit the fact that if Φ = {F} is non-empty, then tΠ = tΠ[x : sF] is a head
context (as it can be checked by induction on the construction).3

3The case of the rule (C×) is omitted as it follows immediately from the IH, since sCqCsF =
sCqsF . Here, the stability of the translation under normalization is easily checked using
Lemma 9.3.1.

156

IDCbN

IDCbN

; Γ, F ⊢ b↣ F

⇝

(id)
sΓ, y : sF ⊢ y : b↣ sF

IDlin

IDlin
F ; Γ ⊢ b↣ F

⇝
(id)

x : sF , sΓ ⊢ x : b↣ sF

⊥RCbN

b ⊨ ⊥
⊥RCbN

; Γ ⊢ ⊥↣ F

⇝

b ⊨ ⊥ (∨)
sΓ ⊢ c : b↣ sF

⊨

Π

;Γ ⊢ b↣ F b ⊨ c
⊨

; Γ ⊢ c↣ F

⇝

DΠ

sΓ ⊢ tΠ : c↣ sF b ⊨ c
(⊨)

sΓ ⊢ tΠ : b↣ sF

MCbN

Π

;Γ ⊢ c↣ F

Π′

; Γ ⊢ d↣ F b ⊨ (c∧xi
a) ∨ (d∧ ¬xi

a)
MCbN

; Γ ⊢ b↣ F

⇝

DΠ

sΓ ⊢ tΠ : c↣ F

DΠ′

sΓ ⊢ tΠ
′
: e↣ F b ⊨ (c∧xi

a) ∨ (e∧ ¬xi
a) (⊕)

sΓ ⊢ tΠ ⊕i
a tΠ

′
: b↣ sF

→ ICbN

Θ;Γ, F ⊢ b↣ G
→ ICbN

Θ;Γ, b↣ (F → G)

⇝

DΠ

sΦ, sΓ, y : sF ⊢ tΠ : b↣ C|G|σG
(λ)

sΦ, sΓ ⊢ λy.tΠ : b↣ C|G|(sF ⇒ σG)

Figure 9.4: Translation Π⇝ DΠ from NDCbN
iCPL to Cλ→ (continuation)

157

→ ECbN

Π

Φ,Γ ⊢ b↣ (F → G)

Σ

Φ; Γ ⊢ b↣ F
→ ECbN

Φ,Γ ⊢ b↣ G

⇝

DΠ

sΦ, sΓ ⊢ tΠ : b↣ C|G|(sF → sG)

DΣ

sΦ, sΓ ⊢ tΣ : b↣ sF
(@)

sΦ; sΓ ⊢ tΠtΣ : b↣ C|G|σG

CICbN

Π

;Γ ⊢ b∧ c↣ F µ(JcK) ≥ q
CICbN

; Γ ⊢ b↣ CqF

⇝

DΠ

sΓ ⊢ tΠ : b∧ c↣ sF µ(c) ≥ q
(µ)

sΓ ⊢ νa.tΠ : b↣ sCqF

CECbN

Π

Φ;Γ ⊢ b↣ CqF

Σ

F ; Γ ⊢ b↣ G
CE

Φ;Γ ⊢ b↣ CqG

⇝

DΠ

sΦ, sΓ ⊢ tΠ : b↣ Cq·|F |σF

DΣ

x : C|F |σF , sΓ ⊢ tΣ[x] : b↣ C|G|σG
(hs)

sΦ, sΓ ⊢ tΣ[tΠ] : b↣ Cq·|G|σG

Figure 9.5: Translation Π⇝ DΠ from NDCbN
iCPL to Cλ→ (continuation)

158

Chapter 10

From Type Soundness to Type
Completeness

In this chapter we show that derivations in Cλ→ and Cλ{}→ provide sound ap-
proximations of HNV(t) and NF(t). In order to achieve completeness, in Sec-
tion 10.2, we introduce an extension of Cλ→ with intersection types, called
Cλ→,∩. This type system is shown expressive enough to capture both determin-
istic and probabilistic notions of termination for ΛPE. We conclude by comparing
our systems and result with the ones presented in the literature in Section 10.3.

10.1 From Types to Probability

As seen, if a term t has type C1/2(o ⇒ o), then t has one chance out of two of
yielding a “correct” program for o ⇒ o. The result below makes this intuition
precise, by showing that the probabilities derived in Cλ→ and Cλ{}→ are lower
bounds for the function HNV_(t), that is for the actual probability of finding a
head normalizable term in the distribution Dt.1

Theorem 10.1.1. i. If ⊢Cλ→ t : ⊥↣ Cqσ, then HNV_(t) ≥ q.

ii. If ⊢
Cλ
{}
→

t : ⊤↣ Cq1∗···∗qnσ, then HNV_(t) ≥
∏n

i=1 qi.

Yet, what about reduction to normal form, namely the function NF_(t)? A
result like Theorem 10.1.1 cannot hold in this case, as shown by the example
below.

Example 10.1.1. Consider the term:

t = λy.y(I⊕i Ω).

While NF(t) = 1
2 , Cλ{}→ types t with s = C1(C1(C1/2σ ⇒ σ) ⇒ σ), with

σ = o⇒ o. Then, type s contains the “unbalanced” assumption C1(C1/2σ ⇒ σ)

1For further details and the proof of Theorem 10.1.1, see [11, 12].

159

– corresponding in logical terms to the formula C1/2F → C1F – that is, exploits
the assumption of the existence of a function turning a 1

2 -correct input into a
1-correct output. Notice that such a function f can only be one that erases its
input, and these are the only functions such that tf can reduce to a normal form

Nevertheless, soundness with respect to NF(t) can be proved for Cλ→, by re-
stricting to types not containing “unbalanced” assumptions, that is to types cor-
responding to programs not increasing probabilities.

Definition 10.1.1. For any type s of Cλ→ of the form Cqσ, let ⌈s⌉ = q. A
type Cq(s1 ⇒ . . . ⇒ si ⇒ o) of Cλ→ is balanced if all si are balanced and
q ≤

∏n
i=1⌈si⌉.

Theorem 10.1.2. If ⊢ t : ⊤ ↣ s is derivable in Cλ→, where s is balanced, then
NF_(t) ≥ ⌈s⌉.

Both Theorem 10.1.1 and 10.1.2 are proved by adapting the standard technique
of reducibility predicates to the quantitative notion of probabilistic normal form.2

10.2 From Probability to (Intersection) Types

To achieve a type-theoretic characterization of HNV_(t) and NF_(t), we intro-
duce an extension of Cλ→ with intersection types, called Cλ→,∩.

Adding Intersection Types. As for Cλ→, types are of the form s = Cqσ, but
the grammar for σ is richer than that of Definition 9.1.1.

Definition 10.2.1 (Types for Cλ→,∩). The grammar for types of Cλ→,∩ is as
follows:

σ := o | n | hn | M⇒ σ

M := [s, . . . , s]

s := Cqσ,

where [a1, . . . , an] denotes a finite set.

Observe that M intuitively stands for a finite intersection of types, and the
new ground types n and hn correspond to the types of normalizable and head-
normalizable programs. We also introduce a preorder σ ⪯ τ over types by
α ⪯ α, for α = o, n, hn, Cqσ ⪯ Cpτ if q ≤ p and σ ⪯ τ , and (M⇒ σ) ⪯ (N⇒ τ)
if σ ⪯ τ and N ⪯∗ M, where [s1, . . . , sn] ⪯∗ [t1, . . . , tm] holds if there is an in-
jective function f : {1, . . . ,m} 7→ {1, . . . , n} such that sf(i) ⪯ ti.

2For further details, see [12].

160

Typing Rules of Cλ→,∩. Type judgments are defined as expected.

Definition 10.2.2 (Judgments of Cλ→,∩). A type judgment of Cλ→,∩ is of the
form Γ ⊢X t : b↣ s, where Γ is made of declarations of the form xi : Mi.

We also introduce typing rules for Cλ→,∩.

Definition 10.2.3 (Typing Rules of Cλ→,∩). Typing rules of Cλ→,∩ are illus-
trated in Figure 10.1, except for (∨)- and (⊕)-rules which are omitted. They are
the same as those for Cλ{}→.

Identity Rules

exists i.si ⪯ t FN(b) ⊆ X
(id⪯)

Γ, x : [s1, . . . , sn] ⊢X x : b↣ t

Ground Types Rules
Γ ⊢X t : b↣ Cqσ

(hn)
Γ ⊢X t : b↣ Cqhn

Γ ⊢X t : b↣ Cqσ σ safe
(n)

Γ ⊢X t : b↣ Cqn
Arrow Rules

Γ, x : M ⊢X t : b↣ Cqσ
(λ)

Γ ⊢X λx.t : b↣ Cq(M ⇒ σ)

Γ ⊢X t : b↣ Cq(M ⇒ σ)
{
Γ ⊢X u : b↣ si

}
i=1,...,n

(@∩)
Γ ⊢X tu : b↣ Cqσ

M = [s1, . . . , sn]

Counting Rules

{
Γ ⊢X∪{a} t : b∧ di ↣ Cqiσ

}
i=1,...,n

µ(di) ≥ pi
(µΣ)

Γ ⊢X νa.t : b↣ C
∑

i qipiσ

Figure 10.1: Typing Rules of Cλ→,∩

In the rule (µΣ) it is assumed that a does not occur in b, is the only name in the
di, and that for i ̸= j, di ∧ dj ⊨ ⊥. The two rules (hn) and (n) are justified
by Proposition 10.2.2 and Theorem 10.2.1 below. As rule (n) must warrant a
bound on normal forms, following Theorem 10.1.2, σ has to be safe, that is
balanced3 and {[], hn}-free. The rule (@∩) is a standard extension of rule (@)
of Cλ→ to finite intersections. The counting rule (µΣ) requires some discussion.

3Definition 10.1.1 extends to the types of Cλ→,∩ by letting ⌈hn⌉ = ⌈[]⌉ = 0, ⌈n⌉ = 1 and
⌈[s1, . . . , sn+1]⌉ = max{⌈si⌉}.

161

The rule admits n + 1 major premisses expressing typings for t, which depend
on pairwise disjoint events (the Boolean formulae di). This is needed to cope
with situations like the following one. Let

t[a, b] =
((

I ⊕i
b Ω

)
⊕0

b Ω
)
⊕0

a

(
Ω⊕0

b I
)
,

t[a, b] can be given type σ = C1(C1o ⇒ o) under either of the two disjoint
Boolean constraints d = x0

a ∧ (x0
b ∧ xi

b) and d2 = ¬x0
a ∧ ¬x0

b . Notice that
the term νa.νb.t[a, b] has probability µ(x0

a)µ(x
0
b ∧ x1

b) + µ(¬x0
a)µ(¬x0

b) = 1
2 ·

1
4 + 1

2 ·
1
2 = 3

8 of yielding a head normal value. Yet, in Cλ→, the best we
can achieve is ⊢ νa.νb.t[a, b] : ⊤ ↣ C1/4σ, that is a probability estimation of
1
4 < 3

8 . Indeed, the rule (µ′) forces us to approximate µ(x0
b ∧x1

b) and µ(¬x1
b) to

a common lower bound – namely 1
4 – in order to apply a (∨)-rule as illustrated

in Figure 10.2.a. Instead, using (µΣ) we can reach the actual probability 3
8 , as

illustrated in Figure 10.2.b. Observe that, without intersection types, (µΣ) is
not sufficient to achieve completeness. For example, given a term like λx.xx, it
normalizes with probability 1 (but a system without intersection types assigns
only probability 0 to it).

Achieving Completeness. Thanks to the rule (µΣ), the generalized counting
rule (µ∗),

Γ ⊢{a1,...,an} t : b↣ Cqσ (µ∗)
Γ ⊢∅ νa1.νan.t : ⊤↣ Cq·µ(b)σ

becomes admissible in Cλ→,∩. This rule – together with the standard result that
both subject reduction and subject expansion hold for intersection types – plays
an essential role in the proof of completeness.

Proposition 10.2.1 (Subject Reduction and Subject Expansion). If Γ ⊢X t :
b↣ s and either t _ u or u _ t, then Γ ⊢X t : b↣ s.

Remarkably, typing in Cλ→,∩ captures both deterministic and probabilistic
properties of terms. First, we show that types hn and n capture deterministic
termination.

Proposition 10.2.2 (Deterministic Completeness). For any closed term t,

i. t is head-normalizable when ⊢¬∨ t : ⊤↣ C1hn

ii. t is normalizable when ⊢¬∨ t : ⊤↣ C1n

iii. t is strongly normalizable when ⊢¬∨ t : ⊤ ↣ C1n and all types in the
derivation are safe.

Proof Sketch. Using standard arguments for intersection types we show that ⊢¬∨
t : ⊤↣ C1hn holds for any head-normal t. The first half of (i.) is deduced using
Proposition 10.2.1. The second half follows from a normalization argument
similar to that of Theorem 9.1.1. Cases (ii.) and (iii.) are similar.

162

(a)

D′ D′′
(∨)

Γ ⊢{a} νb.t[a, b] : x0
a ∨ ¬x0

a ↣ C1/4σ µ(x0
a ∨ ¬x0

a) ≥ 1
(µ′)

Γ ⊢∅ νa.νb.t[a, b] : ⊤↣ C1/4σ

D′

Γ ⊢{a,b} t[a, b] : x0
a ∧ (x0

b ∧x1
b)↣ C1σ µ(x0

b ∧x1
b) ≥

1
4

(µ′)
Γ ⊢{a} νb.t[a, b] : x0

a ↣ C1/4σ

D′′

Γ ⊢{a,b} t[a, b] : ¬x0
a ∧ ¬x0

b ↣ C1σ µ(¬x0
b) ≥

1
4

(µ′)
Γ ⊢{a} νb.t[a, b] : ¬x0

a ↣ C1/4σ

(b)

D′ D′′ µ(x0
a), µ(¬x0

a) ≥ 1
2 (µΣ)

Γ ⊢∅ νa.νb.t[a, b] : ⊤↣ C1/4·1/2+1/2·1/2σ

D′

Γ ⊢{a,b} t[a, b] : x0
a ∧ (x0

b ∧x1
b)↣ C1σ µ(x0

b ∧x1
b) ≥

1
4

(µΣ)
Γ ⊢{a} νb.t[a, b] : x0

a ↣ C1/4σ

D′′

Γ ⊢{a,b} t[a, b] : ¬x0
a ∧ ¬x0

b ↣ C1σ µ(¬x0
b) ≥

1
2

(µΣ)
Γ ⊢{a} νb.t[a, b] : ¬x0

a ↣ C1/2σ

Figure 10.2: Comparing Probabilities Derived with the Rules (µ′) and (µΣ)

The probabilistic normalization Theorems 10.1.1 and Theorem 10.1.2 ex-
tend smoothly to Cλ→,∩. This ensures that if t has type Cqhn (resp., Cqn),
then HNV_(t) ≥ q (resp., NF_(t) ≥ q). Conversely, HNV_(t) and NF_(t) can
be bounded by means of derivations in Cλ→,∩, in the following way.

163

Theorem 10.2.1 (Probabilistic Completeness). For any closed term t,

HNV_(t) = supp{q | ⊢ t : ⊤↣ Cqhn}
NF_(t) = supp{q | ⊢ t : ⊤↣ Cqn}.

Proof Sketch. Without loss of generality, assume t = νa1.νak.t
′. For any

u ∈ HNV such that Dt(u) > 0, we deduce ⊢ u : ⊤ ↣ hn. The sequence
of probabilistic choices leading to u is finite, and thus captured by a Boolean
formula bt→u. Using subject reduction/expansion we deduce ⊢ t′ : bt→u ↣ hn.
Hence, for any finite number of head normal forms t1, . . . , tn such that Dt(ui) >
0, we deduce ⊢ t′ : bt→ui ↣ hn. Using (∨) and the generalized counting rule
(µ∗) we deduce ⊢ t : ⊤ ↣ Cphn, where p =

∑n
i=1 µ(bt→ui) = µ(

∨n
i=1 bt↣ui).

The argument for NF(t) is similar.

10.3 Related Works

In our opinion, this proposal for a probabilistic CHC and our counting-type
approach to capture probabilistic termination are new. On the logical side, in-
tuitionistic iCPL is clearly inspired by our counting propositional logic CPL. As
said, extensive studies on logical systems enabling – in various ways and for
different purposes – some forms of probabilistic reasoning [158, 17, 81, 108,
137, 140, 87] have appeared in the literature, but not many of them tied logic
to computational aspects.4 Yet, to the best of our knowledge, these operators
were not defined within an intuitionistic logical system.

On the other hand, intuitionistic modal logic has been related in the Curry
and Howard sense to monadic extensions of the λ-calculus [1, 23, 49, 65, 234].
In these cases, modal operators are linked with qualitative properties of pro-
grams – typically, tracing algebraic effects – as opposed to the quantitative prop-
erties expressed by counting quantifiers. Observe that the Kripke-style struc-
tures we presented in Chapter 7 can be related to standard IML ones.5 More-
over, quantitative semantics arising from linear logic have been largely used to
study probabilistic λ-calculi, [54, 73, 77]. Notably, probabilistic coherence spaces
provide a fully abstract model of probabilistic PCF, [73, 75, 93]. While we are
not aware of correspondence relating probabilistic programs with proofs in lin-
ear logic, it seems that the proof-theory of counting quantifiers could somehow
be related to that of bounded exponentials [58, 94] and, more generally, to the
theory of graded monads and co-monads [32, 88, 122, 123].

4A partial exception is offered by Wagner’s counting operator [226] and Kontinen’s quanti-
fiers [134], which have indeed inspired our work.

5Indeed, these are based on the set W with two pre-order relations – ≤ and R – enjoying a
suitable “diamond” property R;≤ ⊆ ≤;R. We obtain a similar structure by considering worlds
to be pairs w,ω made of a world and an outcome from the Cantor space, with (w,ω) ⪯ (w′, ω),
whenever w ≤ w′, and (w,ω)R(w,ω+ω′). The clause for CqF can then be seen as a quantitative
variant of the corresponding clause for ⋄F . Actually, this is not very surprising, given the similarity
between the introduction and elimination rules for Cq and those for ⋄. For further details, see, for
example, [1, 23].

164

On the computational side, probabilistic λ-calculi were developed starting
from the pioneering work by Saheb-Djaromi [180], where the syntax and (op-
erational) semantics of a calculus with binary probabilistic choice was intro-
duced for the first time. Denotational models for these calculi were presented,
for instance, in [119, 120, 105], while operational semantics can be found
in [63]. Furthermore, quantitative semantics arising from linear logic have
been largely used in the study of λ-calculi with choice operators, as for example
in [54, 73, 77], and probabilistic coherence spaces [75, 202] have been shown
to provide a fully abstract model of probabilistic PCF. Remarkably, probabilistic
λ-calculi are often (implicitly) associated with either CbN or CbV strategies.6 As
said, our calculus ΛPE is strongly inspired by ΛPE [57] and is reminiscent of cal-
culi with generic effects [172, 194]. The main difference between our approach
and the one developed in [57] concerns type systems, as ΛPE is associated with
simple types.7

Generally speaking, in the last decades, several type systems for probabilis-
tic λ-calculi were introduced, for instance in the context of size [56], intersec-
tion [31], and refinement type disciplines [15]. Type systems for probabilistic
λ-calculi focused on capturing genuinely probabilistic properties of normaliza-
tion, have been recently introduced as well. Among these we can certainly
mention systems based on type distributions [56] – where a single derivation
assigns several types to a term, each with some probability – and systems based
on oracle intersection types [31] – where type derivations capture single evalu-
ations as determined by an oracle. One can see our type systems as sitting in
between these two approaches. Like the former (and unlike the latter), typing
derivations can capture a finite number of different evaluations, although with-
out using distributions of types. Similarly to the latter ones, our typings reflect
the dependency of evaluation on oracles, although the latter are manipulated
in an aggregate way by means of Boolean constraints. Another noteworthy
work in this area is [229], where dependent type theory is enriched with a
probabilistic choice operator, yielding a calculus with both term and type dis-
tributions. Interestingly, a fragment of this system enjoys a sort of CHC with
so-called Markov Logic Networks [178], a class of probabilistic graphical models
specified by means of first-order logic formulae.

6Some remarkable exceptions are [54, 73, 77]. Observe that differently from Λ!
⊕ [77] (in which

the operator ! is both a marker for duplicity and a checkpoint for any “fired” probabilistic choice),
in ΛPE and ΛPE duplication is not controlled and checkpoints are used.

7In [57], typings ensure strong normalization, so these systems do not provide information about
probability of termination for non-normalizable terms.

165

Part III

Randomized Bounded
Arithmetic

166

Chapter 11

Characterizing Probabilistic
Complexity

In this part of the thesis, we introduce a minimal extension of first-order PA,
via second-order measure quantifiers. These quantifiers are strongly inspired by
counting ones and associated with a quantitative interpretation. We show that
this language is capable of formalizing simple results from probability theory
which cannot be expressed in standard arithmetic and of representing every re-
cursive random function. We also introduce a new randomized bounded theory
and prove that the class of formulae which are Σb

1-representable in it precisely
corresponds to that of poly-time random functions. This result, together with
the notion of measure quantifier, is at the basis of our arithmetical character-
ization of relevant probabilistic complexity classes, like BPP, so generalizing
classic results by Buss [34] and Ferreira [82] to the randomized realm.

11.1 On Arithmetic and (Randomized) Computa-
tion

As anticipated, interactions between first-order arithmetic and the theory of
computation are plentiful and deep. The language of arithmetic is able to
express interesting properties of algorithms and several problems in compu-
tation theory can be investigated in the framework of arithmetic. For example,
proof systems for arithmetic can be used to prove termination of certain classes
of algorithms [198] or to establish complexity bounds [45, 34], while higher-
order programming languages capture the computational content of arithmeti-
cal proofs. These insightful results have then been pushed further, giving rise to
logical and type theories of various strength, at the basis of which lies the tight
connection between the concept of totality (of functions) and termination (of
algorithms).

Yet, in the probabilistic setting, behavioral properties – like termination –

167

have a quantitative nature – any computation terminates with a given probabil-
ity. In this Part, we want to develop a logic to study such quantitative properties
within a logical system:

PA
properties of computation

=
x

properties of randomized computation

Of course, logics dealing with set-theory and second-order logic can be ex-
pressive enough to represent measure theory and to talk about randomized
computation [194]. Yet, we want to define a minimal extension of first-order
arithmetic capable of describing probabilistic computation.

To do so, we take inspiration from the notion of counting quantifiers as
defined in Chapter 3. We introduce a system extending first-order PA with mea-
sure quantifiers and associate it with a quantitative, measure-theoretic seman-
tics. As CPL0 and CPL, this language offers a very natural model for stochastic
events, but its expressive power is far more extended. Indeed, it allows us to
formally express (and analyze) basic results from probability theory – for in-
stance, the infinite monkey theorem or the random walk theorem – which are
not expressible in PA. This new language is at the basis of our definition of a
randomized bounded theory á la Buss, and of our arithmetical characterization
of probabilistic complexity classes. Indeed, we show that the class of formu-
lae which are Σb

1-representable in our bounded theory precisely captures the
notion of poly-time random functions. Then, by internalizing the error-bound
check within our logical system, we provide an arithmetical characterization of
semantic classes, like BPP.

11.2 A Brief Overview of Bounded Arithmetic

Arithmetic theories are related to computable functions in several ways. In
the 1970s-80s, also fragments of PA started to receive attention. Indeed, these
sub-theories not only support a satisfactory axiomatization – somehow escaping
proof-theoretical drawbacks coming from incompleteness [100] – but are also
deeply connected with interesting complexity classes [166, 45]. In particular, in
1986 Buss introduced a bounded theory of arithmetic able to characterize the
class of poly-time computable functions [34]. Inspired by this work, also Ferreira
defined a theory equivalent to the corresponding one by Buss, but expressed in
a word language, and corresponding to the class of poly-time functions over
strings [83].

11.2.1 Sub-Theories of Arithmetic and Complexity

Very Weak, Weak and Strong Fragments. Sub-theories of PA have been ob-
taining increasing interest for their intimate connection with complexity classes.
Buss divided them into three main categories: strong, weak and very weak frag-
ments [35]. Very weak theories do not admit any induction axioms. Among
them there is well-known Robinson arithmetic Q, introduced in the 1950s by

168

1900 1925 1950 1975 2000

Pe
an

o Arit
hm

eti
c (1

88
9)

Rob
in

so
n Q

(1
95

0)

Pa
rik

h’s
I∆

0
(1

97
1)

Bus
s’

Bou
nd

ed
Arit

hm
eti

c (1
98

6)

Fe
rre

ira
’s
Σ
b
1
-N

IA
(1

98
8/

90
)

Figure 11.1: From Peano to Bounded Arithmetic

Robinson, Tarski, and Mostowski [179, 204]. Weak theories are defined by a lan-
guage which extends that of PA by additional symbols of specific growth rate
(sometimes together with explicit bounded quantifiers) and by limited induc-
tion schemas. In strong theories the language is enlarged so to include symbols
for all primitive recursive functions.1

Bounded Theories. In particular, bounded theories of arithmetic are weak
fragments of PA, typically including bounded quantifiers and in which induc-
tion is limited. Buss defined a bounded arithmetic as a theory axiomatized by
Π1-formulae [35]. The potential strength of such theories and their ability to
characterize complexity, depends on the (sub-exponential) growth rate of the
function symbols in the language. The study of BA was initiated by Parikh in
1971 [166], who introduced I∆0 to give an appropriate proof theory to linear
bounded automata, namely to predicates computable by linear space-bounded
TMs. Then, other bounded theories were introduced by Buss [34] and exten-
sively studied.

11.2.2 Buss’ Bounded Arithmetic

Buss’ Ph.D. thesis [34] provided a groundbreaking result in the study of the
arithmetical characterization of complexity classes. He started by consider-
ing the definability of a function in a theory: an arithmetic theory T defines
a function f when there is a formula F in the language of T such that f satis-
fies F (x, f(x)) for any x and T ⊢ (∀x)(∃!y)F (x, y). The constructive proof of
(∀x)(∃y)F (x, y) also provides an algorithm to compute f . So, the given proce-
dure is effectively computable but not necessarily feasible, that is computable in
polynomial time. Due to his bounded theories, Buss was able to arithmetically

1Examples of strong theories are IΣn, that is Q≤ (the conservative extension of Q with x ≤ y ↔
(∃z)(x+ z = y)) plus Σn-IND, and I∆ obtained adding ∆0-IND to Q≤.

169

characterize functions computable with given resource bound, thus to charac-
terize interesting complexity classes.

PT CA

Σb
1-NIA FP

Figure 11.2: Ferreira’s Proof Schema [82]

Language. The language of Buss’ fragments extends that of PA with three
special predicate symbols: ⌞ 12 ·⌟ which divides for two and rounds down the
argument, | · | returning the length of the binary representation the argument,
and Nelson’s function #, such that x#y = 2|x|·|y|. In the language of BA,
standard quantifiers are called unbounded, while quantifiers of the form (∀x ≤ t)
or (∃x ≤ t) are called bounded and are such that (∀x ≤ t)F is an shorthand of
(∀x)(x ≤ t → F), and (∃x)F abbreviates (∃x)(x ≤ t ∧ F).2 A special kind of
bounded quantifiers are sharply bounded ones, namely (∀x ≤ |t|) and (∃x ≤ |t|).
Bounded formulae (converted into PNF) are classified in a hierarchy of classes,
Σb

k and Πb
k, by counting alternations of bounded quantifiers (ignoring sharply

ones).

Axiomatization. Bounded theories are then defined by adding 32 basic ax-
ioms [34, pp. 30-31] to the ones for PA and restricting the induction schema.
Buss himself noticed that there is a certain amount of flexibility in the choice
of basic axioms and the ones he introduced in his thesis are not optimal [35, p.
101]. Alternative sets were proposed for example by Cook and Urquhart [46]
and Buss and Ignjatović [36].3 In particular, Buss introduced the class Si

2 as
axiomatized by basic axioms plus Σb

i -PIND:

F (x) ∧ (∀x)(F (⌞
1

2
x⌟)→ F (x))→ (∀x)F (x),

where F is a Σb
i -formula, while Ti

2 are defined by the same set of basic axioms
together with the induction schema Σb

i -IND,

F (0) ∧ (∀x)(F (x)→ F (S(x))→ (∀x)F (x),

where F is a Σb
i -formula.

2Otherwise, the syntax can be expanded so to directly include them. In this case the calculus
must be extended accordingly.

3For further details, see [35]

170

Relating S1
2 and poly-time computable functions. The main result of Buss’

Thesis is the proof that these arithmetic theories actually provide a logical char-
acterization of complexity classes in PH. In particular, he proved that poly-time
computable functions are Σb

1-definable in S1
2 [34, Cor. 8, p. 99]. On the one

hand, a function is poly-time computable when there is a TM M and a polyno-
mial p(n) such that M computes the given function and runs in time smaller
or equal than p(n), for any input of length n. In 1964, this notion was made
precise by Cobham in the form of a function algebra [42], on which Buss’ proof
relies.4 On the other, a function is Σb

1-definable in S1
2 when there is a Σb

1-formula
F such that conditions above hold. The link between complexity of computing
and quantified formulae is then established in two main steps:

Σb
1-representability in S1

2 [34]Class FP [42]

witness theorem

bootstrapping

That every poly-time function is Σb
1-definable in S1

2 is proved via so-called boot-
strapping, that is a series of coding functions was introduced. The proof of the
converse direction is more difficult. Buss presented a sequent calculus, extend-
ing LK with rules for limited induction and bounded quantifiers. Then, due to
cut elimination, he proved the “witness” theorem, showing that proofs in this
calculus contain explicit algorithms to compute the output of the function from
the input in polynomial time.

11.2.3 Ferreira’s Bounded Arithmetic

In [82, 83], Ferreira introduced a “(supposedly) more natural” [83, p. 2]
bounded theory defined in a word language, instead of the standard language
of arithmetic LN. This arithmetic characterizes poly-time computable functions
– this time defined over strings – and, indeed, can interpret Buss’ S1

2 [84]. For
clarity’s sake, we sum up its salient aspects following notation and axioma-
tization by [84], which is slightly different from [82, 83] in the surface but
essentially equivalent.

The Function Algebra PT CA. Ferreira defined an algebra of functions over
strings PT CA (poly-time computable arithmetic) analogous to Cobham’s one
but made of:

• initial functions:

– EF (x) = ∅
– Pn,i

F (x1, . . . , xn) = xi, with 1 ≤ i ≤ n

– Cb
F (x) = xb, where if b = 1, then b = 1 and if b = 0, then b = 0

4Buss also noticed that a proof “directly” based on the machine definition is also possible.

171

–

QF (x, y) = 1↔ x ⊆ y

QF (x, y) = 0 ∨QF (x, y) = 1

where ∅ denotes the empty string, for any two strings x and y, xy
is, as usual, (a shorthand for) their concatenation, and ⊆ indicates
the subword relation between strings, i.e. given two strings x and y,
x ⊆ y expresses that x is an initial or prefix substring of y.

• functions obtained by:

– composition, i.e. f is obtained from g, h1, . . . , hk as f = (x1, . . . , xn) =
g(h1(x1, . . . , xn), . . . , hk(x1, . . . , xn))

– bounded iteration, i.e. f is obtained from g, h0, h1 as,

f(x1, . . . , xn, ∅) = g(x1, . . . , xn)

f(x1, . . . , xn, yb) = hb(x1, . . . , xn, y, f(x1, . . . , xn, y))|t(x1,...,xn,y)

where t is a term called bound and ·|· denote truncation. Then, the
function f is said to be defined from g, h0, h1 by bounded iteration,
with bound t.

The Word Language LW. As anticipated, Ferreira’s theory is defined in a word
language LW, which is basically a first-order language with equality endowed
with three constants ϵ, 0, 1, two function symbols ⌢,× and a relation symbol
⊆.5 Interpretation is as predictable: ϵ denotes the empty word, 0 and 1 the
bits 0 and 1 (resp.), ⌢ word concatenation, × the binary product (i.e. x ×
y = x ⌢ . . . ⌢ x, |y|-times), and ⊆ the initial subword relation. Bounded
quantifiers in LW are of the form ∀x ⪯ t and ∃x ⪯ t (with t term), where
x ⪯ t intuitively means that the length of x is smaller or equal than that of t.
Bounded-quantified formulae (∀x ⪯ t)F and (∃x ⪯ t)F abbreviate respectively
(∀x)(1× x ⊆ 1× t → F) and (∃x)(1× x ⊆ 1× t ∧ F). Subword quantifiers are
of the form ∀x ⊆∗ t and ∃x ⊆∗ t, so defined that (∀x ⊆∗ t)F is a shorthand for
(∀x)(∃w ⊆ t(wx ⊆ t)→ F) and (∃x ⊆∗ t)F for (∃x)(∃w ⊆ t(wx ⊆ t) ∧ F).

The Theory Σb
1-NIA. Then, Σb

1-NIA is a first-order theory in LW defined by the
following axioms:6

• Basic axioms:

xϵ = x x(yb) = (xy)b x× ϵ = ϵ x× yb = (x× y)x
x ⊆ ϵ↔ x = ϵ x ⊆ yb↔ x ⊆ y ∨ x = yb
xb = yb→ x = y x0 ̸= y1 xb ̸= ϵ.

5Observe that Ferreira used different symbols for the empty string and for concatenation.
6Again, the name Σb

1-NIA is not original by [82], but was introduced in [84].

172

• Axiom schema for induction on notation:

F (ϵ) ∧ (∀x)(F (x)→ F (x0) ∧ F (x1))→ (∀x)F (x),

where F is a Σb
1-formula in LW.

11.3 Towards Randomized Bounded Arithmetic

Describing complexity classes within logical and arithmetical languages may
offer a better understanding of the nature of such classes, and approaches in-
spired by descriptive complexity [78, 45, 116, 138], made it possible to consider
complexity from viewpoint less dependent on concrete machine models and on
explicit resource bounds. Yet, randomized classes are not among the ones which
has received such a characterization. Our goal is to generalize classic results by
Buss and Ferreira to the probabilistic realm. To do so, we introduce a new ran-
domized bounded theory and show that formulae which are Σb

1-definable in it
precisely capture poly-time random functions. Then, we provide an arithmetical
characterization of the probabilistic class BPP by internalizing the error-bound
check within logic. Observe that this “encoding” essentially relies on the use of
measure-sensitive quantifiers.

11.3.1 Semantic, All Too Semantic

Before delving into technical details, we spend a few words on the dichotomy
between syntactic and semantic classes, and on the intrinsic difficulty of char-
acterizing the latter ones. Although this distinction appears in many popular
textbooks – for instance in [14, 162] – the literature does not offer a precise
definition. Generally speaking, syntactic classes are defined imposing limita-
tions on the amount of resources the underlying algorithm is allowed to use.
Semantic classes require an additional condition, typically that the underlying
algorithm returns the correct answer often enough. Otherwise said, in semantic
classes being resource bounded is not sufficient for an algorithm to solve some
problems in the class, since there can well be algorithms getting it wrong too
often. This distinction between semantic classes – as BPP and ZPP – and syn-
tactic ones – as P, NP, and PSPACE – refers to how a class is defined and not
to the underlying set of problems. It is thus of intensional nature.

It is difficult to verify resource bounds on arbitrary algorithms, but it is sur-
prisingly easy to define an enumeration of resource-bounded algorithms con-
taining at least one algorithm for any problem in the class. Suppose we want
to characterize a syntactic class like P. On the one hand, the class of all algo-
rithms working in polynomial time is recursion-theoretically very hard, actually
Σ2

0-complete. On the other, the class of those algorithms consisting of a for

loop executed a polynomial number of times, the body of which itself consists
of conditionals and simple enough instructions manipulating string variables,
is both easy to enumerate and big enough to characterize P, at least in an ex-
tensional sense: every problem in P is decided by at least one algorithm in

173

the class and vice versa. Many characterizations of P (and of other syntactic
classes) – e.g. based on safe-recursion [22], on light and soft linear logic [94],
or through bounded theories [34] – are basically instances of the above pattern,
where the precise class of poly-time algorithms varies, leaving the underlying
classes unchanged. In semantic classes – that is in presence of conditions about
the error rate – the enumeration strategy just sketched is not applicable, as
we need to isolate a simple enough subclass of algorithms which are not only
resource-bounded, but also not too erratic.

11.3.2 An Arithmetical Theory to Characterize Probabilistic
Complexity

As seen, one of the original motivations for the development of BA was their
connection with computational complexity [34, 35], and informally a first-order
theory of arithmetic T defines a numerical function f when there is a formula
F such that: (i) for every x, F (x, f(x)) and (ii.) T ⊢ (∀x)(∃y!)F (x, y). This im-
plies the existence of a proof in T providing an algorithm to compute f , but, of
course, not all computable functions are computable in an effective way. Con-
cretely, we are often interested in functions computable with some given amount
of resources and, specifically, in restricting analysis to feasibly computable ones.
We have also seen that, to do so, Buss defined a family of formal theories, called
bounded arithmetics, which are fragments of PA including function symbols with
specific growth-rate. Due to bounded quantifiers and theories, he managed to
characterize complexity classes in terms of arithmetical formulae. In particular,
he proved that every poly-time computable function corresponds to a function
which is Σb

1-definable in the corresponding bounded theory S1
2.

This result was very insightful. However, no similar achievement exists when
switching to the probabilistic framework. Our goal is to generalize this approach
to obtain such an arithmetical characterization for probabilistic classes:

BA
“traditional” complexity classes

=
x

probabilistic complexity classes

Our core idea is to generalize standard conditions of definability for functions
in a theory to a quantitative setting and to define a new randomized bounded
theory.

Concretely, the first step to characterize probabilistic classes consists of ob-
taining a class of arithmetical formulae corresponding to functions computable
by poly-time PTM. To this aim, we introduce three classes of functions:

1. The class of poly-time oracle recursive functions POR is a class of functions
from (finite and infinite) strings to strings defined extending Ferreira’s
class of poly-time functions [82, 83] – itself being a word version of the
corresponding class by Cobham [42] – with a query function, accessing an
oracle from the Cantor space

2. The class of functions which are Σb
1-representable in a randomized bounded

theory, called RS1
2, expressed in a probabilistic first-order word language

174

with equality [84], augmented by a unary predicate Flip(·) similar to the
one defined in Chapter 12.

3. The class RFP of functions which are computable by a poly-time PTM. Ac-
tually we pass through a second computational model, considering stream
Turing machines (STM, for short). An STM is basically TM with k+1-tapes,
one of which is treated as a read-only oracle tape. Such machines access
randomness in a way which is closer to that of functions in POR.

Then, we show that functions which are Σb
1-representable in RS1

2 are precisely
those computable by poly-time PTMs:

Σb
1-representability in RS1

2

Algebra POR Class RFP

Due to this result, together with the notion of measure quantifiers, we provide
an arithmetical characterization of probabilistic (semantic) classes. Indeed, we
rely on the power of our measure-quantifiers to reason about error bounds from
within the logic.

11.4 Outline of Part III

As seen, this part of the thesis focusses on the relation between the theory of
arithmetic and randomized computation. It is bipartite:

• In Chapter 12 we introduce of the language MQPA – i.e. the language ex-
tending that of PA with quantifiers inspired by those introduced in Chap-
ter 3. This language has a noteworthy expressive power: in it we can
formalize interesting results from probability theory. We also show that
every random function computed by a PTM can be expressed as a formula
of MQPA, thus providing a probabilistic version of Gödel’s arithmetiza-
tion.

• Most of Chapter 13 is devoted to the proof that the class of functions
which are Σb

1-representable in RS1
2 is precisely the class of random func-

tions computed by poly-time PTM. Given the distance between the way
in which randomness is accessed by poly-time random functions and ex-
pressed by formulae of RS1

2, we need to pass through a series of auxil-
iary notions, the central one being the class of poly-time oracle recursive
functions POR. This result is fundamental to provide an arithmetical
characterization of probabilistic complexity classes. Indeed, it is relying

175

on the correspondence RFP and RS1
2 together with the notion of mea-

sure quantifiers of MQPA that, in Section 13.5.2, we provide a (semantic)
arithmetical characterization of BPP.

176

Chapter 12

On Measure Quantifiers in
First-Order Arithmetic

We introduce a language, called MQPA, which is a “minimal” extension of first-
order Peano Arithmetic via second-order measure quantifiers. This language is
shown to be capable of formalizing a few basic and well-known results from
probability theory and of representing every recursive random function. In
Section 12.1, we introduce the grammar and semantics of MQPA. Then, in
Section 12.2, we show that some non-trivial results from measure theory – for
instance, the infinite monkey theorem – can be expressed in this non-standard
language. Finally, in Section 12.3, we generalize Gödel’s arithmetization to the
probabilistic setting, proving that every random function which is computable
by a PTM can be expressed in MQPA.

12.1 Measure-Quantified Peano Arithmetic

The language MQPA is obtained by enriching that of PA with two elements: (i.)
the special unary predicate Flip(·), the interpretation of which is an element
of the Cantor space, and (ii.) measure-quantified formulae, the interpretation
of which is similar to counting-quantified ones. Observe that the appeal to the
Cantor space is essential here, since there is no a priori bound on the amount of
random bits a given computation might need. At the same time, as for CPL, also
this more expressive language yields a natural measure-theoretic semantics.

Preliminaries. The standard model N = (N,+,×) has nothing probabilistic
in itself. Nevertheless, it can be naturally extended due to the probability space.
Again, arithmetic being discrete, we can deal with 2N – namely the set of all
infinite sequences of elements from 2 = {0, 1}(= B) – as the underlying sample
space.

Notation 12.1.1. We use metavariables, ω1, ω2, . . . for the elements of 2N.

177

As seen in Section 3.1, there are standard ways of building well-behaved σ-
algebra and probability space on 2N.

Notation 12.1.2. In particular, we call an n-cylinder a subset of 2N of the form

CX = {s · ω | s ∈ X & ω ∈ 2N},

where X ⊆ 2n and · denotes sequence concatenation.

Specifically, we are interested in Xs defined as

Xb
n = {s · b | s ∈ 2n & b ∈ {0, 1}} ⊆ 2n+1,

with n ∈ N and often deal with cylinders of the form CX1
n
. The canonical prob-

ability measure µC on C assigns to any CX measure |X|2n . Then, the standard
model N can be generalized to:

P= (N,+,×, σ(C), µC),

which is the standard model for MQPA. Clearly, when interpreting sequences
in 2N as infinite supplies of random bits, the set such that the k-th coin flip
results in 1 (for any fixed k) is assigned measure 1

2 , meaning that each random
bit is uniformly distributed and independent from the others.

Syntax. Terms of MQPA are defined as in standard first-order arithmetic,
while formulae are obtained by endowing the language of PA with flipcoin for-
mulae of the form Flip(t), and measure-quantified formulae of the form Ct/sF
and Dt/sF , with t and s terms. Specifically, Flip(·) is a special unary predicate
with an intuitive computational meaning: it basically provides an infinite supply
of independent and uniformly distributed bits. Intuitively, given a closed term
t, Flip(t) holds when the n-th tossing returns 1, where n is the denotation of
t+ 1.

Definition 12.1.1 (Formulae of MQPA). Let G be a denumerable set of ground
variables, the elements of which are indicated by metavariables x, y, Terms
of MQPA, denoted by t, s, . . . , are defined as:

t ::= x | 0 | S(t) | t+ t | t× t.

formulae of MQPA are defined by the following grammar:

F ::= Flip(t) | (t = s) | ¬F | F△F | (∃x)F | (∀x)F | Ct/sF | Dt/sF,

where t, s are terms and △ ∈ {∨,∧}.

178

Semantics. Given an environment ξ : G → N, the interpretation for terms is
standard.

Definition 12.1.2 (Semantics for Terms of MQPA). An environment ξ : G → N
is a mapping that assigns to each ground variable a natural number. Given a
term t and an environment ξ, the interpretation of t in ξ is the natural number
JtKξ ∈ N inductively defined as follows:

JxKξ := ξ(x) ∈ N

J0Kξ := 0

JS(t)Kξ := JtKξ + 1

Jt+ sKξ := JtKξ + JsKξ
Jt× sKξ := JtKξ × JsKξ.

On the contrary, the interpretation for formulae is, as for CPL, inherently quan-
titative. Indeed, any formula is associated with a measurable set.

Definition 12.1.3 (Semantics for formulae of MQPA). Given a formula F and
an environment ξ, the interpretation of F in ξ is the measurable set of sequences
JF Kξ ∈ σ(C) defined below:

JFlip(t)Kξ := CX1
JtKξ

Jt = sKξ :=

{
2N if JtKξ = JsKξ
∅ otherwise

J¬GK := 2N − JGKξ

JG ∨HKξ := JGKξ ∪ JHKξ
JG ∧HKξ := JGKξ ∩ JHKξ

J(∃x)GKξ :=
⋃
i∈N

JGKξ{x←i}

J(∀x)GKξ :=
⋂
i∈N

JGKξ{x←i}

JCt/sGKξ :=

{
2N if JsKξ > 0 and µC(JGKξ) ≥ JtKξ

JsKξ

∅ otherwise

JDt/sGKξ :=

{
2N if JsKξ = 0 or µC(JGKξ) <

JtKξ
JsKξ

∅ otherwise.

The semantics is well-defined. Indeed, atomic formulae JFlip(t)Kξ and Jt = sKξ
are measurable, and measurability is preserved by all the logical operators. It is
not difficult to see that any n-cylinder is captured by some formula of MQPA.
In fact, this measure-quantified language allows us to express more and more
complex measurable sets, as illustrated in Section 12.2.

The notions of validity and logical equivalence are again standard.

Definition 12.1.4. A formula of MQPA F , is valid when for every ξ, JF Kξ = 2N

and invalid when JF Kξ = ∅. Two formulae of MQPA, say F ad G, are logically
equivalent F ≡ G, when for every ξ, JF Kξ = JGKξ.

Notably, the two measure quantifiers are inter-derivable, JCt/sF K = J¬Dt/sF Kξ.

Lemma 12.1.1. For every formula of MQPA F ,

Ct/sF ≡ ¬Dt/sF.

179

Proof. The proof is based on Definition 12.1.3,

J¬Dt/sF Kξ = 2N − JDt/sF Kξ

= 2N −

{
2N if µC(JF Kξ) < JtKξ/JsKξ
∅ otherwise

=

{
∅ if µC(JF Kξ) < JtKξ/JsKξ
2N otherwise

= JCt/sF Kξ.

The following examples further illustrate the “meaning” of measure-quantifiers
Ct/s and Dt/s and, in particular, the role of probabilities of the form t

s .

Example 12.1.1. The formula F = C1/1(∃x)Flip(x) states that a true random
bit (values) will almost surely be met. It is valid, as the set of constantly 0
sequences forms a singleton, which has measure 0.

Example 12.1.2. The formula F = (∀x)C1/2x(∀y≤x)Flip(y) states that the
probability for the first x random bits to be true is at least 1

2x . Actually, for read-
ability’s sake, F is written with a little abuse of notation, the effective formula
being (∀x)C1/z(EXP(z, x)∧ (∀y)

(
(∃w)(y+w = x)→ Flip(y)

)
, where EXP(z, x)

is an arithmetical formula expressing z = 2x and (∃w)y+w = x expresses y ≤ x.
The formula F is valid.

Brief Digression on Terminology. To the best of our knowledge, the term
“measure quantifier” was first introduced by Morgenstern in 1979 to formalize
the idea that a formula F (x) is true for almost all x [151]. This definition
was inspired by Mostowski’s notion of generalized quantifier [152], which was
“introduced to specify that a given formula was true for many x’s” [151, p.
103].1 In particular, Morgenstern defined a language Lµ, obtained by adding
the measure quantifier Qµ to the standard first-order grammar:

DEFINITION 2.1 A measure structure U is a pair U = (U , µU), where U ′ is a
first-order structure, card|U| = k, a measurable cardinal, and µU is a non-
trivial k-additive measure on |U ′| which satisfies the partition property. [...]
DEFINITION 2.2 Define a language Lµ to be a first-order language together
with a quantifier Qµ, binding one free variable, where a measure U ⊨
Qµv0φ(v0) iff {x ∈ |U| | U ′ ⊨ φ[x]} ∈ µU . [151, pp. 103-104]

In the same years, similar quantifiers were investigated from a model-theoretic
perspective by H. Friedman.2 More recently, Mio et al. [148, 149] investigated

1Generalized quantifiers were first introduced by Mostowski, as “operators which represent a
natural generalization of the logical quantifiers” [152, p. 13] and have then been extensively studied
in the context of finite-model theory [142, 134]. Second-order generalized quantifiers have been
recently defined as well [3].

2See [199] for a survey.

180

the possibility for such quantifiers to define extensions of MSO. These works
were strongly influenced by generalized quantifiers [152] as well.

12.2 On the Expressive Power of MQPA

As anticipated, the language of MQPA allows us to express some basic results
from probability theory, and to check their validity in the structure P. In this
section, we sketch a couple of examples.

The Infinite Monkey Theorem. Our first example is the so-called infinite mon-
key theorem (IMT). It is a classic result stating that a monkey randomly typing
on a keyboard has probability 1 of ending up writing Macbeth (or any other fixed
string), sooner or later. To express it in MQPA, let us consider start by consid-
ering two formulae of PA, namely G(x, y) and H(x, y) expressing respectively
that “the length of y is strictly smaller than the length of (the binary sequence
coded by) x” and that “the y+1-th bit of x is 1”. We formalize IMT through
the following formula:

FIMT : (∀x)C1/1(∀y)(∃z)(∀w)
(
G(x,w)→ (H(x,w)↔ Flip(y + z + w))

)
.

Indeed, if x is the binary encoding of the Macbeth, FIMT says that for all choice
of start time y, there is a time y + z after which the random sequence defined
by the “Flip-formula” will evolve exactly like x with probability 1.

Due to Definition 12.1.3, we can even (semantically) justify FIMT. Let
F ′(x, y, z, w) indicate the formula G(x,w)→

(
H(x,w)↔ Flip(y+ z+w)

)
. We

show that for any n ∈ N, there is a measurable set Sn ⊆ 2N of measure 1 such
that any sequence in Sn satisfies the formula (∀y)(∃z)(∀w)F ′(n, y, z, w). This
fact is now proved relying on the second Borel-Cantelli Lemma, a well-known
result from measure theory.

Theorem 12.2.1 ([25], Thm. 4.4, p. 55). If (Uy)y∈N is a sequence of independent
events in 2N, and

∑∞
y µC(Uy) diverges, then

µC

(⋂
y

⋃
z>y

Uz

)
= 1.

Let us fix n ∈ N and let l(n) indicate the length of the binary string encoded by
n. For simplicity suppose l(n) > 0 (the case l(n) = 0 is trivial). We construct
Sn in a few steps:

1. For all p ∈ N, let Un
p be the cylinder of sequences which, after p

steps, agree with n. Observe that sequences in Un
p satisfy the formula

(∀w)F ′(n, p, 0, w), that is if the length of n is (strictly) greater than that of
w, the w-th bit of n is exactly as Flip(p+ w).

2. For all p ∈ N, let V n
p = Un

p·l(n)+1. Observe that the sets V n
p are pairwise

independent and µC

(∑∞
p V n

p

)
=∞.

181

3. For all p ∈ N, let

Sn
p =

⋃
{Un

p+q | (∃s>p)p+ q = s · l(n) + 1}.

Observe that any sequence in Sn
p satisfies (∃z)(∀w)F ′(n, p, z, w). More-

over, one can check that Sn
p =

⋃
q>p V

n
q .

4. Finally, let
Sn =

⋂
p

Sn
p .

Now, any sequence in Sn satisfies (∀y)(∃z)(∀w)F ′(n, y, z, w). Furthermore, by
Theorem 12.2.1,

µC(S
n) = µC

(⋂
p

⋃
q>p

V n
q) = 1.

Thus, for any choice of n ∈ N,

µC

(
J(∀y)(∃z)(∀w)F ′(x, p, z, w)K{x←n}

)
≥ µC(S

n) ≥ 1,

and we conclude JFIMTKξ = 2N. In this way, we proved that, for any (binary
encoding of a) word or finite string, “there would have been a time for such a
word” [189, Act V, Scene V] or string to be typed by the monkey.

The Random Walk Theorem. A second example we consider is the random
walk theorem (RW) stating that any simple random walk over Z starting from
1 will pass through 1 infinitely many times with probability 1. Formally, any
ω ∈ 2N induces a simple random walk starting from 1, by letting the n-th move
be right if ω(n) = 1 holds and left if ω(n) = 0 holds.

Theorem 12.2.2 ([25], Thm. 8.3, p. 117). Let U (n)
i,j ⊆ 2N be the set of sequences

for which the simple random walk starting from i leads to j in n steps. Then,
µC

(⋂
x

⋃
y≥x U

(y)
11

)
= 1.

The random predicate Flip(n) induces a simple random walk starting from 1,
by letting the n-th move be right if Flip(n) holds and left if ¬Flip(n) holds.
Again we formalize RW in MQPA relying on two arithmetical formulae:

• H(y, z) expresses that y is even and z is the code of a sequence of length
y
2 , such that for all i, j < y

2 , zi < y, and if zi = zj then i = j, that is z
codes a subset of {0, . . . , y − 1} of cardinality y

2 ,

• let K(y, z, v) = H(y, z) ∧ (∃i)(i < y
2 ∧ zi = v).

Then, the measure-quantified formula expressing RW is as follows,

FRW : C1/1(∀x)(∃y)(∃z)
(
y ≤ x ∧H(y, z) ∧ (∀v)

(
v < y →

(
K(y, z, v) ↔ Flip(v)

)))
.

The formula FRW intuitively says that for any fixed x we can find y ≥ x and
subset z of {0, . . . , y − 1} of cardinality y

2 , containing all and only the values

182

v < y such that Flip(v) holds, so that the number of v < y with Flip(v)
holding coincides with the number of v < y with ¬Flip(v) holds. This is the
case precisely when the simple random walk goes back to 1 after exactly y steps.

We can also show FRW valid, considering the measurable set S =
⋂

n

⋃
p≥n U

(p)
11 .

Let F ′(y, z, v) be the formula (v < y → (K(y, z, v) ↔ Flip(v))) and observe
that any sequence in U

(n)
11 satisfies the formula (∃z)

(
H(n, z)∧(∀v)F ′(y, z, v, w)

)
.

Then, any sequence in S satisfies (∀x)(∃y)(∃z)
(
y ≥ x∧H(y, z)∧(∀v)F ′(y, z, v)

)
.

Since by Theorem 12.2.2, µC(S) = 1, we conclude µC(JFRWKξ) ≥ µC(S) ≥ 1
and, thus, JFRWKξ = 2N.

12.3 Randomized Arithmetizaion

The language of arithmetic can express interesting algorithmic properties, and
several important questions in computation theory can be studied through arith-
metic theory. It is a classic result in computability theory [97, 195, 198] that
all computable functions are arithmetical, that is for any recursive function
f : Nm ⇀ N, there is formula of PA Ff , such that for any n1, . . . , nm, l ∈ N,

f(n1, . . . , nm) = l iff N⊨ Ff (n1, . . . , nm, l).

In this section, we show that with MQPA, this fundamental result can be gener-
alized to computable random functions. We start in Section 12.3.1 with a brief
historical overview, recapping classic notions and achievements in recursion the-
ory. Then, in Section 12.3.2, we introduce our main result, namely randomized
arithmetization. Given the conceptual distance between the notions involved
in the proof, we present two auxiliary classes of functions: probabilistic ran-
dom functions PR [55] and oracle recursive functions OR, the latter inspired
by oracle machines. Finally, we put the two classes in relation, concluding our
proof:

computable functions
formulae of PA

=
probabilistic computable functions

formulae of MQPA

12.3.1 Historical Background

Groundbreaking results in arithmetic and recursion theory were inspired by
Hilbert’s program: in his Grundlagen der Geometrie (1899) and, later, during
the 1900 Paris congress, Hilbert listed 23 problems open problems in the foun-
dation of mathematics, including the axiomatization of arithmetic, the proof
of its consistency, and the Entscheidungsproblem [111].3 Indeed, at the end of
the XIX century, first formalizations of arithmetic appeared [169] and, in 1928,
an (axiomatic) deductive system for FOL was neatly presented by Hilbert and

3Indeed, a recent discovery made by Thiele in Göttingen shown that a 24th problem – concern-
ing the development of theories of proof methods in mathematics – had to be added to the Paris
list [206].

183

Bernays. It was in this context that Gödel developed his theorems. Meanwhile,
in his 1933 doctoral thesis, Gentzen introduced new proof-theoretical tools to
represent the structure of mathematical arguments.4

Simultaneously, Hilbert’s foundational work stimulated the development of
a precise notion of computable function. In the 1930s on, new models appeared,
from Church’s λ-calculus to recursive functions, from Markov’s algorithms to
Turing machines. In particular, today definitions of (primitive) recursive func-
tions come from Gödel, Church and Kleene’s formalizations. Actually, the origin
of the modern term “recursion” may be traced back to Dedekind’s and Peano’s
works on natural numbers, see [129], but the development of the discipline
towards nowadays formulation took some years.

The Axiomatization of Arithmetic

The first formulation of modern arithmetic is commonly attributed to either
Peano – from whom it has taken its name – and Dedekind.5 In particular, in his
treatise Arithmetices Principia (1889), Peano formulated nine axioms: four for
equality plus five properly arithmetical ones. In particular, he introduced the
language and axiomatization in the section De numeris et de additione:6

Explicationes.

Signo N significatur numerus (integer positivus).

▶ 1 ▶ unitas,
▶ a+ 1 ▶ sequens a sive a plus 1,
▶ = ▶ est aequalis. Hoc ut novum signum considerandum est, etsi

logicae signi figuram habeat.

Axiomata.

1. 1 ϵ N .
2. a ϵ N.

C

.a = a.
3. a, b ϵ N.

C

: a = b. = .b = a.
4. a, b, c ϵ N.

C

:: a = b.b = c :

C

.a = c.
5. a = b.b ϵ N :

C

.a ϵ N .
6. a ϵ N.

C

.a+ 1 ϵ N .
7. a, b ϵ N.

C

: a = b. = .a+ 1 = b+ 1.

4Gentzen in fact obtained his natural deduction and sequent calculi as “byproducts” [221]. His
main goal was to extend this approach to derivations in PA, so to study their (meta-)properties. His
work can be interpreted as a continuation of Hilbert’ s program in response to Gödel’s results. For
further details see [157].

5Of course, other mathematicians – from Hankel to Schr̈oder, from Skolem to Bernays – con-
tributed to the development of recursive arithmetic and to the formulation of (what is today known
as) PA. In his Lehrbuch der Arithmetic für höhere Lehranstalten (1861) Grassmann defined an ab-
stract approach to natural numbers, with explicit recursive definition of arithmetical operations,
without separating successor and addition. In was with Schröder and Dedekind that these opera-
tors gained independent definition and notation (using ’). For further details see [222].

6The logical basis of Peano arithmetic mostly came from Boole. The notation is standard for the
XIX century, when

C

(abbreviating consequentia) stood for implication ⊃.

184

8. a ϵ N.

C

a+ 1− = 1

9. k ϵ K :: 1 ϵ k :: x ϵ N.x ϵ k :

C

x.x+ 1ϵk ::

C

.N

C

k. [169, p. 1]

So, Axioms (2.)-(5.) concerns identity, (1.) and (6.) define (resp.) 1 and the
successor of a number both as numbers, (7.) expresses that different numbers
has different successors, (8.) there is no number of which 1 is the successor,
and (9.) is a formulation of the induction principle. In Sul concetto del numero
(1891), Peano reformulated these axioms in terms of Dedekind’s theory of op-
erations and slightly modified (9.). It is a common idea – at least from van
Heijenoort on [218] – that Peano owed his axioms and recursive definition to
Dedekind, but their authorship is actually controversial.7 Being by Dedekind or
Peano, this formulation was the basis on which most foundational studies of the
beginning of the XX century relied.

Recursion Theory

As Kleene wrote, the history of recursion theory is long, and can be seen as
starting in the 1880s with Kronecker’s, Peano’s and Dedekind’s works:

“[t]he theory of recursive functions is nearly one hundred years old” [129,
p. 43].

Nevertheless, initially, recursion theory was not a free-standing field, but, lit-
tle by little, has become independent. In parallel, the notion of “recursion”
obtained a clear and formal definition (relatively) recently [196, 197]. In the
XIX century, the term was often used without being precisely introduced (some-
times even interchangeably with “computable”), and its occurrences showed the
connection with the idea of recurring and induction.8 To the best of our knowl-
edge, primitive recursive functions were first defined by Gödel in 1931 [97],
while the notion of general recursion first appeared in 1934/36 works by (resp.)
Gödel [99] and Kleene [126, 125].

In [97], Gödel introduced primitive recursive function as a preliminary no-
tion for his incompleteness proof. Actually, he used the term recursive func-
tion – “rekursive Function” – to define what is today called primitive recursive.
Specifically, in 1931, Gödel took as basic functions, the constant and succes-
sor only [100, p. 46], while in 1934, he added the so-called identity function
(corresponding to projection):

The function φ(x1, . . . , xn) shall be compound with respect to ψ(x1, . . . , xm)
and ξi(x1, . . . , xn) (i = 1, . . . ,m) if, for all natural numbers x1, . . . , xn,

φ(x1, . . . , xn) = ψ(ξ1(x1, . . . , xn), . . . , ξm(x1, . . . , xn)). (1)

7According to von Plato, these axioms were invented by Peano [223] and the mentioning of
Dedekind’s 1888 script in [169] was just a late addition to the preface.

8In Grassman, Dedekind, and Peano’s works arithmetical operations on numbers were recursively
defined (at least implicitly). In 1919, Skolem used recursive definitions for functions, e.g. successor,
then incorporated in Gödel’s formalization.

185

φ(x1, . . . , xn) shall be said to be recursive with respect to ψ(x1, . . . , xn−1)
and ξ(x1, . . . , xn+1) if, for all natural numbers, k, x2, . . . , xn,

φ(0, x2, . . . , xn) = ψ(x2, . . . , xn) (12.1)

φ(x+ 1, x2, . . . , xn) = ξ(k, φ(x2, . . . , xn), x2, . . . , xn). (2)

[...] We define the class of recursive functions to be the totality of function
which can be generated by substitution, according to the scheme (1), and
recursion, according to the schema (2), from the successor function x + 1,
constant function f(x1, . . . , xn) = x, and identity function

⋃n
j (x1, . . . , xn) =

xj (1 ≤ j ≤ n). In other words, a function φ shall be recursive if there is
a finite sequence of functions φ1, . . . , φn which terminates with φ such that
each function of the sequence is either the successor function x+1 or a con-
stant function f(x1, . . . , xn) = x, or an identity function

⋃n
j (x1, . . . , xn) =

xj , or is compound with respect to preceding functions, or is recursive with
respect to preceding functions. [99, p. 43]

In 1934, basing on early suggestions by Herbrand, Gödel introduced the wider
class of general recursive functions. The distinction between these two classes
was made precise in [126, p. 727], thus leading to modern terminology.9

Gödel’s Arithmetization

The so-called arithmetization theorem is also rooted in Gödel’s celebrated arti-
cle [97], where it is proved that every recursive function is arithmetical.

Theorem 12.3.1 (Arithmetization). All recursive functions are arithmetical.

A formula is said to be arithmetical if it can be expressed in the language of
arithmetic. Otherwise said, for any m-ary function f : Nm → N there is an
arithmetical formula Ff such that, for every n1, . . . , nm, l ∈ N, f(n1, . . . , nm) = l
when N ⊨ Ff (n1, . . . , nm, l), (where, for any n ∈ N, n is the symbol in LN

corresponding to n). So, first-order arithmetic can express the fundamental
notions related to computation (including termination of programs).

As said it was in his 1931 paper that Gödel introduced arithmetization as a
preliminary step to establish the incompleteness (and incompletability) of PA.
In particular, after defining the notion of primitive recursion in § 3, he proceeded
with his incompleteness proof by defining arithmetical formulae.

A relation (class) is called arithmetical if it can be defined solely by means of
the concepts +, ·, and the logical constants ∨, -, (x), =, where (x) and = are
to relate only to natural numbers. The concept of “arithmetical proposition”
is defined in a corresponding way. [100, p. 63]

Then, (so-called) Proposition VII, stating that every primitive recursive relation
is arithmetical, is established:

Proposition VII: Every recursive relation is arithmetical. [...] According to
Proposition VII there corresponds to every problem of the form (x)F (x) (F
recursive) an equivalent arithmetical problem... [100, p. 65-66]

9Observe that Kleene’s analysis was also important for the systematization of recursion theory,
also in relation to other formalizations of algorithms [129].

186

12.3.2 Making Arithmetization Randomized

Furthermore, the recursion-theoretic characterization of computable functions
was shown as particularly fruitful in the context of arithmetization. In 2014,
an analogous recursive class was also introducedd for probabilistic functions. In
what follows, we show that the language MQPA is expressive enough to define
random functions.

1900 1920 1940 1960 1980 2000 2020

Pe
an

o Arit
hm

eti
c

Göd
el’

s Arit
hm

eti
za

tio
n (1

93
1)

(G
öd

el
an

d)
Klee

ne
’s

re
cu

rsi
ve

fu
nc

tio
ns

The
cla

ss
PR

(2
01

4)

Clas
s O
R

, la
ng

ua
ge

MQPA
, a

nd

Ran
do

mize
d Arit

hm
eti

za
tio

n

Figure 12.1: From Standard to Randomized Arithmetization

Introducing Randomized Arithmetization. In order to generalize Gödel’s
arithmetization to the computable random functions, we start with a notion
notion of arithmetical random function.

Definition 12.3.1 (Arithmetical Random Function). Let D(N) indicate the set
of pseudo-distributions on N.10 A random function f : Nm → D(N) is said
to be arithmetical when there is a formula of MQPA Ff , with free variables
x1, . . . , xm, y, such that for any n1, . . . , nm, l ∈ N,

µC

(
JFf (n1, . . . , nm, l)K

)
= f(n1, . . . , nm)(l).

Then, the arithmetization theorem below relates random functions and formu-
lae of MQPA.

Theorem 12.3.2 (Randomized Arithmetization). All computable random func-
tions are arithmetical.

As we shall see, we actually establish a stronger fact, proving that any com-
putable random function is arithmetized – in the sense of Definition 12.3.1 –
by a Σ0

1-formula of MQPA, where a measure-quantified formula F is Σ0
1 when

there is an equivalent formula in the form (∃x1) . . . (∃xn)F
′ such that F ′ con-

tains neither first-order or measure quantifiers.

10Further details related to the machine models will be given in Section 12.3.2.

187

The Structure of the Proof. Given the conceptual distance existing between
TMs and MQPA, a direct proof of Theorem 12.3.2 would be cumbersome. So,
we follow an alternative route. We formally consider the notion of computable
random function, which was defined due to the equivalent class of probabilistic
recursive function PR, defined in [64, 55]. This class provides a proper, proba-
bilistic counterpart of standard formalizations of recursive functions [126], but
is inspired by a precise computational model, namely PTM,11 and the source
of randomness of such machines is quite different from that of our language
MQPA. In order to fill the gap between the two notions we pass through a sec-
ond class – that of oracle recursive function OR – this time inspired by oracle
machines. We conclude our proof showing the correspondence between these
two classes.

computable random functions

The Class PR The Class OR

formulae of MQPA
mismatch

Prop. 12.3.1, [64]

Sec. 12.3.2

Sec. 12.3.2

Figure 12.2: The Structure of the Proof

Probabilistic Function Algebras

In this section we introduce two classes of functions. The class of probabilistic
or random recursive function PR was introduced in [64, 55] and shown equiv-
alent to that of functions computable by PTMs. It provides the first recursion-
theoretic characterization of computable random functions. Concretely, the ap-
proach of Dal Lago, Gabbrielli and Zuppiroli consists of generalizing classic re-
sults on (partial) computable functions by Church and Kleene [41, 126], adding
an initial function able to “tossing a (fair) coin”.

On the contrary, the class of oracle recursive functionOR is new. It is inspired
by the oracle machine model: these functions take natural numbers plus an
infinite sequence of (random) bits – intuitively corresponding to the oracle tape
– and return a number. In this case, the probabilistic element is enucleated by
the so-called query function, which, given a number n and an infinite sequence
of bit(-value)s ω, returns the n-th value of ω. Remarkably, the way in which this
function accesses its source of randomness is similar to that associated with the
interpretation of MQPA-formulae.

11For further details, see Section 2.1.

188

The Class PR. The machine model on which the definition of PR relies is
that of PTM [183, 91].12 Any PTM can be seen as computing a random func-
tion [183, pp. 706-707]. As said, the set of pseudo-distributions D(N) is the set
of functions f : N → R[0,1], such that

∑
n∈N f(n) ≤ 1. So, given a PTM MP, a

random function is a function ⟨MP⟩ : N→ D(N) that for each n ∈ N returns the
pseudo-distribution D(N) of all possible outcomes MP produces when fed with
(an encoding of) n in input together with the corresponding probability. Coher-
ently, the class PR is defined by Dal Lago, Gabbrielli and Zuppiroli generalizing
the intuition of Church and Kleene’s standard one [41, 126, 125, 128]. Indeed,
PR is characterized as the smallest class of functions, which (i.) contains some
basic functions including one expressing (fair) coin tossing,13 and (ii.) is closed
under composition, primitive recursion and minimization.

For all this to make sense, composition and primitive recursion are defined
following the monadic structure of D(·). So, we preliminarily introduce the
notion of Kleisli extension of a function with values in D(N).

Definition 12.3.2 (Kleisli Extension). Given a function f : N→ D(N), its (sim-
ple) Kleisli extension fK : D(N)→ D(N) is defined as follows:

fK(d)(n) =
∑
i∈N

d(i) · f(i)(n).

In general, given a k-ary function f : X1× · · · ×Xi−1×N×Xi+1× · · · ×Xk →
D(N), its i-th Kleisli extension fK

i : X1× . . . Xi−1×D(N)×Xi+1× . . . Xk → D(N)
is defined as,

fK
i (x1, . . . , xi−1, d, xi+1, . . . , xk)(n) =

∑
j∈N

d(j)·f(x1, . . . , xi−1, j, xi+1, . . . , xk)(n).

Observe that the construction at the basis of the Kleisli extension (K-extension,
for short) can be applied more than once. Given a function f : Nk → D(N), its
total K-extension fK : (D(N))k → D(N) is defined as follows:

fK(d1, . . . , dk)(n) =
∑

i1,...,ik∈N

f(i1, . . . , ik)(n) ·
∏

1≤j≤k

dj(ij).

Example 12.3.1. Let us consider a binary function f : N × N → D(N), its total

12For further details, see Section 2.1.2.
13In fact, as we shell see, this is concretely implemented by the fair coin function r(·)(·) behaving

either as the identity or as the successor, with the same probability 1
2

. For further details, see [55].

189

K-extension is as follows:

fK(d1, d2)(y) =
∑
i1∈N

d1(i1) · fK(i1, d2)(y)

=
∑
i1∈N

d1(i1) ·
∑
i2∈N

d2(i2) · f(i1, i2)(y)

=
∑

i1,i2∈N

f(i1, i2)(y) · d1(i1) · d2(i2)

=
∑

i1,i2∈N

f(i1, i2)(y) ·
∏

k∈{1,2}

dk(ik).

We now define the class PR in a formal way.

Definition 12.3.3 (The Class PR [64]). The class of probabilistic recursive func-
tions PR, is the smallest class of probabilistic functions containing:

• The zero function z : N→ D(N), such that for every x ∈ N,

z(x)(0) = 1

• The successor function s : N→ D(N), such that for every x ∈ N,

s(x)(x+ 1) = 1

• The projection function πn
m : Nn → D(N), such that for 1 ≤ m ≤ n,

πn
m(x1, . . . , xn)(xm) = 1

• The fair coin function r : N→ D(N) such that,

r(x)(y) =


1
2 if y = x
1
2 if y = x+ 1

0 otherwise

and closed under:

• Probabilistic composition. Given f : Nn → D(N) and g1, . . . , gn : Nk →
D(N), their composition is a function f⊙ (g1, . . . , gn) : Nk → D(N) defined

190

as:14

(f ⊙ (g1, . . . , gn))(x) = fK(g1(x), . . . , gn(x))

• Probabilistic Primitive Recursion. Given f : Nk → D(N) and g : Nk+2 →
D(N), the function h : Nk+1 → D(N) obtained from them by primitive
recursion is:

h(x, 0) = f(x)

h(x, y + 1) = gKk+2(x, y, h(x, y))

• Probabilistic minimization. Given f : Nk+1 → D(N), the function h : Nk →
D(N) obtained from minimization is as follows:

µf(x)(y) = f(x, y)(0) ·
∏
z<y

∑
k>0

f(x, z)(k).

The following Proposition has been proved in [64].

Proposition 12.3.1 ([64]). PR coincides with the class of computable random
functions.

The Class OR. The class PR is still conceptually far from MQPA. While
measure-quantified formulae access randomness in the form of a global sup-
ply of random bits, probabilistic recursive functions fire random choices locally,
through the dedicated initial function. To bridge this gap, we introduce a third
characterization of computable random functions, which is better-suited for our
purposes. We define the class of oracle recursive functions OR, as loosely in-
spired by oracle TMs, i.e. deterministic TMs the transition function of which can
query a random-bit tape ω ∈ BN.

The class of oracle recursive functions OR, is the smallest class of partial
functions of the form f : Nm × BN → N, which (i.) contains the class of oracle
basic functions and (ii.) is closed under composition, primitive recursion, and
minimization. Formally,

14That is,

((f ⊙ (g1, . . . , gn))(x))(y) = (fK(g1(x), . . . , gn(x)))(y)

=
∑

i1,...,in

f(i1, . . . , ik)(y) ·
∏

1≤j≤n

gj(x)(ij).

The simplest case is that of unary composition: given f : N → D(N) and g : N → D(N), the
function h : N → D(N) obtained by composition from f and g is:

(f ⊙ g)(x)(y) = fK(g(x))(y).

Otherwise said,
((f ⊙ g)(x))(y) =

∑
z∈N

g(x)(z) · f(z)(y).

191

Definition 12.3.4 (The Class OR). The class of oracle recursive functions OR,
is the smallest class of probabilistic functions containing:

• The zero function f0, such that

f0(x1, . . . , xk, ω) = 0

• The successor function fs, such that

fs(x, ω) = x+ 1

• The projection function fπi
, such that for 1 ≤ i ≤ k

fπi
(x1, . . . , xk, ω) = xi

• The query function fq, such that

fq(x, ω) = ω(x)

and closed under:

• Oracle composition. Given the oracle functions h from Nn × BN to N, and
g1, . . . , gn from Nm, the function f obtained by composition from them is
defined as:

f(x1, ..., xm, ω) = h(g1(x1, ..., xm, ω), ..., gn(x1, ..., xm, ω), ω)

• Oracle primitive recursion. Given two oracle functions h and g from respec-
tively Nn × BN and Nn+2 × BN to N, the function f obtained by primitive
recursion from them is as follows:

f(x, x1, ..., xn) =

{
f(0, x1, ..., xn, ω) = h(x1, ..., xn, ω)

f(x+ 1, x1, ..., xn, ω) = g(f(x, x1, ..., xn, ω), x, x1, ..., xn, ω)

• Oracle minimization. Given the oracle function g from Nn+1 × BN to N,
the function f obtained by minimization from g is defined as:

f(x1, ..., xn, ω) = µx(g(x1, ..., xn, x, ω) = 0).

Notice that the only basic function depending on ω is the query function and
that all the closure schemes are independent from it.

Relating OR and PR

Intuitively, the class OR corresponds to that of computable random functions,
but, given their form, in what sense do oracle functions represent random ones?
In order to clarify the relationship between OR and PR, we need to introduce
a series of auxiliary notions and lemmas.

192

The Auxiliary Function f∗. We start with the introduction of the auxiliary
function f∗, associated with the oracle function f .

Definition 12.3.5 (Auxiliary Function). Given an oracle function f : Nm×BN →
N, the corresponding auxiliary function f∗ : Nm × N→ P(BN) is defined as:

f∗(x1, . . . , xm, y) = {ω | f(x1, . . . , xm, ω) = y}.

The following Lemma 12.3.1 ensures that the value of f∗ is always a measurable
set.

Lemma 12.3.1. For any oracle recursive function f : Nm × BN → N ∈ OR and
x1, . . . , xm, y ∈ N, the set f∗(x1, . . . , xm, y) is measurable.

Proof. We show for each f ∈ OR that f∗ ∈ σ(C) by induction on the structure
of oracle recursive functions:

Base Case. Let f ∈ OR be an oracle basic function. There are four possible
sub-cases:

• Zero Function. Let f0 be the zero function f0(x1, . . . , xn, ω) = 0. Then,

f∗0 (x1, . . . , xn, 0) = {ω | f0(x1, . . . , xn, ω) = 0} = BN.

For the first axiom of σ-algebras, BN ∈ σ(C), and so also f∗0 ∈ σ(C).

• Successor Function. Let fs be the successor function fs(x, ω) = x+1. Then,

f∗s (x, x+ 1) = {ω | fs(x, ω) = x+ 1} = BN.

As before, f∗s ∈ σ(C).

• Projection Function. Let fπi be the projection function fπi(x1, . . . , xn, ω) =
xi, with 1 ≤ i ≤ n. Then,

f∗πi
(x1, . . . , xn, xi) = {ω | fπi

(x1, . . . , xn, ω) = xi} = BN.

Again we conclude f∗πi
∈ σ(C).

• Query Function. Let fq be the query function fq(x, ω
′) = ω′(x). Then,

f∗q (x, ω
′(x)) = {ω | fq(x, ω) = ω′(x)} = {ω | ω(x) = ω′(x)},

that is

f∗q (x, ω
′) =

{
{ω | ω(x) = 1} if ω′(x) = 1

{ω | ω(x) = 0} if ω′(x) = 0.

In both cases, f∗q (x, ω
′) is a (thin) cylinder, and so f∗q (x, 0) ∈ σ(C).

Inductive Case. Let f ∈ OR be obtained by oracle composition, recursion, or
minimization from oracle recursive functions. Since the three cases are proved
in a similar way, let us take into account (simple) composition only. Let f :
Nn × BN → N be obtained by (unary) composition from h : N × BN → N and

193

g : Nn × BN → N. Assume f(x1, . . . , xn, ω) = h(g(x1, . . . , xn, ω), ω) = v. By
Definition 12.3.5,

f∗(x1, . . . , xn, v) =
⋃
z∈N

{ω | h(z, ω) = v} ∩ {ω | g(x1, . . . , xn, ω) = z}

=
⋃
z∈N

h∗(z, v) ∩ g∗(x1, . . . , xn, z).

By IH, h∗, g∗ ∈ σ(C). So, by the third axiom of σ-algebras, h∗ ∩ g∗ ∈ σ(C) as
well. Therefore, since f∗ is a countable union of measurable sets, again for the
third axiom, we conclude f∗ ∈ σ(C).

The Auxiliary Function f ♯. Due to Lemma 12.3.1, we can associate any oracle
recursive function f : Nm × BN → N with a random function f ♯ : Nm → D(N),
defined as

f ♯(x1, . . . , xm)(y) = µC(f
∗(x1, . . . , xm, y)).

This defines a close correspondence between the classes PR and OR.

Proposition 12.3.2. For any f ∈ PR, there is an oracle function g ∈ OR, such
that f = g♯. Symmetrically, for any f ∈ OR, f ♯ ∈ PR.

Actually, for our purpose only the first part of Proposition 12.3.2 is necessary,
namely the proof that for any f ∈ PR, there is a g ∈ OR such that g♯ = f . This
is established by means of a few intermediate steps.

First, some preliminary notions are introduced. We fix a computable bijection
between N and N × N, the corresponding maps ⟨·, ·⟩ : N × N → N, and π1, π2 :
N→ N. A tree is defined as a subset X of the finite set of strings B∗, such that if
t ∈ X and v ⊏ t (⊑ being the prefix relation), then v ̸∈ X. Given t ∈ B∗, ω ∈ BN

is said to be an n-extension of t when ω = v · t ·ω′, with |v| = n and ω′ ∈ BN. The
set of all n-extensions of t is indicated as EXTn

t and is measurable. Moreover,
µ(EXTn

t) = 1
2|t|

for every n and t. Given a tree X, every function f : X → N
is said to be an X-function. Thus, an oracle function f : Nn+1 × BN → N ∈ OR
returns a tree X and an X-function g on input (m1, . . . ,mn) if and only if for
every k ∈ N:

i. f(m1, . . . ,mn, k, ω) is defined when ω ∈ EXTk
t , where t ∈ X

ii. if ω ∈ EXTk
t and t ∈ X, then

f(m1, . . . ,mn, k, ω) = q

where π1(q) = g(t) and π2(q) = |t|.
Then, the following Lemma can be proved.

Lemma 12.3.2. For every f : Nn → D(N) ∈ PR, there is an oracle recursive
function g : Nn+1 × B ⇀ N ∈ OR, such that for any m1, . . . ,mn, g returns a tree
Xm1,...,mn

and an Xm1,...,mn
-function hm1,...,mn

on input m1, . . . ,mn and

f(m1, . . . ,mn)(y) =
∑

hm1,...,mn (t)=y

1

2|t|
.

194

Proof. The proof is by induction on the structure of f ∈ PR.
Base Case. Let f ∈ PR be a basic recursive function. There are four possible

sub-cases:

• Zero Function. Let z ∈ PR be the zero function. Then, f ∈ OR is an
oracle function so defined that on inputs m1, k, ω it returns ⟨0, 0⟩. Indeed,
g returns the tree Xm1 = {ϵ} and the Xm1 -function hm1 always returning
0, as it can be easily checked. Moreover,

z(m1)(y) =

{
1 if y = 0

0 otherwise

=
∑

hm1
(s)=y

1

2|t|
.

• Successor Function. Let s ∈ PR be the successor function. Then, g ∈ OR
is an oracle function so defined that on inputs m1, k, and ω, it returns the
value ⟨m1 + 1, 0⟩. So, g returns the tree Xm1 = {ϵ} and the Xm1 -function
hm1

always returning m1 + 1. Therefore,

s(m1)(y) =

{
1 if y = m1 + 1

0 otherwise

=
∑

hm1 (t)=y

1

2|t|
.

• Projection Function. Let πn
i ∈ PR, with 1 ≤ i ≤ n, be the projection

function. Then, g ∈ OR is an oracle function so defined that, on inputs
m1, . . . ,mn, k, and ω it returns the value ⟨m1, 0⟩. Indeed, g returns the
tree Xm1,...,mn

= {ϵ} and the Xm1,...,mn
-function hm1,...,mn

always return-
ing mi. Moreover,

πn
i (m1, . . . ,mn)(y) =

{
1 if y = mi

0 otherwise

=
∑

hm1,...,mn (t)=y

1

2|t|
.

• Fair Coin Function. Let r ∈ PR be the fair coin function. Then, g ∈ OR is
an oracle function so defined that g(m1, k, ω) = ⟨l, 1⟩ where,

l =

{
m1 if ω[k] = 0

m1+1 if ω[k] = 1.

Inductive Case. If f is obtained by either composition, primitive recursion
or minimization, the argument is a bit more involved. Indeed, to define the

195

function g we must take into account how the bits of the oracle accessed by g
are distributed in an independent way to each of the component functions. We
only illustrate how this works in the case of composition. Let f be obtained by
composition from f1, . . . , fp : Nn → D(N) and f ′ : Np → D(N), that is

f(m1, . . . ,mn)(y) =
∑

i1,...,ip

f ′(i1, . . . , ip)(y) ·
p∏

j=1

fj(m1, . . . ,mn)(ij).

By IH, there exist functions g1, . . . , gp : Nn+1×BN → N and g′ : Np+1×BN → N
such that:

1. for all m1, . . . ,mn ∈ N, each gi returns a tree Ci
m1,...,mn

and an Xi
m1,...,mn

-
function hi

m1,...,mn
and

fi(m1, . . . ,mn)(y) =
∑

hi
m1,...,mn

(t)=y

1

2|t|

2. for all m1, . . . ,mp ∈ N, g′ returns a tree Ym1,...,mn
and a Ym1,...,mp

-function
h′m1,...,mp

, and

f ′(m1, . . . ,mp)(y) =
∑

h′m1,...,mp
(t)=y

1

2|t|
.

Thus, we have:

f(m1, . . . ,mn)(y) =
∑

i=1,...,ip

(∑
h′i1,...,ip

(s)=y

1

2|s|

)
·
(p∏

j=1

∑
hj
m1,...,mn (t)=ij

1

2|t|

)

=
∑

i=1,...,ip

(∑
h′i1

,...,h′ip (s)=y,hj
m1,...,mn (tj)=ij

1

2|s| +
∑p

j=1 |tj |

)

For all m1, . . . ,mn ∈ N, let Xm1,...,mn
= {t1 · · · tp | s ∈ tj ∈ Xj

m1,...,mn
, s ∈

Yh1
m⃗
(t1),...,h

p
m⃗(tp)
}. Observe that any v ∈ Xm1,...,mn

can be decomposed in a

unique way as v = t0 · t1 · · · tp.15 Using this fact, we show that Xm1,...,mn is also
a tree.16 Let hm1,...,mn : Xm1,...,mn → N be defined by hm1,...,mn(v) = y, where
v uniquely decomposes as s · t1 · · · tp, hj

m⃗(tj) = ij and h′i1,...,ip(s) = y. We can

15Assume that t′0 · t′1 · · · t′p is any other decomposition and j ≤ p is minimum such that tj ̸=
t′j . Then, it must be either tj ⊏ t′j or t′j ⊏ tj , which contradicts the fact that Xj

m1,...,mn and
Yh1

m⃗
(t1),··· ,h

p
m⃗

(tp)
are all trees.

16Suppose v = t0 · t1 · · · tp ∈ Xm1,...,mn and v′ ∈ Xm1,...,mn , where v′ ⊑ v. Then, v′ has a
unique decomposition t′0 · · · t′p and, as easily shown by induction on j ≤ p, t′j = t′j holds. Hence,
v′ = v holds, against the assumption.

196

finally define,

g(m1, ...,mn, k, ω) =
〈
π1

(
g′
(
π1(L1), ..., π1(Lp), k +

p∑
j=1

Lj , ω
))

,

π2

(
g′
(
π1(L1), . . . , π1(Lp), k +

p∑
j=1

Lj , ω
))

+Rp

〉
where Lj , Rj are defined by induction as:

L1 = g1(m⃗, k, ω)

Lj+1 = gj+1(m⃗, k +Rj+1, ω)

R1 = 0

Rj+1 = Rj + π2(Lj)

It can be checked that, by construction, g(m1, . . . ,mn, k, ω) =
⟨hm1,...,mn(v), |v|⟩, where v ∈ EXTk

v′ and v′ uniquely decomposes as s · t1 · · · tp.
Using the equations above we conclude,

f(m1, . . . ,mn)(y) =
∑

hm1,...,mn (v)=y

1

2|v|
.

Then, the desired proof of Proposition 12.3.2 is a straightforward corollary
of Lemma 12.3.2.

Proof of Proposition 12.3.2. It is a consequence of Lemma 12.3.2. In-
deed, if g′ is obtained from f by Lemma 12.3.2 and g(m1, . . . ,mn, ω) =
π2(g

′(m1, . . . ,mn, 0, ω)), then f = g♯.

Arithmetizing Oracle Functions. The last ingredient to prove Theorem 12.3.2
is Lemma 12.3.3 below, which is established by induction on the structure of
functions in OR.

f ∈ OR f∗ ∈ σ(C) f# is arithmetical

Lemma 12.3.1 Lemma 12.3.3

f∗(x⃗, y) = {ω | f(x⃗, ω) = y} f#(x⃗)(y) = µC(f∗(x⃗, y))

Figure 12.3: From f ∈ OR to arithmetical f#

Preliminarily observe that for both functions functions in OR and formulae of
MQPA, randomness is defined in terms of denumerable amount of random bits.
As a consequence, the following proof is straightforward.

197

Lemma 12.3.3. For any oracle function f ∈ OR, the random function f ♯ is
arithmetical.

Proof. By construction for any oracle function f ∈ OR, the corresponding f ♯ is
defined as,

f ♯ = µC(f
∗(x1, . . . , xm, y)) = µC({ω | f(x1, . . . , xm, ω) = y}).

We prove that f ♯ is arithmetical, i.e. that there is a formula of MQPA Ff♯ such
that for any n1, . . . , nm, l ∈ N,

µC(JFf♯(n1, . . . , nm, l)K) = f ♯(n1, . . . , nm)(l).

In fact, we will establish something stronger, namely that for any f ∈ OR,
there is an Ff , such that for any n1, . . . , nm, l ∈ N, JFf (n1, . . . , nm, l)K =
{ω | f(n1, . . . , nm, ω) = l}. The proof is by induction on the structure of ora-
cle recursive functions. Actually, the only case which is worth considering is
that of query functions, as all other cases are obtained by trivial generalizations
of standard ones [97].

Base Case. For any basic oracle function f ∈ OR, the corresponding random
function f ♯ is arithmetical. There are four possible sub-cases:

• Oracle Zero Function. Let f0 ∈ OR be the oracle zero function. Then,
f0(x1, . . . , xn, ω) = y, with y = 0, is such that the corresponding f ♯

0 is
defined by the following formula of MQPA,

Ff♯
0
: y = 0.

• Oracle Successor Function. Let fs ∈ OR be the successor function. By
definition, fs(x, ω) = y, with y = x + 1 is such that f ♯

s is defined by the
following formula of MQPA,

Ff♯
s
: S(x) = y.

• Oracle Projection Function. Let fπi
∈ OR be the projection function. By

Definition, fπi
(x1, . . . , xk, ω) = y with y = x is such that f ♯

πi
is defined by

the following formula of MQPA,

Fπk
i
: xi = y.

• Oracle Query Function. Let q ∈ OR be the query function. By Defini-
tion, q(x, ω) = ω(x) is such that f ♯

q is defined by the following formula of
MQPA,

Fq : x = (y = 1 ∧ Flip(x)) ∨ (y = 0 ∧ ¬Flip(x)).

Inductive Case. For each oracle function f ∈ OR obtained by composition,
primitive recursion, or minimization from oracle recursive functions, the cor-
responding random function f ♯ is arithmetical. The proof is very similar to

198

standard ones, so we consider the case of (simple) composition only. Let f be
obtained by composition from h and g, that is:

f(x1, . . . , xn, ω) = h(g(x1, . . . , xn, ω), ω) = v.

It is possible to show that f ♯(x1, . . . , xn)(v) is arithmetical, namely that
for every x1, . . . , xn, v ∈ N, there is a formula of MQPA Ff♯(x1, . . . , xn, v),
such that µC(JFf♯(x1, . . . , xn, v)K) = f ♯

(
and for any m1, . . . ,mn, l ∈ N

JFf♯(m1, . . . ,mn, l)K = {ω | f(m1, . . . ,mn) = l}
)
. Indeed, the desired formula

is

Ff♯ = (∃v)
(
Fh♯(v, y) ∧ Fg♯(x1, . . . , xn, v)

)
,

where by IH µC(JFh♯K) = h♯ and µC(JFg♯K) = g♯.

Concluding the Proof. Finally, Theorem 12.3.2 is proved relying on Lemma 12.3.3
above together with Proposition 12.3.1.

Proof of Theorem 12.3.2. Any computable random function is in PR, by Propo-
sition 12.3.1, and each PR function is arithmetical by Lemma 12.3.3 and Propo-
sition 12.3.2. Indeed, by Proposition 12.3.2, for any f ∈ PR, there is a g ∈ OR
such that f = g♯ and, since g ∈ OR, by Lemma 12.3.3, g♯(= f) is arithmeti-
cal.

f computable by a PTM

f ∈ PR
f = g♯

g ∈ OR

Ff in LMQPA

Prop. 12.3.1, [64]

Prop. 12.3.1

Lemma 12.3.3

Figure 12.4: The Structure of the Proof

199

Chapter 13

An Arithmetic to Characterize
Probabilistic Classes

We introduce a new bounded theory RS1
2, and show that the functions which

are Σb
1-representable in it are precisely random functions which can be com-

puted in polynomial time. Concretely, we pass through the class of oracle func-
tions over strings POR, which is introduced in Section 13.2, together with RS1

2.
Then, we show that functions computed by poly-time PTMs are arithmetically
characterized by a class of probabilistic bounded formulae: in Section 13.3.2,
we prove that the class of poly-time oracle functions is equivalent to that of
functions which are Σb

1-representable in RS1
2, and in Section 13.4 we establish

the converse. This result, together with the notion of measure quantifier, al-
lows us to internalize probabilistic computation with resource- and error-bound
checks within the logical system and to provide an arithmetical characterization
of BPP. This is done in Section 13.5.2.

13.1 Overview

Usual characterizations of poly-time (deterministic) functions in bounded arith-
metic are obtained by two “macro” results [34, 83]. Some Cobham-style algebra
for poly-time functions is introduced and shown equivalent to (1) that of func-
tions computed by TMs running in polynomial time, and (2) that of functions
which are Σb

1-representable in the proper bounded theory. The global structure
of our proof follows a similar path, with an algebra of oracle recursive func-
tion, called POR, playing the role of our Cobham-style function algebra. In our
case, functions are poly-time computable by PTMs and the theory is random-
ized RS1

2. After introducing these classes, we show that the random functions
which are Σb

1-representable in RS1
2 are precisely those in POR, and that POR

is equivalent (in a very specific sense) to the class of functions computed by
PTMs running in polynomial time. While the first part is established due to

200

standard arguments [83, 46], the presence of randomness introduced a deli-
cate ingredient to be dealt with in the second part. Indeed, functions in POR
access randomness in a rather different way with respect to PTMs, and relat-
ing these models requires some effort, that involves long chains of intermediate
simulations.

POR

RS1
2 RFP

Figure 13.1: Proof Schema

Concretely, we start by defining the class of oracle functions over strings,
the new theory RS1

2, strongly inspired by [84], but over a “probabilistic word
language”, and considering a slightly modified notion of Σb

i -representability,
fitting the domain of our peculiar oracle functions. Then, we prove that the class
of random functions computable in polynomial time, called RFP, is precisely
the class of functions which are Σb

1-representable in RS1
2 in three steps:

1. We prove that functions in POR are Σb
1-representable in RS1

2 by induction
on the structure of oracle functions (and relying on the encoding machin-
ery presented in [34, 83]).

2. We show that all functions which are Σb
1-representable in RS1

2 are in POR
by realizability techniques similar to Cook and Urquhart’s one [46].

3. We generalize Cobham’s result to probabilistic models, showing that func-
tions in POR are precisely those in RFP.

RS1
2 POR RFP

realizability [46]

induction [82]

series of simulations

Figure 13.2: Our Proof in a Nutshell

201

13.2 Introducing POR and RS1
2

In this section, we introduce a Cobham-style function algebra for poly-time or-
acle recursive functions POR, and a randomized bounded arithmetic RS1

2. As
Ferreira’s ones [82, 83], these classes are both associated with binary strings
rather than natural positive integer: POR is a class of oracle functions over
sequences of bits, while RS1

2 is defined in a probabilistic word language RL.
Strings support a natural notion of term-size and make it easier to deal with
bounds and time-complexity. Observe that working with strings is not crucial
and all results below could be spelled out in terms of natural numbers. In-
deed, theories have been introduced in both formulations – Ferreira’s Σb

1-NIA
and Buss’ S1

2 – and proved equivalent [84].

13.2.1 The Function Algebra POR
We introduce a function algebra for poly-time oracle recursive functions inspired
by Ferreira’s PT CA [82, 83], and defined over strings.

Notation 13.2.1. Let B = {0,1}, S = B∗ be the set of binary strings of finite
length, and O = BS be the set of binary strings of infinite length. Metavariables
η′, η′′, . . . are used to denote the elements of O.

Let | · | denote the length-map, so that for any string x, |x| indicates the length
of x. Given two binary strings x, y we use x ⊆ y to express that x is an initial
or prefix substring of y, x ⌢ y (abbreviated as xy) for concatenation, and x× y
obtained by self-concatenating x for |y|-times. Given an infinite string of bits η,
and a finite string x, η(x) denotes one specific bit of η, the so-called x-th bit of
x.

A fundamental difference between oracle functions and those of PT CA is
that the latter ones are of the form f : Sk ×O→ S, carrying an additional argu-
ment to be interpreted as the underlying source of random bits. Furthermore,
PR includes the basic function query, Q(x, η) = η(x), which can be used to
observe any bit in η.

Definition 13.2.1 (The Class POR). The class POR is the smallest class of
functions f : Sk × O→ S, containing:

• The empty (string) function E(x, η) = ϵ

• The projection (string) functions Pn
i (x1, . . . , xn, η) = xi, for n ∈ N and

1 ≤ i ≤ n

• The word-successor Sb(x, η) = xb, where b = 0 if b = 1 and b = 1 if b = 1

• The conditional (string) function

C(ϵ, y, z0, z1, η) = y

C(xb, y, z0, z1, η) = zb,

where b = 0 if b = 0 and b = 1 if b = 1

202

• The query (string) function Q(x, η) = η(x)

and closed under the following schemas:

• Composition, where f is defined from g, h1, . . . , hk as

f(x⃗, η) = g(h1(x⃗, η), . . . , hk(x⃗, η), η)

• Bounded recursion on notation, where f is defined from g, h0, and h1 as

f(x⃗, ϵ, η) = g(x⃗, η)

f(x⃗, y0, η) = h0(x⃗, y, f(x⃗, y, η), η)|t(x⃗,y)
f(x⃗, y1, η) = h1(x⃗, y, f(x⃗, y, η), η)|t(x⃗,y)

and t is obtained from ϵ,1,0,⌢, and × by explicit definition, that is t can
be obtained applying ⌢ and × on the constants ϵ,0,1, and the variables
x⃗ and y.1

Actually, the conditional function C could be defined by bounded recursion.

Remark 13.2.1. Neither the query function or the conditional function appear in
Ferreira’s characterization [83], which instead contains the “substring-conditional”
function:

S(x, y, η) =

{
1 if x ⊆ y

0 otherwise,

which can be defined in POR by bounded recursion.

13.2.2 Randomized Bounded Arithmetics

First, we introduce a probabilistic word language for our bounded arithmetic,
together with its quantitative interpretation.

The Language RL. Following [84], we consider a first-order signature for
natural numbers in binary notation endowed with a special predicate symbol
Flip(·). Consequently, formulae are interpreted over S rather than N.

Definition 13.2.2 (Terms and Formulae of RL). Terms and formulae of RL are
defined by the grammar below:

t ::= x | ϵ | 0 | 1 | t ⌢ t | t× t

F ::= Flip(t) | t = s | ¬F | F ∧ F | F ∨ F | (∃x)F | (∀x)F.

1Notice that there is a clear correspondence with the grammar for terms in RL, Definition 13.2.5.

203

Notation 13.2.2 (Truncation). For readability, we adopt the following abbrevi-
ations: ts for t ⌢ s, 1t for 1× t, and t ⪯ s for 1t ⊆ 1s, expressing that the length
of t is smaller than that of s. Given three terms t, r, and s, the abbreviation
t|r = s denotes the following formula,

(1r ⊆ 1t ∧ s ⊆ t ∧ 1r = 1s) ∨ (1t ⊆ 1r ∧ s = t),

saying that s is the truncation of t at the length of r.

Every string σ ∈ S can be seen as a term of RL σ, such that ϵ = ϵ, σb = σb,
where b ∈ B and b ∈ {0, 1}, e.g. 001 = 001.

A central feature of bounded arithmetic is the presence of bounded quantifi-
cation.

Notation 13.2.3 (Bounded Quantifiers). In RL, bounded quantified expressions
are expressions of either the form (∀x)(1x ⊆ 1t → F) or (∃x)(1x ⊆ 1t ∧ F),
usually abbreviated as (∀x ⪯ t)F and (∃x ⪯ t)F respectively.

Notation 13.2.4. We call subword quantifications, quantifications of the form
(∀x ⊆∗ t)F and (∃x ⊆∗ t)F , abbreviating (∀x)

(
(∃w ⊆ t)(wx ⊆ t) → F

)
and

(∃x)(∃w ⊆ t)(wx ⊆ t∧F). Furthermore, we abbreviate so-called initial subword
quantification (∀x)(x ⊆ t→ F) as (∀x ⊆ t)F and (∃x)(x ⊆ t ∧ F) as (∃x ⊆ t)F .

The distinction between bounded and subword quantification is important for
complexity reasons. If σ ∈ S is a string of length k, the witness of a subword
existentially quantified formula (∃x ⊆∗ σ)F is to be looked for among all pos-
sible sub-strings of σ, that is within a space of size O(k). On the contrary, the
witness of a bounded formula (∃x ⪯ σ)F is to be looked for among all possible
strings of length k, namely within a space of size O(2k).

Remark 13.2.2. In order to avoid misunderstanding let us briefly sum up the
different notions and symbols used for subword relations. We use ⊆ to express a
relation between strings, that is x ⊆ y expresses that x is an initial substring or
prefix of y. We use ⊆ as a relation symbol in the language RL. We use ⪯ as an
auxiliary symbol in the language RL; in particular, as seen, t ⪯ s is syntactic
sugar for 1t ⊆ 1s. We use ⊆∗ as an auxiliary symbol in the language RL to
denote subword quantification. We also use (∃w ⊆ t)F as an abbreviation of
(∃w)(w ⊆ t ∧ F) and similarly for (∀w ⊆ t).

Definition 13.2.3 (Σb
1-Formulae). A Σb

0-formula is a subword quantified for-
mula, i.e. a formula belonging to the smallest class of RL containing atomic
formulae and closed under Boolean operations and subword quantification. A
formula is said to be a Σb

1-formula, if it is of the form (∃x1 ⪯ t) . . . (∃xn ⪯ tn)F ,
where the only quantifications in F are subword ones. We call Σb

1 the class
containing all and only the Σb

1-formulae.

An extended Σb
1-formula is any formula of RL that can be constructed in a finite

number of steps, starting with subword quantifications and bounded existential
quantifications.

204

The Bounded Theory RS1
2. We introduce the bounded theory RS1

2, which can
be seen as a probabilistic version to Ferreira’s Σb

1-NIA [82]. It is expressed in
the language RL.

Definition 13.2.4 (Theory RS1
2). The theory RS1

2 is defined by axioms belong-
ing to two classes:

• Basic axioms:

1. xϵ = x

2. x(yb) = (xy)b

3. x× ϵ = ϵ

4. x× xb = (x× y)x

5. x ⊆ ϵ↔ x = ϵ

6. x ⊆ yb↔ x ⊆ y ∨ x = yb

7. xb = yb→ x = y

8. x0 ̸= y1,
9. xb ̸= ϵ

with b ∈ {0, 1}
• Axiom schema for induction on notation,

B(ϵ) ∧ (∀x)
(
B(x)→ B(x0) ∧B(x1)

)
→ (∀x)B(x),

where B is a Σb
1-formula in RL.

Induction on notation adapts the usual induction schema of PA to the binary
representation. Of course, as in Buss’ and Ferreira’s approach, the restriction
of this schema to Σb

1-formulae is essential to characterize algorithms computed
with bounded resources. Indeed, more general instances of the schema would
extend representability to random functions which are not poly-time (proba-
bilistic) computable.

Proposition 13.2.1 ([82]). In RS1
2 any extended Σb

1-formula is logically equiva-
lent to a Σb

1-formula.2

Semantics for Formulae in RL. We introduce a quantitative semantics for
formulae of RL, which is strongly inspired by that for MQPA. In particular,
function symbols of RL as well as the predicate symbols “=” and “⊆” have a
standard interpretation as relations over S in the canonical model W= (S,⌢
,×), while, as we shall see, Flip(t) can be interpreted either in a standard way
or following Definition 12.1.3.

2Actually, Ferreira proved this result for the theory Σb
1-NIA [82, pp. 148-149], but it clearly holds

for RL as well.

205

Definition 13.2.5 (Semantics for Terms in RL). Given a set of term variables
G, an environment ξ : G → S is a mapping that assigns to each variable a string.
Given a term t in RL and an environment ξ, the interpretation of t in ξ is the
string JtKξ ∈ S inductively defined as follows:

JϵKξ := ϵ

J0Kξ := 0

J1Kξ := 1

JxKξ := ξ(x) ∈ S

Jt ⌢ sKξ := JtKξJsKξ
Jt× sKξ := JtKξ × JsKξ.

As in Chapter 12, we extend the canonincal model Wwith the probability
space PW = (O, σ(C), µC), where σ(C) ⊆ P(O) is the Borel σ-algebra gener-
ated by cylinders Cb

σ = {η | η(σ) = b}, for b ∈ B, and such that µC(C
b
σ) =

1
2 .

To formally define cylinders over BS, we slightly modify Billingsley’s notion of
cylinder of rank n.

Definition 13.2.6 (Cylinder over S). For any countable set S, finite K ⊂ S and
H ⊆ BK ,

C(H) = {η ∈ BS | η|K ∈ H},
is a cylinder over S.

Then, Cand σ(C) are defined in the standard way and the probability measure
over it is defined as follows:3

Definition 13.2.7 (Cylinder Measure). For any countable set S, K ⊆ S and
H ⊆ BK such that C(H) = {η ∈ BS | η|K ∈ H},

µC(C(H)) =
|H|
2|K|

.

This is a measure over σ(C).
Then, formulae of RL are interpreted as sets measurable sets.

Definition 13.2.8 (Semantics for Formulae in RL). Given a term t, a formula
F , and an environment ξ : G → S, where G is the set of term variables, the
interpretation of F under ξ is the measurable set of sequences JF Kξ ∈ σ(C)
inductively defined as follows:

JFlip(t)Kξ := {η | η(JtKξ) = 1}

Jt = sKξ :=

{
O if JtKξ = JsKξ
∅ otherwise

Jt ⊆ sKξ :=

{
O if JtKξ ⊆ JsKξ
∅ otherwise

J¬GKξ := O− JGKξ
JG ∨HKξ := JGKξ ∪ JHKξ
JG ∧HKξ := JGKξ ∩ JHKξ

JG→ HKξ := (O− JGKξ) ∪ JHKξ

J(∃x)GKξ :=
⋃
i∈S

JGKξ{x←i}

J(∀x)GKξ :=
⋂
i∈S

JGKξ{x←i}.

3For further details, see [68].

206

As anticipated, this semantics is well-defined. Indeed, the sets JFlip(t)Kξ, Jt =
sKξ and Jt ⊆ sKξ are measurable and measurability is preserved by all the logical
operators.

A interpretation of the language RL in the usual sense is given due to an
environment ξ plus the choice of an interpretation η for Flip(x).

Definition 13.2.9 (Standard Semantics for Formulae in RL). Given a RL-
formula F , and an interpretation ρ = (ξ, ηFLIP), where ξ : G → S and ηFLIP ⊆ O,
the interpretation of F in ρ JF Kρ, is inductively defined as follows:

JFlip(t)Kρ :=

{
1 if ηFLIP(JtKρ) = 1

0 otherwise

Jt = sKρ :=

{
1 if JtKρ = JsKρ
0 otherwise.

Jt ⊆ sKρ :=

{
1 if JtKρ ⊆ JsKρ
0 otherwise

J¬GKρ := 1− JGKρ
JG ∧HKρ := min{JGKρ, JHKρ}
JG ∨HKρ := max{JGKρ, JHKρ}

JG→ HKρ := max{(1− JGKρ), JHKρ}
J(∀x)GKρ := min{JGKρ{x←σ} | σ ∈ S}
J(∃x)GKρ := max{JGKρ{x←σ} | σ ∈ S}.

Notation 13.2.5. For readability’s sake, we abbreviate J·Kρ simply as J·Kη, and
J·Kξ as J·K.

Observe that quantitative and qualitative semantics forRL are mutually related,
as can be proved by induction on the structure of formulae [68].

Proposition 13.2.2. For any formula F in RL, environment ξ, function η ∈ O
and ρ = (η, ξ),

JF Kξ,η = 1 iff η ∈ JF Kρ.

13.3 RS1
2 characterizes POR

As said, our proof follows a so-to-say standard path [34, 82]. The first step
consists in showing that functions in POR are precisely those which are Σb

1-
representable in RS1

2. To do so, we extend Buss’ representability conditions by
adding a constraint to link the quantitative semantics of formulae in RS1

2 with
the additional functional parameter η of oracle recursive functions.

Definition 13.3.1 (Σb
1-Representability). A function f : Sk × O → S is Σb

1-
representable in RS1

2 if there is a Σb
1-formula F (x⃗, y) of RL such that:

207

1. RS1
2 ⊢ (∀x⃗)(∃y)F (x⃗, y)

2. RS1
2 ⊢ (∀x⃗)(∀y)(∀z)

(
F (x⃗, y) ∧ F (x⃗, z)→ y = z

)
3. for all σ1, . . . , σj , τ ∈ S and η ∈ O,

f(σ1, . . . , σj , η) = τ iff η ∈ JF (σ1, . . . , σj , τ)K.

We recall that the language RL allows us to associate the formula F with both
a qualitative – namely, when dealing with 1. and 2. – and a quantitative in-
terpretation – namely, in 3. Then, in Section 13.3.1, we prove the following
theorem.

Theorem 13.3.1 (POR and RS1
2). For any function f : Sk × O → S, f is Σb

1-
representable in RS1

2 when f ∈ POR.

In particular, that any function in POR is Σb
1-representable in RS1

2 is proved
in Section 13.3.1 by a straightforward induction on the structure of probabilis-
tic oracle functions. The other direction is established in Section 13.3.2 by a
realizability argument very close to the one offered in [46].

Class POR Σb
1-Representability in RS1

2

induction on POR, Sec. 13.3.1

realizability as in [46], Sec. 13.3.2

Figure 13.3: Relating POR and RS1
2

13.3.1 Functions in POR are Σb
1-Representable in RS1

2

We prove that any function in POR is Σb
1-representable in RS1

2 by constructing
the desired formula by induction on the structure of oracle functions. Prelim-
inarily notice that, for example, the formula (∀x⃗)(∃y)G(x⃗, y) occurring in con-
dition 1. is not in Σb

1, since its existential quantifier is not bounded. Hence, in
order to prove the inductive steps of Theorem 13.3.2 – namely, composition and
bounded recursion on notation – we need to adapt Parikh’s theorem [166] to
RS1

2.4

4The theorem is usually presented in the context of Buss’ bounded theories, as stating that given
a bounded formula F in LN such that S1

2 ⊢ (∀x⃗)(∃y)F , then there is a term t(x⃗) such that also
S1
2 ⊢ (∀x⃗)(∃y ≤ t(x⃗))F (x⃗, y) [34, 35]. Furthermore, due to [84], Buss’ syntactic proof can be

adapted to Σb
1-NIA in a natural way. The same result holds for RS1

2, which does not contain any
specific rule concerning Flip(·).

208

Proposition 13.3.1 (“Parikh” [166]). Let F (x⃗, y) be a bounded formula in RL
such that RS1

2 ⊢ (∀x⃗)(∃y)F (x⃗, y). Then, there is a term t such that,

RS1
2 ⊢ (∀x⃗)(∃y ⪯ t(x⃗))F (x⃗, y).

Theorem 13.3.2. Every f ∈ POR is Σb
1-representable in RS1

2.

Proof Sketch. The proof is by induction on the structure of functions in POR.5

Base Case. Each basic function is Σb
1-representable in RS1

2. There are five
possible sub-cases:

• Empty (String) Function. f = E is Σb
1-represented in RS1

2 by the formula:

FE(x, y) : x = x ∧ y = ϵ.

1. Existence is proved considering y = ϵ. For the reflexivity of identity
both RS1

2 ⊢ x = x and RS1
2 ⊢ ϵ = ϵ hold. So, by rules for conjunction,

we obtain RS1
2 ⊢ x = x ∧ ϵ = ϵ, and conclude:

RS1
2 ⊢ (∀x)(∃y)(x = x ∧ y = ϵ).

2. Uniqueness is proved assuming RS1
2 ⊢ x = x ∧ z = ϵ. By rules for

conjunction, in particular RS1
2 ⊢ z = ϵ, and since RS1

2 ⊢ y = ϵ, by
the transitivity of identity, we conclude

RS1
2 ⊢ y = z.

3. Assume E(σ, η∗) = τ . If τ = ϵ, then:

Jσ = σ ∧ τ = ϵK = Jσ = σK ∩ Jτ = ϵK
= O ∩ O

= O.

So, in this case, for any η∗, η∗ ∈ Jσ = σ ∧ τ = ϵK, as clearly η∗ ∈ O.
If τ ̸= ϵ, then

Jσ = σ ∧ τ = ϵK = Jσ = σK ∩ Jτ = ϵK
= O ∩ ∅
= ∅.

So, for any η∗, η∗ ̸∈ Jσ = σ ∨ τ = ϵK, as clearly η∗ ̸∈ ∅.

• Projection (String) Function. f = Pn
i , for 1 ≤ i ≤ n, is Σb

1-represented in
RS1

2 by the formula:

FPn
i
(x, y) :

∧
j∈J

(xj = xj) ∧ y = xi,

where J = {1, . . . , n} \ {i}.
5For further details, see [6].

209

• Word-Successor Function. f = Sb is Σb
1-represented in RS1

2 by the formula:

FSb
(x, y) : y = xb

where b = 0 if b = 0 and b = 1 if b = 1.

• Conditional (String) Function. f = C is Σb
1-represented in RS1

2 by the
formula:

FC(x, v, z0, z1, y) : (x = ϵ ∧ y = v) ∨ (∃x′ ⪯ x)(x = x′0 ∧ y = z0)

∨ (∃x′ ⪯ x)(x = x′1 ∧ y = z1).

• Query (String) Function. f = Q is Σb
1-represented in RS1

2 by the formula:

FQ(x, y) : (Flip(x) ∧ y = 1) ∨ (¬Flip(x) ∧ y = 0).

Notice that, in this case, the proof crucially relies on the fact that oracle
functions invoke exactly one oracle.

1. Existence is proved by cases.6 Since our underlying logic is classical
RS1

2 ⊢ Flip(x)∨¬Flip(x) holds. When RS1
2 ⊢ Flip(x), let y = 1. By

the reflexivity of identity, RS1
2 ⊢ 1 = 1 holds, so also RS1

2 ⊢ Flip(x)∧
1 = 1. By rules for disjunction, we conclude RS1

2 ⊢ (Flip(x) ∧ 1 =
1) ∨ (¬Flip(x) ∧ 1 = 0) and so,

RS1
2 ⊢ (∃y)

(
(Flip(x) ∧ y = 1) ∨ (¬Flip(x) ∧ y = 0)

)
.

Then, when RS1
2 ⊢ ¬Flip(x), let y = 0. By the reflexivity of

identity RS1
2 ⊢ 0 = 0 holds. Thus, by the rules for conjunction,

RS1
2 ⊢ ¬Flip(x) ∧ 0 = 0 and for disjunction, we conclude RS1

2 ⊢
(Flip(x) ∧ 0 = 1) ∨ (¬Flip(x) ∧ 0 = 0) and so,

RS1
2 ⊢ (∃y)

(
(Flip(x) ∧ y = 1) ∨ (¬Flip(x) ∧ y = 0)

)
.

6More formally, the proof (basing on an extension of standard G3K [155, 156]) is as follows:

Ax
Flip(x) ⊢ (∃y)FQ(z, y), Flip(z)

¬R
⊢ (∃y)FQ(z, y), Flip(z),¬Flip(z)

D∃Q

⊢ (∃y)FQ(z, y), Flip(z), 1 = 0

∧R
(∃y)FQ(z, y), Flip(z),¬Flip(z) ∧ 1 = 0

Ax
1 = 1 ⊢ ..., 1 = 1

Ref
⊢ ..., 1 = 1

∧R
⊢ (∃y)FQ(z, y), (Flip(z) ∧ 1 = 1), (¬Flip(z) ∧ 1 = 0)

∨R
⊢ (∃y)FQ(z, y), (Flip(z) ∧ 1 = 1) ∨ (¬Flip(z) ∧ 1 = 0)

∃R
⊢ (∃y)((Flip(z) ∧ y = 1) ∨ (¬Flip(z) ∧ y = 0))

∀R
⊢ (∀x)(∃y)((Flip(x) ∧ y = 1) ∨ (¬Flip(x) ∧ y = 0))

where D∃Q is:

Ax
Flip(z) ⊢ ..., Flip(z)

¬R
⊢ ..., Flip(z),¬Flip(z)

Ax
0 = 0 ⊢ ..., Flip(z), 0 = 0

Ref
⊢ ..., Flip(z), 0 = 0

∧R
⊢ ..., Flip(z), Flip(z) ∧ 0 = 1,¬Flip(z) ∧ 0 = 0

∨R
⊢ (∃y)FQ(z, y), 1 = 0, Flip(z), FQ(z, 0)

∃R
⊢ (∃y)FQ(z, y), Flip(z), 1 = 0

For further details, see [6].

210

2. Uniqueness is established relying on the transitivity of identity.
3. Finally, it is shown that for every σ, τ ∈ S and η∗ ∈ O, Q(σ, η∗) = τ

when η∗ ∈ JFQ(σ, τ)K. Assume Q(σ, η∗) = 1, which is η∗(σ) = 1,

JFQ(σ, τ)K = JFlip(σ) ∧ τ = 1K ∪ J¬Flip(σ) ∧ τ = 0K
= (JFlip(σ)K ∩ J1 = 1K) ∪ (J¬Flip(σ)K ∩ J1 = 0K)
= (JFlip(σ)K ∩ O) ∪ (J¬Flip(σ)K ∩ ∅)
= JFlip(σ)K
= {η | η(σ) = 1}.

Clearly, η∗ ∈ J(Flip(σ) ∧ τ = 1) ∨ (¬Flip(σ) ∧ τ = 0)K.
The case Q(σ, η∗) = 0 and the opposite direction are proved in a
similar way.

Inductive Case. If f is defined by composition or bounded recursion from
Σb

1-representable functions, then f is Σb
1-representable in RS1

2:

• Composition. Assume that f is defined by composition from functions
g, h1, . . . , hk so that

f(x⃗, η) = g(h1(x⃗, η), . . . , hk(x⃗, η), η)

and that g, h1, . . . , hk are represented in RS1
2 by the Σb

1-formulae Fg, Fh1
,

. . . , Fhk
, respectively. By Proposition 13.3.1, there exist suitable terms

tg, th1
, . . . , thk

such that condition 1. of Definition 13.3.1 can be strength-
ened to RS1

2 ⊢ (∀x⃗)(∃y ⪯ ti)Fi(x⃗, y) for each i ∈ {g, h1, . . . , hk}. We
conclude that f(x⃗, η) is Σb

1-represented in RS1
2 by the following formula:

Ff (x, y) : (∃z1 ⪯ th1(x⃗)) . . . (∃zk ⪯ thk
(x⃗))

(
Fh1(x⃗, z1) ∧ . . . Fhk

(x⃗, zk)

∧ Fg(z1, ..., zk, y)
)
.

Indeed, by IH, Fg, Fh1
, . . . , Fhk

are Σb
1-formulae. Then, also Ff is in Σb

1.
Conditions 1.-3. are proved to hold by slightly modifying standard proofs.

• Bounded Recursion. Assume that f is defined by bounded recursion from
g, h0, and h1 so that:

f(x⃗, ϵ, η) = g(x⃗, η)

f(x⃗, yb, η) = hi(x⃗, y, f(x⃗, y, η), η)|t(x⃗,y),

where i ∈ {0, 1} and b = 0 when i = 0 while and b = 1 when i =

1. Let g, h0, h1 be represented in RS1
2 by, respectively, the Σb

1-formulae
Fg, Fh0 , and Fh1 . Moreover, by Proposition 13.3.1, there exist suitable
terms tg, th0 , and th1 such that condition 1. of Definition 13.3.1 can be

211

strengthened to its “bounded version”. Then, it can be proved that f(x⃗, y)
is Σb

1-represented in RS1
2 by the formula below:

Ff (x, y) : (∃v ⪯ tg(x⃗)tf (x⃗)(y × t(x⃗, y)t(x⃗, y)11))
(
Flh(v, 1× y1)

∧ (∃z ⪯ tg(x⃗))(Feval(v, ϵ, z) ∧ Fg(x⃗, z))

∧ (∀u ⊂ y)(∃z)
(
z̃ ⪯ t(x⃗, y))

(
Feval(v, 1× u, z) ∧ Feval(v, 1× u1, z̃)

∧ (u0 ⊆ y → (∃z0 ⪯ th0(x⃗, u, z))(Fh0(x⃗, u, z, z0) ∧ z0|t(x⃗,u) = z̃))

∧ (u1 ⊆ y → (∃z1 ⪯ th1(x⃗, u, z))(Fh1(x⃗, u, z, z1) ∧ z1|t(x⃗,u) = z̃))
))
,

where Flh and Feval are Σb
1-formulae defined as in [83]. Intuitively, Flh(x, y)

states that the number of 1s in the encoding of x is yy, while Feval(x, y, z)
is a “decoding” formula (strongly resembling Gödel’s β-formula), express-
ing that the “bit” encoded in x as its y-th bit is z. Moreover x ⊂ y is an
abbreviation for x ⊆ y ∧ x ̸= y. Then, this formula Ff satisfies all the
requirements to Σb

1-represent in RS1
2 the function f , obtained by bounded

recursion from g, h0, and h1. In particular, conditions 1. and 2. con-
cerning existence and uniqueness, have already been proved to hold by
Ferreira [83]. Furthermore, Ff expresses that, given the desired encoding
sequence v: (i.) the ϵ-th bit of v is (the encoding of) z′ such that Fg(x⃗, z

′)
holds, where (for IH) Fg is the Σb

1-formula representing the function g,
and (ii.) given that for each u ⊂ y, z denotes the “ bit” encoded in v at
position 1 × u and, similarly, z̃ is the next “bit”, encoded in v at position
1 × u1, then if ub ⊆ y (that is, if we are considering the initial substring
of y the last bit of which corresponds to b), then there is a zb such that
Fhb

(x⃗, y, z, zb), where Fhb
Σb

1-represents the function fhb
and the trunca-

tion of zb at t(x⃗, u) is precisely z̃, with b = 0 when b = 0 and b = 1 when
b = 1.7

13.3.2 The functions which are Σb
1-Representable in RS1

2 are
in POR

Here, we consider the opposite direction. Our proof is obtained by adapting
that by Cook and Urquhart for IPVω [46]. It passes through a realizability in-
terpretation of the intuitionistic version of RS1

2, called IRS1
2 and is structured as

follows:

1. First, we define PORλ, a basic equational theory for a simply typed λ-
calculus endowed with primitives corresponding to functions of POR.

7Otherwise said, if u0 ⊆ y, there is a z0 such that the Σb
1-formula Fh0

(x⃗, u, z, z0) represents
the function h0 and, in this case, z̃ corresponds to the truncation of z0 at t(x⃗, u), that is the “bit”
encoded by v at the position 1 × u1 (i.e. corresponding to u0 ⊆ y) is precisely such z̃. Equally, if
u1 ⊆ y, there is a z0 such that the Σb

1-formula Fh1
(x⃗, u, z, z1) represents now the function h1 and

z̃ corresponds to the truncation of z1 at t(x⃗, u), that is the “bit” encoded by v at position 1 × u1
(i.e. corresponding to u1 ⊆ y) is precisely such z⃗. For further details, see [6].

212

2. Second, we introduce a first-order intuitionistic theory IPORλ, which ex-
tends PORλ with the usual predicate calculus as well as an NP-induction
schema. It is shown that IPORλ is strong enough to prove all theorems
of IRS1

2, the intuitionistic version of RS1
2.

3. Then, we develop a realizability interpretation of IPORλ (inside itself),
showing that from any derivation of (∀x)(∃y)F (x, y) (where F is a Σb

0-
formula) one can extract a λ-term t of PORλ, such that (∀x)F (x, tx) is
provable in IPORλ. From this we deduce that every function which is
Σb

1-representable in IRS1
2 is in POR.

4. Finally, we extend this result to classical RS1
2 showing that any Σb

1-formula
provable in IPORλ + Excluded Middle (EM, for short) is already prov-
able in IPORλ.

The System PORλ

We define an equational theory for a simply typed λ-calculus augmented with
primitives for functions of POR. Actually, these do not exactly correspond to
the ones of POR, although the resulting function algebra is proved equivalent.8

The Syntax of PORλ. We start by considering the syntax of PORλ.

Definition 13.3.2 (Types of PORλ). Types of PORλ are defined by the gram-
mar below:

σ := s | σ ⇒ σ.

Definition 13.3.3 (Terms of PORλ). Terms of PORλ are standard, simply
typed λ-terms plus the constants below:

0, 1, ϵ : s

◦ : s⇒ s⇒ s

Tail : s⇒ s

Trunc : s⇒ s⇒ s

Cond : s⇒ s⇒ s⇒ s⇒ s

Flipcoin : s⇒ s

Red : s⇒ (s⇒ s⇒ s)⇒ (s⇒ s⇒ s)⇒ (s⇒ s)⇒ s⇒ s.

Intuitively, Tail(x) computes the string obtained by deleting the first digit of
x; Trunc(x, y) computes the string obtained by truncating x at the length of
y; Cond(x, y, z, w) computes the function that yields y when x = ϵ, z when
x = x′0, and w when x = x′1; Flipcoin(x) indicates a random 0/1 generator;
Rec is the operator for bounded recursion on notation.

8Our choice follows the principle that the defining equations for the functions different from the
recursion operator should not depend on it.

213

Notation 13.3.1. We usually abbreviate x ◦ y as xy. Moreover, for readability’s
sake, being T any constant Tail,Trunc,Cond,Flipcoin,Rec of arity n, we indicate
Tu1, . . . , un as T(u1, . . . , un).

PORλ is reminiscent of PVω by Cook and Urquhart [46] without the induc-
tion rule (R5) that we do not need. The main difference being the constant
Flipcoin, which, as said, intuitively denotes a function which randomly gener-
ates either 0 or 1 when reads a string.9

Remark 13.3.1. In the following, we often define terms implicitly using bounded
recursion on notation. Otherwise said, we define new terms, say F : s ⇒ . . . ⇒ s,
by equations of the form:

Fx⃗ϵ := Gx⃗

Fx⃗(y0) := H0x⃗y(Fx⃗y)

Fx⃗(y1) := H1x⃗y(Fx⃗y),

where G,H0,H1 are already-defined terms, and the second and third equations
satisfy a length bound given by some term K (which is usually λx⃗λy.0). The term
F can be explicitly defined as follows:

F := λx⃗.λy.Rec(Gx⃗, λyy′.H0x⃗yy
′, λyy′.H1x⃗yy

′,Kx⃗, y).

We also introduce the following abbreviations for composed functions:

• B(x) := Cond(x, ϵ, 0, 1) denotes the function that computes the last digit
of x, i.e. coerces x to a Boolean value

• BNeg(x) := Cond(x, ϵ, 1, 0) denotes the function that computes the Boolean
negation of B(x)

• BOr(x, y) := Cond(B(x),B(y),B(y), 1) denotes the function that coerces x
and y to Booleans and then performs the OR operation

• BAnd(x, y) := Cond(B(x), ϵ, 0,B(y)) denotes the function that coerces x
and y to Booleans and then performs the AND operation

• Eps(x) := Cond(x, 1, 0, 0) denotes the characteristic function of the predi-
cate “x = ϵ”

• Bool(x) := BAnd(Eps(Tail(x)),BNeg(Eps(x))) denotes the characteristic
function of the predicate “x = 0 ∨ x = 1”

• Zero(x) := Cond(Bool(x), 0,Cond(x, 0, 0, 1), 0) denotes the characteristic
function of the predicate “x = 0”

• Conc(x, y) denotes the concatenation function defined by the equations
below:

Conc(x, ϵ) := x Conc(x, yb) := Conc(x, y)b,

with b ∈ {0, 1}.
9These interpretations will be made clear by Definition 13.3.6 below.

214

• Eq(x, y) denotes the characteristic function of the predicate “x = y” and
is defined by double recursion by the equation below:

Eq(ϵ, ϵ) := 1 Eq(ϵ, yb) := 0

Eq(xb, ϵ) = Eq(x0, y1) = Eq(x1, y0) := 0 Eq(xb, yb) := Eq(x, y),

with b ∈ {0, 1}
• Times(x, y) denotes the function for self-concatenation, x, y 7→ x× y, and

is defined by the equations below:

Times(x, ϵ) := ϵ Times(x, yb) := Conc(Times(x, y), x),

with b ∈ {0, 1}.
• Sub(x, y) denotes the initial-substring functions, x, y 7→ S(x, y), and is

defined by bounded recursion as follows:

Sub(x, ϵ) := Eps(x) Sub(x, yb) := BOr(Sub(x, y),Eq(x, yb)),

with b ∈ {0, 1}.

Let us now define formulae of PORλ.

Definition 13.3.4 (Formulae of PORλ). Formulae of PORλ are equations t =
u, where t and u are terms of type s.

The Theory PORλ. We now introduce the theory PORλ.

Definition 13.3.5 (Theory PORλ). Axioms of PORλ are the following ones:

• Defining equations for the constants of PORλ:

ϵx = xϵ = x x(yb) = (xy)b

Tail(ϵ) = ϵ Tail(xb) = x

Trunc(x, ϵ) = Trunc(ϵ, x) = ϵ

Trunc(xb, y0) = Trunc(xb, y1) = Trunc(x, y)b

Cond(ϵ, y, z, w) = y Cond(x0, y, z, w) = z Cond(x1, y, z, w) = w

Bool(Flipcoin(x)) = 1

Rec(x, h0, h1, k, ϵ) = x

Rec(x, h0, h1, k, yb) = Trunc(hby(Rec(x, h0, h1, k, y)), ky),

where b ∈ {0, 1} and b ∈ {0, 1}.10

10When if b = 0, then b = 0 and b = 1, then b = 1.

215

• The (β)- and (ν)-axioms:

C
[
(λx.t)u

]
= C

[
t{u/x}

]
(β)

C
[
λx.tx

]
= C

[
t
]
. (ν)

where C
[
·
]

indicates a context with a unique occurrence of the hole
[]

,
so that C

[
t
]

denotes the variable capturing replacement of
[]

by t in C
[]

.

The inference rules of PORλ are the following ones:

t = u ⊢ u = t (R1)

t = u, u = v ⊢ t = v (R2)

t = u ⊢ v{t/x} = v{u/x} (R3)

t = u ⊢ t{v/x} = u{v/x}. (R4)

As predictable, ⊢PORλ t = u expresses that the equation t = u is deducible
using instances of the axioms above plus inference rules (R1)-(R4). Similarly,
given any set T of equations, T ⊢PORλ t = u expresses that the equation t =
u is deducible using instances of the quoted axioms and rules together with
equations from T.

Relating POR and PORλ. For any string σ ∈ S, let σ : s denote the term of
PORλ corresponding to it, that is:

ϵ = ϵ σ0 = σ0 σ1 = σ1.

For any η ∈ O, let Tη be the set of all equations of the form Flipcoin(σ) = η(σ).

Definition 13.3.6 (Provable Representability). Let f : O × Sj → S. A term t :
s⇒ . . .⇒ s of PORλ provably represents f when for all strings σ1, . . . , σj , σ ∈ S,
and η ∈ O,

f(σ1, . . . , σj , η) = σ iff Tη ⊢PORλ tσ1 . . . σj = σ.

Example 13.3.1. The term Flipcoin : s⇒ s provably represents the query func-
tion Q(x, η) = η(x) of POR, since for any σ ∈ S and η ∈ O,

Flipcoin(σ) = η(σ) ⊢PORλ Flipcoin(σ) = Q(σ, η).

We now consider some of the terms described above and show them to provably
represent the intended functions. Let Tail(σ, η) indicate the string obtained by
chopping the first digit of σ, and Trunc(σ1, σ2, η) = σ1|σ2 .

Lemma 13.3.1. Terms Tail,Trunc and Cond provably represent the functions Tail,
T runc, and C, respectively.

216

Proof Sketch. For Tail and Cond, the claim follows immediately from the defin-
ing axioms of the corresponding constants. For example, if σ1 = σ20, then
Tail(σ1, η) = σ2 (and σ1 = σ20 = σ20). Using the defining axioms of Tail,

⊢PORλ Tail(σ1) = Tail(σ20) = σ2.

For Trunc by double induction on σ1, σ2 ∈ S we conclude:

⊢PORλ Trunc(σ1, σ2) = σ1|σ2
.

We generalize this result by Theorem 13.3.3 below.

Theorem 13.3.3. 1. Any function f ∈ POR is provably represented by a term
t ∈ PORλ.

2. For any term t ∈ PORλ, there is a function f ∈ POR such that f is
provably represented by t.

Proof Sketch. 1. The proof is by induction on the structure of f ∈ POR:
Base Case. Each base function is provably representable. Let us consider two

examples only:

• Empty Function. f = E is provably represented by the term λx.ϵ. For any
string σ ∈ S, E(σ, η) = ϵ = ϵ holds. Moreover, ⊢PORλ (λx.ϵ)σ = ϵ is an
instance of the (β)-axiom. So, we conclude:

⊢PORλ (λx.ϵ)σ = E(σ, η).

• Query Function. f = Q is provably represented by the term Flipcoin, as
observed in Example 13.3.1 above.

Inductive case. Each function defined by composition or bounded recursion
from provably represented functions is provably represented as well. We con-
sider the case of bounded recursion. Let f be defined as:

f(σ1, . . . , σn, ϵ, η) = g(σ1, . . . , σn, η)

f(σ1, . . . , σn, σ0, η) = h0(σ1, . . . , σn, σ, f(σ1, . . . , σn, σ, η), η)|k(σ1,...,σn,σ)

f(σ1, . . . , σn, σ1, η) = h1(σ1, . . . , σn, σ, f(σ1, . . . , σn, σ, η), η)|k(σ1,...,σn,σ).

By IH, g, h0, h1, and k are provably represented by the corresponding terms
tg, th1 , th2 , tk, respectively. So, for any σ1, . . . , σn+2, σ ∈ S and η ∈ O, we derive:

Tη ⊢PORλ tgσ1 . . . σn = g(σ1, . . . , σn, η) (tg)

Tη ⊢PORλ th0σ1 . . . σn+2 = h0(σ1, . . . , σn+2, η) (th0)

Tη ⊢PORλ th1σ1 . . . σn+2 = h1(σ1, . . . , σn+2, η) (th1)

Tη ⊢PORλ tkσ1 . . . σn = k(σ1, . . . , σn, η). (tk)

217

We can prove by induction on σ that,

Tη ⊢PORλ tfσ1 . . . σnσ = f(σ1, . . . , σn, η),

where

tf : λx1 . . . λxn.λx.Rec(tgx1 . . . xn, th0x1 . . . xn, th1x1 . . . xn, tkx1 . . . xn, x).

Then,

• if σ = ϵ, then f(σ1, . . . , σn, σ, η) = g(σ1, . . . , σn, η). Using the (β)-axiom,
we deduce,

⊢PORλ tfσ1...σnσ = Rec(tgσ1...σn, th0σ1...σn, th1σ1...σn, tkσ1...σn, σ)

and using the axiom Rec(tgx1 . . . xn, th0x1 . . . xn, th1x1 . . . xn, tkx1 . . . xn, ϵ) =
tgx1 . . . xn, we obtain,

⊢PORλ tfσ1 . . . σnσ = tgσ1 . . . σn,

by (R2) and (R3). We conclude using (tg) together with (R2).

• if σ = σm0, then f(σ1, . . . , σn, σ, η) = h0(σ1, . . . , σn, σm, f(σ1, . . . , σn, σ, η),
η)|k(σ1,...,σn,σm). By IH, we suppose,

Tη ⊢PORλ tfσ1 . . . σnσm = f(σ1, . . . , σn, σ′, η).

Then, using the (β)-axiom tfσ1 . . . σnσ = Rec(tg σ1 . . . σn, th0σ1 . . . σn,
th1σ1 . . . σn, tkσ1 . . . σn, σ) the axiom Rec(g, h0, h1, k, x0) = Trunc(h0x(Rec
(g, h0, h1, k, 0)), kx) and IH we deduce,

⊢PORλ tfσ1...σnσ = Trunc(th0σ1...σnσmf(σ1, ..., σn, σm, η), tkσ1...σn)

by (R2) and (R3). Using (th0) and (tk) we conclude using (R3) and (R2):

⊢PORλ tfσ1...σnσ = h0(σ1, ..., σn, σm, f(σ1, ..., σn, σm, η))|k(σ1,...,σn,σm).

• the case σ = σm1 is proved in a similar way.

2. It is a consequence of the normalization property for the simply typed
λ-calculus: a β-normal term t : s ⇒ . . . ⇒ s cannot contain variables of higher
types. By exhaustively inspecting possible normal forms one can check that
these all represent functions in POR.

Corollary 13.3.1. For any function f : Sj×O→ S, f ∈ POR when f is provably
represented by some term t : s⇒ . . .⇒ s ∈ PORλ.

218

The Theory IPORλ

We introduce a first-order intuitionistic theory, called IPORλ, which extends
PORλ with basic predicate calculus and a restricted induction principle. We
also define IRS1

2 as a variant of RS1
2 having the intuitionistic – rather than clas-

sical –predicate calculus as its logical basis. All theorems of PORλ and IRS1
2 are

provable in IPORλ. In fact, IPORλ can be seen as an extension of PORλ, and
provides a language to associate derivations in IRS1

2 with poly-time computable
functions (corresponding to terms of IPORλ).

The Syntax of IPORλ. The equational theory PORλ is rather weak. In par-
ticular, even simple equations, such as x = Tail(x)B(x), cannot be proved in it.
Indeed, induction is needed:

⊢PORλ ϵ = ϵϵ = Tail(ϵ)B(ϵ)

x = Tail(x)B(x) ⊢PORλ x0 = Tail(x0)B(x0)

x = Tail(x)B(x) ⊢PORλ x1 = Tail(x1)B(x1).

From this we would like to deduce, by induction, that x = Tail(x)B(x). Thus,
we introduce IPORλ, the language of which extends that of PORλ with (a
translation for) all expressions of RS1

2. In particular, the grammar for terms
of IPORλ is precisely the same as that of Definition 13.3.3, while that for
formulae is defined below.

Definition 13.3.7 (Formulae of IPORλ). Formulae of IPORλ are defined as
follows: (i.) all equations of PORλ t = u, are formulae of IPORλ; (ii.) for
any (possibly open) term of PORλ, say t and u, t ⊆ u and Flip(t) are formulae
of IPORλ; (iii.) formulae of IPORλ are closed under ∧,∨,→,∀,∃.

Notation 13.3.2. We adopt the standard conventions: ⊥ := 0 = 1 and ¬F :=
F → ⊥.

The notions of Σb
0- and Σb

1-formula of IPORλ are precisely those for RS1
2, as

introduced in Definition 13.2.3.

Remark 13.3.2. Any formula of RS1
2 can be seen as a formula of IPORλ, where

each occurrence of the symbol 0 is replaced by 0, of 1 by 1, of ⌢ by ◦ (usually
omitted), of × by Times. In the following, we assume that any formula of RS1

2 is
a formula of IPORλ, modulo the substitutions defined above.

Definition 13.3.8 (The Theory IPORλ). The axioms of IPORλ include stan-
dard rules of the intuitioinstic first-order predicate calculus, usual rules for the
equality symbol, and axioms below:

1. All axioms of PORλ

2. x ⊆ y ↔ Sub(x, y) = 1

3. x = ϵ ∨ x = Tail(x)0 ∨ x = Tail(x)1

219

4. 0 = 1→ x = ϵ

5. Cond(x, y, z, w) = w′ ↔ (x = ϵ ∧ w′ = y) ∨ (x = Tail(x)0 ∧ w′ = z) ∨ (x =
Tail(x)1 ∧ w′ = w)

6. Flip(x)↔ Flipcoin(x) = 1

7. Any formula of the form,(
F (ϵ) ∧ (∀x)(F (x)→ F (x0)) ∧ (∀x)(F (x)→ F (x1))

)
→ (∀y)F (y),

where F is of the form (∃z ⪯ t)u = v, with t containing only first-order
open variables.

Notation 13.3.3 (NP-Predicate). We refer to a formula of the form (∃z ⪯ t)u =
v, with t containing only first-order open variables, as an NP-predicate.

Relating IPORλ with PORλ and IRS1
2. Now that IPORλ has been intro-

duced we show that theorems of both PORλ and the intuitionistic version of
RS1

2 are derived in it. First, Proposition 13.3.2 is easily easily established by
inspecting all rules of PORλ.

Proposition 13.3.2. Any theorem of PORλ is a theorem of IPORλ.

Then, we consider IRS1
2 and establish that every theorem in it is derivable in

IPORλ. To do so, we prove a few properties concerning IPORλ. In particular,
its recursion schema differs from that of IRS1

2 as dealing with formulae of the
form (∃y ⪯ t)u = v and not with all the Σb

1-ones. The two schemas are related
by Proposition 13.3.3, proved by induction on the structure of formulae.11

Proposition 13.3.3. For any Σb
0-formula F (x1, . . . , xn) inRL, there exists a term

tF(x1, . . . , xn) of PORλ such that:

1. ⊢IPORλ F ↔ tF = 0

2. ⊢IPORλ tF = 0 ∨ tF = 1.

This leads us to the following corollary and allows us to prove Theorem 13.3.4
relating IPORλ and IRS1

2.

Corollary 13.3.2. For any Σb
0-formula F , ⊢IPORλ F ∨ ¬F .

Theorem 13.3.4. Any theorem of IRS1
2 is a theorem of IPORλ.

Proof. First, observe that, as a consequence of Proposition 13.3.3, for any Σb
1-

formula F = (∃x1 ⪯ t1) . . . (∃xn ⪯ tn)G in RL,

⊢IPORλ F ↔ (∃x1 ⪯ t1) . . . (∃xn ⪯ tn)tG = 0,

any instance of the Σb
1-recursion schema of IRS1

2 is derivable in IPORλ from
the NP-induction schema. Then, it suffices to check that all basic axioms of
IRS1

2 are provable in IPORλ.
11For further details, see [6].

220

This result also leads to the following straightforward consequences.

Corollary 13.3.3. For any closed Σb
0-formula ofRL F and η ∈ O, either Tη ⊢IPORλ

F or Tη ⊢IPORλ ¬F .

Proof. It suffices to show that for all closed F , Tη ⊢IPORλ tF = 0 or Tη ⊢IPORλ

tF = 1. This is proved by induction on F . We only consider non-trivial cases:

• F = Flip(u), then for hypothesis u is closed, so it corresponds to a string
σu; then we deduce Tη ⊢IPORλ tF = ω(σu), depending on some ω(σu) =
0, 1.

• if F = (∃x ⊆ u)G, then by IH, for any choice of a string σ, we know that
Tη ⊢IPORλ (tG)

∃(σ) = 1. The claim is proved by induction on σ.

Due to Corollary 13.3.3, we can even establish the following Lemma 13.3.2.

Lemma 13.3.2. Let F be a closed Σb
0-formula of RL and η ∈ O, then:

Tη ⊢IPORλ F iff η ∈ JF K.

Proof. (⇒) This soundness result is established by induction on the structure of
rules for IPORλ.

(⇐) For Corollary 13.3.3, we know that either Tη ⊢IPORλ F or Tη ⊢IPORλ

¬F . Hence, if η ∈ JF K, then it cannot be Tη ⊢IPORλ ¬F (by soundness). So,
we conclude Tη ⊢IPORλ F .

Realizability

Here, we introduce realizability as internal to IPORλ. As a corollary, we obtain
that from any derivation in IRS1

2 – actually, in IPORλ – of a formula in the
form (∀x)(∃y)F (x, y), one can extract a functional term of PORλ f : s ⇒ s,
such that ⊢IPORλ (∀x)F (x, fx). This allows us to conclude that if a function f
is Σb

1-representable in IRS1
2, then f ∈ POR.

Notation 13.3.4. Let x,y denote finite sequences of term variables, (resp.)
x1, . . . , xn and y1, . . . , yk, and y(x) be an abbreviation for y1(x), . . . , yk(x). Let
Λ be a shorthand for the empty sequence and y(Λ) := y.

Definition 13.3.9. Formulae x® F are defined by induction as follows:

Λ® F := F (F atomic)

x,y ® (G ∧H) := (x® G) ∧ (y ® H)

z,x,y ® (G ∨H) := (z = 0 ∧ x® G) ∨ (z ̸= 0 ∧ y ® H)

y ® (G→ H) := (∀x)(x® G→ y(x)® H) ∧ (G→ H)

z,x® (∃y)G := x® G{z/y}
x® (∀y)G := (∀y)(x(y)® G),

221

where no variable in x occurs free in F . Given terms t = t1, . . . , tn, we let:

t® F := (x® F){t/x}.

We relate the derivability of these new formulae with that of formulae of IPORλ.
Proofs below are by induction, respectively, on the structure of IPORλ-formulae
and on the height of derivations.

Theorem 13.3.5 (Soundness). If ⊢IPORλ t® F , then ⊢IPORλ F .

Notation 13.3.5. Given Γ = F1, . . . , Fn, let x® Γ be a shorthand for x1® F1, . . . ,
xn ® Fn.

Theorem 13.3.6 (Completeness). If ⊢IPORλ F , then there exist terms t, such
that ⊢IPORλ t® F .

Proof Sketch. We prove that if Γ ⊢IPORλ F , then there exist terms t such that
x ® Γ ⊢IPORλ tx1 . . .xn ® F . The proof is by induction on the derivation of
Γ ⊢IPORλ F . Let us consider just the case of rule ∨R1 as an example:

...
Γ ⊢ G ∨R1Γ ⊢ G ∨H

By IH, there exist terms u, such that t® Γ ⊢IPORλ tu® G. Since x, y® G∨H
is defined as (x = 0 ∧ y ® G) ∨ (x ̸= 0 ∧ y ® H), we can take t = 0,u.

Corollary 13.3.4. Let (∀x)(∃y)F (x, y) be a closed theorem of IPORλ, where F
is a Σb

1-formula. Then, there exists a closed term t : s⇒ s of PORλ such that:

⊢IPORλ (∀x)F (x, tx).

Proof. By Theorem 13.3.6, there exist t = t, w such that ⊢IPORλ t® (∀x)(∃y)F (x, y).
So, by Definition 13.3.9,

t® (∀x)(∃y)F (x, y) ≡ (∀x)(t(x)® (∃y)F (x, y))

≡ (∀x)(w(x)® F (x, tx)).

From this, by Theorem 13.3.5, we deduce,

⊢IPORλ (∀x)F (x, tx).

222

Functions which are Σb
1-Representable in IRS1

2 are in POR. Now, we have
all the ingredients to prove that if a function is Σb

1-representable in IRS1
2, in the

sense of Definition 13.3.1, then it is in POR.

Corollary 13.3.5. For any function f : O×S→ S, if there is a closed Σb
1-formula

in RL F (x, y), such that:

1. IRS1
2 ⊢ (∀x)(∃!y)F (x, y)

2. JF (σ1, σ2)K = {η | f(σ1, η) = σ2},

then f ∈ POR.

Proof. Since ⊢IRS1
2
(∀x)(∃!y)F (x, y), by Theorem 13.3.4 ⊢IPORλ (∀x)(∃!y)F (x, y).

Then, from ⊢IPORλ (∀x)(∃y)F (x, y) we deduce ⊢IPORλ (∀x)F (x, gx) for some
closed term g ∈ PORλ, by Corollary 13.3.4. Furthermore, by Theorem 13.3.3.2,
there is a g ∈ POR such that for any σ1, σ2 ∈ S and η ∈ O, g(σ1, η) = σ2 when
Tη ⊢IPORλ gσ1 = σ2. So, by Proposition 13.3.2, for any σ1, σ2 ∈ S and η ∈ O
if g(σ1, η) = σ2, then Tη ⊢IPORλ gσ1 = σ2 and so Tη ⊢IPORλ F (σ1, σ2). By
Lemma 13.3.2, Tη ⊢IPORλ F (σ1, σ2) when η ∈ JF (σ1, σ2)K, that is f(σ1, η) =
σ2. But then f = g, so since g ∈ POR also f ∈ POR.

⊢IRS1
2
(∀x)(∃y)F (x, y)

⊢IPORλ (∀x)(∃y)F (x, y)

T. 13.3.4

C. 13.3.4

there is g ∈ PORλ (closed)
⊢IPORλ (∀x)F (x, gx)

T. 13.3.3

there is a g ∈ POR
g(σ1, η) = σ2 ⇔ Tη ⊢PORλ gσ1 = σ2

Tη ⊢IPORλ gσ1 = σ2

P. 13.3.2

⊢IPORλ (∀x)F (x, σ2)

f(σ1, η) = σ2

f(= g) ∈ POR

L 13.3.2

Figure 13.4: Proof Schema of Corollary 13.3.5

∀NP-Conservativity of IPORλ + EM over IPORλ

Corollary 13.3.5 is already very close to the result we are looking for. The
remaining step to conclude our proof is its extension from intuitioninstic IRS1

2

223

to classical RS1
2, showing that any function which is Σb

1-representable in RS1
2

is also in POR. The proof is obtained by adapting the method from [46].
We start by considering an extension of IPORλ via EM and show that the
realizability interpretation extends to it so that for any of its closed theorems
(∀x)(∃y ⪯ t)F (x, y), being F a Σb

1-formula, there is a closed term t : s ⇒ s of
PORλ such that ⊢IPORλ (∀x)F (x, tx).

From IPORλ to IPORλ+(Markov) Let EM be the excluded-middle schema,
F ∨ ¬F , and Markov’s principle be defined as follows,

¬¬(∃x)F → (∃x)F, (Markov)

where F is a Σb
1-formula.

Proposition 13.3.4. For any Σb
1-formula F , if ⊢IPORλ+EM F , then ⊢IPORλ+(Markov)

F .

Proof Sketch. The claim is proved by applying the double negation translation,
with the following two remarks: (1) for any Σb

0-formula F , ⊢IPORλ ¬¬F → F ;
(2) using (Markov), the double negation of an instance of the NP-induction
can be shown equivalent to an instance of the NP-induction schema.

We conclude by showing that the realizability interpretation defined above ex-
tends to IPORλ+(Markov), that is for any closed theorem (∀x)(∃y ⪯ t)F (x, y)
with F Σb

1-formula, of IPORλ + (Markov), there is a closed term of PORλ

t : s⇒ s, such that ⊢IPORλ (∀x)F (x, tx).

From IPORλ to (IPORλ)∗. Let us assume given a subjective encoding ♯ :
(s ⇒ s) ⇒ s in IPORλ of first-order unary functions as strings, together with
a “decoding” function app : s⇒ s⇒ s satisfying:

⊢IPORλ app(♯f, x) = fx.

Moreover, let
x ∗ y := ♯(λz.BAnd(app(x, z), app(y, z)))

and
T (x) := (∃y)(B(app(x, y)) = 0).

There is a meet semi-lattice structure on the set of terms of type s defined by
t ⊑ u when ⊢IPORλ T (u) → T (t) with top element 1 := ♯(λx.1) and meet
given by x ∗ y. Indeed, from T (x ∗ 1) ↔ T (x), x ⊑ 1 follows. Moreover, from
B(app(x, u)) = 0, we obtain B(app(x ∗ y, u)) = BAnd(app(x, u), app(y, u)) = 0,
whence T (x) → T (x ∗ y), i.e. x ∗ y ⊑ x. One can similarly prove x ∗ y ⊑ y.
Finally, from T (x) → T (v) and T (y) → T (v), we deduce T (x ∗ y) → T (v), by
observing that ⊢IPORλ T (x ∗ y) → T (y). Notice that the formula T (x) is not a
Σb

1-one, as its existential quantifier is not bounded.

224

Definition 13.3.10. For any formula of IPORλ F , and fresh variable x, we
define formulae x ⊩ F inductively:

x ⊩ F := F ∨ T (x) (F atomic)

x ⊩ G ∧H := x ⊩ G ∧ x ⊩ H

x ⊩ G ∨H := x ⊩ G ∨ x ⊩ H

x ⊩ G→ H := (∀y)(y ⊩ G→ x ∗ y ⊩ H)

x ⊩ (∃y)G := (∃y)x ⊩ G

x ⊩ (∀y)G := (∀y)x ⊩ G.

The following Lemma 13.3.3 is established by induction on the structure of
formulae in IPORλ, as in [47].

Lemma 13.3.3. If F is provable in IPORλ without using NP-induction, then
x ⊩ F is provable in IPORλ.

Lemma 13.3.4. Let F = (∃x ⪯ t)G, where G is a Σb
0-formula. Then, there exists

a term uF : s with FV(uF) = FV(G) such that:

⊢IPORλ F ↔ T (uF).

Proof. Since G(x) is a Σb
0-formula, for all terms v : s, ⊢IPORλ G(x)↔ tx⪯t∧G(x) =

0, where tx⪯t∧G has the free variables of t and G. Let H(x) be a Σb
0-formula, it is

shown by induction on its structure that for any term v : s, tH(v) = tH(v). Then,

⊢IPORλ F ↔ (∃x)tx⪯t∧G(x) = 0↔ (∃x)T (♯(λx.tx⪯t∧G(x))).

So, we let uF = ♯(λx.tx⪯t∧G(x)).

From which we also deduce the following three properties:

i. ⊢IPORλ (x ⊩ F)↔ (F ∨ T (x))

ii. ⊢IPORλ (x ⊩ ¬F)↔ (F → T (x))

iii. ⊢IPORλ (x ⊩ ¬¬F)↔ (F ∨ T (x)),

where F is a Σb
1-formula.

Corollary 13.3.6 (Markov’s Principle). If F is a Σb
1-formula, then

⊢IPORλ x ⊩ ¬¬F → F.

To define the extension (IPORλ)∗ of IPORλ, we introduce PIND in a for-
mal way.

Definition 13.3.11 (PIND). Let PIND(F) indicate the formula:(
F (ϵ) ∧

(
(∀x)(F (x)→ F (x0)) ∧ (∀x)(F (x)→ F (x1))

)
→ (∀x)F (x).

225

Observe that if F (x) is a formula of the form (∃y ⪯ t)u = v, then z ⊩ PIND(F)
is of the form PIND(F (x)∨ T (z)), which is not an instance of the NP-induction
schema (as the formula T (z) = (∃x)B(app(z, x)) = 0 is not bounded).

Definition 13.3.12 (The Theory (IPORλ)∗). Let (IPORλ)∗ indicate the the-
ory extending IPORλ with all instances of the induction schema PIND(F (x) ∨
G), where F (x) is of the form (∃y ⪯ t)u = v, and G is an arbitrary formula with
x ̸∈ FV(G).

We then deduce the following Proposition relating derivability in IPORλ and
in (IPORλ)∗.

Proposition 13.3.5. For any Σb
1-formula F , if ⊢IPORλ F , then ⊢(IPORλ)∗ x ⊩

F .

Finally, we extend realizability to (IPORλ)∗ by constructing a realizer for
PIND(F (x) ∨G).

Lemma 13.3.5. Let F (x) : (∃y ⪯ t)u = 0 and G be any formula not containing
free occurrences of x. Then, there exist terms t such that:

⊢IPORλ t® PIND(F (x) ∨G).

So, by Theorem 13.3.5, we obtain that for any Σb
1-formula F and formula G,

with x ̸∈ FV(F),
⊢IPORλ PIND(F (x) ∨G).

Proposition 13.3.6. For any Σb
1-formula F and G with x ̸∈ FV(F), ⊢IPORλ

PIND(F (x) ∨G).

Corollary 13.3.7 (∀NP-Conservativity of IPORλ +EM over IPORλ). Let F
be a Σb

1-formula, if ⊢IPORλ+EM (∀x)(∃y ⪯ t)F (x, y), then ⊢IPORλ (∀x)(∃y ⪯
t)F (x, y).

Concluding the Proof. We conclude our proof establishing Proposition 13.3.7.

Proposition 13.3.7. Let (∀x)(∃y ⪯ t)F (x, y) be a closed theorem of IPORλ +
(Markov), where F is a Σb

1-formula. Then, there exists a closed term of PORλ

t : s⇒ s, such that:
⊢IPORλ (∀x)F (x, tx).

Proof. If ⊢IPORλ+(Markov) (∀x)(∃y)F (x, y), then by Parikh’s Proposition 13.3.1,
also ⊢IPORλ+(Markov) (∃y ⪯ t)F (x, y). Moreover, ⊢(IPORλ)∗ z ⊩ (∃y ⪯
t)F (x, y). Then, let us consider G = (∃y ⪯ t)F (x, y). By taking v = uG,
using Lemma 13.3.4, we deduce ⊢(IPORλ)∗ G and, thus, by Lemma 13.3.3
and 13.3.5, we conclude that there exist t,u such that ⊢IPORλ t,u® G, which
implies ⊢IPORλ F (x, tx), and so ⊢IPORλ (∀x)(F (x), tx).

226

So, by Proposition 13.3.4, if ⊢IPORλ+EM (∀x)(∃y ⪯ t)F (x, y), being F a closed
Σb

1-formula, then there is a closed term of POR t : s ⇒ s, such that ⊢IPORλ

(∀x)F (x, tx). Finally, we conclude the desired Corollary 13.3.8 for classical RS1
2

arguing as above.

Corollary 13.3.8. Let RS1
2 ⊢ (∀x)(∃y ⪯ t)F (x, y), where F is a Σb

1-formula with
only x and y free. For any function f : S × O → S, if (∀x)(∃y ⪯ t)F (x, y)
represents f so that:

1. RS1
2 ⊢ (∀x)(∃!y)F (x, y)

2. JF (σ1, σ2)K = {η | f(σ1, η) = σ2},

then f ∈ POR.

Now, putting Theorem 13.3.2 and Corollary 13.3.8 together, we conclude that
Theorem 13.3.1 holds and that RS1

2 provides an arithmetical characterization of
functions in POR.

13.4 Relating POR and Poly-Time PTMs

Theorem 13.3.1 is still not enough to characterize probabilistic classes, which
are defined in terms of functions computed by PTMs, and, as observed, there
is a crucial difference between the ways in which these machines and oracle
functions access randomness. So, our next goal consists in filling this gap, by
relating these two classes in a precise way.12

13.4.1 Preliminaries

We start by defining (or re-defining) the classes of functions (over strings) com-
puted by poly-time PTMs and of functions computed by poly-time stream ma-
chines, that is TMs with an extra oracle tape.

The Class RFP

We start by (re-)defining the class of functions computed by poly-time PTMs.13

Definition 13.4.1 (Class RFP). Let D(S) denote the set of functions f : S →
[0, 1] such that

∑
σ∈S f(σ) = 1. The class RFP is made of all functions f :

Sk → D(S) such that, for some PTM MP running in polynomial time, and
every σ1, . . . , σk, τ ∈ S, f(σ1, . . . , σk)(τ) coincides with the probability that
MP(σ1♯ . . . ♯σk) ⇓ τ .

12Actually, this proof is particularly convoluted so, for simplicity’s sake, we present here just its
skeleton. The interested reader can however find further details in [6], and the full proof was
presented in [68].

13Clearly, there is a strong affinity with the standard definition of random functions [183] pre-
sented for example in Section 12.3.2. Here, pseudo-distributions and functions are over strings
rather than numbers. Furthermore, we are now considering machines explicitly associated with a
(polynomial-)time resource bound.

227

So – similarly to ⟨MP⟩ by [183, 91] – the function computed by this machine
associates each possible output with a probability corresponding to the actual
probability that a run of the machine actually produces that output, and we
need to adapt the notion of Σb

1-representability accordingly.

Definition 13.4.2. A function f : Sk → D(S) is Σb
1-representable in RS1

2 if there
is a Σb

1-formula of RL F (x1, . . . , xk, y), such that:

1. RS1
2 ⊢ (∀x⃗)(∃!y)F (x⃗, y),

2. for all σ1, . . . , σk, τ ∈ S, f(σ1, . . . , σk, τ) = µ(JF (σ1, . . . , σk, τ)K).

The central result of this chapter can be re-stated as follows:

Theorem 13.4.1. For any function f : Sk → D(S), f is Σb
1-representable in RS1

2

when f ∈ RFP.

The proof of Theorem 13.4.1 relies on Theorem 13.3.1, once we relate the func-
tion algebra POR with the class RFP by the Lemma 13.4.1 below.

Lemma 13.4.1. For any functions f : Sk × O → S in POR, there exists g : S →
D(S) in RFP such that for all σ1, . . . , σk, τ ∈ S,

µ({ω | f(σ1, . . . , σk, η) = τ}) = g(σ1, . . . , σk, τ)

and vice versa.

However, the proof of Lemma 13.4.1 is convoluted, as it is based on a chain of
language simulations.

Introducing the Class SFP

The core idea to relate POR and RFP is to introduce an intermediate class,
called SFP. This is the class of functions computed by a poly-time stream Tur-
ing machine (STM, for short), where an STM is a deterministic TM with one
extra (read-only) tape intuitively accounting for probabilistic choices: at the be-
ginning the extra tape is sampled from BN; then, at each computation step, the
machine reads one new bit from this tape, always moving to the right.

Definition 13.4.3 (Class SFP). The class SFP is made of functions f : Sk ×
BN → S, such that there is an STM MS running in polynomial time such that
for any σ1, . . . , σk ∈ S and ω ∈ BN,14 f(σ1, . . . , σk, ω) = τ when for inputs
σ1♯ . . . ♯σk and tape ω, the machine MS outputs τ .

14By a slight abuse of notation, we use ω, ω′, ω′′, . . . as meta-varibles for sequences in BN. In-
deed, as said in Section 3.1, the sets {0, 1} and {0, 1} are basically equivalent.

228

13.4.2 Relating RFP and SFP

The global behavior of STMs and PTMs is similar, but the former access ran-
domness in an explicit way: instead of flipping a coin at each step, the machine
samples a stream of bits once, and then reads one new bit at each step. So, to
prove the equivalence of the two models, we pass through the following Propo-
sition 13.4.1.

Proposition 13.4.1 (Equivalence of PTMs and STMs). For any poly-time STM
MS, there is a poly-time PTM MS

∗ such that for all strings σ, τ ∈ S,

µ({ω |MS(σ, ω) = τ}) = Pr[MS
∗(σ) = τ],

and vice versa.

Corollary 13.4.1 (Equivalence of RFP and SFP). For any f : Sk → D(S) in
RFP, there is a g : Sk × BN → S in SFP, such that for all σ1, . . . , σk, τ ∈ S,

f(σ1, . . . , σk, τ) = µ({ω | g(σ1, . . . , σk, ω) = τ}),

and vice versa.

13.4.3 Relating SFP and POR
Finally, we need to prove the equivalence between POR and SFP:

RFP

Cor. 13.4.1

SFP

Def. 13.4.3

POR

Moving from PTMs to STMs, we obtain a machine model which accesses ran-
domness in a way which is similar to that of functions in POR: as seen, at the
beginning of the computation an oracle is sampled, and computation proceeds
querying it. Yet, there are still relevant differences in the way in which these
families of machines treat randomness. While functions of POR access an or-
acle in the form of a function η ∈ BS, the oracle for an STM is a stream of bits
ω ∈ BN. Otherwise said, a function in POR is of the form fPOR : Sk × O→ S,
whereas one in SFP is fSFP : Sk × BN → S. Then, we cannot compare them
directly, and provide an indirect comparison in two main steps.

From SFP to POR

First, we show that any function computable by a poly-time STM is in POR.

Proposition 13.4.2 (From SFP to POR). For any f : Sk × BN → S in SFP,
there is a function f⋆ : Sk × O → S in POR such that for all σ1, . . . , σk, τ ∈ S
and ω ∈ BN,

µ({ω ∈ BN | f(σ1, . . . , σk, ω) = τ}) = µ({η ∈ O | f⋆(σ1, . . . , σk, η) = τ}).

229

The fundamental observation is that, given an input σ ∈ S and the extra tape
ω ∈ BN, an STM running in polynomial time can access a finite portion of ω
only, the length of which can be bounded by some polynomial p(|σ|). Using this
fact, we construct f⋆ as follows:

1. We introduce the new class PTF, made of functions f : Sk × S → S
computed by a finite stream Turing machine (FSTM, for short), the extra
tape of which is a finite string.

2. We define a function h ∈ PTF such that for any f : S × BN → S with
polynomial bound p(x),

f(n, ω) = h(x, ωp(|x|)).

3. We define h′ : S× S× O→ S such that,

h′(x, y, η) = h(x, y).

By an encoding of FSTMs we show that h′ ∈ POR. Moreover h′ can
be defined without using the query function, since the computation of h′

never looks at η.

4. Finally, we define an extractor function e : S×O→ S ∈ POR, which mim-
ics the prefix extractor ωp(|x|), having as its outputs the same distributions
of all possible prefixes of ω, even though within a different space.15 This
is obtained by exploiting a bijection dyad : S→ N, ensuring that for each
ω ∈ BN, there is an η ∈ BS such that any prefix of ω is an output of e(y, η),
for some y. Since POR is closed under composition, we finally define

f⋆(x, η) := h′(x, e(x, η), η).

From POR to SFP

In order to simulate functions of POR via STMs we observe not only that these
two models invoke oracles of different shape, but also that the former can ma-
nipulate such oracles in a more liberal way:

• STMs query the oracle before each step is produced. By contrast functions
of PORmay invoke the query function Q(x, η) freely during computation.
We call this access policy on demand.

• STMs query a new bit of the oracle at each step of computation, and
cannot access previously observed bits. We call this access policy linear.
By contrast, functions of POR can query the same bits as many times as
needed.

Consequently, a direct simulation of POR via STMs is challenging even for a
basic function like Q(x, η). So, again, we follow an indirect path: we pass
through a chain of simulations, dealing with each of these differences separately.

15Recall that η ∈ BN, while the second argument of e is in O.

230

1. First, we translate POR into an imperative language SIFPRA inspired by
Winskel’s IMP [230], with the same access policy as POR. SIFPRA is
endowed with assignments, a while construct, and a command Flip(e),
which first evaluates e to a string σ and then stores the value η(σ) in a
register. The encoding of oracle functions in SIFPRA is easily obtained by
induction on the function algebra.

2. Then, we translate SIFPRA into another imperative language, called SIFPLA,
associated with a linear policy of access. SIFPLA is defined like SIFPRA ex-
cept for Flip(e), which is replaced by the new command RandBit() gen-
erating a random bit and storing it in a register. A weak simulation from
SIFPRA into SIFPLA is defined by progressively constructing an associative
table containing pairs in the form (string, bit) of past observations. Each
time Flip(e) is invoked, the simulation checks whether a pair (e, b) had
already been observed. Otherwise it increments the table by producing a
new pair (e, RandBit()). This is by far the most complex step of the whole
simulation.

3. The language SIFPLA can be translated into STMs. Observe that the access
policy of SIFPLA is still on-demand: RandBit() may be invoked or not
before executing the instruction. So, we first consider a translation from
SIFPLA into a variant of STMs admitting an on-demand access policy –
that is, a computation step may or may not access a bit from the extra
tape. Then, the resulting program is encoded into a regular STM. Observe
that we cannot expect that the machine MS

† simulating an on-demand
machine MS will produce the same output and oracle. Rather, as in many
other cases, we show that MS

† can be defined so that, for any σ, τ ∈ S, the
sets {ω |MS

†(σ, ω) = τ} and {ω |MS(σ, ω) = τ} have the same measure.

POR

S × O −→ S

SFP

S × BN −→ S

finite SFP

S × S −→ S

(x, ωp(|x|)) ←[(x, ω)(x, η) → (x, e(x, η))

SIFPRA
imperative

random access

SIFPLA
imperative

linear access

SFP
on-demand

inductive
encoding

associative
table

Figure 13.5: Equivalence between POR and SFP 13.4.1

231

Concluding the Proof.

These ingredients are enough to conclude the proof as outlined in Figure 13.4.3,
and to relate poly-time random functions and Σb

1-formulae of RS1
2.

Thm. 13.3.1
RS1

2 POR
Cor. 13.4.1

SFP RFPFig. 13.4.3

Figure 13.6: Proof Sketch of Theorem 13.4.1

13.5 Arithmetical Characterization of BPP

In this section we provide a logical characterization of the probabilistic (and
semantic) class BPP. This is done by putting together Theorem 13.4.1 with
measure quantifiers inspired by those for MQPA. As seen, the theorem above
shows that a class of arithmetical formulae – those which are Σb

1-representable
in RS1

2 – precisely corresponds to that of poly-time computable ones, while a
measure-quantified language allows us to express error bounds for probabilistic
algorithms in a purely logical way.

13.5.1 From Standard to Randomized Classes

The possibility of describing complexity classes within the language of logic
and mathematics certainly offers a better understanding of the nature of such
classes. From the 1970s on – also inspired by studies in descriptive complex-
ity [78, 45, 116, 138] – the logical characterization of several fundamental
classes made it possible to consider them from a new viewpoint, less dependent
on concrete machine models and explicit resource bounds. Indeed, character-
izing a class via simple enough proof- or recursion-theoretical systems means
being able to enumerate the problems in the class, thus devising a sound and
complete language for it and, from this, also type systems and static analysis
methodologies were derived [113].

Among the various classes of problems with which complexity has been con-
cerned, the ones defined on the basis of randomized algorithms have appeared
difficult to be logically captured. Nevertheless, probabilistic classes – for exam-
ple BPP or ZPP – are nowadays very important and a better understanding of
their nature and relations would be highly desirable. In particular, BPP can be
seen as the class of feasible problems, and most complexity theorists conjecture
that it actually coincides with P. Yet, it appears as pretty different from P. In-
deed, it is a semantic class: for a randomized algorithm to be in BPP, it is not

232

enough to be efficient, but it’s also required to be not “too entropic”, i.e., once
an input is fixed, the two possible output values are returned with probabilities
that are not “too similar” to one another.

Definition 13.5.1. Let L ⊆ S be a language and fL its characteristic function,
then L ∈ BPP when there is a poly-time PTM MP such that, for any σ ∈ L,

PROB[MP(σ) = fL(σ)] ≥
2

3
.

So, to check whether a language belongs to the class BPP, one has to look
for a randomized algorithm to satisfy both a polynomial resource bound and a
(uniform) error bound.

As seen in Section 11.3.1, semantic classes, as BPP is, are more challenging
to be logically captured than syntactic ones. Indeed, the sparse contributions of-
fering characterizations of probabilistic classes via logical tools either are, so-to-
say, semantical in nature [61, 76] – namely, they do not capture the limitations
of the error probability within the logical system16 – or they deal with classes
like PP, which are not semantic [59, 60]. In the following Section 13.5.2, we
make a step forward to a proper logical characterization of these randomized,
semantic classes, relying both on the power of measure quantifiers introduced
in Chapter 12, together with Theorem 13.4.1

13.5.2 Characterizing BPP

The last ingredient consists in simply showing that reasoning about error bounds
can be internalized into a logical language slightly extending that of RL. In-
deed, as seen, by Definition 13.2.8, any formula of RL F is associated with
a measurable set, JF K ⊆ O. So, a natural idea is that of enriching RL with
measure quantifiers inspired by those of Chapter 12. So, we introduce a new
language RLMQ, which is an the extension of RL with measure-quantified for-
mulae of the form Ct/sF , where t and s are terms ofRL. Formally, the grammar
for terms is exactly as in Definition 13.2.2, while that for formulae is below.

Definition 13.5.2 (Formulae ofRL). Formulae ofRLMQ are defined as follows:

F ::= Flip(t) | t = s | ¬F | F△F | (∃x)F | (∀x)F | Ct/sF,

where t, s are RL-terms and △ ∈ {∨,∧}.

As predictable, also semantics for terms is as in Definition 13.2.5, and formulae
are interpreted extending Definition 13.2.8, with

JCt/sF K :=

{
O if µC(JF K) ≥ 1JtK

1JsK

∅ otherwise.
16A partial exception was offered by Jerábek’s proposal [118]. He defined a syntactic approach to

probabilistic poly-time programs in the context of BA and introduced a notion of “definable BPP-
problem”, relative to some bounded theory, and based on an arithmetical encoding of approximate
counting problems.

233

Notation 13.5.1. For readability’s sake, we abbreviate C1n/1mF as Cn/mF ,
with n,m ∈ N.

Given that Theorem 13.4.1 allows us to logically internalize probabilistic
algorithms computed by resource-bounded machines, now with RLMQ we can
even express and “keep under control” the probability of error from within the
logic itself. In particular, since BPP ⊆ PH, for any language L ∈ BPP, the
corresponding characteristic function fL : S → B is represented by the formula
HL(x, y) of PA. By suitably adapting results by Buss and Goldreich [34, 101],
the formula HL(x, y) can be taken to be a Σb

3-formula ofRL – namely, a formula
of the form (∃y ⪯ t(x⃗))(∀z ⪯ u(x⃗, y))H ′(x⃗, y, z), where H ′(x⃗, y, z) is a Σb

1-
formula – leading to the following characterization

Theorem 13.5.1 (Semantic Characterization of BPP). For any language L ⊆ S,
L ∈ BPP when there is a Σb

1-formula F (x, y) such that the following conditions
hold:

1. RS1
2 ⊢ (∀x)(∃!y)F (x, y)

2. for any σ ∈ S and b ∈ B, ⊨ C2/3
(
F (σ,b)↔ HL(σ,b)

)
.

Proof. (⇒) Assume L ∈ BPP and that f : S → D(S) is a poly-time function
computing L with a uniform error bound. By Theorem 13.4.1, there is a Σb

1-
formula F (x, y) such that for any σ ∈ S and b ∈ B, µ

(
JF (σ,b)K

)
≥ 2

3 when
f(σ)(b) ≥ 2

3 . Then, for any σ ∈ S, if fL(σ) = 0, we deduce JHL(σ, 0)K =
O and f(σ)(b) ≥ 2

3 . So, µ(JG(σ, 0)K) ≥ 2
3 and we conclude, µ(JF (σ, 0) ↔

HL(σ, 0)K) ≥ 2
3 . If fL(σ) = 1, we argue in a similar way.

(⇐) Conversely, assume that (1.) and (2.) hold. Then, there is a function
f ∈ RFP, such that for any σ ∈ S and b ∈ B, f(σ)(b) = µ

(
JF (σ,b)K

)
. If

fL(σ) = 0, then JHL(σ, 0)K = O. Thus, by (2.), JF (σ, 0)K ≥ 2
3 . So, by (1.), we

conclude f(σ)(0) ≥ 2
3 . Similarly if fL(σ) = 1. We conclude that L ∈ BPP.

Observe that, although this characterization of BPP is purely-logical and pre-
cise, this approach is still semantic: indeed, when dealing with condition (2.)
the entropy check is translated into conditions which cannot be derived within a
formal system, but are satisfied in the standard first-order model of arithmetic.

234

Chapter 14

Conclusion

To the best of our knowledge the project and approach developed in this disser-
tation are quite new. As a consequence, many problems and challenges are still
open.

14.1 Main Contributions

The overall purpose of the present work is to bridge – possibly, in a uniform way
– logic and probabilistic computation, so as to deepen our knowledge of both.
Therefore, the main contribution of this dissertation is not the introduction of
counting and measure-quantified logics per se; after all, the idea of consider-
ing logics with generalized quantifiers is not completely new. On the contrary,
our primary goal consists in showing that, following a “quantitative approach”
to logic, we managed to generalize standard achievements in TCS to the prob-
abilistic setting, thus proving that “scalable” logical systems could somehow
catch up (quite uniformly) with some old and recent results, for instance in
computational complexity and PL theory.

On Counting Complexity. In Part I, we have introduced the counting logic
CPL which, to the best of our knowledge, is the first logical system endowing
PL with counting quantifiers. As seen, our main source of inspiration came
from computational complexity and, in particular, from Wagner’s class opera-
tor [227]. Our main contribution here is the investigation of the connection
between our logic and counting classes. In particular, we have shown that for-
mulae of CPL (in a special form) provide complete problems for each level of
CH, thus making CPL the “probabilistic counterpart” of QPL:

Polynomial Hierarchy : QPL ⇐⇒ Counting Hierarchy : CPL.

Programming Language Theory. In Part II, we have defined the intuitionis-
tic counting logic, iCPL, and shown that its computational fragment, iCPL0,

235

captures quantitative behavioral properties. Then, the main contribution here
consists in the definition of a probabilistic CHC between this logic and a type sys-
tem that expresses probability of termination. In particular, proofs in iCPL0 are
shown to correspond, in the sense of Curry and Howard, to typing derivations
for a randomized extension of the λ-calculus ΛPE, so that counting quantifiers
“reveal” the probability of termination of the underlying probabilistic programs:

simply typed λ→ : intuitionistic PL ⇐⇒ randomized λ-calculus : iCPL0.

Moreover, in analogy with what happens in the deterministic case, extending
the type system with an intersection operator has led us to a full characterization
of termination probability. Indeed, although intersection types do not have a
clear logical counterpart, the existence of this extension convinces us that the
introduced correspondence is actually meaningful. Then, the other new (and
surprising) contribution of this Part is the proof that the peculiar features of
probabilistic effects can be managed in an elegant way, using ideas coming from
logic.

Measure-Quantified Arithmetic. In Part III, we have showed that promising
results also extends to measure-quantified languages of arithmetic. In particu-
lar, in Chapter 12, we have presented a quantitative extension of the language
of PA, able to formalize basic theorems from probability theory, which are not
expressible in standard arithmetic, and have proved our randomized version of
Gödel’s arithmetization. These first achievements also seem to suggest that the
language of MQPA can actually be the starting point to define an arithmetic
theory relating with probabilistic computation as PA does in the deterministic
case:

deterministic computation : PA ⇐⇒ probabilistic computation : MQPA.

Finally, in Chapter 13, we have introduced a minimal extension of the language
of arithmetic, such that bounded formulae provably total in a suitably-defined
theory á la Buss, called RS1

2 and defined in this language, precisely capture
poly-time random functions. Due to this fact (and together with the notion of
measure quantifiers), we have obtained our main result here, namely a new
arithmetical characterization of the semantic class BPP, obtained by internal-
izing the error-bound check within the logical system:

deterministic classes : BA ⇐⇒ probabilistic classes : RS1
2.

Observe, indeed, that the logical characterization of probabilistic semantic
classes appears as particularly hard and, so far, not many proposals have ap-
peared in the literature. We think that our work could contribute to the un-
derstanding of this problem by showing not only how resource bounded ran-
domized computation can be captured within the language of arithmetic, but
also that the latter offers convenient tools to control error bounds, the essential
ingredient in the definition of classes like BPP and ZPP.

236

14.2 Future and Ongoing Work

As said, our logics are new and their study has just started. Indeed, several
questions on their expressive power and on their relations with other systems
are still open. On the one hand, connections with popular logics, like QPL,
and probability and modal systems would deserve further attention. In this
regard, a particularly promising direction concerns the comparison between our
approach and the ones based on generalized quantifiers (and team semantics),
as developed in the framework of finite model theory [135, 134, 136, 72]. On
the other hand, the link between CPL0 and stochastic experiments – as sketched
in Section 3.4 or [5] – should be analyzed in a formal way, and extended to more
expressive languages, as CPL and MQPA, possibly able to “simulate” events
corresponding, for example, to tossing (arbitrarily) biased coins.

Counting Propositional Logics. In this context, it appears valuable to con-
sider the natural generalization of CPL0 obtained by switching from the se-
mantics defined in Chapter 3 – based on the canonical cylinder space which
associates any cylinder with measure 1

2 – to any cylinder probability space rely-
ing on a well-defined measure νC, for example the one which associates measure
1
3 to any cylinder Cyl(i). Apparently, in this way both a semantics and a sound
proof systems can be defined without substantial changes. Nevertheless, this
study has been left for future investigation.1

Another promising research area concerns proof theory. Again, here many
questions are open. For example, the proof theory of CPL0 and CPL have just
been delineated, and their dynamics (namely, the underlying cut-elimination
procedure) certainly deserves further investigations. Moreover, as seen, the
calculi presented in Chapter 3 and 4 are not purely syntactical – this also making
it difficult to study of the complexity of their proof difficult. At the same time, in
Chapter 5, the validity of counting formulae is decided accessing an oracle for
♯SAT, i.e. counting the satisfying models of Boolean formulae. In this context,
obtaining a calculus without semantic conditions is especially desirable. First
ideas possibly guiding its design has been presented in [5], where an effective
procedure to measure formulae of CPL0 is provided, without appealing for an
external source, so making somehow explicit the task accomplished by the oracle
in LKCPL0

. This would pave the way to the design of calculi without semantical
hypotheses, and could be the first step in shading new lights on the study of the
complexity of deciding counting formulae. Nevertheless, also in this case, the
effective study of the calculus has been left for future study.

Also the study of intuitionistic counting logics and probabilistic CHC, as de-
veloped in Part II, opens up several new avenues of research. For example, it
would be interesting to extend the correspondence provided in Chapter 9 to
polymorphic types or to control operators. Another intriguing direction con-
cerns the possibility of studying the system of intersection types, as introduced

1First attempts in this direction are sketched in [5, 4].

237

in Chapter 10, to support program synthesis, again in analogy with what is done
in the deterministic framework [117, 110].

Measure-Quantified Languages of Arithmetic. Concerning measure-
quantified languages of arithmetic, one of the most compelling problems
related to the MQPA is the definition of a corresponding sound and (sufficiently
expressive) proof system. Furthermore, this language is somehow minimal
“by design”, in the sense that, as seen in Chapter 12, we considered predicate
variables of the form Flip(·) only. Then, it would be somehow natural to
generalize our study to more expressive languages, with countably many
predicate variables Flipa(·) and named quantifiers C

t/s
a and D

t/s
a , following

the path indicated by multivariate CPL in Chapter 4.
Concerning randomized bounded theories, we have seen in Chapter 13 that

the logical characterization of probabilistic classes – in particular those having
a semantic nature – is a great challenge. As part of our ongoing research, we
are studying alternative characterizations of BPP obtained, for example, by
internalizing the error-bound check within a logical system which captures our
measure-sensitive quantifiers by standard first-order ones. This has also led
us to introduce a family of effectively enumerable subclasses of BPP, called
BPPT, consisting of languages captured by PTMs whose underlying error can
be proved bounded in the corresponding arithmetical theory T. As a paradig-
matic consequence of this approach, it seems possible to establish that the poly-
nomial identity testing is in BPPPA, this providing a first example of reverse
computational complexity for probabilistic algorithms. Finally, given the tight
connections linking bounded arithmetic and proof complexity, another natural
direction of this study would concern the applications of randomized bounded
theories to probabilistic approaches in this field, think for example of recent
investigations on random resolution refutations [37, 118, 174].

238

Bibliography

[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke Semat-
ics for Constructive S5 Modal Logic. In Springer, editor, Proc. Computer Science
Logic (CSL), pages 292–307, 2021.

[2] E.W. Allender and K.W. Wagner. Counting Hierarchies: Polynomial Time and
Constant Depth Circuits. In Current Trends in Theoretical Computer Science, pages
469–483, 1993.

[3] A. Andersson. On Second-Order Generalized Quantifiers and Finite Structures.
Annals of Pure and Applied Logic, 115(1-3):1–32, 2002.

[4] M. Antonelli. Some Remarks on Counnting Propositional Logic. Available at:
https://arxiv.org/abs/2210.16160, 2022.

[5] M. Antonelli. Two Remarks on Counting Propositional Logic. In Proc. BEWARE,
AIxIA Conference, pages 20–32, 2023.

[6] M. Antonelli, U. Dal Lago, D. Davoli, I. Oitavem, and P. Pistone. An Arithmetic
Theory to Characterize Poly-Time Random Functions. Available at: https://
arxiv.org/abs/2301.12028, 2023.

[7] M. Antonelli, U. Dal Lago, and P. Pistone. On Counting Propositional Logic. Avail-
able at: https://arxiv.org/abs/2103.12862, 2021.

[8] M. Antonelli, U. Dal Lago, and P. Pistone. On Counting Propositional Logic and
Wagner’s Hierarchy. In CEUR Workshop Proceedings, editor, Proc. Italian Con-
ference of Theoretical Computer Science (ICTCS), volume 3072, pages 107–121,
2021.

[9] M. Antonelli, U. Dal Lago, and P. Pistone. On Measure Quantifiers in First-Order
Arithmetic. In L. De Mol, Manea F. Weiermann, A., and D. Fernández-Duque,
editors, Proc. Computability in Europe Conference (CiE), pages 12–24, 2021.

[10] M. Antonelli, U. Dal Lago, and P. Pistone. On Measure Quantifiers in First-Order
Arithmetic (Long Version). Available at: https://arxiv.org/abs/2104.
12124, 2021.

[11] M. Antonelli, U. Dal Lago, and P. Pistone. Curry and Howard Meet Borel. Proc.
Symposium on Logic in Computer Science (LICS), (45):1–13, 2022.

[12] M. Antonelli, U. Dal Lago, and P. Pistone. Curry and Howard Meet Borel. Available
at: https://arxiv.org/abs/2203.11265, 2022.

[13] M. Antonelli, U. Dal Lago, and P. Pistone. On Counting Propositional Logic and
Wagner’s Hierarchy. Theoretical Computer Science, forthcoming.

239

https://arxiv.org/abs/2210.16160
https://arxiv.org/abs/2301.12028
https://arxiv.org/abs/2301.12028
https://arxiv.org/abs/2103.12862
https://arxiv.org/abs/2104.12124
https://arxiv.org/abs/2104.12124
https://arxiv.org/abs/2203.11265

[14] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[15] M. Avanzini, U. Dal Lago, and A. Ghyselen. Type-Based Complexity Analysis of
Probabilistic Functional Programs. In Proc. Symposium on Logic in Computer Sci-
ence (LICS), pages 1–13, Vancouver, BC, Canada, Canada, 2019. IEEE.

[16] J. Avigad and S. Feferman. Gödel’s Functional (Dialectica) Interpretation. In S.R.
Buss, editor, Handbook of Proof Theory, chapter VI, pages 337–405. Elsevier, 1995.

[17] F. Bacchus. Lp, a Logic for Representing and Reasoning with Statistical Knowl-
edge. Computational Intelligence, 6(4):209–231, 1990.

[18] F. Bacchus. On Probability Distributions over Possible Worlds. Machine Intelligence
and Pattern Recognition, 9:217–226, 1990.

[19] F. Bacchus. Probabilistic Belief Logics. In Proc. 9th European Conference on Artifi-
cial Intelligence, pages 59–64, 1990.

[20] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. MIT Press,
1990.

[21] T. Baker, J. Gill, and Solovay R. Relativizations of the P =? NP Question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[22] S. Bellantoni and S. Cook. A New Recursion-Theoretic Characterization of the
Polytime Functions. Computational Complexity, 2:97–110, 1992.

[23] N.P. Benton, M. Bierman, and V. de Paiva. Computational Types from a Logical
Perspective. Journal of Functional Programming, 8(2):177–193, 1998.

[24] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability. IOS
Press, 2009.

[25] P. Billingsley. Probability and Measure. Wiley, 1995.

[26] M. Boraćić. Probability Sequent Calculi and Entropy Based Nonclassical Logic
Classification. Bulletin of Symbolic Logic, 25(4):446–447, 2019.

[27] M. Boraćić. Probabilized Sequent Calculus and Natural Deduction System for
Classical Logic. In Probabilistic Extensions of Various Logical Systems, pages 197–
213. Springer International Publishing, 2020.

[28] J. Borgström, U. Dal Lago, A.D. Gordon, and M. Szymczak. A Lambda-Calculus
Foundation for Universal Probabilistic Programming. In Proc. International Con-
ference on Functioal Programming (ICFP), pages 33–46, 2016.

[29] O. Bournez and G. Florent. Proving Positive Almost-Sure Termination. In Proc.
International Conference on Rewriting Techinques and Applications (RTA), pages
323–337, 2005.

[30] O. Bournez and C. Kirchner. Probabilistic Rewrite Strategies. Applications to
ELAN. In Proc. International Conference on Rewriting Techinques and Applications
(RTA), pages 252–266, 2002.

[31] F. Breuvart and U. Dal Lago. On Intersection Types and Probabilisitic Lambda
Calculi. In Proc. International Symposium on Principles and Practice of Declarative
Programming, number 8, pages 1–13, 2018.

[32] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. A Core Quantitative Coeffi-
cient Calculus. In Springer, editor, Proc. ESOP Conference, pages 351–423, 2014.

240

[33] H.K. Büning and U. Bubeck. Theory of Quantified Boolean Formulas. In A. Biere,
M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability. IOS
Press, 2009.

[34] S.R. Buss. Bounded Arithmetic. PhD thesis, Princeton University, 1986.

[35] S.R. Buss. First-Order Proof Theory of Arithmetic. In Elsavier, editor, Handbook
of Proof Theory. Buss, S.R., 1998.

[36] S.R. Buss and A. Ignjatović. Unprovability of Consistency Statements in Fragments
of Bounded Arithmetic. Annals of Pure and Applied Logic, 74(3):221–244, 1995.

[37] S.R. Buss, A.L. Kolodziejczyk, and N. Thapen. Fragments of Approximate Com-
puting. Journal of Symbolic Logic, 79(2):496–525, 2014.

[38] L. Caires, F. Pfenning, and B. Toninho. Linear Logic Propositions as Session Types.
Mathematical Structures in Computer Science, 26(3):367–423, 2014.

[39] J.M. Carlyle. Reduced Forms for Stochastic Sequential Machines. Journal of Math-
ematical Analysis and Applications, 7:167–174, 1963.

[40] A.K. Chandra, Kozen D.C., and L.J. Stockmeyer. Alternation. Journal of the Asso-
ciation for Computing Machinery, 28(1):114–133, 1981.

[41] A. Church and S. Kleene. Formal Definitions in the Theory of Ordinal Numbers.
Fundamenta Mathematicae, 28:11–21, 1936.

[42] A. Cobham. The Intrinsic Computational Difficulty of Functions. In North-
Holland, editor, Logic, Methodology and Philosophy of Science II. Bar-Hillel, Y.,
1964.

[43] E.F. Codd. Relational Completeness of Data Base Sublanguages. In Proc. 6th
Courant Computer Science Symposium, pages 65–98, 1972.

[44] S.A. Cook. The Complexity of Theorem-Proving Procedures. In Proc. Symposium
on Theory of Computing (STOC), pages 151–158, 1971.

[45] S.A. Cook and R.A. Reckhow. Efficiency of Propositional Proof Systems. The
Journal of Symbolic Logic, 44(1):36–50, 1979.

[46] S.A. Cook and A. Urquhart. Functional Interpretations of Feasibly Constructive
Arithmetic. Annals of Pure and Applied Logic, 63:103–200, 1993.

[47] T. Coquand and M. Hofmann. A New Method for Establishing Conservativity
of Classical Systems over Their Intuitionistic Version. Mathematical Structures in
Computer Science, 9(4):323–333, 1999.

[48] R. Crubillé and U. Dal Lago. On Probabilistic Applicative Bisimullation and Call-
by-Value λ-Calculi. In Proc. of European Symposium on Programming (ESOP),
pages 209–228, 2014.

[49] P.-L. Curien, M. Fiore, and G. Munch-Maccagnoni. A Theory of Effects and Re-
sources: Adjunction Models and Polarised Calculi. In Proc. Symposium on Princi-
ples of Programming Languages (POPL), pages 44–56, 2016.

[50] H. Curry and R. Feys. Combinatory Logic. North-Holland, 1958.

[51] H.B. Curry. The Combinatory Foundations of Mathematical Logic. The Journal of
Symbolic Logic, 7:49–64, 1942.

[52] H.B. Curry. Foundations of Mathematical Logic. Mcgraw Hill, 1963.

241

[53] U. Dal Lago. On Probabilistic λ-Calculi. In G. Barthe, J. Katoen, and A. Silva, ed-
itors, Foundations of Probabilistic Programming, pages 121–144. Cambridge Uni-
versity Press, 2020.

[54] U. Dal Lago, C. Faggian, B. Valiron, and A. Yoshimizu. The Geometry of Par-
allelism: Cllassical, Probabilistic, and Quantum Effects. In Proc. Symposium on
Principles of Programming Languages (POPL), pages 833–845, 2017.

[55] U. Dal Lago, M. Gabbrielli, and S. Zuppiroli. Probabilistic Recursion Theory
and Implicit Computational Complexity. Scientific Annals of Computer Science,
24(2):177–216, 2014.

[56] U. Dal Lago and U. Grellois. Probabilistic Termination by Monadic Affine Sized
Typing. ACM Transactions of Programming Languages and Systems, 41(2):10–65,
2019.

[57] U. Dal Lago, G. Guerrieri, and W. Heijltjes. Decomposing Probabilistic Lambda-
Calculi. In Proc. Foundations of Software Science and Computation Structures (FoS-
SaCS), pages 136–156, 2020.

[58] U. Dal Lago and M. Hofmann. Bounded Linear Logic, Revisited. In Springer,
editor, Proc. International Conference on Typed Lambda calculus and Applications
(TLCA), pages 80–94, 2009.

[59] U. Dal Lago, R. Kahle, and I. Oitavem. A Recursion-Theoretic Characterization of
the Probabilistic Class PP. In Proc. of International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 1–12, 2021.

[60] U. Dal Lago, R. Kahle, and I. Oitavem. Implicit Recursion-Theoretic Characteriza-
tion of Counting Classes. Archive for Mathematical Logic, 2022.

[61] U. Dal Lago and P. Parisen Toldin. A Higher-Order Characterization of Probabilis-
tic Polynomial Time. Information and Computation, 241:114–141, 2015.

[62] U. Dal Lago, D. Sangiorgi, and M. Gabbrielli. On Coinductive Equivalences for
Higher-Order Probabilistic Functional Programs. In Proc. Symposium on Principles
of Programming Languages (POPL), pages 297–308, 2014.

[63] U. Dal Lago and M. Zorzi. Probabilistic Operational Semantics for the Lambda
Calculus. RAIRO - Theoretical Informatics and Information, 46(3):413–450, 2012.

[64] U. Dal Lago and S. Zuppiroli. Probabilistic Recursion Theory and Implicit Com-
putational Complexity. Proc. International Colloquium on Theoretical Aspects of
Computing (ICTAC), 8687:97–114, 2014.

[65] R. Davies and F. Pfenning. A Modal Analysis of Staged Computation. Journal of
ACM, 48(3):555–604, 2001.

[66] A.S. Davis. Markov Chains as Random Input Automata. The American Mathemat-
ical Montly, 68(3):264–267, 1961.

[67] M. Davis. The Universal Computer: The Road from Leibniz to Turing. CRC Press,
2011.

[68] D. Davoli. Bounded Arithmetic and Randomized Computation. Master Thesis,
http://amslaurea.unibo.it/26234/, 2022.

[69] K de Leeuw, E.F. Moore, C.E. Shannon, and N. Shapiro. Computability by Prob-
abilistic Machines. In Princeton University Press, editor, Automata Studies, num-
ber 34, pages 183–212. Shannon, C.E. and McCarthy, J., 1956.

242

http://amslaurea.unibo.it/26234/

[70] U. de’Liguoro and A. Piperno. Nondeterministic Extensions of Untyped Lambda-
Calculus. Information and Computation, 122(2):249–177, 1995.

[71] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic λ-Calculus and Quantitative
Program Analysis. Journal of Logic and Computation, 15(2):159–179, 2005.

[72] A. Durnand, A. Haak, J. Kontinen, and H. Vollmer. Descriptive Complexity of #P
Functions: A New Perspective. Journal of Computer and System Sciences, 116:40–
54, 2021.

[73] T. Ehrhard and Tasson C. Probabilistic Call-by-Push Value. Logical Methods in
Computer Science, 15(1):555–604, 2018.

[74] T. Ehrhard, M. Pagani, and C. Tasson. Full Abstraction for Probabilistic PCF.
Journal of ACM, 65(4):1–44, 2018.

[75] T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic Coherence Spaces are Fully
Abstract for Probabilistic PCF. In Proc. Symposium on Principles of Programming
Languages (POPL), pages 309–320, 2014.

[76] K. Eickmeyer and M. Grohe. Randomisation and Derandomisation in Descriptive
Complexity Theory. In Computer Science Logic. Springer, 2010.

[77] C. Faggian and S. Ronchi della Rocca. Lambda Calculus and Probabilistic Com-
putation. In Proc. Symposium on Logic in Computer Science (LICS), pages 1–13,
2019.

[78] R. Fagin. Generalized First-Order Spectra and Polynomial-Time Recognizable
Sets. In Proc. SIAM-AMS, pages 43–73, 1974.

[79] R. Fagin and J.Y. Halpern. Uncertainty, Belief, and Probability. Computational
Intelligence, 7(3):160–173, 1991.

[80] R. Fagin and J.Y. Halpern. Reasoning about Knowledge and Probability. Journal
of ACM, 41(2):340–367, 1994.

[81] R. Fagin, J.Y. Halpern, and N. Megiddo. A Logic for Reasoning about Probabilities.
Information and Computation, 87(1/2):78–128, 1990.

[82] F. Ferreira. Polynomial Time Computable Arithmetic and Conservative Extesions.
Ph.D. Dissertation, December 1988.

[83] F. Ferreira. Polynomial-time computable arithmetic. In W. Sieg, editor, Logic and
Computation, volume 106 of Contemporary Mathematics, pages 137–156. AMS,
1990.

[84] G. Ferreira and I. Oitavem. An Interpretation of S1
2 in Σb

1-NIA. Portugaliae Math-
ematica, 63:427–450, 2006.

[85] M. Finger, G. De Bona, and F. G. Cozman. Towards Classifying Propositional
Probabilistic Logics. Journal of Applied Logic, 12(3):349–368, 2014.

[86] L. Fortnow. Beyond NP: The work and legacy of Larry Stockmeyer. In Proc.
Symposium on Theory of Computing (STOC), 2005.

[87] R. Furber, R. Mardare, and M. Mio. Probabilistic Logics Based on Riesz Spaces.
Logical Methods in Computer Science, 16(1), 2020.

[88] D.R. Ghica and A.I. Smith. Bounded Linear Types in a Resource Semiring. In
Springer, editor, Proc. European Symposium on Programming Languages and Sys-
tems (ESOP), pages 331–350, 2014.

243

[89] J.T. Gill. Probabilistic Turing Machines and Complexity of Computation. PhD thesis,
University of California, Berkeley, 1972.

[90] J.T. Gill. Computational Complexity of Probabilistic Turing Machines. In Proc.
Symposium on Theory of Computing (STOC), pages 91–95, 1974.

[91] J.T. Gill. Computational Complexity of Probabilistic Turing Machines. SIAM Jour-
nal on Computing, 6(4):675–695, 1977.

[92] J.-Y. Girard. Interprétation Functionelle et Élimination des coupures dans
l’arithmétique d’ordre supérieure. PhD thesis, Université Paris VII, 1972.

[93] J.-Y. Girard. Between Logic and Quantic: a Tract. In London Mathemmatical
Society Lecture Note Series, volume 316, pages 346–381. Cambridge University
Press, 2004.

[94] J.-Y. Girard, A. Scedrov, and P.J. Scott. Bounded Linear Logic: A Modular Ap-
proach to Polynomial-Time Computability. Theoretical Computer Science, 97(1):1–
66, 1992.

[95] Jean-Yves Girard. Proof and Types. Cambridge University Press, 1989.

[96] M. Girlando, S. Negri, and G. Sbardolini. Uniform Labelled Calculi for Conditional
and Counterfactual Logics. In Proc. Workshop on Logic, Language, Information and
Computation (WoLLIC), pages 248–263, 2019.

[97] K. Gödel. Über Formal Unentscheidbare Sätze der Principia Mathematica und
Verwandter Systeme. Monatsch. Math. Phys., 38:173–178, 1931.

[98] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
dpunktes. Dialectica, 12:280–287, 1958.

[99] K. Gödel. On Undecidable Porpositions of Formal Mathematical Systems. In
M. Davis, editor, The Undecidable: Basic Papers on Undecidable Propositions, Un-
solvvable Problems and Computable Functions. Dover Publications, 1965.

[100] K. Gödel. On Formally Undecidable Porpositions of Principia Mathematica and
Related Systems. Dover Publications, 1992.

[101] O. Goldreich and D. Zuckerman. Another Proof that BPP ⊆ PH (and more). In
Proc. ECCC, 1997.

[102] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28(2):279–299, 1984.

[103] N.D. Goodman, V. Mannsinghka, D.M. Roy, K. Bonawitz, and J.B. Tenenbaum.
Church: A Language for Generative Models. In Proc. Conference on Uncertainty in
Artificial Intelligence, pages 220–229, 2008.

[104] N.D. Goodman and J.B. Tenenbaum. Probabilistic Models of Cognition.

[105] J. Goublult-Larrecq. A Probabilistic and Non-Deterministic Call-By-Push-Value
Language. In Proc. Symposium on Logic in Computer Science (LICS), pages 1–13,
2019.

[106] J.Y. Halpern. An Analysis of First-Order Logics for Probability. Artificial Intelli-
gence, 46(3):311–350, 1990.

[107] J.Y. Halpern. Reasoning About Uncertainty. MIT Press, 2003.

[108] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability.
Formal Aspects of Computation, 6(5):512–535, 1994.

244

[109] J. Hartmainis and R.E. Stearns. On the Computational Complexity of Algorithms.
Transactions of the Americal Mathematical Society, 117:285–306, 1965.

[110] F. Henglein and J. Rehof. Modal Intersection Types, Two-Level Languages, and
Staged Synthesis. In Semantics, Logics, and Calculi: Essays Dedicated to Hanne
Riis ielson and Flemming Nielson on the Occasion of Their 60th Birthday, pages
289–312. Springer.

[111] D. Hilbert. Mathematical Problems. Bulletin of the American Mathematical Society,
8(10):437–439, 1902.

[112] R. Hindley and J. Seldin. Lambda Calculus and Combinators. An Introduction.
Cambridge University Press, 2008.

[113] M. Hofmann. Programming Languages Capturing Commplexity Classes. SIGACT
News, 31(1):31–42, 2000.

[114] R. Horne. The Sub-Additives: A Proof Theory for Probabilistic Choice Extending
Linear Logic. In Leibniz International Proceedings in Informatics, editor, Proc.
Formal Structures for Computation and Deduction (FSCD), pages 1–17, 2019.

[115] W.A. Howard. The Formulae-as-Types Notion of Construction. In J. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479–490. Academic Press, 1980.

[116] N. Immerman. Descriptive Complexity. Springer, 1999.

[117] B. Düdder Martens M. J. Bessai, A. Dudenhefner and J. Rehof. Combinatory
Process Synthesis. In T. Margaria and B. Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation: Foundational Techniques, pages
266–281. Springer, 2016.

[118] E. Jerábek. Approximate Counting in Bounded Arithmetic. Journal of Symbolic
Logic, 72(3):959–993, 2007.

[119] C. Jones and G. Plotkin. A Probabilistic Powerdomain for Evaluations. In Proc.
Symposium on Logic in Computer Science (LICS), pages 186–195, 1989.

[120] A. Jung and R. Tix. The Troublesome Probabilistic Powerdomain. Electronic Notes
in Theoretical Computer Science, 13:70–91, 1998.

[121] R.M. Karp. Reducibility among Combinatorial Problems. In Complexity fo Com-
puter Computations, pages 85–103. Springer, 1972.

[122] S. Katsumata. Parametric Effect Monads and Semantics of Effect Systems. In Proc.
Principles of Programming Languages (POPL), pages 633–645, 2014.

[123] S. Katsumata. A Double Category Theoretic Analysis of Graded Linear Exponential
Comonads. In Springer, editor, Proc. Foundations of Software Science and Compu-
tation Structures (FoSSaCS), pages 110–127, 2018.

[124] A.S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in
Mathematics. Spriger-Verlag, 1995.

[125] S. Kleene. A Note on Recursive Functions. Bulletin of the American Mathematical
Society, 42:544–546, 1936.

[126] S. Kleene. General Recursive Functions of Natural Numbers. Mathematische An-
nalen, 112:727–742, 1936.

[127] S. Kleene. λ-Definability and Recursiveness. Duke Mathematical Journal, 2:340–
353, 1936.

245

[128] S.C. Kleene. On the Interpretation of Intuitionistic Number Theory. Journal of
Symbolic Logic, 10(4):109–124, 1945.

[129] S.C. Kleene. The Theory of Recursive Functions, approaching its Centennial. Bul-
letin of the American Mathematical Society, 5(1):43–61, 1981.

[130] N. Kobayashi, U. Dal Lago, and C. Grellois. On the Termination Problem for
Probabilistic Higher-Order Recursive Programs. In Proc. Symposium on Logic in
Computer Science (LICS), pages 1–14, 2019.

[131] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

[132] D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian Inference for Stochastic
Programs. In Proc. AAAI Conference, pages 740–747, 1997.

[133] A.N. Kolmogorov. Grundbegriffe der Wahrscheinllichkeitrechnung. In Ergebnisse
Der Mathematik. 1933.

[134] J. Kontinen. A Logical Characterization of the Counting Hierarchy. AMC Transac-
tions on Computer Science, 10(1):1–21, 2009.

[135] J. Kontinen. Definabillity of Second Order Generalized Quantifiers. Archive for
Mathematical Logic, 49:379–398, 2010.

[136] J. Kontinen and H. Niemisto. Extensions of MSO and the Monadic Counting
Hierarchy. Information and Computation, 209:1–19, 2011.

[137] D. Kozen. Semantics of Probabilistic Programs. Journal of Computer and System
Sciences, 53(3):165–198, 1982.

[138] J. Krajicek and P. Pudlak. Propositional Proof Systems, the Consistency of First-
Order Theories and the Complexity of Computations. Journal of Symbolic Logic,
54(3):1063–1079, 1989.

[139] G. Kreisel. Interpretation of Analysis by Means of Constructive Funcionals of
Finite Types. In A. Heyting, editor, Constructivity in Mathematics, pages 101–128.
North-Holland, 1959.

[140] D. Lehmann and S. Shelah. Reasoning with Time and Chance. Information and
Computation, 53(3):165 – 198, 1982.

[141] L.A. Levin. Universal Sequential Search Problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

[142] P. Lindström. First Order Predicate Logic with Generalized Quantifiers. Theoria,
32:186–185, 1966.

[143] T. Manning and H. Schütze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 1999.

[144] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Proc. Logic
Colloquium, pages 73–118, 1973.

[145] A. McIver and C. Morgan. Developing and Reasoning about Probabilistic Pro-
grams in pGCL. In Proc. Pernambuco Summmer School on Software Enginneering
(PSSE), pages 123–155, 2004.

[146] A.R. Meyer and L.J. Stockmeyer. The Equivalence Problem For Regular Expres-
sions with Squaring Requires Exponential Space. In Proc. Scandinavian Workshop
on Algorithm Theory (SWAT), pages 125–129, 1972.

246

[147] A.R. Meyer and L.J. Stockmeyer. Word Problems Requiring Exponential Time
(Preliminary Report). In Proc. Symposium on Theory of Computing (STOC), pages
1–9, 1973.

[148] H. Michalewski and M. Mio. Measure Quantifiers in Monadic Second Order Logic.
In Proc. Logical Foundations of Computer Science (LFCS), pages 267–282, 2016.

[149] M. Mio, M. Skrzypczak, and H. Michalewski. Monadic Second Order Logic with
Measure and Category Quantifiers. Logical Methods in Computer Science, 8(2),
2012.

[150] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[151] C. Morgenstern. The Measure Quantifier. Journal of Symbolic Logic, 44(1), 1979.

[152] A. Mostowski. On a Generalization of Quantifiers. Fundamenta Mathematicae,
44:12–36, 1957.

[153] R. Motowani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[154] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[155] S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press,
2001.

[156] S. Negri and J. von Plato. Proof Analysis: A Contribution to Hilbert’s Last Problem.
Cambridge University Press, 2011.

[157] S. Negri and J. von Plato. From Mathematical Axioms to Mathematical Rules of
Proof: Recent Developments in Proof Analysis. In Proc. Royal Society, 2019.

[158] N.J. Nilsson. Probabilistic Logic. Artificial Intelligence, 28(1):71–87, 1986.

[159] N.J. Nilsson. Probabilistic Logic Revisited. Artificial Intelligence, 59(1/2):39–42,
1993.

[160] P. O’Hearn. On Bounched Typing. Journal of Functional Programming, 13(4):747–
796, 2003.

[161] C.H. Papadimitriou. Games against Nature. Journal of Computer and System
Sciences, 31(2):288–301, 1985.

[162] C.H. Papadimitriou. Computational Complexity. Pearson Education, 1993.

[163] C.H. Papadimitriou and S.K. Zachos. Two Remarks on the Power of Counting.
Theoretical Computer Science, 145:269–275, 1982.

[164] I. Parberry and G. Schnitger. Parallel computation with threshold functions. Jour-
nal of Commputer and System Sciences, 36:278–302, 1988.

[165] M. Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical Natural De-
duction. In Proc. Logic for Programming, Artificial Intelligence and Reasoning
(LPAR), pages 190–201, 1992.

[166] R.J. Parikh. Language Generating Devices. Quarterly Progress Report, 60:199–212,
1961.

[167] S. Park. A Calculus for Probabilistic Languages. ACM SIGPLAN Notices, 38(3):38–
49, 2003.

247

[168] S. Park, F. Pfanning, and S. Thrun. A Probabilistic Language Based on Sampling
Functions. ACM Transactions of Programming Languages and Systems, 31(4):1–46,
2008.

[169] G. Peano. Arithmetices Principia: Nova Methodo. Harvard University, 1889.

[170] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Infer-
ence. Elsavier, 1988.

[171] A. Pfeffer. IBAL: A Probabilistic Relational Programminng Language. In Interna-
tional Joint Conference on Artificial Intelligence, 2001.

[172] G. Plotkin and J. Power. Algebraic Operations of Generic Effects. Applied Categor-
ical Structures, 11:69–94, 2003.

[173] G.D. Plotkin. Call-by-Name, Call-by-Value and the λ-calculus. Theoretical Com-
puter Science, 1(2):125–159, 1975.

[174] P. Pudlak and N. Thapen. Random Resolution Refutations. Computational Com-
plexity, 28:185–239, 2019.

[175] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1994.

[176] M. O. Rabin. Probabilistic Automata. Information and Computation, 6(3):230–
245, 1963.

[177] N. Ramsey and A. Pfeffer. Stochastic Lambda Calculus and Monads of Probability
Distributions. In Proc. Symposium on Principles of Programming Languages (POPL),
pages 154–165, 2002.

[178] M. Richardson and P. Domingos. Markov Logic Networks. Machine Learning,
62(1):107–136, 2006.

[179] R.M. Robinson. An Essentially Undecidable Axiom System. In Proc. International
Congress of Mathematics, pages 729–730, 1950.

[180] N. Saheb-Djaromi. Probabilistic LCF. In ACM Press, editor, Proc. International
Symposium on Mathematical Foundations of Computer Science, pages 154–165,
1978.

[181] E.S. Santos. Maximin Automata. Information and Control, 13:363–377, 1968.

[182] E.S. Santos. Maximin Sequential-Like Machines and Chains. Mathematical Sys-
tems Theory, 3(4):300–309, 1969.

[183] E.S. Santos. Probabilistic Turing Machines and Computability. Proc. American
Mathematical Society, 22(3):704–710, 1969.

[184] E.S. Santos. Computability by probabilistic Turing Machines. Transactions of the
American Mathematical Society, pages 159–165, 1971.

[185] E.S. Santos and W.G. Wee. General Formulation of Sequential Machines. Infor-
mation and Control, 12(1):5–10, 1968.

[186] T. Sato and Y. Kameya. PRISM: A Symbolic-Statistical Modeling Language. In
Proc. International Joint Conference on Artificial Intelligence, volume 2, 1997.

[187] M. Schönfinkel. Über die Bausteine der Mathematischen Logik. Mathematische
Annalen, 92(3–4):305–316, 1924.

[188] R. Segala. A Compositional Trace-Based Semantics for Probabilistic Automata. In
Proc. CONCUR, pages 234–248, 1995.

248

[189] W. Shakespeare (or the typist monkey). The Tragedy of Macbeth. 1605/1608.

[190] J.H. Siekman. Computational Logic. In J.H. Siekmann, editor, Handbook of the
History of Logic: Computational Logic, volume 9, pages 15–30. Elsavier, 2014.

[191] J. Simon. On Some Central Problems in Computational Complexity. PhD thesis,
Cornell University, 1975.

[192] J. Simon. On the Difference Between One and Many. In Proc. International Collo-
quium on Automata, Languages and Programming, pages 480–491, 1977.

[193] J. Simon. On Tape-Bounded Probabilistic Turing Machine Acceptors. Theoretical
Computer Science, 16:75–91, 1981.

[194] S. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press-
Press, 2009.

[195] P. Smith. An Introduction to Gödel’s Theorems. Cambridge University Press, 2013.

[196] R.I. Soare. Computability and Recursion. Bulletin of Symbolic Logic, 2:284–321,
1996.

[197] R.I. Soare. Turing Computability: Theory and Applications. Springer, 2016.

[198] M.H. Sorensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, vol-
ume 149. Elsevier, 2006.

[199] C.I. Steinhorn. Borel Structures and Measure and Category Logics. volume 8,
pages 579–596. Springer-Verlag, 1985.

[200] L. Stockmeyer. On Approximation Algorithms for ♯P. SIAM Journal on Computing,
14(4):849–861, 1985.

[201] L.J. Stockmeyer. The Polynomial-Time Hiearchy. Theoretical Computer Science,
3:1–22, 1977.

[202] Ehrhard T., J.-Y. Girard, P. Ruet, and P. Scott, editors. Linear Logic in Computer Sci-
ence, volume 316 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 2004.

[203] W.W. Tait. Intensional Interpretation of Functionals of Finite Type I. Journal of
Symbolic Logic, 32(2):198–212, 1967.

[204] A. Tarski, A. Mostowski, and R.M. Robinson. Undecidable Theories, volume 30.
North-Holland, 1953.

[205] M. Tedre. The Science of Computing: Shaping a Discipline. CHR, 2014.

[206] R. Thiele. Hilbert’s Twenty-Fourth Problem. The American Mathematical Montly,
110(1):1–24, 2003.

[207] M.A. Thornton, R. Drechsler, and D.M. Miller. Logic Verification, pages 201–230.
Springer, 2001.

[208] S. Thrun. Exploring Artificial Intelligence in the New Millennium, chapter Robotic
Mapping: A Survey, pages 1–35. Morgan Kaufmann Publishers Inc., 2003.

[209] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2006.

[210] S. Toda. On the Computational Power of PP and ♯P. In 30th Annual Symposium
on Foundations of Computer Science, pages 514–519, 1989.

[211] S. Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on Com-
puting, 20(5):865–877, 1991.

249

[212] J. Torán. An Oracle Characterization of the Counting Hierarchy. In Proceedings.
Structure in Complexity Theory Third Annual Conference, pages 213–223, 1988.

[213] J. Torán. Counting the Number of Solutions. In Springer, editor, Proc. Mathemat-
ical foundations of Computer Science, pages 121–134, 1990.

[214] J. Torán. Complexity classes defined by counting quantifiers. Journal of the ACM,
38(3):753–774, 1991.

[215] A. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. In Proc. London Mathematical Society, volume 42, pages 230–265,
1936.

[216] A. Turing. Computability and λ-Definability. Journal of Symbolic Logic, 2:153–
163, 1937.

[217] L.G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[218] J. van Heijenoort. From Frege to Gödel: a Source Book in Mathematical Logic,
1879-1931. Harvard University Press, 1967.

[219] D. van Melkebeek. A Survey on Lower Bounds for Satisfiability and Related Prob-
lems. FnT-TCS, 2:197–303, 2007.

[220] D. van Melkebeek and T. Watson. A Quantum Time-Space Lower Bound for
the Counting Hierarchy. available at: https://minds.wisconsin.edu/
handle/1793/60568, 2007.

[221] J. von Plato. Gentzen’s Proof System: Byproducts in a Work of Genius. Bulletin of
Symbolic Logic, 18(3):313–367, 2012.

[222] J. von Plato. The Great Formal Machinery Works. Princeton, 2017.

[223] J. von Plato. What Are the Axioms for Numbers and Who Invented Them? In
De Gruyter, editor, Philosophy of Logic and Mathematics. Mras, G.M. and Wein-
gartner, P. and Ritter, B., 2019.

[224] P. Wadler. Propositions as Sessions. AMC SIGPLAN Notices, 47(9):273–286, 2012.

[225] K.W. Wagner. Compact Descriptions and the Counting Polynomial-Time Hierar-
chy. In Frege Conference 1984: Proc. International Conference held at Schwerin,
pages 383–392, 1984.

[226] K.W. Wagner. Some Observations on the Connection Between Counting and Re-
cursion. Theor. Comput. Sci., 47:131–147, 1986.

[227] K.W. Wagner. The Complexity of Combinatorial Problems with Succinct Input
Representation. Acta Informatica, 23:325–356, 1986.

[228] D. Wang, D.M. Kahn, and J. Hoffmann. Raising Expectations: Automating Ex-
pected Cost Analysis with Types. In Proc. ICFP, 2020.

[229] J. Warrell and M.B. Gerstein. Dependent Type Networks: A Probabilistic
Logic via the Curry-Howard Correspondence in a System of Porbabilistic Depen-
dent Types. unpublished manuscript, http://papers.gersteilab.org/papers/UDL-
19/index-all.html, 2018.

[230] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
1993.

[231] C. Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Com-
puter Science, 3(1):23–33, 1976.

250

https://minds.wisconsin.edu/handle/1793/60568
https://minds.wisconsin.edu/handle/1793/60568

[232] S.K. Zachos. Probabilistic Quantifiers and Games. Journal of Computer and System
Sciences, 36(3):433–451, 1988.

[233] S.K. Zachos and H. Heller. A Decisive Characterization of BPP. Information and
Control, pages 125–135, 1986.

[234] N. Zyuzin and A. Nanevski. Contextual Modal Types for Algebraic Effects and
Handlers. In Proc. ICFP, pages 1–29, 2021.

251

	Introduction
	On Logical Foundations of Computer Science
	Probabilistic Computation
	On the Genealogy of Probabilistic Models
	The Importance of Being Randomized

	Towards Logical Foundation of Randomized Computation
	Relating Logic and Randomized Computation
	From Evaluating to Measuring

	Outline of the Thesis

	I On Counting Logic and Wagner's Hierarchy
	Characterizing (Counting) Classes
	Historical Background
	The Genesis of the Polynomial Hierarchy
	Probabilistic and Counting Models
	Probabilistic and Counting Classes

	From Propositional to Counting Logic
	Outline of Part I

	On Univariate Counting Propositional Logic
	Preliminaries
	A Gentle Introduction to Basic Measure Theory
	Basic Notions in Measure Theory

	Syntax and Semantics of CPL0
	Proof Theory of CPL0
	Soundness and Completeness

	A Digression on the Expressive Power of CPL0
	Expressing Exact Probability
	On Formulae of CPL0 and Dyadic Rationals

	On Multivariate Counting Propositional Logic
	Syntax and Semantics of CPL
	Proof Theory of CPL
	Characterizing the Semantics of CPL via Boolean Formulae
	The Sequent Calculus LKCPL
	Soundness and Completeness

	Related Works

	On Counting Logics and Wagner's Hierarchy
	The Counting Hierarchy
	On CPL0 and PSAT
	On CPL and Wagner's Hierarchy
	Towards a Logical Characterization of the Hierarchy
	Prenex Normal Form
	Positive Prenex Normal Form
	CPL and the Counting Hierarchy

	II Curry and Howard Meet Borel
	Towards a Probabilistic Correspondence (and Beyond)
	Background
	On the Versatility of the -Calculus
	The Curry-Howard Correspondence
	On Probabilistic -Calculi

	To a Probabilistic Correspondence (and Beyond)
	Randomized Programs and Counting Quantifiers
	Making CbN and CbV Evaluation Coexist
	Capturing Probability of Normalization Through Types

	Outline of Part II

	The Logical Side: iCPL
	Intuitionistic Counting Propositional Logic
	Syntax and Semantics of iCPL
	Proof Theory of iCPL

	The Computational Fragment of iCPL
	Syntax and Semantics of iCPL0
	Proof Theory of iCPL0
	Normalization of NDiCPL0

	A ``CbN Proof System''

	The Computational Side: PE and PE{}
	The Probabilistic Event -Calculus
	A -Calculus Sampling from the Cantor Space
	Introducing the (Untyped) Calculus PE
	Probabilistic (Head) Normalization
	Extending PE with CbV Functions

	Probabilistic Curry-Howard Correspondence
	Introducing Types with Counting
	Relating NDiCPL0 and C{}
	Relating NDiCPL0CbN and C

	From Type Soundness to Type Completeness
	From Types to Probability
	From Probability to (Intersection) Types
	Related Works

	III Randomized Bounded Arithmetic
	Characterizing Probabilistic Complexity
	On Arithmetic and (Randomized) Computation
	A Brief Overview of Bounded Arithmetic
	Sub-Theories of Arithmetic and Complexity
	Buss' Bounded Arithmetic
	Ferreira's Bounded Arithmetic

	Towards Randomized Bounded Arithmetic
	Semantic, All Too Semantic
	An Arithmetical Theory to Characterize Probabilistic Complexity

	Outline of Part III

	On Measure Quantifiers in First-Order Arithmetic
	Measure-Quantified Peano Arithmetic
	On the Expressive Power of MQPA
	Randomized Arithmetizaion
	Historical Background
	Making Arithmetization Randomized

	An Arithmetic to Characterize Probabilistic Classes
	Overview
	Introducing POR and RS12
	The Function Algebra POR
	Randomized Bounded Arithmetics

	RS12 characterizes POR
	Functions in POR are b1-Representable in RS12
	The functions which are b1-Representable in RS12 are in POR

	Relating POR and Poly-Time PTMs
	Preliminaries
	Relating RFP and SFP
	Relating SFP and POR

	Arithmetical Characterization of BPP
	From Standard to Randomized Classes
	Characterizing BPP

	Conclusion
	Main Contributions
	Future and Ongoing Work

